Recurrence on affine grassmannians

Yves Benoist

CNRS - Paris-Saclay University

joint with C. Bruère

Plan:

- 1. Recurrence and stationary measures
- 2. Linear groups.
- 3. Semisimple groups.
- 4. Affine groups.
- 5. Stabilizer of a vector subspace.
 6. Strategy of proof.

1/6 Recurrence in law and stationary measures

G : a Lie group acting on a manifold *X*, $\mu \in \mathcal{P}(G)$: a probability measure on *G*, Γ : the semigroup generated by supp μ . Markov chain on *X*: $x \mapsto P_x = \mu * \delta_x = \int_G \delta_{gx} d\mu(g)$.

 μ is recurrent (in law) at *x* if $\forall \varepsilon > 0 \ \exists K \Subset X, \forall n \ \mu^{*n} * \delta_x(K) \ge 1 - \varepsilon.$ μ is recurrent (in law) if it is recurrent at all $x \in X$.

 $\mu^{*n} * \delta_x$ is the law at time *n* of the walk starting from *x*. A step of the Markov chain:

 $\mathcal{P}(X) \ni \nu \mapsto \mu * \nu := \int_G g_* \nu d\mu(g).$

 $\nu \in \mathcal{P}(X)$ is μ -stationary if $\mu * \nu = \nu$ ν is ergodic : ν is extremal among μ -stationary.

Fact μ is recurrent at some $x \iff$ there exists a μ -stationary probability measure ν on X.

Proof \Rightarrow Take a weak limit ν_{∞} of $\nu_n := \frac{1}{n} \sum_{k \le n} \mu^{*k} * \delta_x$. \Leftarrow By Birkhoff theorem, μ is recurrent at ν -almost all x.

A closed subset $F \subset X$ is Γ -invariant if $\forall g \in \Gamma \ gF \subset F$. F minimal means F minimal among Γ -invariant closed sets.

Two deterministic examples: Example 1: $t \mapsto 2t$ in $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Example 2: $t \mapsto t/2$ in \mathbb{R} .

2/6 Linear groups

Here $V = \mathbb{R}^d$, $\Gamma \subset GL(\mathbb{R}^d)$, $X = \mathbb{P}(V)$ and G = Zariski closure of Γ . We assume that Γ acts irreducibly on V.

Theorem 1 with Quint There are bijections

 $\begin{cases} \nu \in \mathcal{P}(X) \text{ ergodic} \\ \mu \text{-stationary} \\ \text{probability measure} \end{cases} \leftrightarrow \begin{cases} F \subset X \text{ minimal} \\ \Gamma \text{-invariant} \\ \text{closed subset} \end{cases} \leftrightarrow \begin{cases} \Omega \subset X \\ \text{compact} \\ G \text{-orbit} \end{cases}$

given by $\nu \mapsto F := supp \nu; F = \overline{\Gamma x} \mapsto \Omega := Gx.$

 $\forall x \in X$, the limit $\nu_x := \lim_{n \to \infty} \mu^{*n} * \delta_x$ exists and is μ -stationary.

 \star When Γ is proximal in V, this is due to Furstenberg and ν is unique.

When Γ is not proximal in *V*, there might be uncountably many compact *G*-orbits in *X*.

Sketch of proof of the first bijection: Let $P : C(X) \to C(X)$ be the Markov operator $P\varphi(x) = \int_G \varphi(gx) d\mu(g)$. $C(X)^P := \{\varphi \in C(X) \mid P\varphi = \varphi\}$ and $\mathcal{M}(X)^P := \{$ finite μ -stationary measures $\}$.

Key Lemma

a) For all $\varphi \in \mathcal{C}(X)$, the family $(\mathcal{P}^n \varphi)_{n \geq 1}$ is equicontinuous. b) $\mathcal{M}(X)^{\mathcal{P}}$ is naturally the dual of the Banach space $\mathcal{C}(X)^{\mathcal{P}}$.

The implication a) \Rightarrow b) is due to Raugi.

3/6 Semisimple Lie groups Here *G* is a semisimple real algebraic Lie group, *H* is an algebraic subgroup of *G* and X = G/H. Assume that Γ is Zariski dense in *G*.

Theorem 2 with Quint The following are equivalent

 $\star \mu$ is recurrent on X,

* There exists a μ -stationary probability measure ν on X,

 $\star X$ is compact.

In this case ν is unique and, for all x in X, $\lim_{n\to\infty} \mu^{*n} * \delta_x = \nu$.

This is mainly a nice reformulation of Theorem 2 using Chevalley embedding of algebraic homogeneous spaces. Uniqueness is due to Guivarc'h-Raugi. 4/6 Affine groups

Here $G = Aff(\mathbb{R}^d) := \{g : v \mapsto A_gv + v_g\}$ and $G_1 = SAff(\mathbb{R}^d) := \{g \in G \mid \det A_g = 1\},$ $X = X_{k,d} := \{affine \ k \text{-dimensional subspaces of } \mathbb{R}^d\}$ We assume that Γ is Zariski dense in *G* or in G_1 , and that $supp\mu$ is compact.

Theorem 3 with Bruère The following are equivalent

 $\star \mu$ is recurrent on $X_{k,d}$,

* There exists a μ -stationary probability measure ν on $X_{k,d}$, * $\lambda_{k+1} < 0$.

In this case ν is unique and, for all x in X, $\lim_{n \to \infty} \mu^{*n} * \delta_x = \nu$.

Here λ_i is the *j*th Lyapunov exponent defined by

 $\lambda_1 + \dots + \lambda_j = \lim_{n \to \infty} \frac{1}{n} \int_G \log \| \mathcal{N}^j A_g \| d\mu^{*n}(g)$

Corollary 1 For k = d - 1 and $\Gamma \subset G_1$, μ is always recurrent on $X_{k,d}$.

Use Guivarc'h simplicity of Lyapunov spectrum: $\lambda_1 > \cdots > \lambda_d$.

This corollary is surprising since $X_{k,d}$ is not compact.

Corollary 2 When μ is symmetric, μ is recurrent on $X_{k,d} \iff 2k \ge d$.

Note also that, for μ symmetric, one has $\lambda_j = -\lambda_{d+1-j}$.

5/6 Stabilizer of a vector subspace (proving Theorem 3)

Here $W \subset V$ are vector spaces, $W' := V/W, X := \mathbb{P}(V) \setminus \mathbb{P}(W)$ and $G = \{g \in GL(V) \mid gW = W\}$. Assume that $\star \Gamma \subset G$ acts strongly irreducibly and proximally on W and W'. $\star W$ has no Γ -invariant complementary subspace in V.

Proposition The following are equivalent

 $\star \mu$ is recurrent on X,

* There exists a μ -stationary probability measure ν on X,

 $\star \lambda_{W,1} < \lambda_{W',1}.$

In this case ν is unique and, for all x in X, $\lim_{n\to\infty} \mu^{*n} * \delta_X = \nu$. See also : Aoun & Guivarc'h JEMS (2020).

Why Proposition \implies Theorem 3Embed the affine space $E = \mathbb{R}^d$ in a vector space: $E \simeq \{u = (v, 1) \mid v \in \mathbb{R}^d\} \subset \mathbb{R}^d \oplus \mathbb{R} = \mathbb{R}^{d+1}$ $W := \Lambda^{k+1} \mathbb{R}^d \subset V := \Lambda^{k+1} \mathbb{R}^{d+1}$ so that $W' \simeq \Lambda^k \mathbb{R}^d$.Aff(u = v = v)

 $\begin{array}{cccc} \mathsf{Aff}(u_1,\ldots,u_{k+1}) & X_{k,d} & \hookrightarrow & \mathbb{P}(V) \smallsetminus \mathbb{P}(W) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \mathsf{Vec}(u_1,\ldots,u_{k+1}) & \mathbb{G}_{k+1,d+1} & \hookrightarrow & \mathbb{P}(V) \end{array}$

so that $\lambda_{W,1} = \lambda_1 + \cdots + \lambda_{k+1}$ and $\lambda_{W',1} = \lambda_1 + \cdots + \lambda_k$

Hence : $\lambda_{W,1} < \lambda_{W',1} \iff \lambda_{k+1} < 0.$

6/6 Strategy of proof

Why is the Proposition true? Write in a non canonical way $V \simeq W \oplus W'$. Choose $g_1, \ldots g_n$ independent with law μ . Write $g_1 \cdots g_n = \begin{pmatrix} a_n & b_n \\ 0 & d_n \end{pmatrix}$.

* If there exists a μ -stationary probability ν on X, then the limit $\nu_b := \lim_{n \to \infty} (g_1 \dots g_n)_* \nu \in \mathcal{P}(X)$ exists almost surely. Therefore, one has $\limsup_{n \to \infty} \frac{\|a_n\|}{\|d_n\|} < \infty$. By the law of large numbers, this implies $\lambda_{W,1} < \lambda_{W',1}$.

* Conversely, if $\lambda_{W,1} < \lambda_{W',1}$. Then one constructs a proper function $u: X \to [0, \infty)$ such that $Pu \leq au + b$ with a < 1. Choose $u([w, w']) = \left(\frac{\|w\|}{\|w'\|}\right)^{\delta}$ with $\delta > 0$ small. This forces μ to be recurrent.

For more go to www.math.u-psud.fr/-benoist or read Benoist & Quint in Compositio Mathematica 150 (2014) p.1579-1606 Benoist & Bruère in Ergodic Theory and Dynamical Systems 39 (2019) p.3207-3223