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Introduction

Let G be a compact simple Lie group, Γ⊂G a dense subgroup.

Example: G = SO(n,R) or G = SU(n,R).

We will discuss three independent naive questions:

Question 1 Does Γ contain a non-abelian free subgroup ?

Question 2 Does Γ contain a g with gZ maximal abelian ?

Let S = S−1 be a finite subset generating Γ

P be the operator on L2(G) : Pϕ(g) = 1
|S|

�
s∈S ϕ(sg),

and L2
0(G) = {ϕ ∈ L2(G) | �G ϕ = 0}.

Question 3 Does one have sup
ϕ∈L2

0(G)

�Pϕ�
L2

�ϕ�
L2

< 1 ?
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What do these three questions have in common?

� They deal with dense subgroups of compact groups.

� You can generalize them to Zariski-dense subgroups Γ
of simple Lie groups G ⊂ GL(n,R).

� The case when G is compact is most difficult.

� You need p-adic Lie groups to solve them.

What shall we see in this talk? Three independent parts!

Part 1 Free subgroup question (Tits).

Part 2 Hyper-regular element question (Prasad-Rapinchuk).

Part 3 Spectral gap question (Sarnak, Benoist-DeSaxcé).

We will see why Qp is better than R for each of these questions.

2/12

Part 1. Tits alternative. A linear group Γ ⊂ GL(n,R) either has a
finite index solvable subgroup or contain non-abelian free subgroups.

Reformulation: Let G ⊂ GL(n,R) be a simple Lie group.

Theorem 1 (Tits, 1970) All Zariski-dense subgroups
Γ ⊂ G contain non-abelian free subgroups.

Proof for Γ Zariski-dense in G=SL(2,C): Ping-pong on P1
C.

Problem When G is compact, no ping pong is possible.

Solution Use p-adic Lie groups. 3/12

Theorem 1 : All Zariski-dense subgroups Γ ⊂ G contain free subgroups.

Definition For p prime, Qp is the completion of Q for the
absolute value |pna

b
|p = p−n for a, b prime to p.

A p-adic field K is a finite extension of Qp.
The absolute value |.|p extends as an absolute value |.|K on K.

Concretely : Qp = {pk0
�

k≥0 akp
k | 0 ≤ ak < p, k0 ∈ Z},

K = Qp[
√
p] = {pk0/2

�
k≥0 akp

k/2 | 0 ≤ ak < p, k0 ∈ Z}.

Fact 1 Let k ⊂ C be a finitely generated field and λ ∈ k

with λn �= 1 ∀n ≥ 1. Then there exists an embedding
k �→ K in C or in a p-adic field such that |λ|K > 1.

Example : for λ = (3+4
√−1)/5, one needs K = Q5 and

λ �→ (3 + 4 i)/5 where i=2+5+2.52+53+ . . . has square −1.
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Theorem 1 : All Zariski-dense subgroups Γ ⊂ G contain free subgroups.

Proof for Γ dense in G = SU(n,C).

� Step 1. Replace Γ by a finitely generated subgroup so that
Γ ⊂ SL(n, k) where k is a finitely generated field.

� Step 2. By Fact 1, one has an embedding Γ ⊂ SL(n,K)

with K p-adic and g ∈ Γ with a jump among its eigenvalues:
|λ1|K ≥ · · · ≥ |λ�|K > |λ�+1|K ≥ · · · ≥ |λn|K .

� Step 3. Use g to play ping-pong on {�-planes in Kn}.
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Part 2. Prasad-Rapinchuk hyper-regularity.

Let G ⊂ GL(n,R) be a simple Lie group.

Theorem 2 (Prasad-Rapinchuk, 2000) All Zariski-dense
subgroups Γ ⊂ G contain hyper-regular elements g.

i.e. g is semisimple and the Zariski-closed
subgroup generated by g is maximal abelian in G.

We will assume G = SL(n,R) or G = SU(n,C).

In this case, we are asking that there are no relations
λk1
1 · · ·λkn

n = 1 among the eigenvalues λi of g
except when k1 = · · · = kn.
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Theorem 2 : All Zariski-dense subgroups Γ ⊂ G contain hyper-regular elements g.

Starting the proof of Theorem 2. Since Γ is Zariski dense,
we can find g ∈ Γ with distinct eigenvalues. This element g
belongs to a unique maximal R-torus T ⊂ G.

We want that no gk, k ≥ 1 belong to smaller R-subtori S.

Definition A R-torus T ⊂ G is an abelian, Zariski-connected
and Zariski-closed subgroup whose elements are semisimple.

Example : T0 :=
�
g =

�
x −y
y x

�
| x2 + y2 = 1

�
.

Problem A R-torus T with dim T ≥ 3 always contains
infinitely many R-subtori S.

Example: T =T 3
0 , take S = {t ∈ T 3

0 | tk11 tk22 tk33 = 1}.

Solution Use p-adic Lie groups.
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Theorem 2 : All Zariski-dense subgroups Γ ⊂ G contain hyper-regular elements g.

Fact 2A Let R ⊂ C be a finitely generated ring.
Then, there exists a ring embedding j : R �→ Zp.

Zp = {�k≥0 akp
k | 0 ≤ ak < p} = {λ ∈ Qp | |λ|p ≤ 1}

is the ring of integers of Qp.

Fact 2B The group Gp = SL(n,Qp) contains a maximal
Qp-torus Tp with only finitely many Qp-subtori Sp.

Example: Tp={x∈K |NK/Qp
(x)=1}

where K is an abelian extension of degree n of Qp.
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Theorem 2 : All Zariski-dense subgroups Γ ⊂ G contain hyper-regular elements g.

� Step 1. Replace Γ by a finitely generated subgroup so that
Γ ⊂ SL(n,R) where R is a finitely generated ring.

� Step 2. By Fact 2A one has an embedding Γ ⊂ SL(n, Zp).
Then the closure Γ is an open subgroup of Gp = SL(n,Qp).

� Step 3. Use the maximal Qp-torus Tp ⊂ Gp from Fact 2B.
The set T �

p := Tp � ∪(Qp-subtori) is open in Tp.

The union of Gp-conjugates of T �
p is open in Gp, hence meets

Γ and contains an element g ∈ Γ. Such a g is hyper-regular.
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Part 3. Spectral gap.

Let G ⊂GL(n,R) be a simple Lie group,
Γ be a Zariski-dense subgroup of G,
S = S−1 ⊂ Γ be a finite symmetric generating subset.
Set Pϕ(g) = 1

|S|
�

s∈S ϕ(sg), for ϕ ∈ L2(G).
P is the averaging operator for µ := 1

|S|
�

s∈S δs.

Sarnak conjecture For G compact, there exists C < 1 such
that �Pϕ�L2 ≤ C�ϕ�L2 for all ϕ ∈ L2(G) with

�
G ϕ = 0.

Theorem 3 (Benoist-DeSaxcé, 2015) Sarnak conjecture
is true when S ⊂ GL(n,Q).

Here Q is the algebraic closure of Q.

This was due to Bourgain-Gamburd for G = SU(n,C).
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Theorem 3 : Spectral gap in L2
0(G) when S ⊂ GL(n,Q).

Key Proposition There exists c > 0 such that, for n ≥ 1 and
Zariski-closed subgroup H � G, one has µ∗n(H) ≤ e−cn .

Here µ∗n = µ ∗ · · · ∗ µ = nth-convolution power of µ.

No time to explain why Key Proposition implies Theorem 3...

Proof of Key Proposition when G/H = Gv with v ∈ Rn.

The behavior of �gv� is controlled by the first Lyapunov
exponent λ1 := lim

n→∞
1
n

�
Γ log �gv� dµ∗n(g).

Most often, by Furstenberg’s theorem, one has λ1 > 0.

Then, the large deviation estimates tell us that
µ∗n({g ∈ Γ | �g.v� ≤ �v�}) = O(e−cn).
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Problem This method works only when G is non compact.

Solution Use p-adic Lie groups.

Fact 3 For random walks on p-adic Lie groups,
one still has large deviation estimates.

Key Proposition : One has µ∗n(H) ≤ e−cn, for Zariski-closed subgroups H � G.

� Step 1. As in Tits alternative, replace Γ by an unbounded
Zariski-dense subgroup of a p-adic Lie group SL(n,K).

� Step 2. Apply the large deviation estimates of Fact 3.

For more: see Inv. Math. 205 (2016) p.337-361
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FINAL CHALLENGE
For these 3 questions,
find a proof that does

not use p-adic numbers.


