Positive harmonic functions on the Heisenberg group

Yves Benoist

CNRS - Paris-Saclay University

June 2021 **8ECM Invited Lecture**

www.math.u-psud.fr/~benoist

MAIN QUESTION Classify the positive harmonic functions on nilpotent groups.

Organization

- **1. Harmonic functions.**
- 2. The Heisenberg group.
- **3.** The partition function.
- 4. Abelian groups.
- 5. Nilpotent groups.
- 6. Inducing harmonic characters.
- 7. Classification on the Heisenberg group

1/8

1. Harmonic functions

Let G be a group generated by a finite set S and $\mu = \sum_{s \in S} \mu_s \delta_s$ be a positive measure with support *S*.

Definition $\mathcal{H}^+_\mu=\{h\!:\!G\!
ightarrow\![0,\infty[\,,\,P_\mu h=h\}$ = convex cone of positive μ -harmonic functions. $P_{\mu}h(g) = \sum_{s \in S} \mu_s \, h(sg).$ Here We set \mathcal{E}_{μ} for the set of extremal h in \mathcal{H}_{μ}^+ .

Choquet, 1950 For all f in \mathcal{H}^+_{μ} , there exists a positive measure ν on \mathcal{E}_{μ} such that $f = \int_{\mathcal{E}_{\mu}} h \, d\nu(h)$.

History

The positive μ -harmonic functions were described * on abelian groups by Choquet and Deny in the 1950s. And, if the semigroup G^+_μ spanned by S is equal to G,***** on nilpotent groups by Margulis in the 1960s, * on hyperbolic groups by Ancona in the 1980s.

2. The Heisenberg group

The aim of the talk is to describe \mathcal{E}_{μ} for the group $G=H_3(\mathbb{Z})=\{g=egin{pmatrix} 1 & x & z \ 0 & 1 & y \ 0 & 0 & 1 \end{pmatrix} \mid x,y,z\in \mathbb{Z}\}.$ Writing g = (x, y, z), the product is $\left(x,y,z
ight)\left(x',y',z'
ight)=\left(x{+}x',y{+}y',z{+}z'{+}xy'
ight).$ Today's Main Theorem When $G = H_3(\mathbb{Z})$, every h in \mathcal{E}_{μ} is either a character or induced of a character. To be concrete, we choose the south-west measure

 $\mu_{\scriptscriptstyle SW} \!=\! \delta_{a^{-1}} \!+\! \delta_{b^{-1}}$ with $a\!=\!(1,0,0), b\!=\!(0,1,0).$ h harmonic means $h(g) = h(a^{-1}g) + h(b^{-1}g)$ i.e. h(x,y,z) = h(x-1,y,z-y) + h(x,y-1,z) .

Note that the functions $\widetilde{h}=2^{-x-y}h$ are the $\widetilde{\mu}$ -harmonic functions for the probability measure $\widetilde{\mu} = \frac{1}{2}\mu_{_{SW}}$. 3/8

3. The partition function

First look for functions h that do not depend on x:

$$h(y,z) = h(y,z\!-\!y) + h(y\!-\!1,z).$$

A solution is the partition function introduced by Cayley and Sylvester in 1850:

p(y, z) is the number of partitions of z in y integers: $\left|\left\{n_1\geq\cdots\geq n_y\geq 0 ext{ with } n_1+\cdots+n_y=z
ight\}
ight|.$ **One has** p(y,z) = p(y,z-y) + p(y-1,z).

Proof for p(3,5) **Partitions of height 3 and area 5.**

The equality p(3,5) = p(2,2) + p(2,5), that is 5 = 2+3.

	† 7	Z							
0	0	1	4	7	9	10	11		
0	0	1	3	5	6	7	7		
0	0	1	3	4	5	5	5		
0	0	1	2	3	3	3	3		
0	0	1	2	2	2	2	2		
0	0	1	1	1	1	1	1		
0		1	1	1	1	1	1	\rightarrow	y
0	0	0	0	0	0	0	0		

the diagonal p(z,z) is the partition function of Hardy-Ramanujan.

Remark: since $(x, y, z) \mapsto (y, x, xy - z)$ is a group morphism, the function p(x, xy-z) is also harmonic.

4/8

4. Abelian groups

Now look for functions that do not depend on z. The function h is then harmonic on \mathbb{Z}^2 :

h(x, y) = h(x-1, y) + h(x, y-1).

Choquet-Deny, 1950 For G abelian, every h in \mathcal{E}_{μ} is proportional to a character χ .

i.e. $\chi(gg') = \chi(g)\chi(g')$ and $\sum_{s \in S} \mu_s \chi(s) = 1$. **Short proof** The equality $h(g) = \sum_{s} \mu_{s} h(sg)$ decomposes h as a sum of harmonic functions. Since his extremal, one must have $h(sg) = \chi(s)h(g)$. 5/8

5. Nilpotent groups

Margulis, 1960 For G nilpotent and $G^+_{\mu} = G$, every h in \mathcal{E}_{μ} is proportional to a character χ .

Proof Let $c = aba^{-1}b^{-1}$ be in the center of G. One can assume that a, b, a^{-1}, b^{-1}, c belong to S. As above one has h(cg) = q h(g) with q > 0. We want to prove that q = 1. We write

$$egin{array}{rll} h(g) &=& P^{4n}_{\mu}h(g) \geq lpha^{4n}h(a^nb^na^{-n}b^{-n}g) \ &=& lpha^{4n}h(c^{n^2}g) = lpha^{4n}q^{n^2}h(g). \end{array}$$

Hence $q \leq 1$. Similarly $q^{-1} \leq 1$. By induction on the rank of G, h is a character. ()The harmonic function p(y, z) is not a character!

6/8

6. Inducing harmonic characters

Let $S_0 \subset S$ be a maximal abelian subset, $\mu_0=\mu|_{S_0}$ and $G_0=\langle S_0
angle.$ Let χ_0 be a μ_0 -harmonic character on a left G_0 -orbit in G, extended by 0 to G.

Lemma The sequence $P^n_\mu \chi_0$ is non-decreasing. If its limit h_{G_0,χ_0} is finite, it is μ -harmonic and extremal.

Example For $\mu = \mu_{_{SW}}, G_0 = a^{\mathbb{Z}}$ and $\chi_0 = 1_{G_0},$ one has $\overline{h_{G_0,\chi_0}}(x,y,z)=p(y,z).$

Proof of Example $P^n_\mu \chi_0(g) = \sum\limits_{w \in \{a,b\}^n} \chi_0(w^{-1}g)$ is

the number of words $w \in \{a, b\}^n$ with $g \in wG_0$, i.e. the number of partitions of height y and area z.

$$g_0^{=}(x-4,0,0)$$
 $a a a b^a b^a$ $g=wg_0^{=}(x,2,5)$

Example: w = aababa reaches g = (x, 2, 5).

Recall Main Theorem When $G = H_3(\mathbb{Z})$, every h in \mathcal{E}_{μ} is either a character or induced of a character.

Main Theorem for $\mu_{_{SW}}$ An extremal positive $\mu_{\scriptscriptstyle SW}$ -harmonic function on $H_3(\mathbb{Z})$ is either \star a harmonic character $h(x,y,z)=r^xt^y$ or \star the partition function h(x,y,z) = p(y,z) or \star the switched function h(x,y,z) = p(x,xy-z)(or a right translate of a multiple of one of these).

7/8

7. Harmonic functions on the Heisenberg group

Proof of Main Theorem for μ_{SW}

An extremal harmonic function h either is a character or is induced of a character.

We know that $h(g) = \sum_{w \in A^n} h(w^{-1}g)$ with $A = \{a, b\}$.

Case 1 If $\lim_{n\to\infty} h(a^{-n}g) \not\equiv 0$, *h* is induced from $a^{\mathbb{Z}}$.

This sequence is decreasing, its limit χ_0 is *a*-invariant, and the induced of χ_0 is bounded by h.

Case 1' If $\lim_{n \to \infty} h(b^{-n}g) \not\equiv 0$, *h* is induced from $b^{\mathbb{Z}}$. Same proof.

Case 2 If these two limits are 0, h is a character.

We check that h is c-invariant with c = (0,0,1). Set $\mathcal{R}_n\!:=\!\{(v,w)\!=\!(u_0abu_1,u_0bau_1)\!\in\!A^n\! imes\!A^n\}.$

 k_v = number of occurences of the subword ab in v.

v = aabab is related to w = abaab and w = aabba.

Note that v = cw and $k_v \simeq$ number of ba in w.

Here is the key computation with n large:

$$egin{aligned} h(cg) &= \sum\limits_{v\in A^n} h(v^{-1}cg) \simeq \sum\limits_{(v,w)\in\mathcal{R}_n} rac{h(w^{-1}g)}{k_v} \ &\simeq \sum\limits_{w\in A^n} h(w^{-1}g) = h(g). \end{aligned}$$

Letting *n* go to ∞ , this proves h(cg) = h(g). The function *h* is *c*-invariant, hence a character. To justify this computation, we need

Lemma In Case 2, $\lim_{n \to \infty} \sum_{\substack{v \in A^n \\ k_v \leq k_0}} h(v^{-1}g) \equiv 0$, for all $k_0 \geq 1$.

The proof of this lemma is by induction on k_0 .

For more, see: Journal de l'École Polytechnique 8 (2021) p.973-1003.

8/8