Convolution and square in abelian groups

Yves Benoist

CNRS - Paris-Saclay University

Tokyo, September 2022

1. Critical values 2. Examples **3.** Abelian varieties 4. CM number fields 5. Theta functions 6. Open questions

1/8

1. Critical values

Let G be a finite abelian group of odd order d.

Aim Describe $f: G \to \mathbb{C}$ non-zero and $\lambda \in \mathbb{C}$ such that $\sum_{y\in G}f(x\!+\!y)f(x\!-\!y) \ = \ \lambda\,f(x)^2.$

 λ is a critical value on G, f is a λ -critical function on G.

Example: $G = \mathbb{Z}/d\mathbb{Z}$: λ is called *d*-critical

Proposition 1 Let λ be a critical value on *G*. Then $\star |\lambda| \leq d,$ $\star d/\lambda$ is also a critical value on G, \star the Galois conjugate of λ too,

 $\star (\lambda - 1)/2$ is an algebraic integer.

Given G there are only finitely many λ . Given G and λ there are often infinitely many f.

When $G = \mathbb{R}$?

2/8

2. Examples	λ critical on G :	$\sum_{y\in G}f(x+y)f(x-y)$	$= \lambda f(x)^2.$
List of critical	values for d =	= 11	
up to Galois conjugatio	on,		
$\star \lambda = 1,$			
$\star \lambda = 11,$			
$\star \lambda = 4 + \sqrt{2}$	5,		
$\star \lambda = i\sqrt{11},$			
$\star \lambda = 2 \! + \! i \sqrt{2}$	$\overline{7}$ and $2\sqrt{2}$ -	$+i\sqrt{3},$	
$\star \pm \lambda = 1 + 1$	$\sqrt{5}+i\sqrt{5-5}$	$2\sqrt{5}$.	

The aim of this talk is to explain this list! The proof will use

When $a \equiv \frac{(d+1)^2}{4} \mod 4$, then $\lambda = \sqrt{a} + i\sqrt{b}$ is d-critical.

This elementary statement does not have an elementary proof!

Proposition 3 d=a+b+c positive integers with $b^2 > 4ac$. (i) When $a \equiv b \equiv c \equiv 1 \mod 4$, then $\lambda = \sqrt{a} + \sqrt{c} + i \sqrt{b - 2 \sqrt{ac}}$ is d-critical. (ii) When $a \equiv b \equiv c \equiv 3 \mod 4$, then $\lambda = i\sqrt{a} + i\sqrt{c} + \sqrt{b-2\sqrt{ac}}$ is d-critical.

These elementary statements do not have elementary proofs either!

3. Abelian varieties

Let (A, ω) be a ppav (principally polarized abelian variety): $\star \ A = \mathbb{C}^n / \Lambda$ is a complex torus, $\Lambda \subset \mathbb{C}^n$ is a lattice. $\star \ \omega = \operatorname{Im}(H)$ where H is a positive hermitian form on \mathbb{C}^n with $\omega(\Lambda,\Lambda)\subset\mathbb{Z}$ and $\det_{\Lambda}(\omega)=1.$

Let $\operatorname{End}_{\mathbb{Q}}(A):=\{
u\in\operatorname{End}(\mathbb{C}^n)\mid
u(\Lambda_{\mathbb{Q}})\subset\Lambda_{\mathbb{Q}}\}.$ $h_
u :=
u|_{\Lambda_{\mathbb{O}}}$ is called the holonomy of u. ν is unitary for $H \iff h_{\nu}$ is symplectic for ω .

Theorem Let $\nu \in \operatorname{End}_{\mathbb{Q}}(A)$ be unitary satisfying (\star) Let $G_{
u}:=\Lambda/(\Lambda\cap
u\Lambda)$ and $d_{
u}:=|G_{
u}|.$ Then $\lambda = \kappa \, d_
u^{1/2} \, ext{det}_{\mathbb{C}}(
u)^{1/2}$ is critical on $G_
u$ for some $\kappa^4 = 1$.

(\star) : Writing $h_{
u} = \begin{pmatrix} lpha & eta \\ \gamma & \delta \end{pmatrix}$ in a symplectic basis of Λ , one has $h_
u\equiv 1 mod 2 \ \ ext{and} \ \ \dot{eta_{ii}}\equiv \dot{\gamma_{ii}}\equiv 0 mod 4, ext{ for all } i\leq n.$

 $\begin{array}{ll} \text{Theorem} \Longrightarrow \text{Proposition 2.} & \lambda = \sqrt{a} + i\sqrt{b} \text{ is } d\text{-critical.} \\ \text{Chose } n = 1 \ , \ \nu = \frac{\sqrt{a} + i\sqrt{b}}{\sqrt{a} - i\sqrt{b}} \ , \ \Lambda = \mathbb{Z}i\sqrt{ab} \oplus \mathbb{Z} \subset \mathbb{C}. \end{array}$

Theorem \implies **Proposition 3.(i).** $\lambda = \sqrt{a} + \sqrt{c} + i\sqrt{b - 2\sqrt{ac}}$ is *d*-critical. Choose $n=2, \;
u=rac{1+t_+}{1-t_+} ext{ with } t_\pm\!=\!\sqrt{rac{-b\pm\delta}{2a}}, \;\; \delta\!=\!\sqrt{b^2\!-\!4ac}\,,$ $\Lambda = \mathbb{Z} \oplus \mathbb{Z} rac{b+\delta}{2} \oplus \mathbb{Z} rac{2+(b-\delta)t}{4} \oplus \mathbb{Z} rac{b+\delta-2\delta t_+}{4} \subset \mathbb{C}^2$.

4/8

3/8

4. CM number fields

Let K be a CM-number field = totally imaginary quadratic extension of a totally real number field $2n = [K:\mathbb{Q}],$ Φ a CM-type so that $\operatorname{Hom}(K, \mathbb{C}) = \Phi \cup \overline{\Phi}$.

For $\mu \in K$, let $N_{\Phi}(\mu)$ be the reflex norm of μ so that $N_{K/\mathbb{Q}}(\mu) = |N_{\Phi}(\mu)|^2$ is the norm of μ .

Corollary $\overline{\mathrm{If}\,K/(K\cap\mathbb{R})}$ is ramified or $K=\mathbb{Q}[e^{2i\pi/\ell}]$ (**). Let $s \in \mathcal{O}_K$ and $\mu = 1 \! + \! s \! - \! \overline{s}$ with $d := N_{K/\mathbb{Q}}(\mu)$ odd. Then $\lambda := N_{\Phi}(\mu)$ or $-\lambda$ is critical on $\mathcal{O}_K/\mu \mathcal{O}_K$.

Example with $s=e^{2i\pi/\ell}$ where $\ell\geq 5$ is prime. Then $\lambda := \prod_{k < \ell/2} (1 + 2i \sin(k\pi/\ell))$ or $-\lambda$ is d-critical, with $d = |\lambda|^2 = L_\ell = F_{\ell-1} + F_{\ell+1} =$ Lucas number.

Remark $(\star\star)$ implies the existence of an ideal $\mathfrak{m} \subset \mathcal{O}_K$ such that $A = \mathbb{C}^n / \Phi(\mathfrak{m})$ is a ppav, by Shimura-Taniyama.

Theorem \implies **Corollary.** Choose $\Lambda = \Phi(\mathfrak{m}), \ \nu = \mu/\overline{\mu}$

so that
$$egin{array}{c} G_{
u}\simeq \mathcal{O}_K/\mu\mathcal{O}_K ext{ and } \ d_{
u}\det_{\mathbb{C}}(
u)=N_{K/\mathbb{Q}}(\mu)N_{\Phi}(
u)=N_{\Phi}(\mu)^2. \end{array}$$

5/8

5. Theta functions Proof of Theorem.
Theorem: Let
$$\nu \in \text{End}_{Q}(A)$$
 unitary satisfying (*).
Solve $\Delta = \kappa d_{\nu}^{1/2} \det(\rho)^{1/2}$ is critical on G_{ν} , for some $\kappa^{4} = 1$.
One has $A = \mathbb{C}^{n}/(\tau \mathbb{Z}^{n} \oplus \mathbb{Z}^{n})$, where $\tau \in \mathcal{H}_{n}$.
 $\mathcal{H}_{n} = \{\tau \in \mathcal{M}(n, \mathbb{C}) \text{ symmetric with Im}(\tau) > 0\},$
 $\simeq \operatorname{Sp}(n, \mathbb{R})/U(n).$
For $\sigma = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{Sp}(n, \mathbb{R})$, one has $\sigma.\tau = (\alpha\tau + \beta)(\gamma\tau + \delta)^{-1}$.
For $z \in \mathbb{C}^{n}$, set $\theta_{\tau}(z) \coloneqq \sum_{m \in \mathbb{Z}^{n}} e^{i\pi^{4}m\tau m}e^{2i\pi^{4}mz}.$
Set $\Gamma^{2} = \{\sigma \in \operatorname{Sp}(n, \mathbb{Z}) \mid \sigma \equiv 1 \mod 2\},$
 $\Gamma^{\theta,2} = \{\sigma \in \Gamma^{2} \mid \beta_{ii} \equiv \gamma_{ii} \equiv 0 \mod 4 \text{ for all } i \leq n\}.$
 $= \text{ Theta subgroup of level 2 = Igusa subgroup.}$
Key lemma If there exists $\sigma \in \Gamma^{\theta,2}$ and $d \in \mathcal{M}(n, \mathbb{Z})$
with det(d) odd and $\sigma.\tau = {}^{t}d\tau d$. Set $G := d^{-1}\mathbb{Z}^{n}/\mathbb{Z}^{n}.$
Then, for all z in \mathbb{C}^{n} , the function
 $G \to \mathbb{C}; \ w \mapsto \theta_{\tau}(z + w)$
is λ -critical on G with
 $\lambda = \kappa_{\sigma} \det_{\mathbb{C}}(\gamma\overline{\tau} + \delta)^{-1/2}, \ \text{for some } \kappa_{\sigma}^{8} = 1.$
Remark. The existence of such τ, σ and d follows from the existence of ν by writing $h_{\nu} = \sigma_{1} {\binom{d \ 0}{d - 1}} \sigma_{2}$ with $\sigma_{j} \in \operatorname{Sp}(n, \mathbb{Z})$ and $d = \operatorname{diag}(d_{1}, \dots, d_{n}).$

Proof of Key Lemma There are three key tools. $\sum\limits_{w\in G} heta_ au(z+w) heta_ au(z-w)=\lambda\, heta_ au(z)^2 \quad ext{ for all } z\in \mathbb{C}^n.$ Key Lemma :

A. Addition formula. For z, w in \mathbb{C}^n , one has $heta_ au(z+w)\, heta_ au(z-w) = \sum_{\xi\in\mathbb{Z}^n/2\mathbb{Z}^n} heta_{[\xi]}(w, au)\, heta_{[\xi]}(z, au)$ where $heta_{[\xi]}(z, au) = \sum\limits_{m\in ar{arepsilon}} e^{i\pi^tmrac{ au}{2}m}\,e^{2i\pi^tmz}.$

B. Isogeny formula. For $\xi \in \mathbb{Z}^n/2\mathbb{Z}^n$, one has $rac{1}{|G|} \sum\limits_{w \in G} heta_{[\xi]}(w, au) \ = \ heta_{[\xi]}(0,{}^t\mathrm{d} au\mathrm{d}).$

C. Transformation formula. For $\sigma \in \Gamma^{\theta,2}$, the following ratios do not depend on $\xi \in \mathbb{Z}^n/2\mathbb{Z}^n$, $j(\sigma, au) = rac{ heta_{[\xi]}(0,\sigma. au)}{ heta_{[arepsilon]}(0, au)}$

and $j(\sigma, au) = \kappa_\sigma \det_{\mathbb{C}} (\gamma au + \delta)^{1/2}$ with $\kappa_\sigma^8 = 1$.

Remark. This means that the functions $au\mapsto heta_{[\xi]}(0, au)$ are modular functions with same multipliers on the arithmetic quotient $\Gamma^{\theta,2} \setminus \mathcal{H}_n$.

6/8

Q1. If λ is *d*-critical with *d* prime and $\lambda \neq 1, d$, then λ and d/λ are Galois conjugate ?

Remark. If d_1 divides d and λ_1 is d_1 -critical, then λ_1 is also d-critical.

Q2. If d = a + b with $a \equiv \frac{(d+1)^2}{4} \mod 4$ and $d \not\equiv 2 \mod 3$. then $\lambda := -\sqrt{a} - i\sqrt{b}$ is also *d*-critical ?

Remark. For d = 5, the value $\lambda := -1 - 2i$ is not d-critical. For d = 11, the value $\lambda := -2 - i\sqrt{7}$ is not d-critical.

8/8

FINAL CHALLENGE For Proposition 2, find a proof that does not use elliptic curves.

^{*} abelian varieties with complex multiplication,

^{*} theta functions on torsion points and

^{*} modular functions on the Siegel upper half space.