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1/6 Recurrence in law and stationary measures

G : a Lie group acting on a manifold X ,
µ ∈ P(G) : a probability measure on G,
Γ : the semigroup generated by suppµ.
Markov chain on X : x 7→ Px = µ ∗ δx =

∫
G δgxdµ(g).

µ is recurrent (in law) at x if
∀ε > 0 ∃K b X , ∀n µ∗n ∗ δx (K ) ≥ 1− ε.

µ is recurrent (in law) if it is recurrent at all x ∈ X .

µ∗n ∗ δx is the law at time n of the walk starting from x .
A step of the Markov chain:

P(X )3ν 7→ µ ∗ ν :=
∫

G g∗νdµ(g).

ν ∈ P(X ) is µ-stationary if µ ∗ ν = ν
ν is ergodic : ν is extremal among µ-stationary.

Fact µ is recurrent at some x ⇐⇒ there exists
a µ-stationary probability measure ν on X .

Proof⇒ Take a weak limit ν∞ of νn := 1
n
∑

k≤n µ
∗k ∗ δx .

⇐ By Birkhoff theorem, µ is recurrent at ν-almost all x .

A closed subset F ⊂ X is Γ-invariant if ∀g ∈ Γ gF ⊂ F .
F minimal means F minimal among Γ-invariant closed sets.

Two deterministic examples:
Example 1: t 7→ 2t in T = R/Z.
Example 2: t 7→ t/2 in R.



2/6 Linear groups

Here V = Rd , Γ ⊂ GL(Rd ), X = P(V ) and
G = Zariski closure of Γ.
We assume that Γ acts irreducibly on V .

Theorem 1 with Quint There are bijectionsν ∈ P(X ) ergodic
µ-stationary
probability measure

↔
{F ⊂ X minimal

Γ-invariant
closed subset

}
↔

{
Ω ⊂ X
compact
G-orbit

}

given by ν 7→ F := supp ν; F = Γx 7→ Ω := Gx .

∀x ∈ X , the limit νx := lim
n→∞

µ∗n ∗ δx exists and is µ-stationary.

? When Γ is proximal in V ,
this is due to Furstenberg and ν is unique.

When Γ is not proximal in V ,
there might be uncountably many compact G-orbits in X .

Sketch of proof of the first bijection: Let P : C(X )→ C(X )
be the Markov operator Pϕ(x) =

∫
G ϕ(gx)dµ(g).

C(X )P := {ϕ ∈ C(X ) | Pϕ = ϕ} and
M(X )P := {finite µ-stationary measures}.

Key Lemma
a) For all ϕ ∈ C(X ), the family (Pnϕ)n≥1 is equicontinuous.
b)M(X )P is naturally the dual of the Banach space C(X )P .

The implication a)⇒ b) is due to Raugi.



3/6 Semisimple Lie groups
Here G is a semisimple real algebraic Lie group,
H is an algebraic subgroup of G and X = G/H.
Assume that Γ is Zariski dense in G.

Theorem 2 with Quint The following are equivalent
? µ is recurrent on X ,
? There exists a µ-stationary probability measure ν on X ,
? X is compact.
In this case ν is unique and, for all x in X , lim

n→∞
µ∗n ∗ δx = ν.

This is mainly a nice reformulation of Theorem 2 using
Chevalley embedding of algebraic homogeneous spaces.
Uniqueness is due to Guivarc’h-Raugi.



4/6 Affine groups

Here G = Aff (Rd ) := {g : v 7→ Agv + vg} and
G1 = SAff (Rd ) := {g ∈ G | det Ag = 1},
X = Xk ,d := {affine k -dimensional subspaces of Rd}
We assume that Γ is Zariski dense in G or in G1,
and that suppµ is compact.

Theorem 3 with Bruère The following are equivalent
? µ is recurrent on Xk ,d ,
? There exists a µ-stationary probability measure ν on Xk ,d ,
? λk+1 < 0.
In this case ν is unique and, for all x in X , lim

n→∞
µ∗n ∗ δx = ν.

Here λj is the j th Lyapunov exponent defined by

λ1 + · · ·+ λj = lim
n→∞

1
n

∫
G log‖ΛjAg‖dµ∗n(g)

Corollary 1 For k = d − 1 and Γ ⊂ G1,
µ is always recurrent on Xk ,d .

Use Guivarc’h simplicity of Lyapunov spectrum: λ1 > · · · > λd .

This corollary is surprising since Xk ,d is not compact.

Corollary 2 When µ is symmetric,
µ is recurrent on Xk ,d ⇐⇒ 2k ≥ d .

Note also that, for µ symmetric, one has λj = −λd+1−j .



5/6 Stabilizer of a vector subspace (proving Theorem 3)

Here W ⊂ V are vector spaces,
W ′ := V/W , X := P(V ) r P(W ) and
G = {g ∈ GL(V ) | gW = W}. Assume that
? Γ ⊂ G acts strongly irreducibly and proximally on W and W ′.
? W has no Γ-invariant complementary subspace in V .

Proposition The following are equivalent
? µ is recurrent on X ,
? There exists a µ-stationary probability measure ν on X ,
? λW ,1 < λW ′,1.
In this case ν is unique and, for all x in X , lim

n→∞
µ∗n ∗ δx = ν.

See also : Aoun & Guivarc’h JEMS (2020).

Why Proposition =⇒ Theorem 3

Embed the affine space E = Rd in a vector space:

E ' {u = (v ,1) | v ∈ Rd} ⊂ Rd ⊕R = Rd+1

W := Λk+1Rd ⊂ V := Λk+1Rd+1 so that W ′ ' ΛkRd .

Aff(u1, . . . ,uk+1) Xk ,d ↪→ P(V ) r P(W )
↓ ↓ ↓

Vec(u1, . . . ,uk+1) Gk+1,d+1 ↪→ P(V )

so that λW ,1 = λ1 + · · ·+ λk+1 and λW ′,1 = λ1 + · · ·+ λk

Hence : λW ,1 < λW ′,1 ⇐⇒ λk+1 < 0.



6/6 Strategy of proof

Why is the Proposition true?
Write in a non canonical way V 'W ⊕W ′.
Choose g1, . . .gn independent with law µ.

Write g1 · · · gn =

(
an bn
0 dn

)
.

? If there exists a µ-stationary probability ν on X , then
the limit νb := lim

n→∞
(g1 . . . gn)∗ν ∈ P(X ) exists almost surely.

Therefore, one has lim sup
n→∞

‖an‖
‖dn‖

<∞.

By the law of large numbers,
this implies λW ,1 < λW ′,1.

? Conversely, if λW ,1 < λW ′,1.
Then one constructs a proper function
u : X → [0,∞) such that Pu ≤ au + b with a < 1.

Choose u([w ,w ′]) =

(
‖w‖
‖w ′‖

)δ
with δ > 0 small.

This forces µ to be recurrent.
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