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Abstract

We consider the largest connected components in the percolation of a (large)
finite vertex-transitive graph. A geometrical condition reminiscent of the one in
Nachmias [Nac09] is formulated. Under this condition, the many-to-two formula
allows one to compute the fluctuations of the size of the largest components in the
weak subcritical regime. In the weak supercritical regime, a lower bound is given
for the expected number of components with size in a certain interval.

Consider a vertex-transitive graph Gn on n vertices, and call Gnppq the random sub-
graph of Gn obtained by deleting every edge of Gn independently and with the same
probability 1 ´ p for p P p0, 1q. The number of vertices in the connected components of
Gnppq is one of the simplest functionals of the graph Gn. Following a long tradition, we
propose ourselves to study the number of vertices, or sizes, of the largest of these con-
nected components. In the setting of an arbitrary vertex-transitive graph, the problem
has been started in the series of papers [BCvdH`05a, BCvdH`05b, BCvdH`06], and con-
tinued in [Nac09, vdHN15, HN16]. Specific graphs Gn had been considered much before:
the case of Knppq with Kn the complete graph on n vertices is the classical Erdös–Rényi
[ER60] random graph model that has been examined in detail by Erdös and Rényi in the
’60s. A convenient parametrisation for the probability p of retaining an edge is in this
case

p “
λ

n
for λ ą 0 a constant independent of n. (1)

For large values of n, the size of the largest component of Knppq expects a double jump
when λ is increased: it is ΘPplogpnqq 1 when λ ă 1, ΘPpn

2{3q when λ “ 1, and ΘPpnq
when λ ą 1. As for the size of the second largest component of Knppq: it is ΘPplogpnqq
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when λ ă 1, ΘPpn
2{3q when λ “ 1, and ΘPplogpnqq again when λ ą 1. The three regimes

are respectively called the subcritical, the critical and the supercritical regime. A dis-
tinctive feature of the critical regime is the non-concentration of the size of the largest
component, that weakly converges as nÑ 8 towards a non-degenerate random variable.
Aldous [Ald97] gives a construction of that random variable from the sample path of a
Brownian motion with a quadratic drift.

Always in the Knppq case, Bollobás [Bol84] and Łuczak [Łuc90] discovered new regimes
of interest around the critical value λ “ 1: these regimes are parametrized by sequences
λ “ λpnq with limit 1. Many qualitative features of the critical case λ “ 1 are retained
when λ “ λpnq approaches 1 fast enough: |λ ´ 1| “ Opn´1{3q, and this regime is called
the critical regime. An essential feature of that regime is the non-concentration of the
sizes ΘPpn

2{3q of the largest components. The two remaining regimes are parametrised by
positive sequences ε “ εpnq satisfying 2

λ “ 1˘ ε with εÑ 0 and ε3nÑ `8.

Choosing the minus sign defines the weak subcritical regime in which the largest com-
ponent has size p2 ` oPp1qq ε

´2 logpε3nq, a quantity that interpolates between logpnq and
n2{3 for ε in the range described above. Choosing the plus sign defines the weak super-
critical regime, in which the size of the largest component is p2 ` oPp1qq εn, a quantity
that interpolates between n2{3 and n. In the weak supercritical regime, the second largest
component is negligible with respect to the largest component, therefore called the giant
component.

In this paper, we consider a sequence pGnqnPN of vertex-transitive graphs on n vertices
in place of the complete graph Kn. By vertex-transitivity, the degree ` of a vertex in Gn is
the same for all the vertices, and we shall (mainly) consider sequences ` “ `pnq diverging
with n. We choose the percolation probability to be

p “
λ

`´ 1
, (2)

and, again, we consider λ “ λpnq. The choice (2) is the natural generalisation of (1): the
expected total number of edges in Gnppq is for instance in both cases equal to λn{2. In
the same setting, Nachmias [Nac09] investigates the critical and in the weak supercrit-
ical regime. Under condition (68) mentioned at the end of this article, he proves that
the largest components in the critical regime have ΘPpn

2{3q many vertices; in the weak
supercritical regime, under a slightly stronger condition, he gives a lower bound on the
size of the largest component, δεn{ logpε3nq for some fixed constant δ ą 0 independent
of n; this latter result has been since superseded by the more general work [vdHN15],
that catches the correct asymptotic value 2εn p1 ` oPp1qq. If the choice (2) is natural,
it is not always adequate: for many interesting graphs, at the percolation probability

2ε shall always denote a positive quantity in this paper
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1{p` ´ 1q, |C1| “ oPpn
2{3q so this value does not lie in the so-called critical window. A

line of research investigates the analogy between the percolation of those graphs with the
percolation of Knppq by first defining an appropriate notion of the critical probability, see
the series [BCvdH`05a, BCvdH`05b, BCvdH`06] and the recent works [vdHN15, HN16]
for significant successes.

1 Statement of the results and discussion.
Let Gn be a sequence of vertex transitive graphs on n vertices. The degree of a vertex is
` “ `pnq ě 3. We will mainly work under the assumption

`pnq diverges to `8, (3)

although the case where `pnq has a finite limit is also discussed at the end of the article.
The edges of Gn are retained independently with probability p, and we denote by Gnppq
the resulting random subgraph of Gn. We let

p˘ “
1˘ ε

`´ 1
, for ε “ εpnq Ñ 0, and ε3nÑ 8, (4)

a positive sequence, and we call weak sub-critical the regime in which p “ p´ and weak
super -critical regime the regime in which p “ p`.

A function that is useful in describing the sizes of the largest components of Gnppq is

δ˘pε, `´ 1q “ ´ logp1˘ εq ´ p`´ 2q log
´

1´
˘ε

`´ 2

¯

. (5)

It is connected to the tail of the size of a Bin(` ´ 1, p˘)-Galton-Watson tree (GW–tree
hereafter) when p˘ is given by (4), see (31) and (32). Taking the `Ñ 8 limit in (5), we
find that lim`Ñ8 δ˘pε, `´1q “ ´ logp1˘εq˘ε, an function that is ubiquitous in the study
of the Erdös–Rényi random graph. It is useful to keep in mind the equivalent

δ˘pε, `´ 1q „
ε2

2
when εÑ 0 and `Ñ 8. (6)

The probability that the non-backtracking random walk on Gn (a random walk on the
vertices of Gn not allowed to traverse the same edge on two consecutive steps) started at a
vertex v P Gn returns at v after k ě 2 steps is denoted by P kpv, vq. By vertex-transitivity,
this quantity does not depend on the vertex v, and we write P k for P kpv, vq. We also
introduce the two parameters

t˘ “ δ´1˘ s and s “ logpε3nq. (7)

Notice that, when n and ` diverge, t˘ „ 2ε´2 logpε3nq. Our key (asymptotic) condition
on the (sequence of) graphs Gn then writes:

D a constant c ă 1{2 such that: pt˘q1{2
ÿ

kě3

k e´ck
2{t˘ P k

“ o
´1

s

¯

as nÑ 8. (8)
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Condition (8) contains two conditions, the one with t` and the one with t´, we distinguish
them by writing (8)` and (8)´ when needed. Condition (8) is a condition on the geometry
of the graphs Gn, where by "geometry" we simply mean the collection of numbers pP k, k P
Nq. We stress on the implicit dependence of the parameters t˘, P k and s on ε and/or n.
The quantity k e´ck

2{t is an upper bound on the expected number of vertices at distance
k from the root in a (critical) GW–tree with finite variance and t vertices, and the bound
is uniform over k P t1, . . . , tu. See Addario–Berry et al [ABDJ13] for related estimates for
GW–trees whose offspring distribution is critical and has a finite variance. The quantity
t1{2 that multiplies the sum in (8) is the expected distance of a random vertex to the root
in such a GW–tree. We will clarify in Section 1.2 why op1{sq in the RHS of (8) is indeed
the precision needed, and we now proceed with the statement of the

Theorem 1.1. Assume ε satisfies (4), ` satisfies (3) and let p´ “ p1´εq{p`´1q. Assume
also that the non-backtracking random walk on Gn satisfies condition (8)´. Let pPj, j P Nq
be the points, arranged in non-increasing order, of a Poisson measure with intensity

p4
?
πq´1 e´x dx (9)

on the real line R. The sizes p|Cj|, j P Nq of the largest components of Gnpp´q arranged
in non-increasing order converge in distribution for the product topology: for each fixed
k P N, as nÑ 8, we have:

´

δ´pε, `´ 1q |Cj| ´
`

logpε3nq ´
5

2
log logpε3nq

˘

, j ď k
¯

ùñ

´

Pj, j ď k
¯

. (10)

Remark 1.2 (On the right-hand side in (10)). The computation:

PpP1 ă yq “ e´
ş

ry,8qp4
?
πq´1 e´x dx

“ e´p4
?
πq´1 e´y , y P R

ensures the rightmost point of the Poisson measure in (9) exists and is Gumbel distributed.
The convergence in distribution of a vector entails the convergence in distribution of its
first coordinate. Also, the Gumbel distribution has no atom. Therefore (10) implies, for
y P R:

P
ˆ

δ´pε, `´ 1q |C1| ´
`

logpε3nq ´
5

2
log logpε3nq

˘

ą y

˙

Ñ 1´ e´p4
?
πq´1 e´y

as nÑ 8. It is also possible to write down explicitly the limiting distribution of the size
of the k-th largest component for k P N fixed. Last, the (rescaled) spacing between the
two largest random variables is easily seen to weakly converge to an exponential random
variable with parameter 1: Ppδ´pε, `´ 1q p|C1| ´ |C2|q ą xq Ñ e´x as nÑ 8.

Remark 1.3 (On the left-hand side in (10)). From (6) and (10), we deduce the first order
asymptotics: |Cj| “ p1 ` oPp1qqδ

´1pε, ` ´ 1q logpε3nq “ p1 ` oPp1qq 2ε´2 logpε3nq. One
cannot in general replace δ´pε, ` ´ 1q by ε2{2 in (10). Replacing δ´ “ δ´pε, ` ´ 1q by δ̃´
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on the left-hand side of (10) is possible when pδ´ ´ δ̃´q{δ̃´ “ op1{sq as nÑ 8. From the
expansion:

δ´ “
ÿ

kě2

εk

k

ˆ

1`
p´1qk

p`´ 2qk´1

˙

, (11)

we see that δ´ “ p1 ` Opε ` 1{`qq ε2{2 as ` Ñ 8 and ε Ñ 0. The choice δ̃´ “ ε2{2 is
possible under the conditions (ε logpε3nq “ op1q and logpε3nq “ op`q).

Remark 1.4 (Weakly dependent random variables). For v P Gn, call Cpvq the component
that contains the vertex v in the random subgraph Gnppq. The n coordinates of the vector
p|Cpvq|, v P Gnq are identically distributed, with the tail of their common distribution given
by (33). Were these random variables also independent, then it would be easy to prove
Theorem 1.1 with only ε3n replaced by εn on the LHS of (10). The difference reflects the
weak dependence between the random variables p|Cpvq|, v P Gnq that one can for instance
detect in the following repetitions: if |Cpvq| “ t for some vertex v in Gn, then |Cpuq| “ t
for at least t´ 1 other vertices u.

Remark 1.5 (A heuristic underlying the statement). The difference is also visible when
computing the expected number of components with size larger than t. It is equivalent to
pn{tqPp|Cpvq| ą tq and not nPp|Cpvq| ą tq “ Θp1q as in the independent case: the division
by t accounts for the repetitions. To find the right order of magnitude, simply set t “ δ´1s
in the equation pn{tqPp|Cpvq| ą tq “ 1: the LHS is by (33) equivalent to pε3nq ¨ s´5{2 ¨ e´s
up to multiplicative constant, and this is 1 when s “ logpε3nq ´ 5{2 log logpε3nq ` Op1q.
In this expression, the logpε3nq term therefore comes from the exponential decay, and the
log logpε3nq from the polynomial correction.

With the help of the estimates on the kernel of the non-backtracking random walk
computed in [Nac09], one can check Theorem 1.1 for some new classes of graphs. Recall
that a sequence of connected graphs Gn is called an expander family if the largest eigen-
value in absolute value of the transition matrix of the simple random walk on Gn, distinct
from ˘1, is strictly smaller than 1, uniformly in n. The girth of a graph is the length of a
shortest cycle in the graph. The d-dimensional Hamming graph is the cartesian products
of d complete graphs, it has vertex set V “ t1, . . . , nud and two vertices are linked by
an edge iff the associated d-tuples differ at a single coordinate. Also txu P Z denotes the
integer part of x P R.

Proposition 1.6. Assume the sequence ε satisfies (4). Condition (8) holds for the fol-
lowing graphs Gn:

• the transitive expander graphs with girth g “ gpnq that satisfy

´ 1

`´ 1

¯tg{2u

n1{3 log2
pnq “ Op1q. (12)

• the Hamming graph in dimension d “ 3.
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Remark 1.7 (Hamming graphs). The Hamming graphs are expanders that in dimension
1 and 2 satisfy condition (12) in the first statement. The Hamming graph in dimension 1
is the complete graph. The result on the Erdös-Rényi random graph by Łuczak [Łuc90]
is recovered, whereas the result in dimension 2 and 3 is new. See Section 1.1 below for
recent results on these graphs that are valid in any dimension.

Theorem 1.1 together with the verification of condition (8) are the highlights in this
paper. Slight improvements are conceivable: for instance the assumption of transitivity
of the graph could be slightly relaxed to include regular graphs. Simlarly, in our theorem,
P k could possibly be replaced by the (slightly smaller) probability that the random walk
draws a self-avoiding loop3 of length k : in view of the form of condition (8), one expects
little benefit on the applicability of Theorem 1.1.

Our results follows the line of inquiry set up by Nachmias [Nac09]. Because the precise
study of the the weak subcritical regime is of no use to compute the width of the critical
window, this work paid little attention to this regime, see the bottom of p.1173 in [Nac09].
That left aside a key feature of the weak subcritical regime, namely that it allows for a
sharp estimate of the size of the largest components under general assumptions. That
omission was subsequently repaired by the important work [HN16] that tackles the more
general setting where the critical probability is implicitly defined only. If the largest com-
ponents in the weak subcritical regime are notably smaller, hence "easier", than their
counterparts in the critical and supercritical regimes, finding a sharp estimate with the
right multiplicative constant may represent a technical challenge, see [HN16] again. Our
setting, where the critical probability is explicit, is easier, and allows one to obtain the
optimal precision (fluctuations) by carefully controlling of the difference between a (con-
ditioned) GW–tree and the component containing a given vertex in Gnppq. This crucially
requires to work with GW–trees conditioned by the size and not by the height like in
[Nac09, HN16]: the former conditioning better approximates the geometry of the largest
components in Gnppq in our regime. A key technical tool to succeed is the "many-to-two"
formula, that we rederive from scratch in formula (20) for k “ 2. If the use of a many-to-k
formula seems new in the context of random graphs, the tool, that goes back to back to
Ikeda et al [INW69] in the case k “ 2, has already proved very useful in the study of
branching Brownian motion. A generic version, the many-to-k (or many-to-few) formula
is discussed in Harris and Roberts [HR15]; when k “ 1, it reduces to the standard many-
to-one formula, see [ABDJ13] or chapter 12 of the book [LP16].

1.1 Previous work

Let us try to summarize the state of affairs concerning the study of the size of the largest
components in the weak subcritical regime:

• The complete graph model Knppq: The fluctuations of the random variable |Cj|,
j P N, have been identified by Łuczak [Łuc90] in a sharpening of a result by Bollobás

3a path v0, v1, . . . , vk “ v0 where pvi “ vj , 0 ď i, j ď kq iff (i “ j or ti, ju “ t0, ku)
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[Bol84]. We warn the reader of a small typo in the statement of the result in [Łuc90]:
ε2{2 should be replaced by δ for the result to hold all along the critical window, see
Remark 1.3 or [BR09] p.50.

• The configuration model: The fluctuations of |C1| are (among other) given in Riordan
[Rio12], they involve the same Gumbel distribution as in our result.

• The Achlioptas bounded-size rules: Riordan and Warnke [RW17] offer a complete
study of the transition phase in the context of iteratively constructed Erdös-Rényi
random graphs, in which edges come by pair (say) and some amount of choice in the
edge to be added is allowed. Again, the authors are able to compute the fluctuations
of |C1|.

• The Gnppq model: Deterministic (but non complete) Gn require very different meth-
ods; upper and lower bounds on |Cj|, j P N, have been known for some time now
under a finite size version of the triangle condition known as the ”strong” trian-
gle condition, see Theorem 1.2 in Borgs, Chayes, van der Hofstad and Spencer
[BCvdH`05a], but these bounds were separated by a multiplicative logpε3nq factor.
Only very recently has this gap been reduced to a multiplicative constant factor,
see [HN16], and it is by now known that |C1| “ ΘPpε

´2 logpε3nqq. A key difficulty in
these works is that the critical probability is only implicitly defined; we should also
mention some recent progress concerning the asymptotic expansion of the critical
probability in the special case of the Hamming graph in (fixed) dimension d ě 1,
see [FvdH17].

An important convention concerning the ˘ index: when the index is omitted like in
δ, t, one should understand that the statement holds for δ˘, t˘. An identity with such
a quantity therefore contains two identities: the one with the ‚` index and the one with
the ‚´ index.

1.2 Ideas of the proof

The key parameters involved in the study are, in term of δ “ δpε, `´ 1q, ε and n:

t “ δ´1 s, s “ logpε3nq ´
5

2
log logpε3nq ` u. (13)

We do not show the dependence of these parameters on ε and n; u will be either a fixed
constant, or a very slow function of n. We denote by t : R Ñ R the function defined by
t “ tpuq and by t´1 its inverse function. Write Cj for the j-th largest component of Gnppq,
as measured by its total number of vertices |Cj| (ties are broken in an arbitrary way). Key
to the proof of Theorem 1.1 is the understanding of the following random measure:

Npdxq “
ÿ

jě0

δ t´1p|Cj |qpdxq, (14)
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and of its convergence in distribution in particular. Define J “ pu1, u2q with ´8 ă u1 ď
u2 ă `8, and let tpJq “ pt1, t2q. We first want to check the convergence of the random
variable N´pJq (the ´ index refers to the subcritical regime) as n tends to 8. Let Cpvq
denote the component of Gnppq that contains the vertex v. Using the estimate t1 „ t2 as
nÑ 8, we find that the first moment of NpJq satisfies:

EpNpJqq “ E
ÿ

vPGn

1t|Cpvq|PtpJqu
|Cpvq|

„ n
Pp|Cpvq| P pt1, t2qq

t1
as nÑ 8. (15)

Another easy fact is that the tail Pp|Cpvq| ą tq is bounded from above by the quantity
Pp|T m| ą tq, where T m is a "modified" GW–tree with Bin(` ´ 1tv“ρu, p) offspring distri-
bution. The complementary lower bound is the difficult step. Different ideas can be
developed to estimate it, let us review three different possibilities.

First, writing T m “ T m
` to show the dependence of T m on `, a step-by-step exploration

of Cpvq reveals that:

Pp|T m
`´t| ě tq ď Pp|Cpvq| ě tq ď Pp|T m

` | ě tq.

In case t is small with respect to `, like in the complete graph Kn (` “ n ´ 1), the two
bounds are equivalent sequences as nÑ 8. The computation of the successive moments
of |Cpvq| does not raise additional difficult, and one finds sharp asymptotics on |C1|. The
same strategy works for "mean-field" model like the configuration model, see [Rio12]
around formula (7.5). There are other classes of graphs for which a uniform control of
the number of already explored vertices is possible, for instance the Hamming graph in
dimension 2 [vdHL10] . Second, Nachmias [Nac09] introduced the idea of pruning off the
upper bound tree T m from the so-called path-impure vertices to find a sub-tree of T m that
is stochastically smaller than |Cpvq|. The path-impure vertices are the vertices that are
present in the GW–tree but have no counterpart in the exploration of Cpvq. The set of
path-impure vertices is denoted by I1pT mq. A simple bound is, for 1 ď t ď t1:

Pp|T m
| ě t1, |I1pT m

q| ď t1 ´ tq ď Pp|Cpvq| ě tq ď Pp|T m
| ě tq. (16)

Based on this bound, plus the second moment method, Nachmias derives in his Lemma
14 a lower bound on the probability that |Cpvq| exceeds ε´2, that is not sharp in the
weak subcritical regime of interest to us (essentially because the method of proof relies
on conditioning a GW–tree by the height). The third method is the one developed in
this paper, it is based on conditioning the GW–trees by the size. Consider J 1 “ pu,8q.
From (15), the estimate (29) on the total progeny of a GW–tree gives that EpN´pJ 1qq ď
e´u {p4

?
πq. One asks under what condition is p1 ´ op1qq e´u {p4

?
πq a lower bound?

Examining (29) again, we see that if t1 close to t “ δ´1s in the sense that t1 ´ t “ opδ´1q,
then the ratio PpT m ě t1q{PpT m ě tq has limit 1 as n diverges. But the difference between
Cpvq and T m is controlled by the set I1pT mq of path-impure vertices, so, by the first moment
method, we only need to show Ep|I1pT mq| | |T m| “ tq “ opδ´1q. The latter is proved in
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Proposition 2.8 under condition (8), and the proof of that Proposition is in turn based on
a many-to-two formula, Lemma 2.1 with k “ 2, that is indeed our key tool. Under (8),
the lower bound matches the upper bound, and:

EpN´pJqq “ p1` op1qq
1

4
?
π
pe´u1 ´ e´u2q. (17)

The rest of the proof is routine: the RHS is also the expectation of a Poisson random
variable with parameter the integral over J “ pu1, u2q of the intensity measure (9). To
claim the convergence in distribution through the method of moments, see e.g. Sec-
tion 6.1 of [JLR11], it remains to check the convergence of the higher factorial moments
Ep
ś

0ďiăkpN´pJq ´ iqq, which require a last technical point: (17) has to be proved with
G zG0 the graph induced by G on V pGq zV pG0q, for G0 Ď G a subgraph with size Optq.

The next and last section contains the (self-contained) proof; it starts in Section 2.1
with the many-to-k formula. The required estimates on the size of the GW–trees of
interest are stated in Section 2.2. In Section 2.3 GW–trees are randomly embedded in
the graph Gn and the number of path-impure vertices in a GW–tree with a given size
is estimated. The short subsection 2.4 is a remark on how to translate our estimates in
term of modified GW–trees. We start to work with the Gnppq model itself only at Section
2.5, where we compute the moment of the number of components in a given interval, and
also give the few additional ingredients needed to prove the main theorem. The extension
to bounded degree graphs is discussed in Section 2.6. In Section 2.7, we obtain, as a
by-product of our analysis in the weak subcritical regime, a lower bound on the expected
number of components in certain intervals in the weak supercritical regime: yet we fail
to get the lower bound on the size of the second largest component that is suggested by
this estimate. In the last Section 2.8 we prove the Proposition 1.6 on condition (8).

2 Proof
The set of integers is denoted by Z, the subset of non-negative integers t0, 1, 2, . . .u by
Z`, the subset of positive integers t1, 2, . . .u by N and the set of real numbers by R. Un-
less explicitly advertised, all the limits and asymptotic are as n the size of the graph Gn

goes to 8. Also, we use the Landau notation o and O (but no more probabilistic coun-
terpart from now on). Sums over an empty set are 0, and products over an empty set are 1.

If G “ pV,Eq is a graph, |G| will denote its number of vertices, or size, of G. For
V 0 Ď V , the graph induced by G on V 0 is the graph with vertex set V 0 and edge set the
restriction of the original edge set E to V 0 ˆ V 0. Assume another graph G1 “ pV 1, E 1q is
given. A map f : V Ñ V 1 is called a graph homomorphism when adjacent vertices in G
are mapped to adjacent vertices in G1, pu, vq P E ñ pfpuq, fpvqq P E 1 for each u, v P V .
It is called a graph isomorphism when f is a bijection from V to V 1 and two vertices are
adjacent in G iff their images are adjacent in G1, that is pu, vq P E iff pfpuq, fpvqq P E 1.
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We may need to attach several distinguished vertices to a graph, that we shall calle the
pointed vertices: for k P N, and u1, u2, . . . , uk P V , G “ pV,E, u1, u2, . . . , ukq is a pointed
graph, and if G1 “ pV 1, E 1, u11, u12, . . . , u1kq for u11, u12, . . . , u1k P V 1 is another pointed graph,
we say a graph-homomorphism f from pV,Eq to pV 1, E 1q preserves the pointed vertices
when fpuiq “ u1i for 1 ď i ď k.

The trees we will encounter will be planar and rooted. Such trees are embedded in
the so-called Ulam tree: this is the graph with vertex set the finite sequences of integers

U “
ď

ně0

Nn.

The root of the Ulam tree is the vertex N0,that we shall denote by ρ. A vertex dis-
tinct from the root, u “ pup1q, up2q, . . . , upkqq P U , k ě 1, has a unique father apuq :“
pup1q, up2q, . . . , upk ´ 1qq, and there is one edge between every vertex distinct from the
root and its father. Notice that the Ulam tree is a locally-infinite. The integer k
is the generation of u, denoted by |u|. By convention, |ρ| “ 0. For i ď k, define
upiq “ pup1q, up2q, . . . , upiqq the ancestor of u at generation i. When u is an ancestor of v,
we write u ĺ v, and u ă v when also u ‰ v; in the latter case, u is called a strict ancestor
of v. ĺ defines a partial order on U called the ancestral order. A subset t of U is a planar
rooted tree when:

(i) t contains ρ.

(ii) v “ pvp1q, . . . , vpk ´ 1q, vpkqq P t implies pvp1q, . . . , vpk ´ 1q, iq P t for any i P
t1, . . . , vpkqu.

(iii) v “ pvp1q, . . . , vpkqq P t implies vpjq “ pvp1q, . . . , vpjqq P t, for any j P t1, . . . , ku.

A vertex v P t is a leaf when its set of children ctpvq :“ tw P t, apwq “ vu is empty.
We write cpvq for ctpvq when t is clear from the context. The number |cpvq| of children of
v P t is called the outdegree of v in t. We call T the set of planar rooted trees.

There is a second natural order defined on U : the breadth-first order. We write u ăbfs

v when |u| ă |v|, or |u| “ |v| and there exists i ă |u| such that pj ď i ñ upjq “ vpjqq,
and upi` 1q ă vpi` 1q ). We write u ĺbfs v when u ăbfs v or u “ v. Unlike the ancestral
order, the breadth-first order is a total order. Again, we shall not distinguish between the
order ĺbfs and its restriction to t P T .

If k is an integer and u1, . . . , uk are k distinct vertices of t P T distinct from the root
ρ, we call tk “ pt, u1, . . . , ukq a pointed planar rooted tree, and Tk the set of pointed planar
rooted trees. Let us stress that the pointed vertices come in a specific order: pt, u1, u2q
and pt, u2, u1q are for instance two distinct elements of T2. In case every vertex in tk P Tk
is an ancestor of a pointed vertex (possibly itself), we say that tk is spanned by its pointed
vertices, or simply that tk is spanned. Notice that the set of pointed vertices of a spanned
tree tk contains its set of leaves. Two pointed planar rooted trees tk, t1k P Tk are equivalent
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when there exists a graph-isomomorphism between tk and t1k that preserves the root and
the pointed vertices. We call ĎT s

k the set of equivalence classes of spanned pointed rooted
trees (we emphasise that those trees are no more ordered.)

For tk P Tk and 0 ď i ď k, let Vi Ď V be the set of vertices with precisely i children
that are ancestors of pointed vertices: Vi “ tv P t, |tw P cpvq, Dj, w ĺ uju| “ iu. In
the special case tk P ĎT s

k , every vertex is the ancestor of a pointed vertex, and Vi is the
subset of the vertices with i children. The following is a partition of the set of vertices,
V “

Ť

0ďiďk Vi, and we set
`i “ |Vi|. (18)

The definitions of `i and Vi extend to a tree tk P ĎT s
k .

Let p “ ppk, k ě 0q be a distribution on the non negative-integers, and pXu, u P Uq
be a collection of i.i.d. random variables indexed by U with distribution p. Call T the
random tree in which the number of children of a vertex u is given by Xu in T , provided
Xv ‰ 0 for every strict ancestor v of u. The tree T is distributed as the GW–tree with
offspring distribution p. Formally, ρ P T and for every u P U z tρu, u P T iff for every
1 ď i ď |u|,

upiq ď Xapupiqq.

2.1 Many-to-k formula

Certain functions on T can be decomposed as a sum over the different k-tuples of the
vertices of t. The expected value of such functions evaluated on GW–trees is then com-
puted using a many-to-k formula (20).

Consider p “ ppk, k ě 0q a probability distribution on the set Z`. Let kmaxppq “
maxt` ě 0,

ř

k k
`pk ă 8u, and k0ppq “ maxtk ě 0, pk ‰ 0u P Z` Y t8u. If i P Z`

satisfies i ď min tkmax, k0u, the i-th factorial moment and the i-th size-biased probability
distribution ppiq “ pppiqk , k ě 0q are defined by:

mi “
ÿ

kěi

”

ź

0ďjăi

pk ´ jq
ı

pk, and ppiqk “

ś

0ďjăipk ´ jq

mi

pk . (19)

According to our convention that products over an empty set are 1, pp0q “ p. Also, for
k ă i, ppiqk “ 0 since the product in the RHS of (19) contains a null factor. If i ą k0ppq,
mi “ 0, and ppiq is not defined.
Fix tk “ pt, v1, . . . , vkq P sTk with k ď kmaxppq, k0ppq.

From p and tk, we build Tk “ Tkptkq “ pT, u1, . . . , ukq P Tk a random tree that contains
tk as a subtree. Formally, there is a copy 4 T 1 Ď T of t embedded in T ; for a vertex in T 1,

4T 1 does not belong to T since item (ii) in the definition of T is not satisfied, so the word "tree" that
we use here is an abuse

11



the offspring distribution is ppiq the i-th size-biased distribution, where i is the number of
children of the corresponding vertex in t. For a vertex in T zT 1, the offspring distribution
is pp0q “ p.

A precise definition uses an induction: The trees T 1 and T , T 1 Ď T , and the graph-
isomorphism ω : tÑ T 1 are defined by the following steps:

• Initialization: The root ρ belongs to T and T 1, it is the image of ρt the root in t:
ρ “ ωpρtq.

• Induction 1: If u P T 1, its number of children in T is distributed as ppiq where
i “ |cpvq| is the number of children of v “ ω´1puq in t. Furthermore, if pvj, 1 ď j ď iq
are the ordered children of v in t, then pωpvjq, 1 ď j ď iq is a random sequence of i
distinct children 5 of u in T , with uniform distribution. These i children of u belong
to T 1, and the remaining children of u belong to T zT 1.

• Induction 2: If u P T zT 1, its number of children is distributed as p “ pp0q, all of
them belong to T zT 1.

• Induction 3: distinct vertices in T have an independent number of children.

• The pointed vertices in Tk are pu1, . . . , ukq “ pωpv1q, . . . , ωpvjqq.

In the next formula, mi “ mippq is the i-th factorial moment of the distribution p, see
(19), and `i “ `iptkq simply counts the number of vertices with precisely i children since
tk P ĎT s

k , see (18).

Lemma 2.1 (Many-to-k formula). Let p be a distribution on Z`, and let k P N satisfy
k ď kmaxppq, k0ppq. For F a non-negative measurable function on the set of pointed trees
Tk, and T P T a GW–tree with offspring distribution p, it holds:

E
´

ÿ

u1,...,uk

F pT, u1, . . . , ukq
¯

“
ÿ

tk

`

ź

iě1

m`i
i

˘

EpF pTkptkqqq, (20)

where:

(i) the first sum is over the vertices u1, . . . , uk of T such that no one is an ancestor
of the other, and the second sum is over the trees tk in T s

k that are spanned by k
pointed leaves,

(ii) or the first sum is over the pairwise distinct vertices u1, . . . , uk of T , and the second
sum is over the trees tk in ĎT s

k .
5this is a.s. possible since the number of children of v in T , with distribution ppiq, is a.s. ě i.
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The so-called many-to-one formula is the k “ 1 case. The generation of the leaf
uniquely specifies a tree in ĎT s

1 , which identifies the latter set with the set of non-negative
integers Z`, while the product on the RHS reduces to m`1

1 “ mh1
1 .

The restriction to k ď k0ppq is for the sake of simplicity: in case k ą k0ppq, the correct
formula is obtained by discarding those trees tk that have vertices with outdegree larger
than k0 in the sums piq and piiq.

Proof. Let t0k “ pt
0, v1, ..., vkq P Tk be a pointed planar rooted tree. We first check (20)

for F “ 1t0k
. The subtree of t0k spanned by v1, ..., vk is denoted tk P ĎT s

k . For i ě 0,
set V 0

i “ Vipt
0
kq, `0i “ `ipt

0
kq and `i “ `iptkq. For i ě 1, notice that `0i “ `i. Using the

definition (19) of ppiq, we find:

PpT “ t0q “
ź

uPV pt0q

p|cpuq|

“
`

ź

1ďiďk0

m`i
i

˘

ź

0ďiďk0

ź

uPV 0
i

1
ś

0ďjăip|cpuq| ´ jq
ppiq
|cpuq|

“
`

ź

1ďiďk0

m`i
i

˘

PpTkptkq “ t0kq. (21)

Formula (21) is formula (20) with the choice F “ 1t0k
, since one single tree, the tree

tk defined above, contributes to the sum on the RHS of (20). A function F on Tk may
be decomposed as a sum of indicator functions, and relation (20) is linear in F : Formula
(21) therefore implies (20), with the sum as in piiq. Adding the restriction that, in the
collection v1, . . . , vk, no one is an ancestor of another is equivalent to summing over the
trees tk spanned by pointed leaves, giving piq.

2.2 Asymptotics for the size of GW–trees.

We restrict in this section our views to a particular class of GW–trees. These are, for
ε ą 0 and ` ě 2 an integer,

T “ T˘ P T the GW–tree with Bin(`´ 1, p˘) offspring distribution. (22)

Although the notation does not show it, T depends on ε and `. The next Lemma
bounds the probability that a forest of GW–trees distributed as (22) has a given size in
term of the probability that a single GW–tree has that same size. We stress the statement
is valid for ε fixed (i.e., condition (4) is not assumed).

Lemma 2.2. Let pTi, i ě 1q be independent GW–trees distributed as T “ T˘ P T the
GW–tree in (22). Let c ă 1{2. There exists `0 “ `0pcq such that, for ` ě `0, and for
1 ď h ď j:

P
´

ÿ

1ďiďh

|Ti| “ j
¯

ď h
`1´ p

1˘ ε

˘h´1
e´c

hph´1q
j Pp|T | “ jq. (23)
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Remark 2.3. For critical GW–trees with a finite variance, similar bounds may be deduced
from the estimates in Addario-Berry, Devroye and Janson [ABDJ13], see formulae (18)
and (20) in this article.

Proof. Let pZt, t ě 0q be a random walk started at Z0 “ 0 with independent increments
distributed as X ´ 1, X a Bin(` ´ 1, p) random variable. For h P N, we let H´hpZq “
inftj ě 1, Zj “ ´hu be the hitting time of ´h. Also, let T P T be a GW–tree with
offspring distribution the distribution of X. If ρ “ v1, . . . , v|T | is the sequence of the
vertices of T arranged in breadth-first order, then there is the identity in distribution

`

Zj, 1 ď j ď H´1pZq
˘

“
`
ˇ

ˇ

ď

iďj

tcpviqu z
ď

iďj

tviu
ˇ

ˇ, 1 ď j ď |T |
˘

(24)

where the RHS counts the number of vertices among the children of the vertices v1 . . . vj
that do not belong to v1 . . . vj. The identity (24) implies in particular:

|T | “ H´1pZq, (25)

which extends in a straightforward way to a collection of h ě 1 independent GW–trees
pTi, 1 ď i ď hq distributed as T :

ÿ

1ďiďh

|Ti| “ H´hpZq.

We also use the following combinatorial identity, known as Spitzer lemma [Spi56], that
connects the distribution of the hitting time of a random walk with its marginal distribu-
tion6,

j Pp|H´hpZq| “ jq “ hPpZj “ ´hq. (26)

We deduce from this and the convolution property of the Binomial distribution that:

Pp
ÿ

1ďiďh

|Ti| “ jq “
h

j
PpZj “ ´hq

“
h

j
PpBinpp`´ 1qj, pq “ j ´ hq

“
h

j

ˆ

p`´ 1qj

j ´ h

˙

pj´h p1´ pqp`´1qj´pj´hq. (27)

Expanding the binomial coefficient in the last expression allows to relate the above prob-
ability to the same probability when h is set to 1, Pp|T1| “ jq:

h
´1´ p

p

¯h´1
ś

1ďiăhpj ´ iq
ś

j´hďiăj´1p`´ 1qj ´ i
¨

˜

1

j

ś

0ďiăj´1p`´ 1qj ´ i

pj ´ 1q!
pj´1p1´ pqp`´1qj´pj´1q

¸

“ h
´1´ p

p

¯h´1
ś

1ďiăhpj ´ iq
ś

j´hďiăj´1p`´ 1qj ´ i
Pp|T1| “ jq.

6the proof of which only requires the invariance by cyclic shift of the distribution of the increments of
the random walk, see e.g. Pitman [Pit02]
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Using the definition of p “ p˘ in (4), one can estimate the prefactor:

h
´1´ p

p

¯h´1
ś

1ďiăhpj ´ iq
ś

j´hďiăj´1p`´ 1qj ´ i

“ h
´1´ p

1˘ ε

¯h´1
ś

1ďiăh

`

1´ i
j

˘

ś

j´hďiăt´1

`

1´ i
jp`´1q

˘ (28)

“ h
´1´ p

1˘ ε

¯h´1

e´
hph´1q

2j
p1´Op 1

`
qq .

For ` large enough, Op1
`
q ă 1´ 2c, and the inequality (23) is proved.

Another key ingredient is a precise estimate on the tail of the size of a single tree
T . Such estimates generally follow from two ingredients: a local central limit theorem
on the random walk, plus a centering (or tilting) operation, see Riordan [Rio12] for an
implementation of that combination. Our example allows for direct computations. Unlike
the previous Lemma, we now assume that ε and ` depend on n in a way specified by
conditions (3) and (4).

Proposition 2.4. Let T “ T˘ P T be the GW–tree given by (22), with sequences ε and `
satisfying (4) and (3) respectively. Let v be a sequence that satisfies vn “ oplog logpε3nqq.
Then, for t “ tpuq given by (13), it holds that:

n

t
Ppt ď |T | ă 8q “ p1` op1qq

1

4
?
π

e´u as nÑ 8, (29)

with op1q uniform over the sequences u “ punq such that |un| ď vn, n P N.

Under (4), the sequence pε3nqně1 diverges and the condition |un| ď vn allows for
constant sequences punq. Also, the restriction to finite trees on the LHS of (29) is necessary
in the case of supercritical GW–trees only, since subcritical GW–trees are a.s. finite. Last,
(29) entails |T`| and |T´| have equivalent tail (not equal, though).

Proof. We first consider a given GW–tree, associated with a fixed n and `. The symbol
ojp1q stand for a sequence with null limit as j Ñ 8. Formula (27) with h “ 1 reads:

Pp|T | “ jq “
1

j

ˆ

p`´ 1qj

j ´ 1

˙

pj´1 p1´ pqp`´1qj´pj´1q. (30)

Stirling formula under the form

j! “ p1` ojp1qq
?

2π jj`1{2 e´j
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allows to approximate the Binomial coefficient and to estimate:

Pp|T | “ jq “
1

j

pp`´ 1qjq!

pj ´ 1q!pp`´ 2qj ` 1q!
pj´1 p1´ pqp`´1qj´pj´1q

“ p1` ojp1qq
1

j

1
?

2π

pp`´ 1qjqp`´1qj`1{2

pj ´ 1qj´1{2pp`´ 2qj ` 1qp`´2qj`3{2
pj´1 p1´ pqp`´1qj´pj´1q

“ p1` ojp1qq
1

j

1
?

2π

«

jj´1

pj ´ 1qj´1{2

ˆ

p`´ 1qj

p`´ 2qj ` 1

˙p`´2qj`3{2
ff

p1˘ εqj´1 p1´ pqp`´2qj`1.

The term under bracket requires some care, and may be evaluated using:

jj´1

pj ´ 1qj´1{2

ˆ

p`´ 1qj

p`´ 2qj ` 1

˙p`´2qj`3{2

“ j´1{2
ˆ

j

j ´ 1

˙j´1{2ˆ
p`´ 2qj

p`´ 2qj ` 1

˙p`´2qj`3{2ˆ
p`´ 1qj

p`´ 2qj

˙p`´2qj`3{2

“ j´1{2
ˆ

1`
1

j ´ 1

˙j´1{2ˆ

1´
1

p`´ 2qj ` 1

˙p`´2qj`3{2ˆ

1`
1

`´ 2

˙p`´2qj`3{2

“ j´1{2 pe1`ojp1qq pe
´1
`ojp1qq

ˆ

1`
1

`´ 2

˙p`´2qj`3{2

.

This entails

Pp|T | “ jq “ p1` ojp1qq
1
?

2π

1

j3{2

ˆ

1`
1

`´ 2

˙p`´2qj`3{2

p1˘ εqj´1 p1´ pqp`´2qj`1

“ p1` ojp1qq q1
1
?

2π

1

j3{2
qj2, (31)

with the notation:

q1 “

ˆ

1`
1

`´ 2

˙3{2

p1˘ εq´1p1´ pq and q2 “
´

1`
1

`´ 2

¯`´2

p1˘ εq p1´ pq`´2.

We now recognise that

q2 “ e´δ, with δ “ δp`´ 1, εq defined in p5q, (32)
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by the following computation:
´

1`
1

`´ 2

¯

`

1´ p
˘

“

´

1`
1

`´ 2

¯´

1´
1˘ ε

`´ 1

¯

“ 1`
1

`´ 2
´

1˘ ε

`´ 1
´

1˘ ε

p`´ 1qp`´ 2q

“ 1`
p`´ 1q ´ p1˘ εqp`´ 2q

p`´ 1qp`´ 2q
´

1˘ ε

p`´ 1qp`´ 2q

“ 1`
p`´ 1qp1´ p1˘ εqq ` p1˘ εq

p`´ 1qp`´ 2q
´

1˘ ε

p`´ 1qp`´ 2q

“ 1´
˘ε

`´ 2
¨

Summing the equivalents in (31), we find that:

Pp|T | ě jq “ p1` op1qq
q1
?

2π

ÿ

iěj

i´3{2 e´δi .

We now set j “ t and assume the parameters ε and ` depend on n, with ε Ñ 0 and
`Ñ 8. The next op1q are onp1q as usual. Plainly, q1 “ 1` op1q. The map x ÞÑ x´3{2 e´δx

is non increasing on rt,8q, this implies:

1
?

2π

ÿ

iět

i´3{2 e´δi “ p1` op1qq
1
?

2π

ż

xět

x´3{2 e´δx dx.

Integrating the latter expression we find that

Ppt ď |T | ă 8q “ p1` op1qq
1
?

2π
δ´1t´3{2 e´δt . (33)

The upper bound follows from the bound x´3{2 ď t´3{2 in the integrand, and a lower
bound is given by the same integral over rt, t1s instead of rt,8q. Then we choose t1 in
such a way that δpt1 ´ tq Ñ 8 with t1 “ p1` op1qqt. To complete the proof, it remains to
expand t “ δ´1s:

n

t
δ´1t´3{2 e´δt “

n

δ´1s
δ´1pδ´1sq´3{2 e´δpδ

´1sq
“
n δ3{2

s5{2
e´s

and then s “ spuq, using also δ “ p1 ` op1qq ε2{2 from (5) (recall ε Ñ 0 and ` Ñ 8) as
well as ε3nÑ 8:

2´3{2
ε3n

plogpε3nq ´ 5
2

logplogpε3nqq ` uq5{2
e´plogpε

3nq´ 5
2
logplogpε3nqq`uq

“ p2´3{2 ` op1qq e´u, (34)

with op1q in the last expression uniform in |u| ď v with v “ oplog logpε3nqq. Bearing in
mind the 1{

?
2π factor in (33), the Proposition is proved.
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Remark 2.5 (Duality of GW–trees). Let p` “ p1 ` εq{p` ´ 1q and p̄´ “ p1 ´ ε̄q{p` ´ 1q.
We have, from (5), that

p`p1´ p`q
`´2
“ p̄´p1´ p̄´q

`´2 if and only if δ`pε, `´ 1q “ δ´pε̄, `´ 1q.

For a fixed ε ą 0, the latter equation has a unique solution ε̄ ą 0, from the definition
of the function δ˘. (30) then implies that, for the GW–trees T` and T̄´ respectively
associated with p` and p̄´ as above:

pT` | |T`| ă 8q is distributed as T̄´.

It is a general fact that supercritical GW–trees conditioned on being finite have the same
distribution as certain subcritical GW–trees. The specificity of the Binomial GW–trees
is that the corresponding subcritical GW–tree again are Binomial GW–trees.

We notice the following stability property of the Bin(`´ 1, p) distribution under size-
biaising.

Lemma 2.6. Let ` P N, i P t0, 1, . . . , ` ´ 1u, and p P p0, 1s. If p is the Bin(`, p)
distribution, then pppiqi`k, k P Z`q is the Bin(`´ i, p) distribution.

Proof. The generating function of p the Bin(`, p) distribution is given by:
ÿ

kě0

sk pk “ p1´ pp1´ sqq
`,

The i-th factorial moment of p is:

mi “ pi
ź

0ďjăi

p`´ jq,

and the size-biased distribution ppiq satisfies:

ppiqk “

ś

0ďjăipk ´ jq

pi
ś

0ďjăip`´ jq

ˆ

`

k

˙

pkp1´ pq`´k

“

ˆ

`´ i

k ´ i

˙

pk´ip1´ pqp`´iq´pk´iq.

Therefore pppiqi`k, k P Z`q is the Bin(`´ i, p) distribution.

Consider a tree tk P ĎT s
k , and the corresponding random tree Tkptkq. The next Lemma

estimates the number of vertices in the latter tree, that is the random variable |Tkptkq|.
We set h` 1 “ |tk|. Recall the definition of `i in (18). We have

h “
ÿ

iě1

i`i (35)

since both sides count the number of non-root vertices in tk.
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Lemma 2.7. Let T “ T˘ P T be the GW–tree in (22). Let j ě 3, and c ă 1{2. There
exists `0 “ `0pcq such that, for ` ě `0,

Pp|Tkptkq| “ jq ď ph` 1q p1˘ εq´h e´c
hph`1q

j Pp|T | “ jq. (36)

Proof. We first compare ppiq and p, for p the Bin(`´ 1, p) distribution. Using Lemma 2.6,
and expanding the binomial coefficient, we find, for 1 ď k ď `´ i, that:

ppiqk`i “
ˆ

`´ 1´ i

k

˙

pkp1´ pq`´1´i´k

“

ś

0ďjăip`´ 1´ j ´ kq
ś

0ďjăip`´ 1´ jq
¨

1

p1´ pqi
¨

ˆ

`´ 1

k

˙

pkp1´ pq`´1´k

ď
1

p1´ pqi
¨ pk, (37)

where the inequality follows by bounding the first factor of the product by 1.
Let tk “ pt, u1, . . . , ukq P Tk. Denote by pvjq1ďjďh`1 the ancestors (large or strict)

of the k pointed vertices (including the pointed vertices themselves) in tk, ranked by
breadth-first order. (This definition of h is consistent with the one in (35)). Consider,
for i P t1, . . . , h ` 1u, Ui the set of vertices of tk whose most recent common ancestor in
tpvjq1ďjďh`1u is vi, and define tris P T the tree induced by t on Ui and rooted at vi. We
apply this construction to Tkptkq P Tk, shortened in Tk in the following lines. Recall T 1 is
the random tree embedded in Tk. Conditionally on T 1, the random tree T risk is a GW–tree
with offspring distribution p, except for the root that has offspring distribution ppjqj`¨, for
j “ |cT 1pviq| the number of children of vi in T 1. With the help of (37), we see that:

PpT risk “ tq ď p1´ pq´|cT 1 pviq| PpT “ tq.

Now, the trees T risk are independent. Let pTiq1ďiďh`1 be a collection of independent trees
distributed as T . The latter identity and

ř

1ďiďh`1 |cT 1pviq| “ h together imply that

Pp|Tk| “ jq “ Pp
ÿ

1ďiďh`1

|T
ris
k | “ jq ď p1´ pq´h Pp

ÿ

1ďiďh`1

|Ti| “ jq.

Combined with (23) and the inequality 1´ p ď 1, the latter gives (36).

2.3 The number of path-impure vertices in one large GW–tree.

Let Gn be a vertex transitive graph on n vertices with a pointed vertex called the root, and
let t P T . Call ` the common degree of the vertices in Gn, and assume that the number
of children of every vertex in t is ď ` ´ 1, except the root of t that may have up to `
children. Conditionally on t, we first define ι : t Ñ Gn a random graph homomorphism
by induction:
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• ιpρq is a random vertex x in Gn.

• If v P t has i children, denoted by v1, . . . , vi, then pιpvjq, 1 ď j ď iq is a random,
uniformly distributed, sequence of i distinct elements of the set of neighbours of ιpvq
in Gn, also distinct from ιpapvqq in case v ‰ ρ.

• The vertices of t are seen in the breadth-first order.

Conditionally on t and ι, a vertex w P t is called impure if there exists a vertex v
smaller than w in the breadth-first order, v ăbfs w, such that ιpvq “ ιpwq. In that case,
say that v makes w impure; also, a vertex w P t is called path-impure if it has an ancestor
in t that is impure. This means that there exists v ĺ w, and a vertex u ăbfs v such that
ιpuq “ ιpvq; say that u makes w path-impure in this case. We denote by I1ptq the subset
of path-impure vertices of t.

Fix a graph G0 Ď G “ Gn. Define G zG0 the graph induced by G on the vertex set
V pGq zV pG0q. Conditionally on t and ι, a vertex of t is called G0-impure if it is mapped
by ι to a vertex in G0, and is called G0-path-impure if it has an ancestor (strict or large)
in t that is G0-impure. We denote by I0ptq the subset of G0-path-impure vertices of t.

For v a vertex of G, we let C0pvq be the component that contains v in the percolation
of G zG0. We set, for t P T ,

Iptq “ I0ptq Y I1ptq. (38)

We shall consider successively the expected number of path-impure vertices and of G0-
path-impure vertices in a large GW–tree. To bound the expected number of path-impure
vertices, we need the special case k “ 2 in formula (20) (many-to-two formula).

Proposition 2.8. Let T P T be the GW–tree given by (22). Assume ε satisfies (4) and
` satisfies (3). Let also I1 “ I1pT q be the subset of the path-impure vertices of T , and let
P k be the kernel of the non-backtracking random walk on Gn. Let c ă 1{2. There exists
`0 “ `0pcq such that, for ` ě `0 and for any j ě 1,

Ep|I1pT q| | |T | “ jq ď
π1{2

25{2c3{2

´

ÿ

kě3

k e´c
k2

j P k
¯

j3{2. (39)

Notice that, for the RHS of (39) to be opjq, we need the term in parenthesis to be
opj´1{2q.

We first fix some notation. Let t2 P ĎT s
2 be a tree spanned by 2 pointed vertices. We

denote by h0 the generation of the most common ancestor of the two pointed vertices, and
by h0`h1 and h0`h2 the generations of the two pointed vertices, with h0`h1 ď h0`h2.
In this way, the triplet h “ ph0, h1, h2q uniquely defines a tree t2 P ĎT s

2 , and we abuse
notation by writing T2phq for T2pt2q the associated GW–tree in this case. Let us point
that the number h of non-root vertices in t2 then satisfies:

h “ h0 ` h1 ` h2. (40)
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Proof. Let j P N. We use the many-to-two formula in Lemma 2.1 with the index of
summation (ii). For v, w distinct vertices of T , the choice

F pT, v, wq “ 1tw makes v path-impure in T, |T | “ ju

allows to estimate the size of I1pT q the subset of the path-impure vertices in the GW–tree
T . (The function F is, through ι, a random function, but the many-to-two formula still
holds for such a function.) Recall the notation T2phq “ pT phq, u1, u2q and the notation
u0 for the most recent common ancestor of u1 and u2. Recall the definition of h in
(40), and the equality (35) on `1 ` 2`2. We point out that m1 “ pp` ´ 1q “ 1 ˘ ε and
m2 “ p2p`´1qp`´2q ď ppp`´1qq2 ď p1˘εq2, so the product that appears in (20) satisfies

ź

1ďiďk0

m`i
i “ m`1

1 m
`2
2 ď p1˘ εq

`1`2`2 “ p1˘ εqh. (41)

Recall upiq1 denotes the ancestor of u1 at generation i. Fix j and apply (20) to find:

Ep|I1|, |T | “ jq ď E
´

ÿ

v‰wPT ztρu

F pT, v, wq
¯

ď
ÿ

h0,h1,h2

p1˘ εqh Ppu2 makes u1 path-impure in T2phq, |T2phq| “ jq

ď
ÿ

h0,h1,h2,i

p1˘ εqh Ppu2 ăbfs u
piq
1 , ιpu2q “ ιpu

piq
1 q, |T2phq| “ jq

ď
ÿ

h0,h1,h2,i

p1˘ εqh 1th0`h2ďiďh0`h1u Ppιpu2q “ ιpu
piq
1 q, |T2phq| “ jq

“
ÿ

h0,h1,h2,k

p1˘ εqh 1th2`h2ďkďh2`h1u P
k Pp|T2phq| “ jq. (42)

At the third line, we use the definition of path-impurity of u1 in term of its ancestors. For
any two vertices u and v, u ăbfs v implies |u| ď |v|, whence the inequality at the fourth
line. We set k “ h2 ` i´ h0 at the fifth line, k is the graph distance between the vertices
u2 and u

piq
1 . Also we use that, for two vertices of T2phq that are mapped to the same

vertex of Gn by ι, the image in Gn of the unique path in T2phq between these vertices is
distributed as a loop of the non-backtracking random walk: this follows by construction
of ι. We now fix k, and, motivated by (36), compute a sum over h0, h1, h2 in (42): Fix
c ą 0 an arbitrary positive number, and set

A “
ÿ

h0,h1,h2

1th2`h2ďkďh2`h1uph0 ` h1 ` h2q e´c
ph0`h1`h2q

2

j .

First we can sum over h0 ě 1, using a simple comparison with an integral. This leaves

A ď
j

2c

ÿ

h1,h2

1th2`h2ďkďh2`h1u e´c
ph1`h2q

2

j .
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There remains two sums to perform. Set i “ h1 ` h2; due to the restriction, h2 ` h2 ď k,
a given value of i appears at most k{2 times:

A ď
j

2c

ÿ

h1,h2

1th2`h2ďkďh2`h1u e´c
ph1`h2q

2

j ď
j

2c

ÿ

iěk

k

2
e´c

i2

j .

The last sum is estimated writing i “ k ` i1

ÿ

j1ě0

e´c
pk`i1q2

j ď e´c
k2

j

ÿ

i1ě0

e´c
pi1q2

j ď
`jπ

2c

˘1{2
e´c

k2

j

so

A ď
π1{2

25{2c3{2
k e´c

k2

j j3{2.

Inserting (36) into (42), and using the bound on A, we finally deduce for any c ă 1{2:

Ep|I1|, |T | “ jq ď
π1{2

25{2c3{2

´

ÿ

kě3

k e´c
k2

j P k
¯

j3{2Pp|T | “ jq,

and this is estimate (39). In the latter formula, the sum over k starts from k “ 3 because
the non-backtracking walk can not do shorter loops. The Proposition now follows by
definition of the conditional expectation.

To bound the expected number of G0-path-impure vertices, we only need the special
case k “ 1 in formula (20).

Proposition 2.9. Let T P T be the GW–tree given by (22). Let I0 “ I0pT q be the subset
of the G0-path-impure vertices of T constructed from the random homomorphism ι from
T to Gn. Let c ă 1{2. There exists `0 “ `0pcq such that, for ` ě `0, and for any j ě 1,

Ep|I0pT q| | |T | “ jq ď
π1{2

2c3{2
j3{2|G0|

n
¨ (43)

Notice that, whenever ιpρq P G0, we have I0pT q “ T . The fact that ιpρq is random is
therefore important to avoid starting from G0 too often.

For a tree t1 P ĎT s
1 spanned by 1 pointed vertex, we denote by h the generation of the

pointed vertex, which uniquely defines the tree t1 P ĎT s
1 . We abuse notation by writing

T1phq for T1pt1q in this case.

Proof. We do the choice

F pT, vq “ 1tv G0-path-impure in T , |T | “ ju

and we use the many-to-one formula: this formula involves the tree T1phq with one single
pointed vertex at generation h. We find, after (41), that the product

ś

1ďiďk0
m`i
i in (20)

simplifies to:
m`1

1 “ p1˘ εq
h1 .
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Recall upiq1 is the ancestor of u1 at generation i. We apply (20) to the GW–tree T to find:

Ep|I0pT q|, |T | “ jq ď E
`

ÿ

vPT ztρu

F pT, vq
˘

“
ÿ

h

p1˘ εqh Ppu1G0-path-impure in T1phq, |T1phq| “ jq

ď
ÿ

iďh

p1˘ εqh Ppιpupiq1 q P G0, |T1phq “ jq

“
ÿ

iďh

p1˘ εqh Ppιpupiq1 q P G0
qPp|T1phq| “ jq

ď
|G0|

n

ÿ

h

p1˘ εqh hPp|T1phq| “ jq. (44)

For the last estimate, we used that Ppιpupiq1 q P G0q “ |G0|{n for any 1 ď i ď h, which
holds because ιpρq is a random vertex in G. We now use Lemma 2.7:

ÿ

h

p1˘ εqh hPp|T1phq| “ jq ď
ÿ

h

h2 e´ch
2{j Pp|T | “ jq

ď
j

2c

ÿ

hě1

e´ch
2{j Pp|T | “ jq

ď
π1{2

2c3{2
j3{2Pp|T | “ jq. (45)

The estimate (43) follows from (44) and (45).

We now bound I1pT q and I0pT q using the basic

Lemma 2.10. Let Xn ě 0 be a sequence of non-negative random variables with a finite
first moment, and dn be a sequence such that EpXnq “ opdnq. There exists a sequence bn
satisfying

bn “ opdnq and PpXn ě bnq “ op1q.

Proof. Set an “ EpXnq and choose bn “
?
andn “ opdnq. By Markov inequality, PpXn ě

bnq ď EpXnq{bn “ pan{dnq
1{2 “ op1q.

Lemma 2.10 entails the following Corollary to Proposition 2.8.

Corollary 2.11. Let t be given by (13), and β1 be a non-negative sequence such that
t ` β1 „ t. In the setting of Proposition 2.8, and under condition (8), there exists a
sequence β1 such that

β1 “ opδ´1q and sup
tďt1ďt`β1

Pp|I1| ě β1 | |T | “ t1q “ op1q. (46)
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Proof. Using condition (8) and the estimate (39), we find the bound:

sup
tďt1ďt`β1

Ep|I1| | |T | “ t1q ď
π1{2

25{2c3{2

´

ÿ

kě3

k e´c
k2

t1 P k
¯

pt` β1q3{2.

The assumption t` β1 „ t and the condition (8) ensure the RHS is opδ´1q. The existence
of a sequence β1 satisfying (46) now follows from Lemma 2.10.

Corollary 2.12. Let t be given by (13), and β1 be a non-negative sequence such that
t ` β1 „ t. In the setting of Proposition 2.9, if ε satisfies (4), there exists a sequence β0
such that

β0 “ opδ´1q and sup
t1,G0

Pp|I0| ě β0 | |T | “ t1q “ op1q, (47)

with the sup over pt1, G0q such that t ď t1 ď t` β1 and G0 ď ct for c a finite constant.

Proof. We set j “ t in (43) and observe, using (13), that

t5{2

n
“
δ´5{2s5{2

n
“ opδ´1q.

Together with (43), we obtain: supt1,G0 Ep|I0pT q| | |T | “ t1q “ opδ´1q with the sup as
indicated above. Lemma 2.10 now applies to give (47).

The following Proposition is key to the proof of Theorem 1.1. Notice Proposition 2.4
makes a similar statement without taking into account the path-impure vertices.

Proposition 2.13. Let T “ T˘ P T be the GW–tree in (22). Assume ε satisfies (4), `
satisfies (3), and t “ tpuq is given by (13). There exists a sequence β such that β “ opδ´1q
and

n

t
Ppt` β ď |T | ă 8, |IpT q| ď βq “ p1` op1qq

1

4
?
π

e´u (48)

with op1q uniform over the sequences |u| ď v for vpnq “ oplog logpε3nqq.

Crucial in this estimate is the choice of β: it should be larger than the typical values
of IpT q, but small enough so the replacement of t by t ` β on the LHS in (29) and (48)
does not change the limit in the RHS.

Proof. We set β “ β0 ` β1 given by the two Corollaries, and we notice that t ` β “
δ´1

`

s ` op1q
˘

. Also, we set u1 “ plog logpε3nqq1{2 and β1 “ δ´1u1 7. With this definition,
we have that t ` β1 „ t ` β „ t. Proposition 2.4 applies and we find that the three
quantities:

Ppt` β ď |T | ď t` β1q, Ppt` β ď |T | ă 8q, and Ppt ď |T | ă 8q (49)
7any sequence u1 satisfying 1 ! u1 ! log logpε3nq works as well
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are equivalent as nÑ 8. We have the lower and upper bounds:

`

1´ sup
t`βďt1ďt`β1

Pp|I| ą β | |T | “ t1q
˘

Ppt` β ď |T | ď t` β1q

ď Ppt` β ď |T | ă 8, |I| ď βq

ď Ppt` β ď |T | ă 8q.

By (46), (47), the definition of β and (49), the two bounds are equivalent quantities,
moreover pn{tqPpt` β ď |T | ă 8, |I| ď βq “ p1` op1qq e´u {p4

?
πq.

2.4 Modified GW–trees.

In the modified GW–tree T m
˘ P T , every vertex v has a random independent number

of offspring distributed as Bin(` ´ 1v‰ρ, p). It is called "modified" because the distinct
offspring distribution is different at the root. In the case (3) that ` diverges, this change
affects the asymptotic of the tree only slightly, and the following dominations hold between
the tails of |T m| and |T |.

Lemma 2.14. Let j P N. The tail of the random variables |T | and |T m| satisfy:

Pp|T | ě jq ď Pp|T m
| ě jq ď p1`Op1{`qqPp|T | ě jq. (50)

Proof. We call natural coupling of T and T m the coupling that uses the same Bernoulli
random variables to define the Binomial number of offspring at each vertex. In this
coupling, only the number of children of the root may differ, by at most 1. We have T Ď
T m, whence the lower bound in (50). If we consider T1 and T2 two independent copies of T ,
and B an independent random variable such that PpB “ 1q “ 1´ PpB “ 0q “ 1{p`´ 1q,
then we have

|T m
| “ |T1| `B|T2| (51)

in this coupling. We also point out that Pp|T1|`|T2| ě jq ď 2p1`OpεqqPp|T | ě jq follows
from (23) with h “ 2. These two equations entail the upper bound in (50):

Pp|T m
| ě jq ď Pp|T1| ě jq ` PpB “ 1qPp|T1| ` |T2| ě jq

ď p1`Op1{`qqPp|T | ě jq.

Recall the definition of C0pvq a few lines before (38).

Lemma 2.15. There exists a coupling in which, if v is a uniformly chosen random vertex
independent of the percolation of G:

|T m
z IpT m

q| ď |C0pvq| ď |T m
|. (52)
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This is essentially the statement of Proposition 11 in [Nac09], with the only difference
that we take v a uniformly chosen random vertex in G (consider the case of a fixed, de-
terministic v P G0 to see why this is needed). We do not repeat the proof. The lower
bound in (52) may be strict: this is because a vertex w P T can be path-impure because
of a vertex v P T that is itself path-impure.

Pruning off the path-impure vertices does not necessarily preserve the inclusion of
trees: T Ď T m does not imply in general T z IpT q Ď T m z IpT mq. However, in the coupling
(51), T and T m agree in distribution on the event B “ 0, and we always have the lower
bound:

Pp|T m
z IpT m

q| ě jq ě Pp|T z IpT q| ě j, B “ 0q

ě p1´Op1{`qqPp|T | ě j ` β, |IpT q| ď βq. (53)

2.5 The number of components of Gnppq with size in a given in-
terval.

The results collected so far are applied to the random graph of interest. For G0 Ď G “ Gn,
recall G zG0 is the graph induced by G on the vertex set V pGq zV pG0q. Call pC0j , j ě 1q
the largest components of pG zG0qppq arranged in non-increasing order of size. Recall the
definition of the map RÑ R, u ÞÑ tpuq in (13), and set t´1 for the inverse function of t.
A point measure recording the sizes of the components in pG zG0qppq is defined by:

N0
“

ÿ

jě1

δ t´1p|C0
j |q
,

and we set N for N0 when G0 is the empty graph. The goal of this section is to show the
convergence, in a sense to be precised, of the random measure N towards a Poisson point
measure whose intensity measure µ is given by (9). A first step is to compute the first
moment of the random measure N0 evaluated on intervals. Call an interval J “ pu1, u2q
bounded when ´8 ă u1 ď u2 ă 8, and bounded from the left when ´8 ă u1 ď u2 ď 8.
In the following, we set t1 “ tpu1q and t2 “ tpu2q. We stress that the next two propositions
are concerned with the weak subcritical regime.

Proposition 2.16. Let J be a bounded interval. Assume ε satisfies (4), ` satisfies (3), t
is given by (13) and P k satisfies condition (8). The first moment of the random variable
N0
´pJq satisfies:

EpN0
´pJqq Ñ

ż

J

µpdxq as nÑ 8,

and the convergence is uniform over the graphs G0 Ď G such that |G0| ď Ct for any
constant C independent of n.

Proof. Let j, j1 P N with j ď j1. The inequality in Lemma 2.15:

Pp|T m
z IpT m

q| ě jq ď Pp|C0pvq| ě jq ď Pp|T m
| ě jq (54)
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can also be written in term of T 8:

p1´Op1{`qqPp|T z IpT q| ě jq ď Pp|C0pvq| ě jq ď p1`Op1{`qqPp|T | ě jq,

using the natural coupling of T and T m for the lower bound, see the proof of Lemma 2.14,
and again Lemma 2.14 for the upper bound. We can now put the pieces together. We
multiply the last inequality by n{j and then observe that Pp|T z IpT q| ě jq ě Ppj1 ď
|T | ă 8, |IpT q| ď j1 ´ jq. Also we choose j “ t and j1 “ t ` β. The estimates in (29),
(48) entail that

lim
nÑ8

n

t
Pp|C0´pvq| ě tq “

1

4
?
π

e´u . (55)

The first moment of N0
´pJq then satisfies:

EpN0
´pJqq “ E

˜

ÿ

v

1t|C0pvq|Ppt1,t2qu

|C0pvq|

¸

“ p1` op1qq
n

t1
Pp|C0pvq| P pt1, t2qq

“ p1` op1qq
1

4
?
π
pe´u1 ´ e´u2q (56)

when n Ñ 8. Notice we used t1 „ t2 for the second equality. The RHS of (56) is the
integral of µ given by (9) on J , which concludes the proof.

Recall that N stands for N0 when G0 is the empty graph.

Proposition 2.17. Let J be a bounded interval. Assume ε satisfies (4), ` satisfies (3),
t is given by (13) and P k satisfies condition (8). The second factorial moment of N´pJq
satisfies:

EpN´pJqpN´pJq ´ 1qq Ñ

ˆ
ż

J

µpdxq

˙2

. (57)

Proof. We start by writing:

EpNpJqpNpJq ´ 1qq “ E

˜

ÿ

w

1t|Cpwq|PtpJqu
|Cpwq|

pNpJq ´ 1q

¸

“ n
ÿ

jPtpJq

EpNpJq ´ 1, |Cpwq| “ jq

j

where the sum at the first equality is over the vertices w of Gn, and w may be any vertex
(by vertex transitivity) at the second equality. The latter expression may be written

p1` op1qq
n

t1

ÿ

G0ĎGn,|G0|Ppt1,t2q

EpNpJq ´ 1|Cpwq “ G0
qPpCpwq “ G0

q (58)

8this step could have been avoided by stating a many-to-two formula for modified GW–trees
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In term of N0
´, this also writes:

EpN´pJq ´ 1 | Cpwq “ G0
q “ E

`

N0
´pJq

˘

“ p1` op1qq

ż

J

µpdxq (59)

using Proposition 2.16 for the latter identity, where op1q is uniform over the graphs G0 Ď

Gn such that |G0| P pt1, t2q. Putting this into (58), and using (59) with G0 reduced to the
empty graph, we conclude that (57) holds.

Let J denote the set of finite unions of intervals bounded from the left.

Lemma 2.18. Propositions 2.16 and 2.17 are valid for J P J .

We stress that Propositions 2.16 and 2.17 are stated in the weak subcritical regime.
Proposition 2.16 does not hold for every J P J in the weak supercritical regime.

Proof. We start with Proposition 2.16. First consider the case when J is an interval,
J “ pu1, u2q with u2 “ 8. The equivalent t1 „ t2 does no more hold in the equality (56).
An inequality replaces that equality:

EpN0
´pJqq ď

n

t1
Pp|C0pvq| P Jq “ p1` op1qq 1

4
?
π

e´u1 . (60)

The converse inequality is proved by approximating J by an increasing sequence of finite
intervals, and we obtain lim infnÑ8 EpN0

´pJqq ě e´u1 {4
?
π. Linearity of the expectation

entails that (56) extends to an arbitrary J P J .

We turn to Proposition 2.17. First consider J “ pu1, u2q with u2 “ 8. As before,
a lower bound is achieved by approximation through an increasing sequence of finite
intervals: lim infnÑ8 EpN´pJqpN´pJq ´ 1qq ě pe´u1 {4

?
πq2. For the upper bound, we

notice that |C0pvq| ď |Cpvq| and this entails, since u2 “ 8, that:

EpN0
pJqq ď

n

t1
Pp|C0pvq| P Jq ď n

t1
Pp|Cpvq| P Jq.

We compute as in (58):

EpNpJqpNpJq ´ 1qq ď
n

t1

ÿ

|G0|PtpJq

EpN0
pJqqPpCpwq “ G0

q

ď
` n

t1

˘2 Pp|Cpvq| P tpJqq
ÿ

|G0|PtpJq

PpCpwq “ G0
q

ď

ˆ

n

t1
Pp|Cpvq| P tpJqq

˙2

.

But we know from (60) with G0 the empty graph that pn{t1qPp|Cpvq| P tpJqq “ p1 `
op1qq e´u1 {4

?
π in the weak subcritical regime, and the upper bound lim supnÑ8 EpN´pJqpN´pJq´

1qq ď pe´u1 {4
?
πq2 follows. The case of an arbitrary J P J is similar.
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Let MpRq be the set of locally finite measures on the Borel sigma-algebra of R. A
measure M P MpRq is called a point measure when MpJq takes values in N for any J
bounded Borel set; a point measure is further called simple when Mptxuq P t0, 1u for any
x P R. A random element ofMpRq is called a random measure. A sequence pMnqnPN of
random measures weakly converges (resp. vaguely converges) towards a random measure
M when the sequence of random variables

ş

Mnpdxqfpxq weakly converge to
ş

Mpdxqfpxq
for each f continuous and bounded (resp. continuous bounded and compactly supported).
Proposition 16.17 in [Kal02], reproduced below, gives a criterion for the vague convergence
of probability measures in term of the void probabilities.

Proposition 2.19. Let pMnqně1 be a sequence of random point measures on R, and let M
be a random simple point measure. Then pMnqně1 vaguely converges to M if the following
two conditions hold:

• limnÑ8 PpMnpJq “ 0q “ PpMpJq “ 0q, for any J finite union of bounded intervals
of R .

• lim supnÑ8 EpMnpKqq ď EpMpKqq, for any compact set K.

Theorem 1.1 requires the weak convergence of the measures restricted to intervals
bounded from the left. The latter may be turned into vague convergence by compactifi-
cation of the space.

Proof of Theorem 1.1. To stress on the dependence in n, we write Nn for N in this proof.
Let k ě 1, and J P J . By an induction argument, we arrive at the following generalisation
of Proposition 2.17: the k-th factorial moment satisfies

E
´

ź

0ďiďk´1

pNnpJq ´ iq
¯

“ p1` op1qq

ˆ
ż

J

µpdxq

˙k

. (61)

For k P N, the k-th moment of a random variable is a linear combination of the i-th fac-
torial moments for 1 ď i ď k, hence the convergence (61) of the factorial moments entails
that of the usual moments. Moreover, the Poisson distribution is uniquely determined
by its moments. By the method of moments, see e.g. Section 6.1 of [JLR11], and the
Theorem 6.1 in particular, NnpJq weakly converges towards the Poisson distribution with
parameter

ş

J
µpdxq. This implies in particular the convergence of the void probabilities:

lim
nÑ8

PpNnpJq “ 0q “ e´
ş

J µpdxq . (62)

The proof is concluded applying Proposition 2.19 to Nφ
n the push-forward of Nn by an

increasing diffeomorphism φ : R Ñ p´8, 0q, e.g. x ÞÑ ´ e´x. Call µφ the push-forward
measure µ by the map φ. Let J be a finite union of bounded intervals. Equation (62) is
equivalent to:

lim
nÑ8

PpNφ
n pJq “ 0q “ e´

ş

J µ
φpdxq . (63)
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Let ε ą 0, andK be a compact set of the real line. For x P R, set dpx,Kq “ inftdpx, yq, y P
Ku for the distance of x to K. For η ą 0, the set Oη “ tx; dpx,Kq ă ηu is an open set
of the real line, hence it can be written as a union of open intervals, that is furthermore
finite. By monotone convergence there exists η ą 0 so that µφpOη zKq ă ε. Proposition
2.16 applies:

EpNφ
n pKqq ď E

`

Nφ
n pOηq

˘

Ñ

ż

Oη

µφpdxq ď

ż

K

µφpdxq ` ε,

and this proves, since ε is arbitrarily small, that

lim sup
nÑ8

EpNφ
n pKqq ď

ż

K

µφpdxq, for K a compact set. (64)

(62) and (64) are the assumptions to apply Proposition 2.19, which entails the vague
convergence of Nφ

n towards the Poisson measure with intensity µφ. The latter in turn is
equivalent to the weak convergence of Nn to the Poisson measure with intensity µ, when
both measures are restricted to intervals bounded from the left. This is the statement of
Theorem 1.1.

2.6 Adaptation to the case of graphs with bounded degrees

Interesting examples of expander graphs with bounded degrees are known (the Ramana-
juan graphs constructed in [LPS88] for instance), and we would like them to be included
in our analysis. This requires modifications in the both the statement and the proof of
Theorem 1.1. Precisely, assume

`pnq ě 3, lim
nÑ8

`pnq “ L ă 8,

which means that `pnq is constant equal to L for n large enough. Theorem 1.1 then holds
with the intensity of the Poisson point measure in that Theorem replaced by its multiple

1

4
?
π

L

L´ 1
e´x dx.

Observe that, when L “ 8, the convention L{pL ´ 1q “ 1 allows to recover the original
intensity measure. If ` “ `pnq and ε “ εpnq satisfy (4) and n goes to infinity, one has

δ˘pε, `´ 1q „
pL´ 1qpL´ 3q

pL´ 2q2
ε2

2
as nÑ 8,

and the first order of the size of the largest components is now 2ε´2 logpε3nqpL´2q2{ppL´
1qpL ´ 3qq. To prove Theorem 1.1 in this new setting, we first observe using the decom-
position (51) and the exact computation (31) for the size of the union of h “ 2 GW trees
that the estimate (50) on the tail of the modified GW tree has to be replaced by

n

t
Pp|T m

´| ě tq “ p1` op1qq
1

4
?
π

L

L´ 1
e´u as nÑ 8 : (65)

30



in other words, T´ and T m
´ have no more equivalent tails (in the scale t “ tpuq). We

then need an estimate similar to (65) with T m
´ z IpT

m
´q in place of T m

´ in order to prove the
analogue of (55). There is no way round but to find a many-to-k formula in the context
of modified GW–trees. This modification is achieved as follows: in Lemma 2.1, if m̃i

denotes the i-th factorial moment of the offspring distribution at the root, the RHS in
(23) is multiplied by m̃ctk pρq

{mctk pρq
(remember that the root only has a distinct offspring

distribution in modified GW–trees). In our case, the ratio m̃i{mi is `{p`´iq, and the upper
bounds in the estimates (39) and (43) are multiplied by a positive constant independent
of n. Since condition (8) is not sensitive to constants, we conclude that, under (8),

n

t
Pp|T m

´ z IpT
m
´q| ě tq “ p1` op1qq

1

4
?
π

L

L´ 1
e´u as nÑ 8, (66)

and the rest of the proof follows unchanged from this point on.

2.7 A remark on the second largest component in the weak su-
percritical regime.

Recall if necessary the definition of the quantity ε̄ in Remark 2.5. There is a conjec-
tured parallel, known as the discrete duality principle, between the largest components in
Gnpp̄´q, p̄´ “ p1´ ε̄q{p`´ 1q and the largest components from the second one in Gnpp`q,
p` “ p1 ` εq{p` ´ 1q. This principle has been proved for a few graphs, among which the
complete graph [NP07] and the configuration model [Rio12]. The proof usually relies on
the possibility to characterise the (random) graph induced by Gnpp`q on the complement
of C1 in a simple way. We believe that an analogous result should hold in our case, yet the
assumption we make and/or the methods we use in this paper only give a lower bound
for the expected number of components in certain intervals, as shown below. The random
measure of interest is again

N “
ÿ

jě1

δ t´1p|Cj |q,

and the lower bound is on the expected number of components with size in the interval
tpu1, u2q “ pt1, t2q, as follows.

Proposition 2.20. Assume ε satisfies (4), ` satisfies (3), and let p` “ p1 ` εq{p` ´ 1q.
Assume the non-backtracking random walk on Gn satisfies (8). It holds, for J “ pu1, u2q,
´8 ă u1 ď u2 ă 8, that:

EpNpJqq ě p1` op1qq
1

4
?
π
pe´u1 ´ e´u2q,

as nÑ 8.

Proof. The set I1pT q is the subset of path-impure vertices in T defined from the random
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homomorphism ι from T to Gn. For β “ opδ´1q as in Corollary 2.11, we have:

EpNpJqq “ p1` op1qq
n

t1
Pp|Cpvq| P pt1, t2qq

ě p1` op1qq
n

t1
Pp|T | P pt1 ` β, t2q, |I1| ď βq

“ p1` op1qq
1

4
?
π
pe´u1 ´ e´u2q,

using t1 „ t2 at the first and second line and Proposition 2.4 (with condition (8)) at the
second line.

With respect to the computation (56), we obtain an inequality in place of an equality
at the second line. Let η ą 0 and j P N be fixed, independent of n. The lower bound
above suggests that, with high probability as nÑ 8, the j-th largest component has size
at least δ`pε, `´ 1q´1plogpε3nq ´ p5{2` ηq log logpε3nqq:

P
ˆ

δ`pε, `´ 1q|Cj| ´ logpε3nq

log logpε3nq
ą ´p5{2` ηq

˙

“ 1´ op1q. (67)

To prove this statement, it would be enough to have an upper bound on the second
(factorial) moment. For v, w P V pGnq, we write v  w if v and w are not connected by a
path of open edges. Now, NpJqpNpJq ´ 1q counts the number of ordered pair of distinct
components, and

NpJqpNpJq ´ 1q “
ÿ

v,w

1t|Cpvq|PtpJq,|Cpwq|PtpJq,Cpvq‰Cpwqu
|Cpvq||Cpwq|

.

It follows that if V and W stand for two independent uniform vertices in V pGnq under P,

EpNpJqpNpJq ´ 1qq “ p1` op1qq
´ n

t1

¯2

Pp|CpV q| P tpJq, |CpW q| P tpJq, V  W q.

We did not find 9 an obvious way to bound Pp|CpV q| P tpJq, |CpW q| P tpJq, V  W q by
Pp|CpV q| P tpJqq2, which is the first step to implement the second moment method and
conclude to (67). It may be that further conditions are necessary to prove (67).

2.8 Verification of condition (8)

We rely on [Nac09] to check condition (8). To that aim, it is useful first to relate (8) with
the assumption

n1{3
n1{3
ÿ

k“1

kP k
“ Op1q (68)

9The possibility of closed edges with endvertices in both |CpV q| and |CpW q| prevents us from using
the van den Berg-Kesten-Reimer (BKR) inequality
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made by Nachmias in the study of the critical regime. Assumption (68) alone is not
enough to check condition (8). One also needs the following condition10: there exists a
finite constant c independent of n such that for n large enough,

P k
ď
c

n
for k ě n1{3. (69)

Lemma 2.21. Assume the sequence ε satisfies (4). Conditions (68) and (69) imply (8).

Proof of Lemma 2.21. The first n1{3 terms in the sum in (8) are bounded using Nachmias
condition (68)

t1{2
n1{3
ÿ

k“1

k e´c
k2

t P k
ď t1{2n´1{3

`

n1{3
n1{3
ÿ

k“1

kP k
˘

“ O
´ s1{2

pδ3{2nq1{3

¯

.

and it is simple to check that s1{2{pδ3{2nq1{3 “ op1{sq. For the subsequent terms in the
sum, we have from assumption (69) that:

t1{2
8
ÿ

k“n1{3

k e´c
k2

t P k
“ O

´t3{2

n

¯

with room to spare. Then

t3{2

n
“
pδ´1sq3{2

n
“

s3{2

δ3{2 n
“ o

´1

s

¯

, (70)

using for the last estimate that δ3{2n “ p2´3{2 ` op1qqε3n, as follows from (11), and then
log5{2

pε3nq “ opε3nq, as follows from (4). Both terms in the sum in the LHS of (8) are
op1{sq, hence the condition is satisfied.

Estimates on the kernel of the non-backtracking walk computed in [Nac09] then yield
Proposition 1.6.

Proof of Proposition 1.6. For the two graphs, condition (68) is checked in Theorem 2 and,
under condition (12), in Theorem 6 of [Nac09]. Also, condition (69) is checked along the
proofs of these two theorems: see p.1177 for the expander graphs and p.1178 for the
Hamming graph in that same reference. Lemma 2.21 concludes the proof.

In the case of the Hamming graph in dimension 1, 2 and 3, one may check (8) by
hand, without the intermediate step of checking condition (68). Linking conditions (8)
and (68) allows us not to display these tedious but straightfoward computations.

10In practice, checking (69) usually does not raise additional difficulties with respect to (68). In [Nac09]
for instance, (68) is checked by proving in the first place that the bound on P k in (69) holds for k ě logpnq,
which entails (69).
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