D-modules sur la variété des drapeaux

Yves Benoist

Introduction

Le but de ce cours est de montrer comment la théorie des \mathcal{D} -modules intervient en théorie des représentations des groupes de Lie réductifs. En fait les liens entre ces deux théories sont multiples. Celui que nous exposons a été découvert par Beilinson et Bernstein en 1981. Il s'agit d'une présentation géométrique de la "classification de Langlands". Celle-ci décrit des objets, les "modules de Harish-Chandra simples", qui, depuis les années cinquante, jouent un rôle central en théorie des représentations.

Pour éviter trop de notations, nous nous restreindrons à l'étude du groupe $G_0 = GL_+(n, \mathbf{R})$ et au cas de "caractère infinitésimal trivial". Une bonne référence pour une présentation plus générale est [Ka] (ainsi que [Mi]).

La première partie est un panorama (sans démonstration) des résultats de cette théorie.

La deuxième et troisième partie sont consacrées à la démonstration de deux points importants : le fait que la "variété des drapeaux" de \mathbb{C}^n soit \mathcal{D} -affine et la description des opérateurs différentiels sur la "variété des drapeaux".

Les trois parties sont indépendantes.

Sommaire

1	Ap	plication des <i>D</i> -modules à la théorie des représentations	2
	A	Modules de Harish-Chandra	2
	В	L'algèbre enveloppante	3
	\mathbf{C}	Localisation des g-modules	4
	D	Classification de Langlands	5
2	Var	iétés \mathcal{D} -affines	6
	A	La variété des drapeaux incomplets	6
	В	L'espace projectif est D-affine	7
	\mathbf{C}	Faisceaux inversibles sur la variété des drapeaux*	9
	D	La variété des drapeaux est D-affine*	11

	\mathbf{E}	L'action du Casimir*	12
	F	La variété des drapeaux de type S est \mathcal{D} -affine*	14
3	Op	érateurs différentiels sur la variété des drapeaux	15
	A	Construction d'opérateurs différentiels	15
	В	L'espace cotangent à la variété des drapeaux	16
	\mathbf{C}	L'action du centre	17
	D	Le centre de l'algèbre enveloppante	17
	E	Gradués associés	
\mathbf{R}	éfére	ences	19
	-	1 1100 11	

Les parties avec une * sont plus difficiles.

1. Application des D-modules à la théorie des représentations

A. Modules de Harish-Chandra

Un des problèmes centraux de la théorie des représentations est la classification des représentations unitaires irréductibles (R.U.I.)⁽¹⁾ d'un groupe de Lie réel connexe G_0 donné.

La réponse est bien connue lorsque G_0 est compact (Cartan 1913, cf. [Wa] 1.7.5) ou lorsque G_0 est nilpotent (Kirillov 1962)⁽²⁾.

Nous supposerons que $G_0 = \operatorname{GL}_+(n, \mathbf{R}) \stackrel{\text{def}}{=} \{g \in M(n, \mathbf{R}) \mid \det g > 0\}$ avec $n \geq 2$ (ou plus généralement un groupe réductif⁽³⁾ connexe : dans ce cas la réponse n'est pas encore connue)⁽⁴⁾.

Soit $K_0 = \mathrm{SO}(n, \mathbf{R})^{(5)}$ un sous-groupe maximal de G_0 , $\mathfrak{g}_0 = M(n, \mathbf{R})$ et $\mathfrak{k}_0 = \mathfrak{so}(n, \mathbf{R})$ les algèbres de Lie de G_0 et K_0 , $\mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbf{R}} \mathbf{C} \simeq M(n, \mathbf{C})$ et $\mathfrak{k} = \mathfrak{k}_0 \otimes_{\mathbf{R}} \mathbf{C} \simeq \mathfrak{so}(n, \mathbf{C})$ leur complexifiées, et $G = \mathrm{GL}(n, \mathbf{C})$ et $K = \mathrm{SO}(n, \mathbf{C})$ les complexifiés de G_0 et K_0 .

DÉFINITION. — Un \mathfrak{g} -module⁽⁶⁾ est dit simple (ou irréductible) s'il est non nul et si 0 et V sont les seuls sous-espaces vectoriels invariants par \mathfrak{g} .

⁽¹⁾Une représentation unitaire de G_0 est la donnée d'un Hibert \mathcal{H} et d'une application continue π de G_0 dans le groupe des transformations unitaires de \mathcal{H} telle que, pour tout g, g' dans G_0 , $\pi(gg') = \pi(g)\pi(g')$. Elle est dite irréductible si $\mathcal{H} \neq 0$ et si 0 et \mathcal{H} sont les seuls sous-espaces fermés invariants par G_0 .

⁽²⁾ cf. M. Raïs dans "Analyse harmonique", Cours du CIMPA (1983) p. 447-710.

⁽³⁾Une algèbre de Lie est dite réductive si elle est égale à la somme de ses idéaux non nuls minimaux. Un groupe de Lie est dit réductif si son algèbre de Lie est réductive.

⁽⁴⁾Pour $G_0 = GL_+(n, \mathbf{R})$ la réponse est récente (Vogan : Invent. Math. 83 (1986) p. 449–504). Nous ne l'exposerons pas ici.

 $^{^{(5)}}SO(n, \mathbf{R}) = \{ g \in GL_+(n, \mathbf{R}) \mid g \cdot {}^tg = \mathrm{Id} \}.$

⁽⁶⁾ Un \mathfrak{g} -module est la donnée d'un espace vectoriel V et d'une application linéaire ρ de \mathfrak{g} dans $\operatorname{End}(V)$ telle que, pour tout A, B dans \mathfrak{g} , $\rho([A,B]) = [\rho(A),\rho(B)]$.

Il est dit K-fini (ou de Harish-Chandra) si V est une réunion de \mathfrak{k} -sous-modules V' de dimension finie qui s'intègrent⁽⁷⁾ en des représentations de K.

L'intérêt de ces objets vient de la proposition :

PROPOSITION (Harish-Chandra 53, cf. ([Wa] théorème 3.4.11)).

L'application $\mathcal{H} \to \mathcal{H}^{(K_0)} \stackrel{\text{def}}{=} \{v \in \mathcal{H} \mid \dim \langle K_0 \cdot v \rangle < \infty\}^{(8)}$ induit une injection de l'ensemble des (classes d'équivalences⁽⁹⁾ de) R.U. I. de G_0 dans l'ensemble des (classes d'équivalences⁽¹⁰⁾ de) \mathfrak{g} -modules simples K-finis.

Remarque. — La structure de \mathfrak{g} -module sur $\mathcal{H}^{(K_0)}$ vient de ce que, pour tout $v \in \mathcal{H}^{(K_0)}$, l'application $g \mapsto \pi(g)v$ est analytique, on peut donc la dériver.

Une première étape est de classer les g-modules simples K-finis. Cela a été fait par Langlands en 74 (cf. [Wa] th. 5.4.4.) Une description plus géométrique de cette classification est due à Beilinson-Bernstein en 81. C'est d'elle dont nous allons parler.

Il faudrait ensuite repérer lesquels parmi ces \mathfrak{g} -modules sont "unitaires" (i.e. de la forme $\mathcal{H}^{(K_0)}$ avec \mathcal{H} R.U.I.)... c'est une autre histoire.

B. L'algèbre enveloppante

Soit $\mathcal{U} = \mathcal{U}(\mathfrak{g})$ l'algèbre enveloppante⁽¹¹⁾ de \mathfrak{g} . Par construction, les notions de \mathfrak{g} -modules et de \mathcal{U} -modules⁽¹²⁾ se confondent. Soit $\mathfrak{z} = \mathfrak{z}(\mathfrak{g})$ le centre⁽¹³⁾ de $\mathcal{U}(\mathfrak{g})$.

LEMME (Schur-Dixmier). — Soit V un \mathfrak{g} -module simple alors \mathfrak{z} agit sur V de façon scalaire⁽¹⁴⁾.

Donc il existe un caractère⁽¹⁵⁾ χ de $\mathfrak z$ tel que, pour tout z dans $\mathfrak z$, $\rho(z)=\chi(z)$. Id. On l'appelle caractère infinitésimal de V. Soit $\mathcal U_\chi$ l'algèbre quotient : $\mathcal U_\chi \stackrel{\mathrm{déf}}{=}$

⁽⁷⁾ Cela signifie qu'il existe une représentation r de K dans V' (i.e. un morphisme de groupes de K dans GL(V') telle que, pour A dans $\mathfrak g$ et v dans V', $\rho(A) \cdot v = d/dt (r(\exp(tA) \cdot v))_{|t=0}$.

⁽⁸⁾ Pour toute partie P d'un espace vectoriel, on note $\langle P \rangle$ le sous-espace vectoriel engendré par P.

⁽⁹⁾ Deux représentations unitaires (\mathcal{H}, π) et (\mathcal{H}', π') sont dites équivalentes si il existe une isométrie \mathcal{C} de \mathcal{H} sur \mathcal{H}' telle que, pour tout g dans G_0 , $\mathcal{C} \circ \pi(g) = \pi'(g) \circ \mathcal{C}$.

⁽¹⁰⁾ Deux \mathfrak{g} -modules (V, ρ) et (V', ρ') sont dits équivalents si il existe un isomorphisme F de V sur V' tel que, pour tout A dans \mathfrak{g} , $F \circ \rho(A) = \rho'(A) \circ F$.

 $^{^{(11)}\}mathcal{U}(\mathfrak{g})$ est l'algèbre associative quotient de l'algèbre tensorielle $T(\mathfrak{g})$ de l'espace vectoriel \mathfrak{g} par l'idéal bilatère engendré par $\{x \otimes y - y \otimes x - [x,y] \mid x,y \in \mathfrak{g}\}$.

⁽¹²⁾Un \mathcal{U} -module est la donnée d'un espace vectoriel V et d'une application linéaire ρ de \mathcal{U} dans $\mathrm{End}(V)$ telle que $\rho(1) = \mathrm{Id}$ et, pour tout u, u' dans \mathcal{U} , $\rho(uu') = \rho(u)\rho(u')$.

 $^{^{(13)}\}mathfrak{z} = \{z \in \mathcal{U} \mid \forall u \in \mathcal{U}, z \cdot u = u \cdot z\}$. \mathfrak{z} est une algèbre commutative que nous décrirons explicitement plus loin.

 $^{^{(14)}}$ Démonstration : Soit $\mathcal{C}=\{F\in\operatorname{End}V/F\operatorname{commute}\ \ \mathfrak{g}\}$. Comme V est de dimension dénombrable, \mathcal{C} aussi. En outre, pour tout A dans $\mathcal{C}-\{0\}$, $\operatorname{Ker}A$ et $\operatorname{Im}A$ sont \mathfrak{g} -invariants donc A est bijectif, donc \mathcal{C} est un corps. Les éléments $(A-\lambda)^{-1}$ pour λ dans \mathcal{C} ne sont pas linéairement indépendants. Donc \mathcal{C} est une extension algébrique de \mathcal{C} . Donc $\mathcal{C}=\mathcal{C}$. Or $\rho(\mathfrak{z})\subset\mathcal{C}$.

⁽¹⁵⁾ i.e. un morphisme d'algèbres de 3 dans C.

 \mathcal{U}/\mathcal{U} Ker χ où Ker $\chi = \{z \in \mathfrak{z} \mid \chi(z) = O\}$ est le noyau de χ . Par construction, V est un \mathcal{U}_{χ} -module simple.

Soit χ_0 le caractère infinitésimal du module trivial⁽¹⁶⁾ et $\mathcal{U}_0 \stackrel{\text{déf}}{=} \mathcal{U}_{\chi_0}$.

Nous allons classer les \mathfrak{g} -modules simples K-finis de caractère infinitésimal χ_0 c'est à dire les \mathcal{U}_0 -modules simples K-finis [Pour un caractère infinitésimal χ quelconque, il faudrait introduire les faisceaux d'opérateurs différentiels tordus; nous ne le ferons pas].

C. Localisation des g-modules

Soit X la variété des drapeaux de \mathbb{C}^n :

$$X = \{x = (F_i)_{0 \le i \le n} \mid 0 = F_0 \subset F_1 \subset \cdots \subset F_n = \mathbf{C}^n \text{ tel que dim } F_i = i\}.$$

X est une variété algébrique projective (elle est fermée dans un produit de Grasmanniennes⁽¹⁷⁾), lisse (car G agit transitivement sur X) de dimension n(n-1)/2.

Remarque. — X s'identifie⁽¹⁸⁾ à la variété des sous-algèbres de Borel (*i.e.* résolubles maximales) de \mathfrak{g} par l'application : $x \mapsto \mathfrak{b}_x = \{A \in \mathfrak{g} \mid \forall i \ A(F_i) \subset F_i\}$.

DÉFINITION. — Soient Y une variété algébrique (quasi-projective) lisse, \mathcal{D}_Y le faisceau des opérateurs différentiels (linéaires à coefficients algébriques) sur Y et $D_Y = \Gamma(Y, \mathcal{D}_Y)$. On dit que Y est \mathcal{D} -affine si le foncteur Γ "sections globales" est une équivalence de catégories⁽¹⁹⁾ de la catégorie $\mathfrak{M}(\mathcal{D}_Y)$ des \mathcal{D}_Y -modules quasi-cohérents⁽²⁰⁾ dans celle $\mathfrak{M}(\mathcal{D}_Y)$ des \mathcal{D}_Y -modules.⁽²¹⁾

$$\mathfrak{M}(\mathcal{D}_Y) \longrightarrow \mathfrak{M}(D_Y)$$
 $\mathcal{M} \longmapsto \Gamma(\mathcal{M}) \stackrel{\text{déf}}{=} \Gamma(Y, \mathcal{M})$

Remarques.

1. Un foncteur inverse de Γ est alors donné par la localisation : $M \mapsto \Delta(M) \stackrel{\text{déf}}{=} \mathcal{D}_Y \otimes_{D_Y} M$.

⁽¹⁶⁾tel que $V = \mathbf{C}$ et $\rho(\mathfrak{g}) = 0$. On a Ker $\chi_0 = \mathfrak{z} \cap \mathcal{U} \cdot \mathfrak{g}$.

 $^{^{(17)}}$ exercice : montrer que les Grasmanniennes $X_r \stackrel{\text{def}}{=} \{F \subset \mathbf{C}^n \mid \dim F = r\}$ sont des variétés algébriques projectives. Indication : ce sont des sous-variétés fermées de $\mathbf{P}(\bigwedge^r \mathbf{C}^r)$.

⁽¹⁸⁾ exercice : démontrer cette affirmation. Indication : utiliser le théorème de Lie ([Di] 13.12).

⁽¹⁹⁾ Ceci signifie qu'il existe un foncteur Δ de $\mathfrak{M}(D_Y)$ dans $\mathfrak{M}(\mathcal{D}_Y)$ dit "foncteur inverse" tel que les foncteurs Γ o Δ et Δ o Γ sont naturellement isomorphes aux foncteurs identité de $\mathfrak{M}(D_Y)$ et $\mathfrak{M}(\mathcal{D}_Y)$ respectivement (cf. H. Bass: "Algebraic K-theory" chap.1).

 $^{^{(20)}}i.e.$ des faisceaux de \mathcal{D}_Y -modules (à gauche) qui sont quasi-cohérents comme \mathcal{O}_Y -modules où \mathcal{O} est le faisceau des fonctions régulières sur Y.

⁽²¹⁾Une définition équivalente est : " $\forall \mathcal{M} \in \mathfrak{M}(\mathcal{D}_Y)$, $\forall k \geq 1$, $H^k(Y,\mathcal{M}) = 0$ et si $\mathcal{M} \neq 0$, $\Gamma(Y,\mathcal{M}) \neq 0$ ". L'équivalence de ces deux définitions vient de ce que la catégorie $\mathfrak{M}(\mathcal{D}_Y)$ a suffisament d'injectifs et que ceux-ci sont injectifs comme \mathcal{O}_Y -modules et donc Γ -acycliques.

2. Si Y est affine, alors Y est \mathcal{D} -affine.

Le résultat crucial qui relie notre problème à la théorie des \mathcal{D} -modules est le théorème suivant que nous démontrerons aux $\S 2$ et 3.

THÉORÈME (Beilinson-Berntein 81).

- 1. X est D-affine
- 2. On a un isomorphisme d'algèbres $U_0 \simeq D_X$.

D. Classification de Langlands

LEMME (Beilinson-Bernstein). — Soit M un U_0 -module K-fini et de type fini⁽²²⁾, alors le \mathcal{D}_X -module $\mathcal{M} \stackrel{\text{def}}{=} \Delta(M)$ est holonome régulier.

Remarque. — Cela résulte $^{(23)}$ de ce que K a un nombre fini d'orbites dans X.

Lorsque M est simple, \mathcal{M} aussi et \mathcal{M} est donc associé à un certain système local irréductible sur une sous-variété algébrique lisse irréductible de $X^{(24)}$. La sous-variété n'est pas quelconque : c'est une K-orbite $Q = K \cdot x$; la représentation du π_1 de Q non plus : elle doit passer en une représentation du quotient $L_x \stackrel{\text{def}}{=} K_x/(K_x)_e$ du π_1 où K_x est le stabilisateur⁽²⁵⁾ de x dans K et $(K_x)_e$ est la composante connexe de K_x . On peut résumer ces affirmations dans le

Théorème (Classification de Langlands pour $\chi=\chi_0$). — On a une bijection

$$E = \left\{ \begin{array}{ll} \textit{Couples} \ (Q,\tau) \ \textit{où} \ Q = K \cdot x \\ \textit{est une} \ K\text{-}\textit{orbite dans} \ X \\ \textit{et} \ \tau \ \textit{est une} \ (\textit{classes d'équivalence} \\ \textit{valence de) représentation} \\ \textit{irréductible du groupe} \ L_x \end{array} \right\} \qquad \overbrace{\sim} \quad \left\{ \begin{array}{ll} \textit{(classes d'équivalence} \\ \textit{de)} \ \mathfrak{g}\text{-}\textit{modules simples} \\ \textit{K-finis de caractère} \\ \textit{infinitésimal} \ \chi_0 \end{array} \right\}$$

où $\mathcal{L}_{Q,\tau}$, est l'unique \mathcal{D}_X -module simple régulier dont le support est \overline{Q} et dont la restriction à Q est donné par le système local défini par τ .

 $⁽²²⁾_{i.e.} \exists m_1, \ldots, m_p \in M$ tels que $M = \sum_i \mathcal{U}_0 m_i$. Tout module simple est de type fini.

⁽²³⁾ voir [Bo] théorème VII 12.11.

 $^{^{(24)}}voir$ [Bo] théorèmes IV 1.1, IV 7 2 1 et VII 10 6.

 $^{^{(25)}}K_x = \{k \in K \mid k \cdot x = x\}.$

Remarques.

- 1. L'ensemble E des couples (Q, τ) est un ensemble fini.
- 2. Les théorèmes sont vrais pour un groupe réductif connexe G_0 quelconque.
- 3. Dans notre situation, l'ensemble des couples (Q, τ) peut être décrit de façon très explicite, grâce au lemme suivant.

Soit (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n . A chaque base (f_1, \ldots, f_n) de \mathbb{C}^n , on associe le drapeau x tel que $F_d = \langle f_1, \ldots, f_d \rangle$. Pour toute bijection s de $\{1, \ldots, n\}$ telle que $s \circ s = \mathrm{Id}$, on considère le drapeau x_s associé à la base $f_d \stackrel{\mathrm{def}}{=} e_d + i \cdot e_{s(d)}$.

LEMME.

- 1. Soit $K' \stackrel{\text{def}}{=} O(n, \mathbb{C})^{(26)}$. Chaque orbite de K' dans X est de la forme $Q'_s \stackrel{\text{def}}{=} K' \cdot x_s$ pour un unique s.
- 2. Si s a au moins un point fixe, Q'_s est une K-orbite et $L_{x_s} \simeq (\mathbf{Z}/2\mathbf{Z})^{\ell-1}$ où ℓ est le nombre de points fixes de s. Si s n'a pas de point fixe, Q'_s est la réunion de deux K-orbites pour lesquelles les groupes L_x sont triviaux.⁽²⁷⁾

Exemples.

- pour n = 2, il y a 3 orbites et 4 "représentations"; elles sont toutes unitaires,
- pour n = 3, il y a 4 orbites et 7 représentations,
- pour n = 4, il y a 13 orbites et 32 représentations, etc.

2. Variétés \mathcal{D} -affines

A. La variété des drapeaux incomplets

Soient $S = \{s_1 < \cdots < s_p\}$ une partie de $\{1, \ldots, n-1\}$ et X_S la variété des drapeaux (incomplets) de type S.

$$X_S = \left\{ x = (F_i)_{1 \leq i \leq p} \mid 0 \subset F_1 \subset \dots \subset F_p \subset \mathbf{C}^n \quad \text{tel que dim } F_i = s_i \right\}.$$

 X_S est une variété algébrique projective lisse⁽²⁸⁾. $X_1 = \mathbf{P}^1(\mathbf{C}^n)$ est l'espace projectif, X_r est la grassmannienne des r-plans et $X_{\{1,\dots,n-1\}} = X$ est la variété des drapeaux (complets).

 $^{{}^{(26)}\}mathrm{O}(n,\mathbf{C}) = \{ g \in \mathrm{GL}(n,\mathbf{C}) \mid g \cdot {}^t g = \mathrm{Id} \} \supset \mathrm{SO}(n,\mathbf{C}) = \{ g \in \mathrm{O}(n,\mathbf{C}) \mid \mathrm{d\acute{e}t}(g) = 1 \}.$

⁽²⁷⁾ exercice : démontrer ce lemme.

⁽²⁸⁾ exercice : démontrer cette affirmation.

THÉORÈME (Beilinson -Bernstein 81). — Pour tout S, X_S est \mathcal{D} -affine⁽²⁹⁾.

Le but de cette partie est de démontrer ce théorème pour X_1 par des méthodes élémentaires, puis pour X et enfin pour tout X_S par des méthodes plus sophistiquées.

B. L'espace projectif est D-affine

Soient $X_1 = \mathbf{P}^1(\mathbf{C}^n)$, $\mathcal{D} = \mathcal{D}_{X_1}$, $D = \Gamma(\mathcal{D})$ et $\Delta : \mathfrak{M}(D) \mapsto \mathfrak{M}(\mathcal{D})$ le foncteur de localisation : pour M dans $\mathfrak{M}(D)$, $\Delta(M) \stackrel{\text{déf}}{=} \mathcal{D} \otimes_D M^{(30)}$. Ce foncteur est exact à droite⁽³¹⁾. Il suffit de montrer que, pour tout M dans $\mathfrak{M}(D)$ et \mathcal{M} dans $\mathfrak{M}(\mathcal{D})$, les morphismes

- (1) $\Phi_M: M \to \Gamma(\Delta(M))$ donné par $\Phi_M(m) = 1 \otimes m$, pour m dans M, et
- (2) $\Psi_{\mathcal{M}}: \Delta(\Gamma(\mathcal{M}) \to \mathcal{M}$ donné par $\Psi_{\mathcal{M}}(\alpha \otimes m) = \alpha \cdot m_{|U}$, pour α dans $\mathcal{D}(U)$ et m dans $\Gamma(\mathcal{M})^{(32)}$

sont des isomorphismes. (33)

lère étape : Γ est exact. — Soient $Y = \mathbb{C}^n - \{0\}$, $p: Y \to X_1$ la projection naturelle. On note \mathcal{M}^* le \mathcal{D}_Y -module $\mathcal{M}^* = p^*(\mathcal{M})$ image inverse de \mathcal{M} . On peut recouvrir X_1 par des ouverts U de sorte que $p^{-1}(U)$ s'identifie à $\mathbb{C}^* \times U^{(34)}$. Donc :

$$\Gamma(p^{-1}(U), \mathcal{M}^*) = \mathcal{O}(p^{-1}(U)) \underset{\mathcal{O}(U)}{\otimes} \mathcal{M}(U) \simeq \mathbf{C}[t, t^{-1}] \underset{\mathbf{C}}{\otimes} \mathcal{M}(U)^{(35)}.$$

L'opérateur d'Euler $E = \sum_{i=1}^{n} x_i \partial_i^{(36)}$ a une image nulle sur X_1 donc il n'agit que sur $\mathbf{C}[t, t^{-1}]$ (par $E \cdot t^k = k \cdot t^k$). On a, en recollant :

$$\Gamma(Y, \mathcal{M}^*) = \bigoplus_{k \in \mathbf{Z}} \Gamma(Y, \mathcal{M}^*)^{[k]} \stackrel{\text{def}}{=} \bigoplus_{k \in \mathbf{Z}} \{ s \in \Gamma(\mathcal{M}^*) \mid E \cdot s = k \cdot s \}$$

et

$$\Gamma(X, \mathcal{M}) = \Gamma(Y, \mathcal{M}^*)^{[0]}$$

Soit $0 \to \mathcal{M}' \to \mathcal{M} \to \mathcal{M}'' \to 0$ une suite exacte dans $\mathfrak{M}(\mathcal{D})$. On en déduit une suite exacte⁽³⁷⁾ de \mathcal{D}_Y -modules

$$0 \longrightarrow \mathcal{M}'^* \longrightarrow \mathcal{M}^* \longrightarrow \mathcal{M}''^* \longrightarrow 0$$

⁽²⁹⁾i.e. le foncteur Γ "section globales" induit une équivalence de la catégorie $\mathfrak{M}(\mathcal{D}_{X_S})$ des \mathcal{D}_{X_S} -modules quasi-cohérents dans celle $M(\mathcal{D}_{X_S})$ des $\mathcal{D}_{X_S} = \Gamma(\mathcal{D}_{X_S})$ -modules où \mathcal{D}_{X_S} est le faisceau des opérateurs différentiels sur X_S .

 $^{^{(30)}\}Delta(M)$ est le faisceau défini par le préfaisceau : $U \to \mathcal{D}(U) \otimes_D M$.

⁽³¹⁾ exercice : démontrer cette affirmation en prouvant que la fibre en x est $\Delta(M)_x = \mathcal{D}_x \otimes_D M$.

⁽³²⁾ il suffit de définir $\Psi_{\mathcal{M}}$ sur le préfaisceau $U \to \mathcal{D}(U) \otimes_D M$: c'est ce que l'on fait.

 $^{(^{33})\}Phi$ et Ψ sont des "transformations naturelles" au sens des catégories.

⁽³⁴⁾ exercice : démontrer cette affirmation.

 $^{^{(35)}}$ on note t le paramètre de C^* .

 $^{^{(36)}}x_1,\ldots,x_n$ sont les coordonnées canoniques de \mathbb{C}^n et $\partial_i=d/dx_i$.

⁽³⁷⁾ exercice: justifier cette affirmation.

Soient $V = \mathbb{C}^n$, $j: Y \hookrightarrow V$ l'injection et j_* le foncteur image directe⁽³⁸⁾. On en déduit une suite exacte de \mathcal{D}_V -modules

$$0 \longrightarrow j_* \mathcal{M}'^* \longrightarrow j_* \mathcal{M}^* \longrightarrow j_* \mathcal{M}''^* \longrightarrow \mathcal{N} \longrightarrow 0$$

où \mathcal{N} a un support inclus dans $\{0\}^{(39)}$. Comme V est affine, on peut prendre les sections globales et leur composante de degré 0; on en déduit une suite exacte⁽⁴⁰⁾

$$0 \longrightarrow \Gamma(\mathcal{M'}^*) \longrightarrow \Gamma(\mathcal{M}^*) \longrightarrow \Gamma(\mathcal{M''}^*) \longrightarrow \Gamma(V, \mathcal{N})^{[0]} \longrightarrow 0$$

L'exactitude de Γ résulte alors du

LEMME. — Soit \mathcal{N} un \mathcal{D}_V -module de support $\{0\}$ et k > -n, alors $\Gamma(V, \mathcal{N})^{[k]} = 0$.

Démonstration. — Soit s un élément non nul de $\Gamma(V, \mathcal{N})^{[k]}$ avec k > -n. Remarquons que, pour tout $i, x_i \cdot s \in \Gamma(V, \mathcal{N})^{[k+1]}$. Quitte a remplacer s par $x_1^{m_1} \cdots x_n^{m_n} \cdot s$, avec m_1, \ldots, m_n bien choisis, on peut supposer que, pour tout $i, x_i \cdot s = 0$. Or $0 = \sum_{i=1}^n \partial_i \cdot x_i \cdot s = (E+n) \cdot s = (k+n)s$. Donc s = 0. Contradiction.

2ème étape: Démontrons (1).

- C'est vrai pour M = D.
- C'est vrai pour un module libre⁽⁴¹⁾ car Γ et Δ commutent à la somme directe.
- Soit $M \in \mathfrak{M}(D)$. Il existe une suite exacte

$$L_1 \longrightarrow L_0 \longrightarrow M \longrightarrow 0$$

où L_0 et L_1 sont des modules libres. Comme Γ et Δ sont exacts à droite, on a un diagramme commutatif :

où les suites horizontales sont exactes. Comme Φ_{L_1} et Φ_{L_0} sont des isomorphismes, Φ_M aussi.

⁽³⁸⁾Pour tout \mathcal{D}_Y -module \mathcal{L} , $j_*(\mathcal{L})$ est le \mathcal{D}_V -module défini par, pour tout ouvert V' de V, $j_*(\mathcal{L})(V') = \mathcal{L}(j^{-1}(V'))$.

⁽³⁹⁾ exercice: justifier cette affirmation.

⁽⁴⁰⁾ exercice : justifier cette affirmation à l'aide du théorème de Serre ([Ha] II 5.6)

 $^{^{(41)}}i.e.$ une somme directe de modules isomorphes à D.

3ème étape : $Si \mathcal{M} \neq 0$, alors $\Gamma(\mathcal{M}) \neq 0$. — Soit s une section non nulle⁽⁴²⁾ de $\Gamma(Y, \mathcal{M}^*)^{[k]}$. On veut trouver s avec k = 0.

Si k > 0. Comme $E \cdot s = k \cdot s \neq 0$ il existe i tel que $\partial_i \cdot s \neq 0$. Or $\partial_i \cdot s$ est dans $\Gamma(Y, \mathcal{M}^*)^{[k-1]}$: ceci diminue k...

Si k < 0. Comme $s \neq 0$, il existe i tel que $x_i \cdot s \neq 0$. Or $x_i \cdot s$ est dans $\Gamma(Y, \mathcal{M}^*)^{[k+1]}$: ceci augmente $k \dots$

4ème étape : Démontrons (2). — Complétons la flèche $\Delta(\Gamma(\mathcal{M}) \to \mathcal{M}$ en une suite exacte :

$$0 \longrightarrow \mathcal{M}_1 \longrightarrow \Delta(\Gamma(\mathcal{M})) \longrightarrow \mathcal{M} \longrightarrow \mathcal{M}_2 \longrightarrow 0.$$

Comme Γ est exact, on en déduit une suite exacte

$$0 \longrightarrow \Gamma(\mathcal{M}_1) \longrightarrow \Gamma(\Delta(\Gamma(\mathcal{M}))) \longrightarrow \Gamma(\mathcal{M}) \longrightarrow \Gamma(\mathcal{M}_2) \longrightarrow 0.$$

Comme la flèche centrale est un isomorphisme, on a $\Gamma(\mathcal{M}_1) = \Gamma(\mathcal{M}_2) = 0$. Donc $\mathcal{M}_1 = \mathcal{M}_2 = 0$.

C. Faisceaux inversibles sur la variété des drapeaux

Une bonne connaissance de ces faisceaux sera indispensable pour la démonstration du théorème pour X. Soient $x_0 \in X$ le drapeau associé à la base canonique de \mathbb{C}^n , $G = \mathrm{GL}(n, \mathbb{C})$,

$$\begin{array}{lll} B & = & \left\{ b = (b_{ij}) \in G \mid \forall i > j, \ b_{ij} = 0 \right\} \\ H & = & \left\{ b = (b_{ij}) \in G \mid \forall i \neq j, \ b_{ij} = 0 \right\} \\ N^- & = & \left\{ b = (b_{ij}) \in G \mid \forall i < j, \ b_{ij} = 0 \ \mathrm{et} \ \forall i, \ b_{ii} = 1 \right\} \end{array}$$

 $\mathfrak{g}, \mathfrak{b}, \mathfrak{h}, \mathfrak{n}^-$ leurs algèbres de Lie et $p: G \to X$ le morphisme donné par $p(g) = g \cdot x_0$.

Pour $k = (k_1, \ldots, k_n) \in \mathbf{Z}^n$, on note χ_k le caractère de B (resp. de H) donné par $\chi_k(b) = \prod_{i=1}^n (b_{ii})^{k_i}$ et \mathcal{L}_k le faisceau inversible⁽⁴³⁾ sur X donné par, pour tout ouvert U de X,

$$\mathcal{L}_k(U) = \{ f \in \mathcal{O}_G(p^{-1}(U)) \mid \forall b \in B, \ f(gb) = \chi_k(b)^{-1} f(g) \}.$$

Remarquons que \mathcal{L}_k est un faisceau de \mathfrak{g} -modules⁽⁴⁴⁾. On note $k \leq 0$ pour $k_1 \leq \cdots \leq k_n$ et $k \leq 0$ pour $k_1 < \cdots < k_n$.

⁽⁴²⁾ exercice: justifier l'existence d'une telle section.

 $^{^{(43)}}i.e.$ un \mathcal{O}_X -module localement libre de rang un. Exercice : démontrer cette affirmation.

 $^{^{(44)}}i.e.$, pour tout ouvert U de X, $\mathcal{L}_k(U)$ est muni d'une structure de \mathfrak{g} -module compatiblement avec les restrictions : pour A dans \mathfrak{g} , $(L_A f)(g) = (d/dt) f(\exp(-tA) \cdot g)_{|t=0}$.

LEMME.

- 1. $\mathcal{L}_k \otimes_{\mathcal{O}_X} \mathcal{L}_{k'} \simeq \mathcal{L}_{k+k'}$ et $\mathcal{L}_k^{\otimes -1} \simeq \mathcal{L}_{-k}$ comme \mathcal{O}_X -modules⁽⁴⁵⁾.
- 2. $\mathcal{L}_k \simeq \mathcal{L}_{k'}$ comme \mathcal{O}_X -modules si et seulement si $k k' \in \mathbf{Z} \cdot (1, \dots, 1)$.
- 3. Tout faisceau inversible sur X est isomorphe à un faisceau \mathcal{L}_k .
- 4. Soit $V_k \stackrel{\text{def}}{=} \Gamma(X, \mathcal{L}_k)$. On a l'équivalence : $V_k \neq 0 \Leftrightarrow k \leq 0$. Dans ce cas, V_k est un \mathfrak{g} -module simple "de plus bas poids χ_k " (46) et le \mathcal{O}_X -module \mathcal{L}_k est engendré par ses sections globales. (47)
- 5. \mathcal{L}_k est $ample^{(48)} \Leftrightarrow k \prec 0$.

n. — Démonstration de 4) Remarquons que V_k est un \mathfrak{g} -module de dimension finie ([Ha] II 5.19). Ecrivons (à l'aide de [Di] 1.6.4.) $V_k = \bigoplus_{\alpha} W_{\alpha}$ où les W_{α} sont des \mathfrak{g} -modules simples; comme, pour tout α , on a $W_{\alpha}^{N^-} \neq 0^{(49)}$, il suffit de montrer que $V_k^{N^-}$ est une représentation de H de dimension 1 et de poids χ_k si $k \leq 0$ et que $V_k^{N^-} = 0$ sinon.

L'ouvert $U_0 = p(N^-B)$ est dense dans X. Donc $\dim V_k^{N^-} \leq 1$. En fait $\mathcal{L}_k(U_0)^{N^-} = C \cdot f_k$ où $f_k(nb) = \chi_k^{-1}(b)$ pour n dans N^- et b dans B. La question est de savoir si f_k est la restriction d'une fonction régulière sur G. Il faut pour cela que $k \leq 0$ sinon f_k ne se prolonge même pas continument (par exemple, si n = 2, $u_t = \begin{pmatrix} 1 & 0 \\ -t^{-1} & 1 \end{pmatrix} \cdot \begin{pmatrix} t & 1 \\ 0 & t^{-1} \end{pmatrix}$ tend vers $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ lorsque t tend vers 0 et $f_k(u_t) = t^{k_2-k_1}$. En outre si $k \leq 0$, il est facile de trouver un tel prolongement à f_k (il suffit de le faire pour $k_r = \underbrace{(-1, \ldots, -1, 0, \ldots, 0)}_{r \text{ fois}}$; f_k est alors la restriction du polynôme $\alpha_r^{(50)}$: $\alpha_r(g) = \det \left((g_{ij})_{1 \leq i,j \leq r} \right)$.

 \mathcal{L}_k est engendré par ses sections globales car $X = \{x \in X \mid \exists v \in V_k, v(x) \neq 0\}^{(51)}$.

⁽⁴⁵⁾ exercice : démontrer cette affirmation. On a noté $\mathcal{L}_k^{\otimes -1} \stackrel{\text{def}}{=} \mathcal{H}om_{\mathcal{O}_X}(\mathcal{L}_k, \mathcal{O}_X)$.

⁽⁴⁶⁾ Remarquons que V_k est non seulement un \mathfrak{g} -module mais une représentation de G (donnée par $(g \cdot v)(g') = v(g^{-1}g')$ pour tout v dans V_k et g, g' dans G). Soient $V_k^{N^-} \stackrel{\text{def}}{=} \{v \in V_k \mid \forall n \in N^-, \ n \cdot v = v\}$. "de plus bas poids χ_k " signifie que $V_k^{N^-}$ est une représentation de H de poids χ_k (i.e. pour tout v dans $V_k^{N^-}$ et h dans H, on a $h \cdot v = \chi_k(h) \cdot v$).

⁽⁴⁷⁾On dit qu'un \mathcal{O}_X -module \mathcal{F} est engendré par ses sections globales si le morphisme naturel $\mathcal{O}_X \otimes_{\mathbf{C}} \Gamma(X, \mathcal{F}) \to \mathcal{F}$ est surjectif.

⁽⁴⁸⁾ Un faisceau inversible \mathcal{L} est dit ample si, pour tout \mathcal{O}_X -module cohérent \mathcal{F} , il existe m > 0 tel que le \mathcal{O}_X -module $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes m}$ est engendré par ses sections globales. Dans ce cas, on peut trouver m > 0, tel que, pour i > 0, les espaces de cohomologie $H^i(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes m})$ sont nuls ([Ha] III 5.3). Un tel faisceau existe toujours ([Ha] II 7.4.3).

⁽⁴⁹⁾ exercice: démontrer cette affirmation

⁽⁵⁰⁾ exercice : démontrer cette affirmation.

⁽⁵¹⁾ exercice : démontrer cette affirmation.

Démonstration de 2).

Remarquer que $\operatorname{Hom}(\mathcal{L}_k, \mathcal{L}_{k'}) = \Gamma(X, \mathcal{L}_{k'-k}).$

Démonstration de 3). — Cela résulte⁽⁵²⁾ de ce que

- (i) $U_0 \simeq N^- \simeq \mathbf{C}^{n(n-1)/2}$, (53)
- (ii) $U_0 = X \left(\bigcup_{r=1}^{n-1} Z_r\right)$ où $Z_r = \{x = p(g) \mid \alpha_r(g) = 0\}$ est irréductible, (54)
- (iii) le faisceau \mathcal{L}_{k_r} correspond⁽⁵⁵⁾ au diviseur Z_r .⁽⁵⁶⁾

Démonstration de 5). — Soit \mathcal{L} un faisceau inversible ample : il existe k_0 tel que $\mathcal{L} \simeq \mathcal{L}_{k_0}$. Remarquons que tout \mathcal{O}_X -module cohérent \mathcal{F} est un quotient d'un module somme directe de plusieurs copies de \mathcal{L}_{-mk_0} avec $m \gg 0$. On a donc les équivalences : \mathcal{L}_k est ample \Leftrightarrow pour tout ℓ dans \mathbf{Z}^n , il existe m > 0 tel que $\mathcal{L}_{\ell+mk}$ est engendré par ses sections globales \Leftrightarrow pour tout ℓ dans \mathbf{Z}^n , il existe m > 0 tel que $\ell + mk \leq 0 \Leftrightarrow k \leq 0$.

D. La variété des drapeaux est D-affine

Pour tout \mathcal{O}_X -module \mathcal{M} et $k \in \mathbb{Z}^n$ on note $\mathcal{M}(k) \stackrel{\text{def}}{=} \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}_k$.

LEMME CRUCIAL. — Soient $\mathcal{M} \in \mathfrak{M}(\mathcal{D}_X)$ et $k \leq 0$

- a) le morphisme nature (57) $i_k : \mathcal{M} \to \mathcal{M}(k) \otimes_{\mathbf{C}} V_k^*$ admet une cosection j_k (58),
- b) le morphisme nature (59) $p_k : \mathcal{M} \otimes_{\mathbf{C}} V_k \to \mathcal{M}(k)$ admet une section q_k (60).

Remarque. — i_k et p_k sont des morphismes de \mathcal{O}_X -modules, mais pas j_k et q_k .

 $\emph{D\'{e}monstration}$ du th\'eorème pour X. — Le raisonnement du § B prouve qu'il suffit de montrer que

- α) $\forall \mathcal{M} \in \mathfrak{M}(\mathcal{D}_X), \forall i > 0 \ H^i(X, \mathcal{M}) = 0.$
- β) $\forall \mathcal{M} \in \mathfrak{M}(\mathcal{D}_X), \ \mathcal{M} \neq 0 \Rightarrow \Gamma(X, \mathcal{M}) \neq 0.$

⁽⁵²⁾ cf. [Ha] II 6.2 et II 6.4.

⁽⁵³⁾ exercice : démontrer cette affirmation.

⁽⁵⁴⁾ exercice : démontrer cette affirmation.

 $^{^{(55)}}i.e.$ $\mathcal{L}_{k_r} \simeq$ faisceau des fonctions rationnelles qui ont au plus un pôle simple le long de Z_r .

⁽⁵⁶⁾ exercice : démontrer cette affirmation.

⁽⁵⁷⁾ Remarquons que l'identité $\mathrm{Id} \in \mathrm{End}(V_k) = V_k \otimes_{\mathbf{C}} V_k^*$ est une section $\mathrm{de} \ \mathcal{L}_k \otimes_{\mathbf{C}} V_k^*$. i_k est défini par $i_k(m) = m \otimes \mathrm{Id}_{|U}$, pour tout m dans $\mathcal{M}(U)$.

 $^{^{(58)}}i.e.\ j_k:\mathcal{M}(k)\otimes_{\mathbb{C}}V_k^*\to\mathcal{M}$ vérifiant $j_k\circ i_k=$ Identité.

 $^{^{(59)}}p_k$ est défini par $p_k(m \otimes v) = m \otimes v_{|U}$, pour tout m dans $\mathcal{M}(U)$ et v dans V_k .

 $^{^{(60)}}i.e.\ q_k:\mathcal{M}(k)\to\mathcal{M}\otimes_{\mathbb{C}}V_k$ vérifiant $p_k\circ q_k=$ Identité.

 α) Il suffit⁽⁶¹⁾ de montrer que, pour tout sous \mathcal{O}_X -module \mathcal{F} de \mathcal{M} le morphisme induit $H^i(X,\mathcal{F}) \to H^i(X,\mathcal{M})$ est nul. Or pour $k \leq 0$, on a un diagramme

$$\mathcal{F} \longrightarrow \mathcal{F}(k) \underset{\mathbf{C}}{\otimes} V_k^*$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{M} \xrightarrow{\boldsymbol{\xi} = -\boldsymbol{*}} \mathcal{M}(k) \underset{\mathbf{C}}{\otimes} V_k^*$$

commutatif. Si k est bien choisi, on a $H^i(X, \mathcal{F}(k)) = 0$. On en déduit, grâce à a), que le morphisme $H^i(X, \mathcal{F}) \to H^i(X, \mathcal{M})$ est nul.

β) Soit $k \prec 0$ tel que $\Gamma(X, \mathcal{M}(k)) \neq 0$. Le b) prouve alors que $\Gamma(X, \mathcal{M} \otimes_{\mathbf{C}} V_k) = \Gamma(X, \mathcal{M}) \otimes_{\mathbf{C}} V_k \neq 0$. Donc $\Gamma(X, \mathcal{M}) \neq 0$.

E. L'action du Casimir

Le but de ce paragraphe est de démontrer le lemme crucial. Soient

$$\mathcal{D}_k \stackrel{\mathrm{def}}{=} \mathcal{L}_k \underset{\mathcal{O}_X}{\otimes} \mathcal{D}_X \underset{\mathcal{O}_X}{\otimes} \mathcal{L}_{-k}$$

le faisceau des opérateurs différentiels de \mathcal{L}_k et $D_k \stackrel{\text{déf}}{=} \Gamma(X, \mathcal{D}_k)$. L'action L de \mathfrak{g} sur \mathcal{L}_k se prolonge en un morphisme d'algèbres de l'algèbre enveloppante $\mathcal{U} \stackrel{\text{déf}}{=} \mathcal{U}(\mathfrak{g})$ dans D_k . Soient \mathcal{M} un \mathcal{D}_k -module et $\ell \in \mathbf{Z}^n$, alors $\mathcal{M}(\ell)$ est un $\mathcal{D}_{k+\ell}$ -module⁽⁶²⁾.

Soit $E_{ij} \in \mathfrak{g}$ la matrice dont le seul coefficient non nul est un 1 à l'intersection de la ième ligne et de la jème colonne. Soit $C \in \mathcal{U}$ l'opérateur de Casimir : $C = \sum_{1 \leq i,j \leq n} E_{ij} \cdot E_{ji}$, c'est un élément du centre de $\mathcal{U}^{(63)}$. On pose $2\rho = (n-1,n-3,\ldots,-n+1) \in \mathbf{Z}^n$, et, pour k,k' dans \mathbf{Z}^n , on note $\langle k,k' \rangle = \sum_{i=1}^n k_i k_i'$.

LEMME.

- 1. Pour tout k dans \mathbf{Z}^n $L_k(C) = c_k \stackrel{\text{def}}{=} \langle k, k \rangle \langle k, 2\rho \rangle$.
- 2. Soient ℓ dans \mathbf{Z}^n , \mathcal{M} un \mathcal{D}_{ℓ} -module et $k \leq 0$. Alors $\mathcal{M} \otimes V_k$ admet une filtration (\mathcal{N}_i) par des \mathcal{O}_X -modules et des \mathfrak{g} -modules $^{(64)}$ tels que $\mathcal{N}_{i+1}/\mathcal{N}_i$ est isomorphe à $\mathcal{M}(k_i)$ où (χ_{k_i}) est la famille des poids de H dans V_k répétés avec leur multiplicité. L'action du Casimir dans $\mathcal{N}_{i+1}/\mathcal{N}_i$ est égale à $c_{\ell+k_i}$.
- 3. Soit $\chi_{k'}$ un poids de H dans V_k . Alors
 - (a) $c_{k-k'}=c_0 \Rightarrow k=k'$,
 - (b) $c_k = c_{k'} \Rightarrow k = k'$.

⁽⁶¹⁾ exercice: justifier cette affirmation.

⁽⁶²⁾ La structure de $\mathcal{D}_{k+\ell} = \mathcal{L}_{\ell} \otimes_{\mathcal{O}_X} \mathcal{D}_k \otimes_{\mathcal{O}_X} \mathcal{L}_{-\ell}$ -module est donnée par $(s_1 \otimes \alpha \otimes s_2^{-1}) \cdot (s_3 \otimes m) = s_1 \otimes \alpha \cdot s_3/s_2 \cdot m$, pour toutes sections s_1, s_2, s_3 de \mathcal{L}_{ℓ} , α de \mathcal{D}_k et m de \mathcal{M} .

⁽⁶³⁾ exercice: démontrer cette affirmation.

^{(64) &}quot;g-module" signifie "faisceau de g-modules". La structure de g-module sur $\mathcal{M} \otimes V_k$ est donnée par $A \cdot (m \otimes v) = Am \otimes v + m \otimes Av$, pour A dans \mathfrak{g} , v dans V_k et m section de \mathcal{M} .

Démonstration.

- 1) On remarque que $L_k(C)$ est un scalaire (65) et on calcule ce scalaire en faisant agir C sur un élément de $\mathcal{L}_k(U_0)^{N-}$. (66)
 - 2) On a les égalités (67), pour tout ouvert U de X

$$\mathcal{O}_X(U) \otimes V_k =$$

$$= \left\{ f : p^{-1}(U) \to V_k, \text{ régulière telle que } f(gb) = f(g), \forall b \in B \right\}$$

$$\simeq \left\{ \varphi : p^{-1}(U) \to V_k, \text{ régulière telle que } \varphi(gb) = b^{-1} \cdot \varphi(g), \forall b \in B \right\}.$$

Soit $(V_{k,i})$ un drapeau de V_k formé de B sous-modules et χ_{k_i} le poids de $V_{k,i+1}/V_{k,i}$. On pose

$$\mathcal{F}_i = \left\{ \varphi : p^{-1}(U) \to V_{k,i}, \text{ régulière telle que } \varphi(gb) = b^{-1} \cdot \varphi(g), \forall b \in B \right\}$$

et $\mathcal{N}_i = \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{F}_i$. Comme $\mathcal{F}_{i+1}/\mathcal{F}_i$ est isomorphe à \mathcal{L}_{k_i} , $\mathcal{N}_{i+1}/\mathcal{N}_i$ est isomorphe à $\mathcal{M}(k_i)$. L'action de \mathfrak{g} dans $\mathcal{M}(k_i)$ factorise par $D_{\ell+k_i}$, donc le Casimir agit par le scalaire $c_{\ell+k_i}$.

- 3) Cela résulte⁽⁶⁸⁾ des deux inégalités
- $\alpha)\ \langle k'-k,2\rho\rangle\geq 0$ avec égalité seulement si k=k',
- β) $\langle k, k \rangle \geq \langle k', k' \rangle$.
- α) Comme V_k est un \mathfrak{g} -module simple, $\chi_{k'-k}$ est un produit de poids de Hdans $\mathfrak{n} \stackrel{\mathsf{def}}{=} \mathrm{Lie}(N)^{(69)}$. Donc k'-k est une somme de termes de la forme e_i-e_j avec i>j. Donc $\langle k'-k,2\rho\rangle\geq 0$ avec égalité seulement si k=k'.
- β) On peut supposer $k' \leq 0^{(70)}$. On a alors $k + k' \leq 0$ et le raisonnement du α) prouve que $\langle k'-k, k+k' \rangle \leq 0$. C'est ce que l'on voulait.

Démonstration du lemme crucial.

a) Il faut trouver un supplémentaire à $\operatorname{Im}(i_k)$ dans $\mathcal{M}(k) \otimes_{\mathbf{C}} V_k^*$. Le lemme précédent (2 et 3.a) prouve que $Im(i_k)$ est le sous-espace caractéristique de C associé à la valeur propre c_0 . On prend pour supplémentaire la somme des autres sous-espaces caractéristiques.

⁽⁶⁵⁾ exercice : démontrer cette affirmation. Indication : procéder comme en 3.C.

⁽⁶⁶⁾exercice : finir ce calcul. Indication : écrire $C = 2\sum_{i < j} E_{ij} \cdot E_{ji} + \sum_i (E_{ii}^2 + (n+1-2i)E_{ii})$. ⁽⁶⁷⁾l'identification est donnée par $\varphi(g) = g^{-1} \cdot f(g)$, pour tout g dans $g^{-1}(U)$.

⁽⁶⁸⁾ exercice: justifier cette affirmation.

 $^{^{(69)}}$ exercice : justifier cette affirmation. Indication : remarquer que V_k est engendré comme nmodule par un vecteur de poids χ_k .

⁽⁷⁰⁾ exercice: justifier cette affirmation. Indication: remplacer k' par $k'_{\sigma} \stackrel{\text{def}}{=} (k'_{\sigma^{-1}(1)}, \dots, k'_{\sigma^{-1}(n)})$ où σ est une permutation de $\{1,\ldots,n\}$, en remarquant que si $v\in V_k$ est un vecteur de poids $\chi_{k'}$, alors $\sigma \cdot v$ est un vecteur de poids $\chi_{k'_{\sigma}}$ (on a identifié σ à la matrice de permutation : $\sigma_{ij} = \delta_{i\sigma(j)}$).

b) Il faut trouver un supplémentaire à $Ker(p_k)$ dans $\mathcal{M} \otimes_{\mathbb{C}} V_k$. Le lemme précédent (2 et 3b) prouve que l'on peut prendre le sous-espace caractéristique de C pour la valeur propre c_k .

F. La variété des drapeaux de type S est \mathcal{D} -affine

Soient x_s le drapeau de type S associé à la base canonique de \mathbb{C}^n , et

$$P_S = \left\{b \in G \mid b_{ij} = 0 \text{ dès qu'il existe } i, \, j, \, q \text{ tels que } i > s_q \geq j \right\}$$

et $p_S: G \to X_S$ le morphisme donné par $p_S(g) = g \cdot x_s$. On pose $s_0 = 0$ et $s_{p+1} = n$. Pour $k = (k_1, \ldots, k_{p+1}) \in \mathbb{Z}^{p+1}$, on note χ_k le caractère de P_S (resp. H) donné par

$$\chi_k(P) = \prod_{q=1}^{p+1} \left(\det \left((b_{ij})_{s_{q-1} < i, j \le s_q} \right) \right)^{k_q}$$

et \mathcal{L}_k le faisceau inversible sur X_S donné par, pour tout ouvert U de X_S ,

$$\mathcal{L}_k(U) = \left\{ f \in \mathcal{O}_G(p_S^{-1}(U)) \mid \forall b \in P_S, \ f(gb) = \chi_k(b)^{-1} f(g) \right\}.$$

On note $k \leq 0$ pour $k_1 \leq \cdots \leq k_{p+1}$ et k < 0 pour $k_1 < \cdots < k_{p+1}$.

Démonstration du théorème pour X_S . — Les lemmes précédents (2C, 2D et 2E) ainsi que la démonstration du théorème pour X restent valables⁽⁷¹⁾ lorsqu'on remplace X par X_S et \mathbb{Z}^n par \mathbb{Z}^{p+1} .

Problème. — Décrire les variétés algébriques projectives lisses qui sont \mathcal{D} -affines⁽⁷²⁾.

Remarque. — Aucune variété algébrique projective lisse Y n'est \mathcal{D}^{opp} -affine⁽⁷³⁾ (sauf le point).

3. Opérateurs différentiels sur la variété des drapeaux

A. Construction d'opérateurs différentiels

Soient $X = \left\{ x = (F_i)_{0 \leq i \leq n} \mid 0 = F_0 \subset F_1 \subset \cdots \subset F_n = \mathbb{C}^n \text{ et } \dim F_i = i \right\}$ la variété des drapeaux de \mathbb{C}^n , \mathcal{D}_X le faisceau des opérateurs différentiels sur X et $D_X = \Gamma(X, \mathcal{D}_X)$. Le groupe $G \stackrel{\text{déf}}{=} \operatorname{GL}(n, \mathbb{C})$ agit naturellement sur X. On peut donc associer

⁽⁷¹⁾ exercice: verifier ces affirmations.

⁽⁷²⁾Ce sont probablement les "variétés de drapeaux (incomplets)" des groupes réductifs.

 $^{^{(73)}}i.e.$ le foncteur Γ "sections globales" n'induit pas une équivalence de la catégorie des \mathcal{D}_{Y} -modules à droite quasi-cohérents dans celle des D_{Y} -modules à droite. En effet le faisceau canonique ω_{Y} verifie $H^{\dim Y}(Y,\omega_{Y}) \neq 0$ (dualité de Serre cf. [Ha] II.7)... cependant, pour $Y = X_{S}$, le foncteur dérivé $R\Gamma$ induit une équivalence entre les catégories dérivées (cf. [Mi]).

à tout élément A de $\mathfrak{g} \stackrel{\text{déf}}{=} M(n, \mathbb{C})$ un champ de vecteurs L_A sur X, donné par, pour toute fonction f sur X et tout x dans $X^{(74)}$:

$$(L_A f)(x) = \frac{d}{dt} f(\exp(-tA) \cdot x)_{|t=0}.$$

On peut prolonger⁽⁷⁵⁾ ce morphisme d'algèbres de Lie $L^{(76)}$ en un morphisme d'algèbres, encore noté L de l'algèbre enveloppante $\mathcal{U} \stackrel{\text{déf}}{=} \mathcal{U}(\mathfrak{g})$ dans \mathcal{D}_X . Soient \mathfrak{z} le centre de \mathcal{U} , $\mathfrak{z}_+ = \mathfrak{z} \cap \mathcal{U} \cdot \mathfrak{g}$ et $\mathcal{U}_0 = \mathcal{U}/\mathcal{U}\mathfrak{z}_+$. Le but de cette partie est de démontrer le

THÉORÈME (Beilinson-Bernstein). — Le morphisme L passe au quotient en un isomorphisme $L: \mathcal{U}_0 \xrightarrow{\sim} D_X$. (77)

Soient \mathcal{D}_X^m le faisceau des opérateurs différentiels de degré inférieur ou égal à m, $D_X^m = \Gamma(X, \mathcal{D}_X^m)$, \mathcal{U}^m le sous-espace de \mathcal{U} engendré par les produits d'au plus m éléments de $\mathfrak{g}^{(78)}$ et \mathcal{U}_0^m la projection de \mathcal{U}^m dans \mathcal{U}_0 . On va montrer que L induit un isomorphisme $\mathcal{U}_0^m \to \mathcal{D}_X^m$ pour tout m, en étudiant les algèbres graduées associées :

$$\operatorname{gr}(\mathcal{U}_0) \stackrel{\mathrm{def}}{=} \underset{m \geq 0}{\oplus} (\mathcal{U}_0^m/\mathcal{U}_0^{m-1}) \quad \text{et} \quad \operatorname{gr}(D_X) \stackrel{\mathrm{def}}{=} \underset{m \geq 0}{\oplus} (D_X^m/D_X^{m-1})$$

Plus précisément, soient T^*X l'espace cotangent à X et

$$\mathcal{N} \stackrel{\text{déf}}{=} \{ A \in M(n, \mathbb{C}) \mid A^n = 0 \}$$

la variété des matrices nilpotentes, on va construire des isomorphismes d'algèbres⁽⁷⁹⁾:

$$\operatorname{gr}(\mathcal{U}_0) \simeq R(\mathcal{N}) \simeq R(T^*X) \simeq \operatorname{gr}(D_X).$$

On admettra pour cela les propriétés géométriques suivantes de la variété $\mathcal N$ qui sont dues à Kostant⁽⁸⁰⁾

- 1) Soient $\omega_i \in R(\mathfrak{g})$ les polynômes définis par $\omega_i(A) = \operatorname{tr}(A^i)$ et J l'idéal annulateur de $\mathcal{N}^{(81)}$, alors $J = \sum_{i=1}^n R(\mathfrak{g})\omega_i$. (82)
- 2) Soit $\mathcal{N}_r = \{A \in \mathcal{N} \mid A^{n-1} \neq 0\}$, alors l'application de restriction $i^* : R(\mathcal{N}) \to R(\mathcal{N}_r)$ est un isomorphisme. (83)

⁽⁷⁴⁾ exercice : montrer que, en dépit de son apparence, ce champ de vecteurs est algébrique. Indication : il suffit de le faire pour A nilpotente.

⁽⁷⁵⁾ par la propriété universelle de \mathcal{U} , ce prolongement existe et est unique.

⁽⁷⁶⁾ pour A, B dans g, on a $L_{[A,B]} = [L_A, L_B]$.

 $^{^{(77)}}$ On a un résultat analogue pour les variétés X_S des drapeaux de type S: le morphisme naturel $\mathcal{U} \to D_{X_S}$ est surjectif et on peut en décrire le noyau (cf. Borho-Brylinski, Inv. Math. 69 (1983) p. 437–476 : théorème 3.8 et théorème 5.6).

⁽⁷⁸⁾On pose $\mathcal{D}_X^m = 0$ et $\mathcal{U}^m = 0$ pour m < 0.

⁽⁷⁹⁾ Pour toute variété algébrique Y, on note \mathcal{O}_Y le faisceau des fonctions régulières sur Y et $R(Y) = \Gamma(Y, \mathcal{O}_Y)$.

⁽⁸⁰⁾ Amer. J. Math. 85 (1963) p. 327-404.

 $^{^{(81)}}J = \{ f \in R(\mathfrak{g}) \mid f(\mathcal{N}) = 0 \}.$

⁽⁸²⁾ il est facile de voir que $A \in \mathcal{N} \Leftrightarrow \forall i = 1, ..., n \ \omega_i(A) = 0$. Le résultat difficile est que l'idéal $\sum_{i=1}^n R(\mathfrak{g})\omega_i$ est premier.

⁽⁸³⁾le point crucial est de montrer que \mathcal{N} est normale i.e. que $R(\mathcal{N})$ est intégralement clos.

B. L'espace cotangent à la variété des drapeaux

Pour $x = (F_i)_{0 \le i \le n} \in X$, l'application $B \to (L_B)_x$ induit une surjection de \mathfrak{g} sur $T_x X$ dont le noyau est

$$\mathfrak{b}_x \stackrel{\mathrm{def}}{=} \{ B \in \mathfrak{g} \mid B(F_i) \subset F_i \, \forall i \} \, .$$

Soit $\mathfrak{n}_x \stackrel{\text{def}}{=} \{A \in \mathfrak{g} \mid A(F_i) \subset F_{i-1} \ \forall i\}$. Pour A dans \mathfrak{n}_x , la formule $B \to \operatorname{tr}(AB)$ définit une forme linéaire sur $(\mathfrak{g}/\mathfrak{b}_x) \simeq T_x X$. On en déduit une identification

$$T^*X \simeq \{(x,A) \mid x \in X \text{ et } A \in \mathfrak{n}_x\}$$

Le groupe G agit sur \mathfrak{g} par l'application adjointe⁽⁸⁴⁾. Cette action laisse stable \mathcal{N} . Soient $\mu: T^*X \to \mathcal{N}$ et $\pi: T^*X \to X$ les morphismes donnés par $\mu((x,A)) = A$ et $\pi((x,A)) = x$. Soit $(T^*X)_r \stackrel{\text{déf}}{=} \mu^{-1}(\mathcal{N}_r)$. Les affirmations suivantes sont élémentaires⁽⁸⁵⁾

- 3) \mathcal{N}_r est une G-orbite,
- 4) μ induit un isomorphisme $\mu_r: (T^*X)_r \to \mathcal{N}_r$,
- 5) $(T^*X)_r$ est Zariski dense dans T^*X .

LEMME. — μ induit un isomorphisme $\mu^* : R(\mathcal{N}) \to R(T^*X)$.

Démonstration. — Utiliser le diagramme commutatif :

$$R(\mathcal{N}) \xrightarrow{i^*} R(\mathcal{N}_r)$$

$$\mu^* \downarrow \qquad \qquad \mu^*_r \downarrow$$

$$R(T^*X) \xrightarrow{j^*} R((T^*X)_r)$$

où μ_r^* et i^* sont des isomorphismes et où j^* est injectif d'après 2) 4) et 5).

C. L'action du centre

Lemme. —
$$L(\mathfrak{z}_+)=0$$
.

Donc L passe au quotient en un morphisme de \mathcal{U}_0 dans D_X .

⁽⁸⁴⁾ pour g dans G et A dans \mathfrak{g} , $Ad(g) \cdot A = gAg^{-1}$.

Démonstration. — Montrons tout d'abord que $D_X^G = \mathbb{C}^{(86)}$ Soit $\operatorname{gr}(\mathcal{D}_X) \stackrel{\text{déf}}{=} \oplus_{m \geq 0} (\mathcal{D}_X^m/\mathcal{D}_X^{m-1})$. Il suffit⁽⁸⁷⁾ de prouver que $\Gamma(X, \operatorname{gr}(\mathcal{D}_X))^G = \mathbb{C}$. Or $\operatorname{gr}(\mathcal{D}_X) \simeq \pi_*(\mathcal{O}_{T^*X})$. Donc, comme T^*X contient une orbite dense⁽⁸⁸⁾, on a

$$\Gamma(X, \operatorname{gr}(\mathcal{D}_X))^G \simeq R(T^*X)^G \simeq \mathbf{C}.$$

Donc $D_X^G = \mathbf{C}$. Comme $L(\mathfrak{z}) \subset D_X^G$, l'image de \mathfrak{z} est scalaire. Pour déterminer ce scalaire, on considère l'action de D_X sur $R(X) = \mathbf{C}$: la restriction à $L(\mathfrak{g})$ de cette action est triviale donc $L(\mathfrak{z}_+) = 0$.

D. Le centre de l'algèbre enveloppante

Soit $S \stackrel{\text{déf}}{=} S(\mathfrak{g})$ l'algèbre symétrique de \mathfrak{g} ; elle s'identifie⁽⁸⁹⁾ à l'algèbre $\operatorname{gr}(\mathcal{U}) \stackrel{\text{déf}}{=} \bigoplus_{m>0} (\mathcal{U}^m/\mathcal{U}^{m-1})$. On a $\operatorname{gr}(\mathfrak{z}) = S^G.^{(90)(91)(92)}$

L'algèbre S s'identifie⁽⁹³⁾ aussi à l'algèbre $R(\mathfrak{g})$ des polynômes sur \mathfrak{g} . Soient, pour $i=1,\ldots,n,\,\omega_i\in S$ le polynôme défini par, pour A dans $\mathfrak{g},\,\omega_i(A)=\operatorname{tr}(A^i)$.

LEMME. — Les $(\omega_i)_{1 \le i \le n}$ sont algébriquement indépendants et

$$S^G = \mathbf{C}[\omega_1, \dots, \omega_n].$$

Démonstration. — Le groupe S_n des permutations de $\{1,\ldots,n\}$ agit naturellement sur l'espace \mathfrak{h} des matrices diagonales. La restriction induit une injection $R(\mathfrak{g})^G \hookrightarrow R(\mathfrak{h})^{S_n}$. Le résultat est alors une conséquence de ce que les polynômes symétriques sont des polynômes en les polynômes symétriques élémentaires.

E. Gradués associés

Le but de ce paragraphe est de terminer la démonstration du théorème. La suite exacte

$$0 \longrightarrow D_X^{m-1} \longrightarrow D_X^m \longrightarrow \Gamma(X, \mathcal{D}_X^m/\mathcal{D}_X^{m-1})$$

⁽⁸⁶⁾ pour toute représentation V de G, on note $V^G \stackrel{\text{def}}{=} \{v \in V \mid \forall g \in G \ g \cdot v = v\}$.

⁽⁸⁷⁾ exercice: justifier cette affirmation.

⁽⁸⁸⁾ d'après 3) et 4)

⁽⁸⁹⁾ l'identification est donné par le morphisme d'algèbre de S dans $gr(\mathcal{U})$ qui étend l'identité de $\mathfrak{g} \simeq \mathcal{U}^1/\mathcal{U}^0$: c'est un isomorphisme d'après le théorème de Poincaré-Birkhoff-Witt ([Di] proposition 2.3.6).

⁽⁹⁰⁾ pour toute sous-algèbre \mathcal{U}' de \mathcal{U} , on note $\operatorname{gr}(\mathcal{U}')$ la sous-algèbre $\bigoplus_{m\geq 0} (\mathcal{U}'\cap\mathcal{U}^m)/(\mathcal{U}'\cap\mathcal{U}^{m-1})$ de $\operatorname{gr}(\mathcal{U})$.

⁽⁹¹⁾ pour tout g dans G, Ad g s'étend en un unique automorphisme de l'algèbre S (resp. \mathcal{U}) encore noté Ad g. On obtient ainsi une représentation de G dans S (resp. \mathcal{U}).

 $^{^{(92)}}$ exercice : démontrer cette affirmation. Indication : remarquer que $\mathfrak{z} = \mathcal{U}^G$ et considérer l'isomorphisme d'espaces vectoriels β de S dans \mathcal{U} défini par, pour A_1, \ldots, A_p dans \mathfrak{g} , $\beta(A_1 \cdots A_p) = 1/p! \sum_{\sigma \in S_p} A_{\sigma(1)} \cdots A_{\sigma(p)}$.

⁽⁹³⁾ L'identification est donnée par l'isomorphisme d'algèbres de S dans $R(\mathfrak{g})$ qui envoie $A \in \mathfrak{g}$ sur le polynôme $B \to \operatorname{tr}(AB)$.

⁽⁹⁴⁾ car l'ensemble des matrices diagonalisables est dense dans g.

prouve que l'on a une injection

$$\operatorname{gr}(D_X) \hookrightarrow \Gamma(X, \operatorname{gr}(\mathcal{D}_X)) = R(T^*X).$$

D'autre part la suite exacte

$$0 \longrightarrow \mathcal{U} \cdot \mathfrak{z}_{+} \longrightarrow \mathcal{U} \longrightarrow \mathcal{U}_{0} \longrightarrow 0$$

donne une suite exacte

$$0 \longrightarrow \operatorname{gr}(\mathcal{U} \cdot \mathfrak{z}_+) \longrightarrow \operatorname{gr}(\mathcal{U}) \longrightarrow \operatorname{gr}(\mathcal{U}_0) \longrightarrow 0$$

or

$$\operatorname{gr}(\mathcal{U} \cdot \mathfrak{z}_{+}) \supset \operatorname{gr}(\mathcal{U}) \cdot \operatorname{gr}(\mathfrak{z}_{+}) = S \cdot S_{+}^{G} = \sum_{i=1}^{n} R(\mathfrak{g})\omega_{i} = J^{(95)}$$

on a donc une surjection, d'après la propriété 1):

$$R(\mathcal{N}) = R(\mathfrak{g})/J \longrightarrow \operatorname{gr}(\mathcal{U}_0).$$

Par construction l'application composée ;

$$R(\mathcal{N}) \longrightarrow \operatorname{gr}(\mathcal{U}_0) \xrightarrow{\operatorname{gr}(\hat{L})} \operatorname{gr}(\mathcal{D}_X) \hookrightarrow R(T^*X)$$

est l'application $\mu^{*(96)}$ qui est un isomorphisme, d'après le lemme du B); donc gr(L) aussi. Ceci termine la démonstration du théorème.

Problème. — Décrire les variétés algébriques projectives lisses Y pour lesquelles le faisceau des opérateurs différentiels est engendré comme \mathcal{O}_Y -module par ses sections globales. (97)

Références

- [Be-Be] A. BEILINSON, J. BERNSTEIN, Localisation de g-modules, C.R. Acad. Sci. Paris 292 (1981), 15–18.
- [Bo] A. BOREL ET AL., Algebraic D-modules, Perspectives in Math. vol. 2, Academic Press, Boston, 1987.
- [Di] J. DIXMIER, Algèbres enveloppantes, Gauthiers-Villars, Paris, 1974.
- [Ha] R. HARTSHORNE, Algebraic Geometry, Springer, Berlin, New York, 1977.
- [Ka] M. KASHIWARA, Representation theory and D-modules on flag varieties, Astérisque 173-174 (1989), 55-109.
- [Mi] D. MILICIC, livre en préparation.
- [Wa] N. WALLACH, Real reductive groups I, Academic Press, Boston, 1988.

 $^{(97)}i.e. \mathcal{O}_Y \otimes D_Y$ se surjecte sur \mathcal{D}_Y . Ce sont probablement les "variétés homogènes".

 $^{^{(95)}}$ on note S_+ l'idéal d'augmentation de $S:S_+=S\cdot \mathfrak{g}.$

⁽⁹⁶⁾ exercice : démontrer cette affimation. Indication : l'application $gr(L): S(\mathfrak{g}) = gr(\mathcal{U}) \to R(T^*X)$ vérifie, pour $B \in \mathfrak{g}$ et $(x,A) \in T^*X$, (gr(L)(B))(x,A) = tr(AB).