Are p-adic Lie groups useful beyond Number Theory ?

> **Yves Benoist CNRS - Paris-Saclay University**

> > June 2021 **NUS Colloquium**

www.math.u-psud.fr/~benoist/conference

Introduction

Let G be a compact simple Lie group, $\Gamma \subset G$ a dense subgroup. Example: $G = SO(n, \mathbb{R})$ or $G = SU(n, \mathbb{R})$.

We will discuss three independent naive questions:

Question 1 Does Γ contain a non-abelian free subgroup ?

Question 2 Does Γ contain a g with $\overline{g^{\mathbb{Z}}}$ maximal abelian ?

Let $S = S^{-1}$ be a finite subset generating Γ P be the operator on $L^2(G)$: $P arphi(g) = rac{1}{|S|} \sum_{s \in S} arphi(sg),$ and $L^2_0(G) = \{ arphi \in L^2(G) \mid \int_G arphi = 0 \}.$

Question 3 Does one have $\sup_{\varphi \in L^2_0(G)} \frac{\|P\varphi\|_{L^2}}{\|\varphi\|_{L^2}} < 1$?

1/12

What do these three questions have in common?

***** They deal with dense subgroups of compact groups.

 \star You can generalize them to Zariski-dense subgroups Γ of simple Lie groups $G \subset \operatorname{GL}(n, \mathbb{R})$.

 \star The case when G is compact is most difficult.

***** You need p-adic Lie groups to solve them.

What shall we see in this talk? Three independent parts!

Part 1 | Free subgroup question (Tits).

Part 2 Hyper-regular element question (Prasad-Rapinchuk).

Part 3 Spectral gap question (Sarnak, Benoist-DeSaxcé).

We will see why \mathbb{Q}_p is better than \mathbb{R} for each of these questions. 2/12

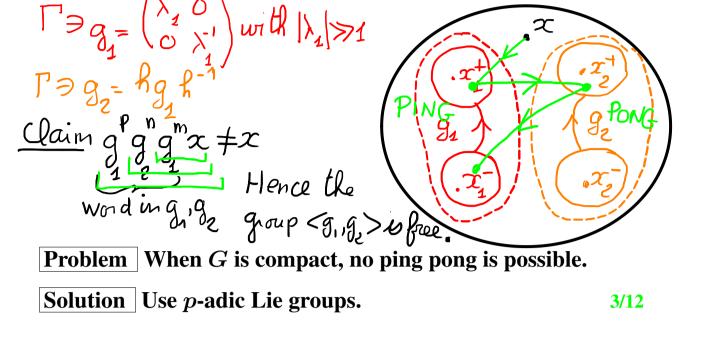
Part 1. Tits alternative. A linear group $\Gamma \subset \operatorname{GL}(n,\mathbb{R})$ either has a finite index solvable subgroup or contain non-abelian free subgroups.

Reformulation: Let $G \subset GL(n, \mathbb{R})$ be a simple Lie group. **Theorem 1 (Tits, 1970)** All Zariski-dense subgroups

 $\Gamma \subset G$ contain non-abelian free subgroups.

Proof for Γ **Zariski-dense in** $G = SL(2, \mathbb{C})$: **Ping-pong on** $\mathbb{P}^1_{\mathbb{C}}$.

 \mathcal{T}



Theorem 1 : All Zariski-dense subgroups $\Gamma \subset G$ contain free subgroups.

Definition For p prime, \mathbb{Q}_p is the completion of \mathbb{Q} for the absolute value $|p^n \frac{a}{b}|_p = p^{-n}$ for a, b prime to p. A *p*-adic field K is a finite extension of \mathbb{Q}_p . The absolute value $|.|_p$ extends as an absolute value $|.|_K$ on K.

Concretely : $\mathbb{Q}_p = \{p^{k_0} \sum_{k \geq 0} a_k p^k \mid 0 \leq a_k < p, \, k_0 \in \mathbb{Z}\},$ $K = \mathbb{Q}_p[\sqrt{p}] = \{p^{k_0/2} \sum_{k \geq 0}^{m \geq 0} a_k p^{k/2} \mid 0 \leq a_k < p, \, k_0 \in \mathbb{Z} \}.$

Fact 1 Let $k \subset \mathbb{C}$ be a finitely generated field and $\lambda \in k$ with $\lambda^n \neq 1 \ \forall n \geq 1$. Then there exists an embedding $k \hookrightarrow K$ in $\mathbb C$ or in a *p*-adic field such that $|\lambda|_K > 1$.

Example : for $\lambda = (3+4\sqrt{-1})/5$, one needs $K = \mathbb{Q}_5$ and $\lambda \mapsto (3+4i)/5$ where $i = 2+5+2.5^2+5^3+...$ has square -1. 4/12

Theorem 1 : All Zariski-dense subgroups $\Gamma \subset G$ contain free subgroups.

Proof for Γ **dense in** $G = SU(n, \mathbb{C})$ **.**

\star Step 1. Replace Γ by a finitely generated subgroup so that $\Gamma \subset \mathrm{SL}(n,k)$ where k is a finitely generated field.

 \star Step 2. By Fact 1, one has an embedding $\Gamma \subset SL(n, K)$ with K p-adic and $g \in \Gamma$ with a jump among its eigenvalues: $|\lambda_1|_K \geq \cdots \geq |\lambda_\ell|_K > |\lambda_{\ell+1}|_K \geq \cdots \geq |\lambda_n|_K.$

\star Step 3. Use g to play ping-pong on $\{\ell$ -planes in $K^n\}$.

5/12

Part 2. Prasad-Rapinchuk hyper-regularity.

Let $G \subset GL(n, \mathbb{R})$ be a simple Lie group.

Theorem 2 (Prasad-Rapinchuk, 2000) | All Zariski-dense subgroups $\Gamma \subset G$ contain hyper-regular elements g.

i.e. q is semisimple and the Zariski-closed subgroup generated by g is maximal abelian in G.

We will assume $G = SL(n, \mathbb{R})$ or $G = SU(n, \mathbb{C})$.

In this case, we are asking that there are no relations $\lambda_1^{k_1}\cdots\lambda_n^{k_n}=1$ among the eigenvalues λ_i of gexcept when $k_1 = \cdots = k_n$.

6/12

Theorem 2 : All Zariski-dense subgroups $\Gamma \subset G$ contain hyper-regular elements g.

Starting the proof of Theorem 2. Since Γ is Zariski dense, we can find $g \in \Gamma$ with distinct eigenvalues. This element gbelongs to a unique maximal \mathbb{R} -torus $T \subset G$.

We want that no g^k , $k \ge 1$ belong to smaller \mathbb{R} -subtori S.

Definition | A \mathbb{R} -torus $T \subset G$ is an abelian, Zariski-connected and Zariski-closed subgroup whose elements are semisimple.

Example : $T_0 := \left\{g = \left(egin{array}{cc} x & -y \\ y & x \end{array}
ight) \mid x^2 + y^2 = 1
ight\}.$

Problem A \mathbb{R} -torus T with dim $T \geq 3$ always contains infinitely many \mathbb{R} -subtori S.

Example: $T = T_0^3$, take $S = \{t \in T_0^3 \mid t_1^{k_1} t_2^{k_2} t_3^{k_3} = 1\}$.

Solution Use *p*-adic Lie groups.

7/12

Theorem 2 : All Zariski-dense subgroups $\Gamma \subset G$ contain hyper-regular elements g.

Fact 2A Let $R \subset \mathbb{C}$ be a finitely generated ring. Then, there exists a ring embedding $j: R \hookrightarrow \mathbb{Z}_p$.

 $\mathbb{Z}_p = \{\sum_{k \geq 0} a_k p^k \mid 0 \leq a_k < p\} = \{\lambda \in \mathbb{Q}_p \mid |\lambda|_p \leq 1\}$ is the ring of integers of \mathbb{Q}_p .

Fact 2B The group $G_p = \operatorname{SL}(n, \mathbb{Q}_p)$ contains a maximal \mathbb{Q}_p -torus T_p with only finitely many \mathbb{Q}_p -subtori S_p .

Example: $T_p = \{x \in K \mid N_{K/\mathbb{Q}_p}(x) = 1\}$ where K is an abelian extension of degree n of \mathbb{Q}_p .

8/12

Theorem 2 : All Zariski-dense subgroups $\Gamma \subset G$ contain hyper-regular elements g.

 \star Step 1. Replace Γ by a finitely generated subgroup so that $\Gamma \subset \mathrm{SL}(n,R)$ where R is a finitely generated ring.

\star Step 2. By Fact 2A one has an embedding $\Gamma \subset SL(n, \mathbb{Z}_p)$. Then the closure $\overline{\Gamma}$ is an open subgroup of $G_p = \mathrm{SL}(n, \mathbb{Q}_p)$. **\star Step 3.** Use the maximal \mathbb{Q}_p -torus $T_p \subset G_p$ from Fact 2B.

The set $T'_p := T_p \smallsetminus \cup (\mathbb{Q}_p ext{-subtori})$ is open in T_p .

The union of G_p -conjugates of T'_p is open in G_p , hence meets $\overline{\Gamma}$ and contains an element $g \in \Gamma$. Such a g is hyper-regular.

9/12

Part 3. Spectral gap.

Let $G \subset GL(n, \mathbb{R})$ be a simple Lie group, Γ be a Zariski-dense subgroup of G, $S = S^{-1} \subset \Gamma$ be a finite symmetric generating subset. Set $P \varphi(g) = rac{1}{|S|} \sum_{s \in S} \varphi(sg)$, for $\varphi \in L^2(G)$. P is the averaging operator for $\mu := rac{1}{|S|} \sum_{s \in S} \delta_s.$

Sarnak conjecture For G compact, there exists C < 1 such that $\|P\varphi\|_{L^2} \leq C \|\varphi\|_{L^2}$ for all $\varphi \in L^2(G)$ with $\int_G \varphi = 0$.

Theorem 3 (Benoist-DeSaxcé, 2015) Sarnak conjecture is true when $S \subset \operatorname{GL}(n, \overline{\mathbb{Q}})$.

Here $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} .

This was due to Bourgain-Gamburd for $G = SU(n, \mathbb{C})$.

Theorem 3 : Spectral gap in $L^2_0(G)$ when $S \subset \mathrm{GL}(n,\overline{\mathbb{Q}})$.

Key Proposition | There exists c > 0 such that, for $n \ge 1$ and Zariski-closed subgroup $H \varsubsetneq G$, one has $\mu^{*n}(H) \leq e^{-cn}$. Here $\mu^{*n} = \mu * \cdots * \mu = n^{th}$ -convolution power of μ .

No time to explain why Key Proposition implies Theorem 3...

Proof of Key Proposition when G/H = Gv with $v \in \mathbb{R}^n$.

The behavior of ||gv|| is controlled by the first Lyapunov exponent $\lambda_1 := \lim_{n o \infty} rac{1}{n} \int_{\Gamma} \log \|gv\| \, d\mu^{*n}(g).$

Most often, by Furstenberg's theorem, one has $\lambda_1 > 0$.

Then, the large deviation estimates tell us that $\mu^{*n}(\{g\in \Gamma\mid \|g.v\|\leq \|v\|\})=O(e^{-cn}).$

11/12

Problem | This method works only when G is non compact. Solution Use *p*-adic Lie groups.

Fact 3 For random walks on *p*-adic Lie groups, one still has large deviation estimates.

Key Proposition : One has $\mu^{*n}(H) \leq e^{-cn}$, for Zariski-closed subgroups $H \subsetneq G$.

 \star Step 1. As in Tits alternative, replace Γ by an unbounded Zariski-dense subgroup of a *p*-adic Lie group SL(n, K).

***** Step 2. Apply the large deviation estimates of Fact 3.

For more: see Inv. Math. 205 (2016) p.337-361

12/12

FINAL CHALLENGE For these 3 questions, find a proof that does not use *p*-adic numbers.