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Abstract

We perform various changes of measure in the lookdown particle system of Donnelly and Kurtz. The
first example is a product type h-transform related to conditioning a Generalized Fleming–Viot process
without mutation on coexistence of some genetic types in remote time. We give a pathwise construction of
this h-transform by just “forgetting” some reproduction events in the lookdown particle system. We also
provide an intertwining relationship for the Wright–Fisher diffusion and explicit the associated pathwise
decomposition. The second example, called the linear or additive h-transform, concerns a wider class of
measure-valued processes with spatial motion. Applications include a simple description of the additive
h-transform of the Generalized Fleming–Viot process and an immortal particle representation for the
additive h-transform of the Dawson–Watanabe process.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Constant size population models evolving through resampling first appeared in the works of
Wright (1930) and Fisher (1931) in discrete time, and Moran (1958) in continuous time. Building
on the latter work, Fleming and Viot (1979) introduced a measure-valued process modelling a
large population with constant size in which the individuals are also subject to a spatial motion.
Bertoin and Le Gall [6–8] (2003) proposed a further generalization by allowing discontinuities
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in the Fleming–Viot process. In the so called Generalized Fleming–Viot (GFV) process, one sin-
gle (infinitesimal) individual may beget a descendance comparable to the total population size.
By comparison, in the usual Fleming–Viot processes, one (infinitesimal) individual is allowed
to have at most two children. The backward genealogy of a Fleming–Viot process is therefore
given by a Kingman coalescent (1982), whereas the genealogy of a GFV process is described by
a Λ-coalescent. This class of coalescent processes was introduced independently by Pitman [35]
(1999) and Sagitov [38] (1999). A common feature to all GFV processes is the following prop-
erty, simplistic when considered from the genetic viewpoint, and sometimes called the Eve prop-
erty, see Labbé [26]: one type eventually fixates the whole population (in finite or infinite time).
Our first aim is therefore to define a model allowing for the coexistence of a fixed number of
types in large time. This will be realized by a singular conditioning expressed in terms of Doob
h-transforms.

Branching population models were introduced by Galton and Watson [44] (1874) in discrete
time and space. Jirina [23] (1958) later defined continuous state branching (CB) processes
evolving in continuous time, and Lamperti [29] (1967) proved that CB processes are the scaling
limits of Galton–Watson processes. Adding a spatial motion to the individuals, Dawson [10]
(1977) and Watanabe [43] (1968) later defined a measure-valued process with total mass given
by a continuous CB process. The Dawson–Watanabe superprocess was further generalized to
take into account the discontinuities arising in the sample paths of general CB processes, see
Dynkin [15,16] (1991). We shall still call these processes Dawson–Watanabe superprocesses.
Their genealogy is given by continuum Lévy trees, see Le Gall and Le Jan [30] (1998), or,
alternatively, by flow of bridges, see Bertoin and Le Gall [5] (2000).

In both the constant and the branching population settings, the measure-valued processes arise
as scaling limits of finite population models. These finite populations may be represented by par-
ticle systems, with the particles playing the role of the individuals. At the limit, the genealogy
brought by the particles is lost. It is nevertheless useful to keep track of the particles in the limit-
ing process, for instance to give a precise meaning to the infinitesimal individuals that have been
mentioned in this introduction, or to give them a genealogy. This was achieved by Donnelly and
Kurtz in [11,12] (1999). The idea is to order the particles by persistence, and give these particles
a label called the “level” accordingly. The ranked particle system associated with a finite popu-
lation model is then proved to weakly converge under suitable assumptions, and many measure-
valued processes of interest (including GFV processes and Dawson–Watanabe superprocesses)
may be simply recovered as the de Finetti measure of the limiting particle system, called the
lookdown particle system. This particle system therefore unifies the constant and the branching
population settings. A non-realistic property of the measure-valued processes defined from (this
particular) lookdown particle system (see also the recent extension [25] by Kurtz and Rodriguez),
at least when considered as populations models, is the absence of interaction between space and
branching: each particle, independently of its spatial position, follows a similar spatial motion.
Our second aim is to modify this feature in the direction of more interaction: a smooth way to
do it is, again, by using Doob h-transforms. We now introduce this procedure, which associates
to any Markov process a new Markov process with law absolutely continuous with respect to the
former.

1.1. Doob h-transforms

We recall that Doob h-transform refers to the following operation: given a transition kernel
pt (x, dy) of a Markov process (X t , t ≥ 0) on a Polish space E and a non-negative space–time
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harmonic function (H(t, y), t ≥ 0, y ∈ E) for this kernel, meaning that:
H(t, y) pt (x, dy) = H(0, x)

for each x ∈ E and t ≥ 0, a new transition kernel is defined by the expression:

pt (x, dy)
H(t, y)
H(0, x)

,

as soon as H(0, x) ≠ 0, and the associated Markov process is called an h-transform. The proba-
bilistic counterpart of this definition is the following. Let Ft denote the sigma-algebra generated
by the process (Xs, 0 ≤ s ≤ t) up to time t . The h-transformed process is absolutely continuous
with respect to the original process (Xs, s ≥ 0) with Radon–Nikodym derivative on Ft given by
the martingale:

H(t, X t )

E(H(0, X0))
.

The consistency of this definition as t varies is ensured by the martingale property of H(t, X t ),
which is the probabilistic counterpart of the space–time harmonicity of the function H . In-
formally, the h-transform consists in reweighting the paths of the Markov process on Ft ac-
cording to the value of the function H at point (t, X t ). The h-transformed processes locally
look like the original process, but may have drastically different global behaviour. The two
h-transform processes in which we are interested in this paper provide a good example of this
point.

In the context of measure-valued processes, h-transform processes have been intensively
studied. The long collection of papers on spine and backbone decompositions, which are
instances of h-transforms, reflects this activity. Rather than providing an extensive bibliography,
we refer to the discussion in the introduction of Engländer and Kyprianou [17], where a careful
review of the literature on such decompositions is offered. Let us nevertheless mention the
recent paper by Salisbury and Sezer [39], posterior to [17], which provides a nice example
of investigation of the relation between conditioning and h-transform, in the same vein as the
present paper, although the settings, the tools and the aim differ.

We now introduce the measure-valued processes of interest and, before, define the exchange-
able lookdown particle system. This requires some preliminary definitions.

1.2. Exchangeable random partitions

We will need the following two measures on the set P∞ of the partitions of N. First, we define
the probability measure ρx on P∞ as the law of the random partition π with a unique non-trivial
block with asymptotic frequency x, 0 < x < 1, constructed as follows. Let (Ui , i ≥ 1) be a
sequence of independent and identically distributed Bernoulli random variables with parameter
x , such that

P(U1 = 1) = 1 − P(U1 = 0) = x .

Then we declare that i and j are in the same block of π if and only if Ui = U j = 1 and that i is
a singleton of π if Ui = 0.
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Second, we define the Kingman measure µk on P∞ as the infinite measure on P∞ which
gives:

• mass 1 to the partitions with a unique non-trivial block formed by a doubleton {i, j} with
i ≠ j , the other integers being isolated in singletons.

• mass 0 to the other partitions.

We are now ready to introduce the lookdown particle system.

1.3. The lookdown particle system

Let E be a Polish space. We consider a triple (R0, Y,U ) constructed as follows. R0 stands for
a random probability measure on E, Y = (Yt , t ≥ 0) and U = (Ut , t ≥ 0) for two non-negative
real valued processes. We invite the reader to have a look at the two following subsections for
concrete examples of such processes Y and U . We assume that U0 = 0 and U is non decreasing,
so that U admits a unique decomposition Ut = U k

t +


s≤t 1Us where U k is continuous (with
Stieltjes measure denoted by dU k) and 1Us = Us − Us−. We assume that 0 is an absorbing
point for Y , and set τ(Y ) = inf{t > 0, Yt = 0} the extinction time of Y . We also assume that for
each t ≥ 0,1Ut ≤ Y 2

t . Conditionally on U and Y , we define two point measures Nρ and N k on
R+ × P∞.

• Nρ
=


0≤t<τ(Y ),1Ut ≠0 δ(t,π)(dt, dπ) and the exchangeable partitions π of N are

independent with law ρ√
1Ut/Yt

.
• N k

=


0≤t<τ(Y ) δ(t,π)(dt, dπ) is an independent Poisson point measure with intensity
(dU k

t /(Yt )
2)× µk .

Conditionally on (R0, Y,U ), we then define a particle system X = (X t (n), 0 ≤ t < τ(Y ), n ∈

N) as follows:

• The initial state (X0(n), n ∈ N) is an exchangeable E-valued sequence with de Finetti’s
measure R0.

• At each atom (t, π) of N := N k
+ Nρ , we associate a reproduction event as follows: let j1 <

j2 < · · · be the elements of the unique block of the partition π which is not a singleton (either
it is a doubleton if (t, π) is an atom of N k or an infinite set if (t, π) is an atom of Nρ). The
individuals j1 < j2 < · · · at time t are declared to be the children of the individual j1 at time
t−, and receive at time t the type of the parent j1 at time t−, whereas the types of the other
individuals are shifted upwards accordingly, keeping the order they had before the birth event:
for each integer ℓ, X t ( jℓ) = X t−( j1) and for each k ∉ { jℓ, ℓ ∈ N}, X t (k) = X t−(k − #Jk)

with #Jk the cardinality of the set Jk := {ℓ > 1, jℓ ≤ k}.
• Between the reproduction events, the type X t (n) of the particle at level n mutates according to

a Markov process with càdlàg paths in E , independently for each n. The law of this Markov
process will be denoted by (Px , x ∈ E) when started at x ∈ E . We shall say there is no
mutation when the law Px reduces to the Dirac mass at the constant path equal to x for each
x ∈ E .

This defines the particle system X on [0, τ (Y )). For each j ∈ N, the process Xs( j) admits a limit
as s goes to τ(Y ), and we set X t ( j) = lims→τ(Y ) Xs( j) for t > τ(Y ). The sequence (X t ( j), j ∈

N) is still exchangeable for t ≥ τY according to Proposition 3.1 of [12]. Conditionally on
(R0, Y,U ), the sequence (X t (n), n ∈ N) is therefore exchangeable for each t ≥ 0, and we
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Fig. 1. A lookdown particle system restricted to its first 7 levels. The two types are represented by solid lines and dotted
lines. At time t0, there is a reproduction event, and the father at level j1 = 1 at time t0 gives its type to its children at
levels j1 = 1, j2 = 3, j3 = 5, . . . at time t0. Notice the way the other types are transmitted.

denote by Rt its de Finetti1 measure:

Rt (dx) = lim
N→∞

1
N

N
n=1

δX t (n)(dx). (1)

Endowing the state space M f (E) with the topology of weak convergence, we know that the
probability measure-valued process R = (Rt , t ≥ 0) has a càdlàg version according to Theorem
3.2 of [12]. We shall work with this version from now on. See Fig. 1 for a schematic view of the
look-down particle system (X t (n), n ∈ N).

We stress that, conditionally given Rt , the random variables (X t (n), n ∈ N) on E are inde-
pendent and identically distributed according to the probability measure Rt thanks to de Finetti’s
theorem. This key fact will be used several times in the following.

We finally define the càdlàg M f (E)-valued process of interest Z by:

(Z t , t ≥ 0) = (Yt Rt , t ≥ 0). (2)

Intuitively, the finite measure Z represents the distribution of a population distributed in the (type)
space E , the process Y corresponds to the total population size, and U tracks the resampling
inside the population.

We assume that (Y,U, X) have the prescribed law on an abstract probability space (Ω ,P),
which is then equipped with three different filtrations:

• (Ft = σ((Ys, s ≤ t), (Xs, s ≤ t)), t ≥ 0) corresponds to the filtration of the particle system
and the total population size.

• (Gt = σ(Zs, s ≤ t), t ≥ 0) corresponds to the filtration of the resulting measure-valued
process.

• (Dt = σ(Xs(1), s ≤ t), t ≥ 0) is the filtration induced by the motion of the first level particle.

We have Yt = Z t (1) :=


E Z t (dx), and thus Y is G-measurable. Notice also that X is a Markov
process with respect to the filtration F , and that Z is a Markov process with respect to the
filtration G.

1 Beware, that, in many papers, the law of Rt is rather called the de Finetti measure.
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1.4. Generalized Fleming–Viot processes

The Generalized Fleming–Viot (GFV) process with mutation is the probability measure-
valued process Z constructed in Section 1.3 with:

• Y = 1,
• U a subordinator with jumps no greater than 1.

We refer to the article [6] by Bertoin and Le Gall for more information on GFV processes, and to
Bertoin [4] and Berestycki [2] for background on the associated Λ-coalescents. The GFV process
has càdlàg sample paths in the space of probability measures on E endowed with the topology
of weak convergence. We denote by φ(λ) the Laplace exponent of the subordinator U :

φ(λ) = cλ+


(0,1]

(1 − e−λx )νU (dx)

where c ≥ 0 and the Lévy measure νU satisfies

(0,1]

x νU (dx) < ∞. The genealogy of the GFV
process is described by the Λ-coalescent of Pitman [35], where the finite measure Λ is derived
from c and νU as follows:

[0,1]

g(x)Λ(dx) := cg(0)+


(0,1]

g(
√

x)xνU (dx).

The construction explained in Section 1.3 greatly simplifies in this setting: N is a Poisson point
measure on R+ × P∞ with intensity:

dt × µ(dπ) := dt ×


cµk(dπ)+


(0,1]

ν(dx)ρx (dπ)

,

where we have set ν(dx) = Λ|(0,1](dx)x−2, see Sections 3.1.4 and 5.1 of [12]. Notice that ν and
νU are linked as follows:

(0,1]

g(x)x2ν(dx) =


(0,1]

g(
√

x)xνU (dx),

for g bounded and measurable. This means that ν is the push-forward measure of νU by the map
x →

√
x .

Intuitively, the GFV process (Rt , t ≥ 0) describes a constant size population evolving through
(time homogeneous) resampling. The evolution of this process is a superposition of a continuous
evolution and a discontinuous one. In the continuous evolution, each pair of individuals is
sampled at constant rate c, and the individual with lower level gives its type to the individual
with upper level. For describing the discontinuous evolution, we need an independent Poisson
point measure N ′ on R+×(0, 1] with intensity dt ν(dx). If (t, x) is an atom of N ′ then t is a jump
time of the process (Rt , t ≥ 0) and the conditional law of Rt given Rt− is (1 − x)Rt− + xδU
where U is distributed according to Rt−. This translates as follows in the lookdown particle
system: at time t , we sample independently each level with the same probability x . Then, the
sampled individual with lower level is declared to be the father and it gives its type at time t−
to the other sampled individuals, which correspond to its children. It may be checked from the
exchangeability of the particle system that conditionally given Rt−, the type of the father has
distribution Rt−, like U . The other types are redistributed in order to preserve the ordering by
persistence, following the rule specified in Section 1.3. After this redistribution, the de Finetti
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measure of the particle system at time t has distribution (1 − x)Rt− + xδU , conditionally given
Rt−.

1.5. The Dawson–Watanabe superprocess

A continuous state branching process is a real-valued càdlàg strong Markov process charac-
terized by a branching mechanism ψ taking the form

ψ(λ) =
1
2
σ 2λ2

+ βλ+


(0,∞)

(e−λu
− 1 + λu1u≤1)ν

Y (du), (3)

for νY a Lévy measure such that

(0,∞)

(1 ∧ u2)νY (du) < ∞, β ∈ R, and σ 2
∈ R+. We refer

to Dynkin [16] and Etheridge [18] for background on these processes. We will denote the con-
tinuous state branching process with branching mechanism ψ by CB(ψ). The branching mecha-
nism yields the Laplace transform of the marginals of the CB(ψ) process through the following
formula:

E(e−λYt |Y0 = x) = e−xu(λ,t), (4)

where u is the unique non-negative solution of the integral equation:

u(λ, t)+

 t

0
ds ψ (u(λ, s)) = λ (5)

holding for all t ≥ 0, λ ≥ 0. Let (Yt (x), t ≥ 0) be a CB(ψ) process started at x ≥ 0. From (4),
we have the following primitive form of the branching property:

Yt (x + x ′) = Yt (x)+ Yt (x ′),

where the equality is in distribution, and the two random variables on the right-hand side are
chosen independent. In fact, the branching property also holds for the whole processes, and we
have the following equality in distribution:

(Yt (x + x ′), t ≥ 0) = (Yt (x)+ Yt (x ′), t ≥ 0), (6)

where the two processes on the right-hand side are independent. Conversely, the CB(ψ) pro-
cesses are the only càdlàg Markov processes satisfying (6). Last, a CB(ψ) process (Yt , t ≥ 0)
may be constructed from a spectrally positive Lévy process (L t , t ≥ 0) with Laplace exponent
ψ(λ) by a random time change, with the time running at speed given by L t : this transformation
is known as the Lamperti transform, see [29].

The Dawson–Watanabe process with branching mechanism ψ(λ) is the measure-valued
process (Z t , t ≥ 0) constructed in Section 1.3 when:

• (Yt , t ≥ 0) is a CB.
• (Ut , t ≥ 0) is the quadratic variation process of Y : Ut = [Y ](t). In particular, the condition
1Ut = (1Yt )

2
≤ Y 2

t appearing in the construction of the lookdown particle system is
satisfied.

This process has càdlàg sample paths in M f (E) when the space M f (E) of finite measures on
E is endowed with the topology of weak convergence.

Intuitively, a Dawson–Watanabe superprocess (Z t , t ≥ 0) is recovered from a CB(ψ) process
by adding an independent spatial motion to the infinitesimal individuals. Like the CB(ψ) process,
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the evolution of a Dawson–Watanabe process is the superposition of a continuous evolution and a
discontinuous one. In the continuous evolution, each individual begets two individuals at constant
rate. On the lookdown graph, this translates in a non-trivial way, due to the constant size of the
ratio R: each pair of individuals is sampled at rate σ 2/Yt at time t , and the individual with lower
level gives its type to the individual with upper level. Notice the similarity with the continuous
evolution in the GFV process, for which the total population size is constant equal to 1. For
describing the discontinuous evolution, we need N ′′ a Poisson point measure on (0,∞)3 with
intensity dt du νY (dx). Given that (t, u, x) is an atom of N ′′ such that 0 ≤ u ≤ Yt−, the
conditional law of Z t given Z t− is that of Z t− + xδU where U is distributed according to Z t−.
This translates as follows in the lookdown particle system: at time t , we sample independently
each level with the same probability x/(Yt−+x). Then, the sampled individual with lower level is
declared to be the father and it gives its type U at time t− to the other sampled individuals, which
correspond to its children. The other types are redistributed in order to conserve the ordering by
persistence.

1.6. The main results

Our interest is two-fold. First, we want to introduce an analogue of the GFV process, but with
ultimate coexistence of types, and without appealing to some kind of mutation process. Second,
we are interested in defining measure-valued processes with (soft) interaction between the spatial
motion and the branching structure.

• Assume (Z t , t ≥ 0) = (Rt , t ≥ 0) is the GFV process constructed in Section 1.4 without
mutation and with finite state space E equal to {1, . . . , K ′

}. Then, for 1 ≤ K ≤ K ′, the
process

H(t, Rt )

E(H(0, Z0))
= erK t

K
i=1

Rt ({i})

E
 K

i=1
R0({i})


with

rK =
K (K − 1)

2
c +


(0,1]

ν(dx)


1 − (1 − x)K
− K x(1 − x)K−1


,

defines a non-negative G-martingale with expectation 1 as proved in Lemma 2.3. The
associated h-transformed process (Rh

t , t ≥ 0) ponderates the paths for which the first K types
are present in equal proportion. This new process admits a simple representation as the de
Finetti measure of a new particle system (Xh

t , t ≥ 0), see Theorem 2.4, which is constructed
as (X t , t ≥ 0), except for the two following additional rules:
– we impose {Xh

0 (1), . . . , Xh
0 (K )} = {1, . . . , K }.

– All the reproductions events involving 2 of the first K levels, corresponding to j2 ≤ K ,
are discarded, so that the equality {Xh

t (1), . . . , Xh
t (K )} = {1, . . . , K } still prevails for each

t ≥ 0.
The process (Rt , t ≥ 0) is said to satisfy the absorption property when Rt is almost surely
reduced to a Dirac mass in finite time. Under the assumption (15), which implies the almost
sure absorption of (Rt , t ≥ 0), we prove that (Rh

t , t ≥ 0) has the law of the process (Rt , t ≥ 0)
conditioned on non-absorption of its first K types in remote time, see Theorem 2.5. The
analytical counterpart of this result was known for Wright–Fisher diffusions (ν = 0) since
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the work of Kimura [24], quoted by Lambert in [28]. Our method relies on the analysis of
the lookdown particle system. As a consequence, our result has a more probabilistic flavour;
in particular, it allows to interpret the GFV process conditioned on non-absorption as a
GFV process where some reproduction events are erased. Interestingly, this is the opposite
behaviour to that of branching populations conditioned on non-extinction, for which it is
known since Kesten (see also Lyons, Pemantle and Peres [32]) that additional immigration is
needed for the process not to extinct at 0. Another upshot of the construction of the particle
system Xh is the possibility to compute the generator of the conditioned process (Rh

t {1}, t ≥

0) in a rather straightforward way in the case of a two-type GFV process at Proposition 2.12.
We also take the opportunity to present an intertwining relationship for the Wright–Fisher
diffusion and explicit the associated pathwise decomposition, see Proposition 2.16: we prove
that a Wright–Fisher diffusion may be constructed as a Wright–Fisher diffusion with a
stochastic non-decreasing immigration driven by an independent Markov chain. This adds
another decomposition to the striking one of Swart, see [42].

• Assume now that (Z t , t ≥ 0) is the general measure-valued process on a Polish space E
constructed in Section 1.3, which includes the GFV process and the Dawson–Watanabe su-
perprocess. Notice that Z allows for mutation and non-constant population size. If (Yt , t ≥ 0)
and (h(t, X1(t)), t ≥ 0) are two non-negative martingales (we do slightly better in the text),
the process

H(t, Z t )

E(H(0, Z0))
=


E Z t (du)h(t, u)

E


E Z0(du)h(0, u)


is again a non-negative martingale. The associated h-transform favours the paths for which Z
is large where the function h is large. Once again, we construct the corresponding h-transform
as the de Finetti measure of a new particle system Xh in Theorem 3.3. This particle system
Xh is constructed as X , except for the two following rules:
– the first level particle (Xh

t (1), t ≥ 0) follows the path of an h-transform of the underlying
spatial motion (or mutation process) with h = h(t, ·).

– The total mass process Y h
t is size biased.

This result was suggested by Overbeck in the case of a Fleming–Viot process, see [34, p. 183].
It also relates in the branching setting to decompositions of the additive h-transforms of su-
perprocesses found by the same author in [33] using Palm measures.

Our two examples, although similar, are independent: the first one may not be reduced to the
second one, and vice versa. We stress on the change of filtration technique, learnt in Hardy and
Harris [22], which allows us to give simple proofs of the main results. Our main contribution
relies in understanding the interplay between the Doob h-transform and the exchangeable
lookdown particle system. We take a probabilistic approach in the study of GFV processes
conditioned on non-extinction of types. This approach notably yields pathwise results, which
in turn allow to interpret and to effectively compute the generators of the conditioned processes
arising in the analysis. This method using the lookdown particle system, is, to the best of our
knowledge, new in this setting. The work on additive h-transforms has two antecedents, namely
the papers [33,34] by Overbeck, the first paper being specific to the superbrownian setting, and
the second paper dealing with diffusive measure-valued processes. Our contribution on additive
h-transforms consists in a generalization of the previous decompositions known for this class of
h-transforms to càdlàg measure-valued processes derived from the lookdown. This class is large
enough to incorporate the two processes intensively studied since the parution of [33], namely
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general Dawson–Watanabe superprocesses considered from the genealogical viewpoint, see the
monograph [13], and GFV processes.

1.7. Outline of the paper

Section 2 is concerned with a product-type h-transform of a GFV process without mutation.
We prove in Section 2.2 that the h-transform may be interpreted as the process conditioned on
coexistence of some genetic types. In Section 2.3, we compute the generator of the conditioned
process when the finite state space is composed of only two types, and recognize it as the gen-
erator of a GFV process with immigration. Section 2.3 also contains the statement and the inter-
pretation of the intertwining relationship. Section 3 is concerned with the additive h-transform of
a more general measure-valued process. Section 3.2 collects the two main applications, to GFV
processes and Dawson–Watanabe superprocesses.

2. A product type h-transform

2.1. A pathwise construction of an h-transform

Along this subsection, we shall denote by (Rt , t ≥ 0) a GFV process without spatial motion
(that means, Px is the Dirac measure at the constant path equal to x). For the sake of simplicity,
we shall assume that the type space is a finite state space: E = {1, 2, . . . , K ′

} for an integer
K ′

≥ 2.

2.1.1. Results
This subsection is devoted to the construction of a multiplicative h-transform of the process

(Rt , t ≥ 0) via a modified particle system. The interpretation of the resulting measure-valued
process as a conditioned GFV process is postponed to Section 2.2. The proofs of the results
contained in this subsection may be found in the next Section 2.1.2. Fix 1 ≤ K ≤ K ′. We
assume from now on and until the end of Section 2 that:

E


K

i=1

R0{i}


> 0, (7)

to avoid empty definitions in the following. Recall the definition of the particle system X associ-
ated with R. We define from X a new particle system Xh , still defined on the suitably enriched
probability space (Ω ,P), as follows:

(i) The finite sequence

Xh

0 ( j), 1 ≤ j ≤ K


is a uniform permutation of {1, . . . , K }, and, inde-
pendently, the sequence


Xh

0 ( j), j ≥ K + 1


is exchangeable with asymptotic frequencies
RH

0 , where RH
0 is the random probability measure with law:

P(RH
0 ∈ A) = E

1A(R0)

K
i=1

R0{i}

E
 K

i=1
R0{i}


 .

(ii) The reproduction events are given by the restriction of the Poisson point measure N to
V :=


(s, π), π|[K ] = {{1}, {2}, . . . , {K }}


, where π|[K ] is the restriction of the partition

π of N to {1, . . . , K }. This means that we keep only the atoms of N for which the reproduc-
tions events do not involve more than one of the first K levels.
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Remark 2.1. Note that the particle system

Xh

0 ( j), j ≥ 1


is no more exchangeable due to
the constraint on the K first levels. Nevertheless, the particle system


Xh

0 ( j), j > K


is still
exchangeable.

We also need the definition of the first level L(t) at which the first K types appear:

L(t) = inf{i ≥ K , {1, . . . , K } ⊂ {X t (1), . . . , X t (i)}}, (8)

with the convention that inf{∅} = ∞. The random variable L(0) is finite if and only if
K

i=1
R0{i} > 0,P-a.s., thanks to de Finetti’s theorem. The random variable L(t) isFt measurable, but
not Gt measurable. This random variable counts the number of levels that we need for collecting
the first K types: in that sense, it may be interpreted as an instance of the coupon collector prob-
lem. Viewed as a process, the collection of random variables (L(t), t ≥ 0) forms a Markov chain
in continuous time with respect to its natural filtration. Its transition rates from i to j are a bit
involved, except in the case ν = 0, see the Section 2.3. The total jump rate from state i admits
nevertheless a simple expression. It is equal to:

ri =
i(i − 1)

2
c +


(0,1]

ν(dx)


1 − (1 − x)i − i x(1 − x)i−1

, i ≥ 1

and we shall call ri the pushing rate at level i . Notice that r1 = 0 and that ri is finite for every
i ≥ 1 since


(0,1]

x2 ν(dx) < ∞. From the construction of the lookdown particle system, the
pushing rate ri may be understood as the rate at which a type at level i is pushed up to higher
levels (not necessarily i + 1 if ν ≠ 0) by reproduction events at lower levels. Let us define a
process Q = (Qt , t ≥ 0) as follows:

Qt =
1{L(t)=K }

P(L(0) = K )
erK t .

Lemma 2.2. The process Q = (Qt , t ≥ 0) is a non-negative F-martingale, and

∀A ∈ Ft , P(Xh
∈ A) = E (1A(X) Qt ) . (9)

We need the following definition of the process:

Mt =

K
i=1

Rt {i}

E
 K

i=1
R0{i}

erK t .

By projection on the smaller filtration Gt , we deduce Lemma 2.3.

Lemma 2.3. The process M = (Mt , t ≥ 0) is a non-negative G-martingale.

This fact allows to define the process RH
= (RH

t , t ≥ 0) absolutely continuous with respect
to R = (Rt , t ≥ 0) on each Gt , t ≥ 0, by the relation

∀A ∈ Gt , P(RH
∈ A) = E (1A(R) Mt ) . (10)

The process RH is the product type h-transform of interest. Intuitively, the ponderation by M
favours the paths in which the first K types are present in equal proportion. Also notice that
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Eq. (10) agrees with the definition of RH
0 . We shall deduce from Lemmas 2.2 and 2.3 the

following theorem, which gives the pathwise construction of the h-transform RH of R.

Theorem 2.4. Let 1 ≤ K ≤ K ′. We have that:

(a) The limit of the empirical measure:

Rh
t (dx) := lim

N→∞

1
N

N
n=1

δXh
t (n)

(dx)

exists a.s.
(b) The process (Rh

t , t ≥ 0) is distributed as (RH
t , t ≥ 0).

Let us comment on these results. The process Xh is constructed by changing the initial condi-
tion and forgetting (as soon as K ≥ 2) specific reproduction events in the lookdown particle sys-
tem of X . Lemma 2.2 tells us that this procedure selects the configurations of X in which the first
K levels are filled with the first K types at initial time without any “interaction” between these
first K levels at a further time. Theorem 2.4 claims that the process Rh constructed in this way
is an h-transform of R and, from Lemma 2.3, we have the following probabilistic interpretation
of the Radon–Nikodym derivative in Eq. (10): the numerator is proportional to the probability
that the first K levels are occupied by the first K types at time t , whereas the denominator is
proportional to the probability that the first K levels are occupied by the first K types at time 0.

2.1.2. Proofs

Proof of Lemma 2.2. From the de Finetti theorem, conditionally on Rt , the random variables
(X t (i), i ∈ N) are independent and identically distributed according to Rt . This implies that:

P(L(t) = K |Gt ) = K !

K
i=1

Rt {i}. (11)

In particular, we have:

P(L(0) = K ) = K ! E


K

i=1

R0{i}


,

which, together with (7), ensures that Qt is well defined.
Then, we define W = {π, π|[K ] = {{1}, {2}, . . . , {K }}}, and Vt = {(s, π), 0 ≤ s ≤ t, π ∈ W },

and also the set differences W c
= P∞ \ W and V c

t = {(s, π), 0 ≤ s ≤ t, π ∈ W c
}. We observe

that:

• From the de Finetti Theorem, Xh
0 defined in (i) is distributed as X0 conditioned on {L(0) =

K }.
• The law of the restriction of a Poisson point measure on a given subset is that of a Poisson

point measure conditioned on having no atoms outside this subset: thus N conditioned on
having no atoms in V c

t (this event has positive probability) is the restriction of N to Vt .

Since the two conditionings are independent, we have, for A ∈ Ft :

P(Xh
∈ A) = P(X ∈ A|{L(0) = K } ∩ {N (V c

t ) = 0})

= E


1A(X)

1{L(0)=K }∩{N (V c
t )=0}

P(L(0) = K )P(N (V c
t ) = 0)


. (12)
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We compute:

µ(W c) = cµk(W c)+


(0,1]

ν(dx)ρx (W c)

= c
K (K − 1)

2
+


(0,1]

ν(dx)


1 − (1 − x)K
− K x(1 − x)K−1


= rK .

This implies from the construction of N that:

P(N (V c
t ) = 0) = e−µ(W c)t

= e−rK t . (13)

Notice that

{L(t) = K } = {L(0) = K } ∩ {N (V c
t ) = 0}. (14)

From (12)–(14), we deduce that:

P(Xh
∈ A) = E


1A(X)

1{L(t)=K }

P(L(0) = K )
erK t


= E


1A(X)Qt


.

Observe now that A also belongs to Fs as soon as s ≥ t , which yields:

P(Xh
∈ A) = E(1A(X)Qs).

Comparing the two last equalities ensures that (Qt , t ≥ 0) is a F-martingale. �

Proof of Lemma 2.3. We know from Lemma 2.2 that (Qt , t ≥ 0) is a F-martingale. Since
Gt ⊂ Ft for every t ≥ 0, we deduce that (E(Qt |Gt ), t ≥ 0) is a G-martingale. But

E(Qt |Gt ) = E


1{L(t)=K }

P(L(0) = K )
erK t

|Gt


=

K
i=1

Rt {i}

E
 K

i=1
R0{i}

erK t
= Mt ,

using (11) for the second equality, so that (Mt , t ≥ 0) is a G-martingale. �

Proof of Theorem 2.4. From Lemma 2.2, Xh is absolutely continuous with respect to X on Ft .
The existence of the almost sure limit of the empirical measure claimed in point (a) follows from
(1). We now project on Gt the absolute continuity relationship on Ft given in Lemma 2.3. Let
A ∈ Gt :

P(Rh
∈ A) = E (1A(R)Qt ) = E (1A(R)E(Qt |Gt )) = E (1A(R)Mt ) = P(RH

∈ A),

where we use Lemma 2.2 for the first equality and the definition of RH for the last equality. This
proves point (b). �

2.2. The h-transform as a conditioned process

We gave in the previous subsection a pathwise construction of the h-transform RH . We now
study the conditioning associated with this h-transform.



Author's personal copy

O. Hénard / Stochastic Processes and their Applications 123 (2013) 2054–2083 2067

Let 1 ≤ K ≤ K ′. Assumption (7) allows us to define a family of processes R(≥t) on G by:

∀A ∈ Gt , P(R(≥t)
∈ A) = P


R ∈ A|

K
i=1

Rt {i} ≠ 0


,

and the associated particle system X (≥t) on F by:

∀A ∈ Ft , P(X (≥t)
∈ A) = P


X ∈ A|

K
i=1

Rt {i} ≠ 0


.

The process R(≥t) thus corresponds to the process R conditioned on coexistence of the first K
types at time t . It is not easy to derive the probabilistic structure of the particle system X (≥t) on
all Ft . Nevertheless, for a fixed s ≥ 0, the probabilistic structure of X (≥t) on the sigma algebra
Fs simplifies as t goes to infinity, as shown by the following theorem, which may be seen as a
generalization of Theorem 3.7.1.1 of Lambert [28]. The latter Theorem builds on the work of
Kimura [24] and corresponds to the case νU

= 0. We use a new method, based on the lookdown
particle system, which offers new probabilistic insights, described in the next Section 2.3. We
need some further notations: We write Pi for the law of L (defined in (8)) conditionally on
{L(0) = i}. For I an interval of R+ and F a process indexed by R+, we denote by FI the
restriction of F on the interval I .

Theorem 2.5. Let s ≥ 0 be fixed. Assume that

lim
t→∞

PK+1(L(t) < ∞)

PK (L(t) < ∞)
= 0. (15)

Then:

(i) The family of processes X (≥t)
[0,s] weakly converges as t → ∞ towards the process Xh

[0,s].

(ii) The family of processes R(≥t)
[0,s] weakly converges as t → ∞ towards the process Rh

[0,s].

We refer to Lemma 2.9 for a sufficient condition for (15) to be satisfied, and notice that the case
K = 1 corresponds to a non degenerate conditioning since the event {Rt {1} ≠ 0 for every t} has
positive probability under (7).

Remark 2.6. The following property

(CDI) P(inf{t > 0, L(t) = ∞} < ∞) = 1,

is independent of K used to define L in (8), as soon as K ≥ 2. This property corresponds to the
Coming Down from Infinity property for the Λ-coalescent associated with the GFV process R,
whence the acronym (CDI). The key points to see this connection are:

• the fact that L(0) is an upper bound on the number of blocks in the standard coalescent started
at any time greater than inf{t > 0, L(t) = ∞} (and run backward in time).

• The 0–1 law of Pitman, see Proposition 23 of [35], according to which the number of blocks
in a standard Λ-coalescent either stays infinite at every time t ≥ 0 with probability 1, or is
finite at each positive time t > 0 with probability 1.

We refer to Schweinsberg [40] for more details about the Coming Down from Infinity prop-
erty. We conjecture this property is in fact equivalent to our assumption (15), but we were unable
to prove it. See Remark 2.8 nevertheless.
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Remark 2.7. It should still be possible to interpret the processes Xh and Rh as conditioned
processes, without assuming (15). Our guess in that more general case is that Xh corresponds to
X conditioned by the event {lim supt→∞

K
i=1 Rt {i} > 0} (which has null probability as soon as

K ≥ 2).

Proof. First observation is that, from the de Finetti Theorem on exchangeable random partitions,
we have:

K
i=1 Rt {i} ≠ 0 if and only if L(t) < ∞,P a.s. This gives, for any A ∈ Fs :

P


A|

K
i=1

Rt {i} ≠ 0


=

P


A ∩


K

i=1
Rt {i} ≠ 0



P
 K

i=1
Rt {i} ≠ 0


=

P (A ∩ {L(t) < ∞})

P(L(t) < ∞)
.

Now, using the Markov property, we have:

P(A ∩ {L(t) < ∞}) = P(A ∩ {L(s) = K } ∩ {L(t) < ∞})

+ P(A ∩ {L(s) ≥ K + 1} ∩ {L(t) < ∞})

= P(A ∩ {L(s) = K })PK (L(t − s) < ∞)

+ E(1A∩{L(s)≥K+1}PL(s)(L̃(t − s) < ∞)),

where L̃ is an independent copy of L .
Let ℓ ∈ N. We can couple the processes L under Pℓ and L under Pℓ+1 on the same lookdown

graph by using the same reproduction events. Let us denote by (Lℓ, Lℓ+1) this coupling: Lℓ is
distributed as L under Pℓ and Lℓ+1 is distributed as L under Pℓ+1. By the ordering by persistence
property of the lookdown graph, we then have, for every t ≥ 0:

Lℓ(t) ≤ Lℓ+1(t),

whence:

Pℓ+1(L(t) < ∞) ≤ Pℓ(L(t) < ∞) (16)

for every integer ℓ. Therefore, we have:

E(1A∩{L(s)≥K+1}PL(s)(L̃(t − s) < ∞)) ≤ P(A ∩ {L(s) ≥ K + 1})

× PK+1(L(t − s) < ∞).

Our assumption (15) now implies:

P(A ∩ {L(t) < ∞})

PK (L(t − s) < ∞)
→

t→∞
P(A ∩ {L(s) = K }).

Setting A = Ω , this also yields:

P(L(t) < ∞)

PK (L(t − s) < ∞)
→

t→∞
P(L(s) = K ).

Taking the ratio, we find that:

P (A ∩ {L(t) < ∞})

P(L(t) < ∞)
→

t→∞

P(A ∩ {L(s) = K })

P(L(s) = K )
.
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We also have that P(L(s) = K ) = P(L(0) = K )e−rK s since Q is a G-martingale from
Lemma 2.2. Altogether, we find that:

lim
t→∞

P


A|

K
i=1

Rt {i} ≠ 0


= E


1A(X)

1{L(s)=K }

P(L(0) = K )
erK s


= P(Xh

∈ A)

where the last equality corresponds to Lemma 2.2. This implies the convergence in law of X (≥t)

towards Xh as t → ∞, and proves (i). The proof of (ii) is similar to the one of (i). �

Remark 2.8. Having introduced in the previous proof the coupling (L K , L K+1), we may
complete the Remark 2.6: It is possible to prove that, if (CDI) holds and for each t ≥ 0,

( j → P(L K+1(t) < ∞|L K (t) ≤ j)) is non increasing,

then (15) holds. This monotonicity assumption is made plausible by the ordering by persistence
property of the lookdown graph, see (16).

We now give a sufficient condition for (15) to be satisfied, which is then checked in the most
interesting cases.

Lemma 2.9. If


j≥K
1
r j
< ∞, then (15) holds.

Proof. A lower bound for PK (L(t) < ∞) is easily found:

e−rK t
= PK (L(t) = K ) ≤ PK (L(t) < ∞). (17)

We now look for an upper bound for PK+1(L(t) < ∞). Recall the non decreasing pure jump
process L jumps with intensity r j when L = j . We may write, under PK+1:

sup{t, L(t) < ∞} =


j≥K+1

T̃ j

where, given the range {L(t), t ≥ 0} = {L K+1, L K+2, . . .} (with L K+1 < L K+2 < · · ·) of the
random function L , the sequence (T̃ j , j ≥ K + 1) is a sequence of independent exponential
random variables with parameter rL j . Since (r j ) j≥K+1 forms an increasing sequence and the
function L has jumps greater than or equal to 1, we have for each j ≥ K + 1,

rL j ≥ r j . (18)

Let (T j , j ≥ K + 1) be a sequence of independent exponential random variables with parameter
(r j , j ≥ K ). We have, for 0 < λ < rK+1:

PK+1(L(t) < ∞) = P
 

j≥K+1

T̃ j > t


≤ P
 

j≥K+1

T j > t


= P


exp

λ


j≥K+1

T j


> exp (λt)



≤ exp (−λt) E


exp

λ


j≥K+1

T j


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= exp (−λt)


j≥K+1

r j

r j − λ

= exp


−λt +


j≥K+1

log


1 +
λ

r j − λ



≤ exp


−λt + λ


j≥K+1

1
r j − λ


,

where we use (18) for the first inequality and the Markov inequality for the second inequality.
By assumption, the sum


j≥K+1 1/r j is finite, which implies that


j≥K+1 1/(r j − λ) is finite.

Taking λ = (rK + rK+1)/2, we obtain that:

PK+1(L(t) < ∞) < C exp


−
rK + rK+1

2
t


(19)

for the finite constant C = exp λ


j≥K 1/(r j − λ) associated with this choice of λ. Using (17)
and (19), we have that:

0 ≤
PK+1(L(t) < ∞)

PK (L(t) < ∞)
≤ C exp


−

rK+1 − rK

2
t

.

Letting t tend to ∞, we get the required limit. �

The following corollary ensures that (15) is satisfied in the most interesting cases.

Corollary 2.10. If either c > 0, either c = 0 and ν satisfies ν(dx) = f (x)dx with

lim inf
x→0

f (x)xα+1 > 0 for some 1 < α < 2,

then (15) holds.

Remark 2.11. Notice that, for 1 < α < 2, the Beta(2 − α, α) GFV process, for which ν(dx) =

x−1−α(1 − x)α−11(0,1)(x)dx , satisfies this assumption.

Proof. If c > 0, r j ≥ cj ( j − 1)/2, and thus


j≥K 1/r j < ∞. Assume now c = 0 and
lim infx→0 f (x)xα+1 > 0 for some 1 < α < 2. From Lemma 2 of Limic and Sturm [31], we
have the equality:

r j+1 − r j =


(0,1]

j (1 − x) j−1x2ν(dx).

We deduce that there exists an integer n, and a positive constant C such that:

r j+1 − r j > C

(0,1/n]

j (1 − x) j−1x1−αdx ≥
C
n


(0,1]

j (1 − x) j−1x1−αdx

=
C
n

j Beta(2 − α, j + α − 1),

using the definition of lim inf at the first inequality, and the fact that the map x → (1−x) j−1x1−α

is non-increasing at the second inequality. Let us define a sequence (s j , j ≥ K ) by:

sK = 0 and s j+1 − s j =
C
n

j Beta(2 − α, j + α − 1) for j ≥ K .
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Since:

Beta(2 − α, j + α − 1) ∼
j→∞

Γ (2 − α) jα−2,

we deduce that:

s j ∼
j→∞

C
n

Γ (2 − α) jα/α.

By definition of the sequence (s j ) j≥K , we have the inequality r j ≥ s j for j ≥ K , and we deduce
that 

j≥K

1/r j ≤


j≥K

1/s j < ∞.

Lemma 2.9 allows to conclude that (15) holds in both cases. �

2.3. The immigration interpretation

We develop further the two following examples:

(i) K = K ′
= 2: this amounts (provided condition (15) is satisfied) on conditioning a two-type

GFV process on coexistence of each type.
(ii) 1 = K < K ′

= 2: this amounts (provided (15) is satisfied) on conditioning a two-type GFV
process on absorption by the first type.

We regard the K (=1 or 2) first level particles in Xh as K external sources of immigration in a
population assimilated to the particle system (Xh(n), n ≥ K + 1). We deduce from the con-
struction of the particle system Xh a transparent derivation of the generator of the GFV process
conditioned on non-absorption or absorption by some given type. We refer to Foucart [21] for a
study of GFV processes with one source of immigration (K = 1 here).

Since K ′
= 2, the resulting probability measure-valued process R = (Rt , t ≥ 0) and Rh

=

(Rh
t , t ≥ 0) on {1, 2} may be described by the [0, 1]-valued processes R{1} = (Rt {1}, t ≥ 0)

and Rh
{1} = (Rh

t {1}, t ≥ 0) respectively. For the sake of simplicity, we will just write R for
R{1} and Rh for Rh

{1} respectively. We recall that the infinitesimal generator of R is given by:

G f (x) =
1
2

cx(1 − x) f ′′(x)+ x

(0,1]

ν(dy)[ f (x(1 − y)+ y)− f (x)]

+ (1 − x)

(0,1]

ν(dy)[ f (x(1 − y))− f (x)]

for all f ∈ C2([0, 1]), the space of twice differentiable functions with continuous derivatives,
and x ∈ [0, 1], see Bertoin and Le Gall [6].

2.3.1. We assume K = K ′
= 2

Results of Section 2 allow us to compute the generator of the conditioned process in two
different ways. We define, for f ∈ C2([0, 1]), and x ∈ [0, 1]:

G0 f (x) = c(1 − 2x) f ′(x)+


(0,1]

y(1 − y)ν(dy)[ f (x(1 − y)+ y)− f (x)]

+


(0,1]

y(1 − y)ν(dy)[ f (x(1 − y))− f (x)],
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and

G1 f (x) =
1
2

cx(1 − x) f ′′(x)+ x

(0,1]

(1 − y)2ν(dy)[ f (x(1 − y)+ y)− f (x)]

+ (1 − x)

(0,1]

(1 − y)2ν(dy)[ f (x(1 − y))− f (x)].

Proposition 2.12. Assume K = K ′
= 2. The operator G0

+ G1 is a generator for Rh .

Remark 2.13. When the measure ν is null, the process R is called a Wright–Fisher (WF) diffu-
sion. In that case, the process Rh may be seen as a WF diffusion with immigration, where the
two first level particles induce continuous immigration (according to G0) of both types 1 and 2
in the original population (evolving according to G1

= G).
When the measure ν is not null, the process Rh is a GFV process with immigration, but the

generator G1 is no more that of the initial GFV process G. The two first level particles induce both
continuous and discontinuous immigration (according to G0) of types 1 and 2 in a population
with a reduced reproduction (the measure ν(dy) is ponderated by a factor (1 − y)2 ≤ 1 in G1).

Proof. Let us denote by Gh the generator of Rh . The process Rh is the Doob h-transform of R
for the space–time harmonic function h(x)er2t , where:

h(x) = x(1 − x).

From the definition of the generator, for f ∈ C2([0, 1]), and x ∈ [0, 1]:

(h f )(Rt )er2t
− (h f )(R0)−

 t

0
ds G(h f )(Rs)er2s

−

 t

0
ds r2 (h f )(Rs)er2s

is a G-martingale. Therefore, on the event {h(R0) ≠ 0}, the process

h(Rt )er2t

h(R0)
f (Rt )− f (R0)−

 t

0
ds

h(Rs)er2s

h(R0)

G(h f )(Rs)

h(Rs)
−

 t

0
ds

h(Rs)er2s

h(R0)
r2 f (Rs)

is again a G-martingale under P. This implies that:

f (Rh
t )− f (Rh

0 )−

 t

0
ds

G(h f )(Rh
s )

h(Rh
s )

−

 t

0
ds r2 f (Rh

s )

is a G-martingale under P. We thus have:

Gh f (x) =
G(h f )

h
(x)+ r2 f (x). (20)

In the case ν = 0, we have

G f (x) =
1
2

c x(1 − x) f ′′(x) =
1
2

c h(x) f ′′(x),

and the Eq. (20) reduces to:

Gh f (x) = G f (x)+ c(1 − 2x) f ′(x).

The general case ν ≠ 0 consists in a longer but straightforward calculus, left to the reader. �
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Using the particle system Xh , we also have the following intuitive interpretation of the
generator Gh in the case of a pure jump GFV process (c = 0). Let us decompose the measure ν
as follows:

ν(dy) = 2y(1 − y)ν(dy)+ (1 − y)2ν(dy)+ y2ν(dy).

(1) The first term is the sum of the two measures y(1 − y)ν(dy) appearing in each integrand of
the generator G0 and each of these measures corresponds to the intensity of the reproduction
events involving level 1 and not level 2, or level 2 and not level 1 (these events have
probability y(1 − y) when the reproduction involves a fraction y of the population). We
interpret them as immigration events.

(2) The second term is the measure (1−y)2ν(dy) appearing in the generator G1 and corresponds
to the intensity of the reproduction events involving neither level 1 nor level 2 (this event has
probability (1 − y)2 when the reproduction involves a fraction y of the population). We
interpret them as reproduction events.

(3) The third term does not appear in the generators G0 and G1: it corresponds to the intensity
of the reproduction events involving both level 1 and 2, and these events have been discarded
in the construction of Xh .

2.3.2. We assume K = 1, K ′
= 2

Note that the case K = 1 differs from the case K = 2, since the event {Rt ≠ 0 for every t}
has positive probability under (7). Let us define, for f ∈ C2([0, 1]), and x ∈ [0, 1]:

I 0 f (x) = c(1 − x) f ′(x)+


(0,1]

yν(dy)[ f (x(1 − y)+ y)− f (x)]

and

I 1 f (x) =
1
2

cx(1 − x) f ′′(x)+ x

(0,1]

(1 − y)ν(dy)[ f (x(1 − y)+ y)− f (x)]

+ (1 − x)

(0,1]

(1 − y)ν(dy)[ f (x(1 − y))− f (x)].

We can then prove the analogue of Proposition 2.12 in that setting.

Proposition 2.14. Assume K = 1, K ′
= 2. The operator I 0

+ I 1 is a generator for the Markov
process Rh .

In particular, we recover the well-known fact that a WF diffusion conditioned on fixation at 1
(that is, Rt = 1 for t large enough) may be viewed as a WF process with immigration, see [14]
for instance.

Proof. The proof is similar to that of Proposition 2.12. Here we use an h-transform with the
function h(x) = x . This function is harmonic according to Lemma 2.3 (recall r1 = 0). �

Here again, we have the following intuitive interpretation of the generator I 0
+ I 1 in the case

c = 0. We now decompose the measure ν as follows:

ν(dy) = yν(dy)+ (1 − y)ν(dy).

(1) The first term is the measure yν(dy) appearing in the generator I 0. This is the intensity of
the reproduction events involving level 1 particle. We interpret them as immigration events.
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(2) The second term is the measure (1 − y)ν(dy) appearing in the generator I 1. This is the
intensity of the reproduction events not involving level 1 particle. We interpret them as
reproduction events.

Summing the two measures yν(dy) and (1 − y)ν(dy), we recover this time the full measure
ν(dy) since no reproduction events are discarded in the case K = 1.

2.3.3. Intertwining
This subsection starts with a little digression on intertwining theory following the original

idea Rogers and Pitman [37]. The link with the paper is then carefully explained.
Let us recall the following piece of intertwining theory. Given a Markov process ((At , Bt ), t ≥

0), or more precisely its generator, we ask whether (At , t ≥ 0) is a Markov process in its own fil-
tration and, in that case, what is his generator. The following theorem answers by the affirmative
under the algebraic relationship (21), that we shall call the intertwining relationship. This The-
orem is an adaptation (formulated in terms of the infinitesimal generator) of the original one of
Rogers and Pitman [37], see also Fill [20] and Athreya and Swart [1]. In view of the application
we have in mind, we present it in the case where B is a process with values in a discrete state
space T .

Theorem 2.15. Let ((At , Bt ), t ≥ 0) be a Markov process with state space S × T , and with
generator Ĝ, let K be a probability kernel from S to T . Define the operator K̂ by

K̂ f (x) =


y∈T

K (x, y) f (x, y).

Let G be the generator of a Markov process in S and assume that, for each f : S × T → R in
the domain of Ĝ,

K̂ Ĝ( f )(x) = G K̂ ( f )(x), for each x ∈ S. (21)

Then:

P(B0 = y|A0) = K (A0, y) a.s.

implies that for each t ≥ 0

P(Bt = y|(As, 0 ≤ s ≤ t)) = K (At , y) a.s.

and (At , t ≥ 0) is a Markov process on S in its own filtration, with generator G.

We assume K ′
= 2 and ν = 0 (for the sake of simplicity). We denote by Ĝ the generator

defined for ℓ ∈ N and x ∈ [0, 1] by:

Ĝ f (x, ℓ) =
1
2

cx(1 − x)∂xx f (x, ℓ)+ c [(1 − x)− (ℓ− 1)x] ∂x f (x, ℓ)

+ c
ℓ(ℓ− 1)

2
[ f (x, ℓ+ 1)− f (x, ℓ)] .

This generator acts on functions f such that f , as a function of x , belongs to C2([0, 1]). The
kernel K is defined by:

K (x, ℓ) = (1 − x)ℓ−1x, x ∈ (0, 1), ℓ ∈ N.

Last, we slightly abuse of notation by still denoting G the generator of the Wright–Fisher
diffusion:
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G f (x) =
1
2

cx(1 − x) f ′′(x)

acting on f ∈ C2([0, 1]). Our intertwining relationship reads as follows.

Proposition 2.16. Let f be in the domain of Ĝ and x ∈ (0, 1). The kernel K intertwins the
generators G and Ĝ in the sense that:

K̂ Ĝ( f )(x) = G K̂ ( f )(x).

The proof consists in a long but simple calculation and is eluded. A similar intertwining
relation also holds for ν ≠ 0, but the generator Ĝ is then more complicated. We deduce from
the Rogers–Pitman Theorem 2.15 and Proposition 2.16 that the first coordinate of the Markov
process with generator Ĝ is a Markov process on its own, with generator G. This gives a pathwise
decomposition of the Wright–Fisher diffusion.

This decomposition may also be read directly from the lookdown particle system, as we now
explain. Nevertheless, it seemed worth to us to recast this decomposition, which may be seen
as another instance of the so-called “backbone” decompositions, see Kyprianou et al. [3] in the
branching setting, in the framework of the intertwining theory.

We introduce

L1(t) = inf{i ≥ 1, 1 ∈ {X t (1), . . . , X t (i)}}

the first level occupied by a type 1 particle in the lookdown particle system associated to a WF
diffusion R. Notice that the process Rh studied in Section 2.3.2 is the WF diffusion R conditioned
on {L1

= 1}.
We now claim that the generator Ĝ is the generator of (R, L1) up to the hitting time of 0 by

R. Let us explain why. The process L1 is from the construction of the lookdown particle system
a Markov process in its own filtration and jumps from ℓ to ℓ + 1 at rate cℓ(ℓ − 1)/2. Then,
conditionally on the value of L1

= ℓ, we view the ℓ first particles as ℓ sources of immigration:
ℓ − 1 sources of type 2 and 1 source of type 1, whence the drift term c [(1 − x)− (ℓ− 1)x]
(this may be checked thanks to similar calculations as in 2.3.1). We may sum up as follows the
resulting pathwise decomposition of the WF diffusion:

• Conditionally on {R0 = x}, x > 0, the initial value L1(0) has law:

P(L1(0) = ℓ) = (1 − x)ℓ−1x = K (x, ℓ), ℓ ≥ 1.

• Conditionally on (R0, L1(0)), the process L1 is a pure jump Markov process, which jumps
from ℓ to ℓ+ 1 at rate cℓ(ℓ− 1)/2 if ℓ < ∞, and has +∞ as an absorbing point.

• Conditionally on (R0, L1), the process R is a Wright–Fisher diffusion with immigration, with
generator given by:

1
2

cx(1 − x) f ′′(x)+ 1{L1<∞}c

(1 − x)− (L1

− 1)x


f ′(x).

These two last points are encoded in the definition of the generator Ĝ.
• Among the conclusions of the Rogers–Pitman Theorem is the fact that the conditional law

of L1 given R is constant as time evolves, given by the kernel K : let us notice that, in our
specific framework, this is a simple consequence of the exchangeability of the particles in the
lookdown model; de Finetti theorem in fact ensures that the types of the particles are i.i.d.,
equal to 1 with probability Rt at time t .
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3. The additive h-transform

In this section, we derive another example of h-transform of measure-valued processes, which
admits a simple construction in terms of the lookdown particle system. Unlike the first example of
h-transform, the additive h-transform applies to measure-valued processes with spatial motion.

3.1. The additive h-transform

Let (Z t , t ≥ 0) be the measure-valued process constructed in Section 1.3. We call a non-
negative function H on [0,∞) ×M f a space–time harmonic function for P when the process
(H(t, Z t ), t ≥ 0) is a martingale under P. The h-transform Z H of Z associated with H is then
defined by:

∀A ∈ Gt , P(Z H
∈ A) = E


H(t, Z t )

E(H(0, Z0))
1A(Z)


(22)

for every t ≥ 0. Furthermore, an h-transform is called additive if there exists a non-negative
function (ht (x), t ≥ 0, x ∈ E) such that H(t, Z t ) = Z t (ht ) :=


E ht (x)Z t (dx). An additive

h-transform intuitively favours the paths for which the population (represented by the measure-
valued process Z ) is large where h is large.

3.1.1. Statement of the results
Let ξ be the canonical process under Px . We assume there exists a deterministic positive func-

tion m such that (Yt/m(t), t ≥ 0) and (m(t)ht (ξt ), t ≥ 0) are martingales in their own filtrations.
We also assume from now on that

E(Y0 R0(h0)) > 0.

Under this assumption, we define (the law of) a new process

(Y h,U h, Xh)

by the following requirements:
(i) The initial condition satisfies:

∀A ∈ Gt , P((Y h
0 , Rh

0 ) ∈ A) = E


Y0 R0(h0)

E(Y0 R0(h0))
1A(Y0, R0)


.

(ii) Conditionally on (Y h
0 , Rh

0 ), and provided Rh
0 (h0) > 0, Xh

0 (1) is distributed according to:

∀A ∈ D0, P(Xh
0 (1) ∈ A|Rh

0 = µ) = E


h0(X0(1))
µ(h0)

1A(X0(1))|R0 = µ


,

and (Xh
0 (n), n ≥ 2) is a random sequence with de Finetti’s measure Rh

0 .
(iii) Conditionally on (Y h

0 , Rh
0 , Xh

0 (1)), the process (Y h,U h) is distributed according to:

∀A ∈ Gt , P((Y h,U h) ∈ A|Y h
0 = x) = E


Yt

x
m(0)
m(t)

1A(Y,U )|Y0 = x

. (23)

(iv) Conditionally on (Y h,U h, Rh
0 , Xh

0 (1)), Xh(1) is distributed according to:

∀A ∈ Dt , P(Xh(1) ∈ A|Xh
0 (1) = x)

= E


ht (X t (1))
h0(x)

m(t)
m(0)

1A(X (1))g|X0(1) = x

. (24)
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(v) The rest of the definition of Xh is the same as the one given for X , namely:
– for n ≥ 2, between the reproduction events, the type Xh

t (n) of the particle at level n
mutates according to a Markov process in E with law (Px , x ∈ E) when started at x ∈ E ,
independently for each n.

– at each atom (t, π) of N = N k
+ Nρ , with N k and Nρ derived from U h and Y h , a

reproduction event is associated as previously.

Notice that the law of the initial condition Zh
0 specified by (i) differs from that of Z0 only for

random Z0. Also, items (iii) and (iv) are meaningful since both (Yt/m(t), t ≥ 0) and (m(t)ht
(X t (1)), t ≥ 0) are assumed to be martingales. Last, observe from (23) that

P(Y h
t = 0) = 0

for each t ≥ 0, which implies P(τ (Y h) = ∞) = 1 since 0 is assumed to be absorbing. We
will assume that (Y,U, X) and (Y h,U h, Xh) are defined on a common probability space with
probability measure P, and denote the expectation by E.

Let us define a process S = (St , t ≥ 0) by:

St =
ht (X t (1)) Yt

E(Z0(h0))
.

Lemma 3.1. The process (S = St , t ≥ 0) is a non-negative F-martingale, and

∀A ∈ Ft , P(Xh
∈ A) = E (1A(X) St ) . (25)

We then define a process T by setting:

Tt =
Z t (ht )

E(Z0(h0))
.

Using Lemma 3.1, and projecting on the filtration Gt , we deduce Lemma 3.2.

Lemma 3.2. The process T = (Tt , t ≥ 0) is a non-negative G-martingale.

This fact allows to define the process Z H
:= (Z H

t , t ≥ 0) absolutely continuous with respect
to Z := (Z t , t ≥ 0) on each Gt , t ≥ 0:

∀A ∈ Gt , P(Z H
∈ A) = E (1A(Z) Tt ) .

We deduce from Lemmas 3.1 and 3.2 the following theorem, which gives a pathwise construction
of the additive h-transform.

Theorem 3.3. We have that:

(a) The limit of the empirical measure:

Rh
t (dx) := lim

N→∞

1
N

N
n=1

δXh
t (n)

(dx)

exists a.s.
(b) The process (Zh

t := Y h
t Rh

t , t ≥ 0) is distributed as (Z H
t , t ≥ 0).
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We may interpret Theorem 3.3 as follows. The effect of the additive h-transform factorizes in
two parts, according to the decomposition of the Radon–Nikodym derivative:

Z t (ht ) = Yt Rt (ht ).

The first term Yt induces a size bias of the total population size Zh(1) = Y h , see formula (23),
whereas the second term Rt (ht ) forces the first level particle to follow an h-transform of P, see
formula (24). The sequence (Xh

t (n), n ∈ N) is no more exchangeable in general contrary to the
initial sequence (X t (n), n ∈ N). The following proposition shows that, loosely speaking, the first
level particle is precursory.

Proposition 3.4. Conditionally on {Rh
t = µ}, Xh

t (1) is distributed according to:

P(Xh
t (1) ∈ dx) =

ht (x)
µ(ht )

µ(dx),

and (Xh
t (n))n≥2 is an independent exchangeable random sequence with de Finetti’s measure µ.

3.1.2. Proofs

Proof of Lemma 3.1. It is enough to observe that, by construction, the law of (Y h,U h, Xh) is
absolutely continuous with respect to the law of (Y,U, X) on Ft , and:

∀A ∈ Ft , P((Y h,U h, Xh) ∈ A)

= E


Y0 R0(h0)

E(Y0 R0(h0))

h0(Xh
0 (1))

R0(h0)

Yt

Y0

m(0)
m(t)

ht (X t (1))
h0(Xh

0 (1))
m(t)
m(0)

1A(Y,U, X)



= E


Yt ht (X t (1))
E(Z0(h0))

1A(Y,U, X)

.

This also yields (the obvious fact) that (St , t ≥ 0) is a F-martingale, arguing as in the proof of
Lemma 2.2. �

Proof of Lemma 3.2. Since Gt ⊂ Ft and S is a F-martingale, the projection E(St |Gt ) is a G-
martingale. We also have that:

E(St |Gt ) = E


Yt ht (X t (1))
E(Z0(h0))

|Gt


=

Z t (ht )

E(Z0(h0))
= Tt ,

where we used that X t (1) has law Rt conditionally on Gt at the third equality. Thus (Tt , t ≥ 0)
is a G-martingale. �

Proof of Theorem 3.3. From Lemma 3.1, the law of Xh is absolutely continuous with respect
to the law of X . The existence of the a.s. limit of the empirical measure of Xh follows from that
of X (but not the exchangeability of the sequence) and yields point (a). We prove point (b) now.
Take A ∈ Gt .

P(Zh
∈ A) = E (St 1A(Z))

= E (E (St |Gt ) 1A(Z))

= P(Tt 1A(Z))

= P(Z H
∈ A),

where we use Lemma 3.2 at the third equality and the definition of Z H at the fourth. �
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Proof of Proposition 3.4. Let n ∈ N be fixed, and let (φi , 1 ≤ i ≤ n) be a collection of bounded
and measurable functions on E .

E

 
1≤i≤n

φi (Xh
i (t))


= E


Yt ht (X t (1))

E(Z0(h0))


1≤i≤n

φi (X t (i))



=
1

E(Z0(h0))
E


Yt E


ht (X t (1))φ1(X t (1))


2≤i≤n

φi (X t (i))|Gt



=
1

E(Z0(h0))
E


Yt Rt (ht φ1)


2≤i≤n

Rt (φi )



= E


Z t (ht )

E(Z0(h0))
Rt


ht φ1

Rt (ht )

 
2≤i≤n

Rt (φi )



= E


Rh

t


ht φ1

Rh
t (ht )

 
2≤i≤n

Rh
t (φi )


,

where we use Lemma 3.1 at the first equality, the de Finetti Theorem at the third equality, and
Theorem 3.3 at the last equality. Since functions of the type


1≤i≤n φi characterize the law of

n-uple, this proves the proposition. �

3.2. Applications

Overbeck investigated in [34] h-transform of measure-valued diffusions, among which the
Dawson–Watanabe process (with quadratic branching mechanism) and the Fleming–Viot (FV)
process (which is the GFV process for ν = νU

= 0) using a martingale problem approach. He
also provided a pathwise construction in the first case, see [33]. We shall see in this last section
how Theorem 3.3 applies in both cases and sheds new light on Overbeck’s results.

3.2.1. Generalized Fleming–Viot processes
Since Yt = 1, Y is a martingale and we may apply results of Section 3.1.1 for any non-negative

space–time harmonic function (ht (x), t ≥ 0, x ∈ E) for the spatial motion P, that is any function
such that (ht (ξt ), t ≥ 0) is a non-negative martingale where ξ stands for the canonical process
under P.

First, we notice that we may use the same lookdown graph (that is the same reproduction
events) for both the GFV process and its additive h-transform according to (23) and the fact that:

(U h, Y h)
(law)
= (U, Y ) = (U, 1).

Secondly, regarding the spatial motion of the particles, Overbeck suggested in [34] that in
the particular case of the FV process, an additive h-transform looks like a FV process where
“the gene type of at least one family mutates as an h-transform of the one particle motion”.
This suggestion was made “plausible” by similar results known for superprocesses, see [33]
and the next subsection, and a well-known connection between quadratic Dawson–Watanabe
superprocesses and FV processes which goes back to Shiga [41]. We did not attempt to follow this
line of reasoning since the connection between superprocesses and GFV processes is restricted
to stable superprocesses and Beta-GFV processes, see Birkner et al. [9]. Theorem 3.3 confirms
(and generalizes to GFV processes) the suggestion and ensures that the family which “mutates as
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an h-transform” is the family generated by the first level particle in the lookdown process, which
is actually the only lineage with a perturbed spatial motion. Proposition 3.4 also gives the law of
the position Xh

t (1) of the first particle conditionally on the (h-transformed) GFV process Rh
t : we

stress that, contrary to the following particles Xh
t (2), Xh

t (3), . . . , this particle is not distributed
according to Rh

t . To sum up, the spatial motion is added on the lookdown graph independently
for each level, but the law now differs according to the level: the first level particle follows the
path of an h-transformed spatial motion, whereas the particles at the subsequent levels follow the
path of the original spatial motion.

Third, we may also interpret the h-transform as a conditioned process. For fixed s ≥ 0, the
additive h-transform of the GFV process on [0, s] may be obtained by conditioning a random
particle chosen at time t, t large, to move as an h-transform.

Remark 3.5. In the case of the FV process, the truncated processes obtained by considering the
first N particles:

Z N
t (dx) :=

1
N


1≤n≤N

δX t (n)(dx) and Z N ,h
t (dx) :=

1
N


1≤n≤N

δXh
t (n)

(dx)

correspond respectively to the Moran model with N particles (see [12]) and its additive h-
transform. Therefore, our approach is robust, in the sense that we can also consider discrete
population.

3.2.2. The Dawson–Watanabe superprocess
Let (Yt , t ≥ 0) be a CB(ψ) process. We assume that ψ ′(0+) > −∞, so that the (necessarily

conservative) CB(ψ) has integrable marginals. Under this assumption, the process (Yt eψ
′(0+)t ,

t ≥ 0) is a martingale. Notice also that ψ ′(0+) < ∞ since ψ a convex function. If (ht (ξt )

e−ψ ′(0+)t , t ≥ 0) is a martingale, Theorem 3.3 applies and yields a description of the additive
h-transform associated to the non-negative space–time harmonic function (ht (x), t ≥ 0, x ∈ E),
as given by (22). According to this theorem, performing the additive h-transform has two effects:
the first level particle follows an h-transform of P, as in the GFV setting, but also the total
population Y h is size-biased with respect to the original one Y , according to (23). We shall
now concentrate on this second effect, and explain how a “spinal” decomposition may be partly
recovered.

Let φ(λ) be the Laplace exponent of a subordinator. Recall a continuous state branching
process with immigration with branching mechanism ψ(λ) and immigration mechanism φ(λ),
CBI(ψ, φ) for short, is a strong Markov process (Y i

t , t ≥ 0) characterized by the Laplace
transform:

E(e−λY i
t |Y i

0 = x) = e−xu(λ,t)−
 t

0 ds φ(u(λ,s)).

We recall for the ease of reference the following well-known lemma. The proof is classical and
relies on computation of the Laplace transforms.

Lemma 3.6. The process Y h defined by (23) with m(t) = e−ψ ′(0+)t is a CBI(ψ, φ) with
immigration mechanism given by φ(λ) = ψ ′(λ)− ψ ′(0+).

Notice that in the case where the CB process Y extincts almost surely, the CBI process Y h

may also be interpreted as the CB process Y conditioned on non-extinction in remote time, see
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Lambert [27]. The total mass process Y h
= Zh(1) is thus a CBI process. Next question is to

identify the source of the immigration in the population represented by the particle system Xh .
The following lemma identifies the offsprings of the first level particle as the immigrants when
c = 0. The general case c ≠ 0 is treated in the following Remark 3.8. Recall j1 refers to the first
level sampled in the lookdown construction. Let us denote j1(s) instead of j1 for indicating the
dependence in s.

Lemma 3.7. The process


0≤s≤t 1Y h
s 1{ j1(s)=1}, t ≥ 0


is a pure jump subordinator with Lévy

measure uνY (du).

Proof. By assumption, the process Y is a CB(ψ) and from Lemma 3.6, Y h is a CBI(ψ, φ). From
the Poissonian construction of CBI, we have that the point measure

0≤s≤t

δ(s,1Y h
s )
(ds, du)

has for predictable compensator

ds(Y h
s−ν

Y (du)+ uνY (du)).

The expression of the compensator may be explained as follows. The term ds Y h
s−ν

Y (du) comes
from the time change of the underlying spectrally positive Lévy process, called the Lamperti time
change (for CBs). The term ds uνY (du) is independent of the current state of the population and
corresponds to the immigration term. Then, conditionally on the value of the jump1Y h

s = u, the
event { j1(s) = 1} has probability

u
Y h

s
=

u

Y h
s− + u

independently for each jump. Therefore, the predictable compensator of the point measure
0≤s≤t

δ(s,1Y h
s )
(ds, du)1{ j1(s)=1}

is

ds


u

Y h
s− + u


(Y h

s−ν
Y (du)+ uνY (du)) = ds uνY (du).

But the measure uνY (du) is the Lévy measure associated with the immigration mechanism φ(λ),
which has no drift under the assumption that σ 2

= 0. This ends up the proof. �

Remark 3.8. Understanding the action of the continuous part of the subordinator requires to
work with the particle system generated by the first N particles. Namely, it is possible to prove
that the family of processes 

0≤s≤t

Y h
s

#{1 ≤ i ≤ N , ji (s) ≤ N }

N
1{ j1(s)=1, j2(s)≤N }, t ≥ 0


converges almost surely as N → ∞ in the Skorohod topology towards a subordinator with
Laplace exponent ψ ′(λ)− ψ ′(0+).
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The link with literature is the following:

(1) When Y is a subcritical CB process, meaning that ψ ′(0+) ≥ 0, setting m(t) = e−ψ ′(0+)t and
choosing ht (x) independent of x equal to eψ

′(0+)t , Theorem 3.3 yields (part of) the Roelly
and Rouault [36] and Evans [19] decomposition. Lambert [27] proved that this h-transform
may be interpreted as the process conditioned on non-extinction in remote time.

(2) When Y is a critical Feller diffusion, P is the law of a Brownian motion and ht (x) is a
space–time harmonic function for P, then, setting m(t) = 1, Theorem 3.3 reduces to the
decomposition of the h-transform of the Dawson–Watanabe process provided by Overbeck
in [33].
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branching and beta-coalescents, Electron. J. Probab. (9) (2005) 303–325 (electronic).

[10] D.A. Dawson, The critical measure diffusion process, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 40 (2) (1977)
125–145.

[11] P. Donnelly, T.G. Kurtz, Genealogical processes for Fleming–Viot models with selection and recombination, Ann.
Appl. Probab. 9 (4) (1999) 1091–1148.

[12] P. Donnelly, T.G. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 27 (1) (1999)
166–205.
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[23] M. Jiřina, Stochastic branching processes with continuous state space, Czechoslovak Math. J. 8 (83) (1958)
292–313.

[24] M. Kimura, Some problems of stochastic processes in genetics, Ann. Math. Statist. 28 (1957) 882–901.
[25] T.G. Kurtz, E.R. Rodrigues, Poisson representations of branching Markov and measure-valued branching processes,

April 2011. ArXiv e-prints.
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