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Abstract

In his celebrated article of 1956, John Milnor established the existence of smooth structures on the
7-dimensional sphere that differs from the usual one. These so-called “exotic” structures have been of
great interest ever since. The purpose of this article is to give a clear exposition of the different tools
that Milnor used in order to provide an almost self-contained construction of exotic structures on the
7-dimensional sphere and then to show that they are not diffeomorphic to the standard sphere.
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Introduction

Spheres and their topological invariants

Among the most classic objects in mathematics are the spheres. As far back as Ancient Greece, the unit
circle can be described, although perhaps not in this language, as the set of pairs of real numbers (x, y)
that satisfy the equation

x2 + y2 = 1.

As we increase the dimension, the sphere consists of all triples (x, y, z) ∈ R3 satisfying x2 + y2 + z2 = 1.
Continuing with this process, we define the n-sphere as the set of all (n+1)-tuples (x1, . . . , xn+1) ∈ Rn+1

that satisfy
n+1∑
i=1

x2
i = 1.

After the development of concepts such as topology and differential topology, it became clear that spheres
had the structure of a topological manifold and, even more, of a smooth manifold. In a certain way, this
structure comes from the ambient space.

At the turn of the nineteenth century, Henri Poincaré appeared as one of the protagonists, or more
precisely, as the founder of algebraic topology.

Figure 1: Henri Poincaré.

He constructed two different invariants associ-
ated with manifolds. The first is known as
the fundamental group, which would later be
generalized to the so-called homotopy groups.
These groups are based on the idea of mea-
suring holes through the obstruction of con-
tracting spheres to a point. The second is
the homology groups first defined as formal
sums of submanifolds up to bounding a higher-
dimensional manifold (nowadays, these groups
are called bordism groups). Nevertheless, an
adequate description of homology groups is in
terms of triangulations of manifolds. These
groups measure the obstruction of a triangle to
be the boundary of a higher-dimensional trian-
gle.

Although both invariants look similar at first
glance, they are different in calculation complexity, among other properties. Poincaré formulated his first
conjecture: if a closed, connected manifold has the same homology groups as the sphere, then it is, in
fact, a topological sphere. He gave a counterexample for this conjecture, which nowadays is known as
“Poincaré’s sphere”. Then he formulated a second version of this conjecture, which states that if a closed
connected manifold has the same homotopy groups as the sphere, it must be a topological sphere. This
was known as Poincaré’s conjecture until Perelmán came up with the proof.

This question motivated an essential part of the development of mathematics during the twentieth
century. At least three Fields medals were attributed to the progress of the Poincaré conjecture (Smale,
Freedman, and Perelman). Within the most indirect consequences of this fructiferous program is the
heart of the present article, the exotic spheres.
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The state of topology during the 1950’s

As we mentioned, during the development of point-set theory and differential topology, it became ap-
parent that spheres with their standard structure were not only manifolds but also inherited a smooth
structure from the ambient space.

Figure 2: René Thom.

The 1950’s were quickly marked by the influence of René Thom.
His famous isomorphism theorem allowed the coherent formu-
lation and proof of various important results and the con-
struction of various new objects. Foremost among them are
the topological construction of Chern classes and a descrip-
tion of the bordism ring. This gave mathematicians pow-
erful tools, sometimes becoming the missing piece in their
projects.

This was the case of the German mathematician Friedrich
Hirzebruch. The story tells that when a new note of Thom
came to the institute’s library where Hirzebruch was working,
it took him a few seconds to complete the proof of the signature

theorem. This theorem relates two invariants that seemed quite different. On the one hand, the signature
of a manifold, a topological index linked to the cohomology of the underlying space, and on the other
hand, the Pontryagin classes, which capture the differentiable structure of the space. The equation that
would pass to history because of its relevance in Milnor’s work takes the form

σ(M) =
1

45

(
7p2(M)− p2

1(M)
)
.

The road of John Milnor

During the year 1956, at an early age, John Milnor worked on studying the topological invariants of
some well-known manifolds. In his own words: “The generalized Poincaré problem of understanding such
manifolds seemed too difficult: I had no idea how to get started”. He restricted his attention to simpler
manifolds: closed 2n-dimensional manifolds which were (n− 1)-connected. Thanks to a paper by Smale
and Wall, there was a relatively simple description for n > 2.
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Figure 3: John Milnor.

Indeed, since these spaces have a simple cohomological struc-
ture. Milnor further reduced their description to some par-
ticular spaces constructed as sphere bundles over the fourth-
dimensional sphere. Thanks to Steenrod’s work, it is possi-
ble to classify all such bundles, and in some cases using a
Morse-theoretic argument, namely Reeb’s theorem, it is possi-
ble to show that their total space is homeomorphic to the
7-sphere. On the other hand, assuming they were diffeo-
morphic to the sphere, Milnor reached a contradiction with
Hirzebruch’s formula: he found rational values for an inte-
ger value! In conclusion: these spaces were topologically
spheres, but their smooth structure did not match the stan-
dard one. This was unexpected since the belief was that
spheres had a single smooth structure, which was mislead-
ing.
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1 Preliminaries

Throughout this paper, we assume that all manifolds are smooth, meaning that the transition maps are
C∞.

1.1 The signature of a manifold

In this section, we work with rational coefficients. Let M be a connected, oriented, closed 2n-dimensional
manifold. Choose the generator of H2n(M ;Q) as the fundamental class of M , denoted by [M ]. The cup
product in cohomology induces a bilinear map

ω : Hn(M ;Q)⊗Hn(M ;Q) −→ Q

defined by
ω : (α, β) 7→ 〈α ^ β, [M ]〉

where 〈 , 〉 denotes the pairing between homology and cohomology.

Remark 1. Recall that the cup product is graded-commutative that is

α ^ β = (−1)pqβ ^ α

where α ∈ Hp(M ;Q) and β ∈ Hq(M ;Q). In particular, for n even ω is symmetric, and for n odd ω is
anti-symmetric.

Since Hn(M ;Q) is finitely generated, we can represent ω by a square matrix which will be symmetric
or anti-symmetric depending on the parity of n.

If n is even, that is M is 4k-dimensional, then the spectral theorem guarantees the existence of real
eigenvalues. We define the signature of ω as

sign(ω) = #positive eigenvalues−#negative eigenvalues

Then we define the signature of a manifold M , denoted σ(M), as the signature of the associated ω. Note
that the signature is always, by definition, an integer.

1.2 Basic properties of the signature

Let us study the behavior of the signature under different operations on manifolds.

First, if we change the orientation of M by [−M ] = −[M ], then the signature of −M is given by the
bilinear form

ω̃(α, β) = 〈α ^ β, [−M ]〉 = −〈α ^ β, [M ]〉 = −ω(α, β).

Thus the eigenvalues of ω̃ are those of ω with opposite signs and it follows that σ(−M) = −σ(M).

Now if we consider the disjoint union of two manifolds M tN , the fundamental class corresponds to
the sum of the fundamental classes [M t N ] = [M ] + [N ]. Then the bilinear form associated with the
disjoint union is the direct sum of the bilinear forms and σ(M tN) = σ(M) + σ(N).

Furthermore, we have the following result.
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Proposition 2. The signature is a bordism invariant.

To prove this statement, we will need the next lemma.

Lemma 3. If ω : V × V −→ Q is a non-degenerate symmetric bilinear form with a subspace W of
dimension dimV

2 such that the restriction of ω to W is identically zero, then the signature of ω is zero.
This subspace is called isotropic or Lagrangian.

Proof. The idea is to find a basis of V to ’cancel out’ the eigenvalues.

Let e1 ∈ W be a non-zero element. Since ω is non-degenerate, there exists f1 ∈ V such that

ω(e1, f1) = 1. If ω(f1, f1) 6= 0 we may replace f1 by f̃1 := f1 − ω(f1,f1)
2 e1. Note that ω(e1, f̃1) = 1 and

ω(f̃1, f̃1) = ω(f1, f1)− ω(f1, f1)ω(e1, f1)

= ω(f1, f1)− ω(f1, f1)

= 0.

Thus we assume without loss of generality that ω(f1, f1) = 0. Set S = Span(e1, f1). Restricted to S, ω
is represented by the matrix (

0 1
1 0

)
which has zero signature. Consider the subspace V1 = S⊥. Since ω is non-degenerate, we have that
V = S ⊕ V1. Defining W1 = W ∩ V1 we have that W1 has dimension dimV1

2 and the restriction of ω to
W1 is identically zero. By induction, we apply the hypothesis to V1, which has dimension dim(V ) − 2;
hence the signature of ω is zero.

Now we show the bordism invariance of the signature.

Proof of proposition 2. Assume that the 4k-dimensional manifold M is the boundary of a (4k + 1)-
dimensional manifold W . We denote by ι : M ↪→ W the inclusion. Using the long exact sequence
of the pair and the Poincaré duality, we have the following commutative diagram

H2k(W ;Q) H2k(M ;Q) H2k+1(W,M ;Q)

H2k+1(W,M ;Q) H2k(M ;Q) H2k(W ;Q)

ι∗

D D D

ι∗

(1)

where D is the Poincaré isomorphism. The image of ι∗ in H2k(M ;Q), is a subspace and we claim it is
isotropic.

First, the restriction of ω to this subspace is zero,

ω(ι∗(α), ι∗(β)) = 〈ι∗(α) ^ ι∗(β), [M ]〉
= 〈ι∗(α ^ β), ∂[W ]〉
= 〈α ^ β, ι∗∂[W ]〉
= 0.
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Where we used that the composition ι∗∂ is zero in the long exact sequence of a pair. This subspace has
the half dimension of H2k(M ;Q) since

x ∈ (im ι∗)
⊥ ⇔ 〈x ^ ι∗(y), [M ]〉 = 0 ∀y ∈ H2k(W ;Q)

⇔ 〈ι∗(y), [M ] _ x〉 = 〈ι∗(y), D(x)〉 = 0 ∀y ∈ H2k(W ;Q)

⇔ 〈y, ι∗(D(x))〉 = 0 ∀y ∈ H2k(W ;Q)

⇔ ι∗D(x) = 0

⇔ D(x) ∈ ker ι∗.

On the other hand, we know that

dim(im ι∗) + dim (im ι∗)
⊥

= dimH2k(M ;Q)

and because D maps (im ι∗)⊥ isomorphically onto ker ι∗ we can replace the previous equation by

dim im ι∗ + dim ker ι∗ = dimH2k(M ;Q).

However, the commutativity of the diagram (1) together with the exactness of the rows imply that D
maps im ι∗ isomorphically onto ker ι∗. We conclude that

dim im ι∗ + dim im ι∗ = dimH2k(M ;Q).

Thus im ι∗ is an isotropic subspace of H2k(M ;Q) of half dimension and by Lemma 3, we conclude that
σ(M) = 0.

Remark 4. Consequently, if two manifolds M and N are equivalent in oriented bordism, they have the
same signature. More precisely, denote by W the oriented bordism with ∂W = M t−N , by the previous
statements we obtain

σ(∂W ) = σ(M t −N) = σ(M)− σ(N) = 0.

For the product of two manifolds M ×N , the signature σ(M ×N) uses Künneth’s formula

H∗(M ×N ;Q) ∼= H∗(M ;Q)⊗H∗(N ;Q).

If M is 4k-dimensional and N is 4l-dimensional, then ω is a bilinear form on the space⊕
i+j=2(k+l)

Hi(M ;Q)⊗Hj(N ;Q),

which decomposes as the direct sum(
H2k(M ;Q)⊗H2l(N ;Q)

)
⊕

⊕
i+j=2(k+l)

i 6=2k

Hi(M ;Q)⊗Hj(N ;Q).

Notice that the cup product of an element in the first summand with an element in the second summand
is trivial 2. Thus the bilinear form ω is the direct sum of its restriction to each summand. Furthermore,
the second summand has an isotropic subspace, and hence the only contribution to the signature is given
by the restriction of ω to H2k(M ;Q)⊗H2l(N ;Q). However, the bilinear form restricted to this subspace
is the tensor product of the bilinear forms of the factors. Thus the eigenvalues of the original bilinear
form correspond to the product of the eigenvalues of the bilinear forms on each of the factors. Therefore,
the signature is multiplicative in the sense that σ(M ×N) = σ(M)σ(N).

We illustrate this fact with an example. For the sake of simplicity, in our notation, we will omit the
coefficients Q (only for this example).

2This follows from a dimension argument where the product exceeds the manifold’s dimension.
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Example 5. For M = N = CP4, we apply the Künneth formula, and we get

H∗(CP4 × CP4) = H∗(CP4)⊗H∗(CP4).

Since we know H∗(CP4) = Q[x]/(x5), we have

H∗(CP4)⊗H∗(CP4) ∼= Q[x, y]/(x5, y5).

In particular, H8(CP4×CP4) is generated by x2y2, x3y, y3x, x4, y4. Moreover, the subspace generated
by x2y2 corresponds to H4(CP4)⊗H4(CP4). In other words, we have a decomposition

H8(CP4 × CP4) =
(
H4(CP4)⊗H4(CP4)

)
⊕

 ⊕
i+j=8
i,j 6=4

Hi(CP4)⊗Hj(CP4)

 .

The second summand, say V , is equal to the subspace generated by x3y, y3x, x4, y4. and consider W =
Span(y3x, y4) inside this subspace. We observe that dimW = dimV

2 and that the restriction of ω to this
subset is zero. Indeed, the product of any two generators in W has a power of y exceeding 5, thus is
trivial. Since W is an isotropic subspace of V of the half dimension, the signature of ω restricted to V is
zero. Hence the signature depends only on the factor

ω′ :
(
H4(CP4)⊗H4(CP4)

)
⊗
(
H4(CP4)⊗H4(CP4)

)
−→ Q.

But the properties of the cup product imply that ω′ is given by

ω′(α⊗ β, α′ ⊗ β′) = 〈α ^ α′ ⊗ β ^ β′, [M ]⊗ [N ]〉
= (−1)4kl〈α ^ α′, [M ]〉〈β ^ β′, [N ]〉
= ω1(α, α′)ω2(β, β′)

where ωi is the bilinear form on M and N respectively. Therefore, ω′ is the tensor product or Kronecker
product of the bilinear forms. The eigenvalues correspond to the product of the eigenvalues of each factor,
and the product of the signatures gives the signature of ω′.

We summarize our discussion so far in the following theorem.

Theorem 6. The signature σ satisfies the following properties:

1. σ(−M) = −σ(M),

2. σ(M tN) = σ(M) + σ(N),

3. If M and N are the same in bordism, then σ(M) = σ(N),

4. σ(M ×N) = σ(M)σ(N).

We remind the reader that the signature is only defined for 4k-dimensional manifolds.

We conclude this section with a couple of examples, the first of which is of great importance in this
work.
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Example 7. The signature of CP2l.

The computation can be carried out algebraically. We remind the reader that the cohomology ring
of CP2l can be described by polynomials in one variable of degree at most 2l, i.e. H∗(CP2l;Q) = Q[x]/
(x2l+1), and under this identification the cup product corresponds to polynomial multiplication. Hence
the bilinear form ω is given in terms of the generators by ω(xl, xl) = 〈x2l, [CP2l]〉 = 1.

We also give a geometric argument. We recall the cell structure of the complex projective space,
where the generator of H l(CP2l;Q) is dual to the projective subspace CPl ⊂ CP2l. Because of the duality
of the cup product and the cap product, the signature is calculated by the self-intersection number of
this cell (for more information on intersection theory, we refer the reader to [Fom16]). Consider the usual
embedding of CPl in CP2l, given by

E = [z1 : z2 : · · · : zl : zl+1 : 0 : · · · : 0].

We can deform this subspace into the following one, where we are going to calculate the intersection,

L = {[z1 : · · · : z2l+1] | z2l+1 = z1 + · · ·+ zl − zl+1, z2l = z1 + · · ·+ zl−1 − zl
. . . , zl+2 = z1 − z2}.

Notice that L is the zero-set of a set of homogeneous polynomials, so L is well-defined. Even more, L is
the intersection of codimension-increasing planes, and therefore, L is the set of lines through the (l+ 1)-
space, i.e. L ∼= CPl. The intersection E∩L is described by elements of the form [z1 : · · · : zl+1 : 0 : · · · : 0]
subject to the conditions 

z1 = z2

z1 + z2 = z3

...

z1 + · · ·+ zl = zl+1

hence z1 = z2, z3 = 2z1, z4 = 6z1 and so on. This set consists of a single line; in other words, E ∩ L
consists of a single element. Moreover, L is homotopic to E by multiplication of each defining polynomial
of L by a parameter t. As a consequence, we conclude that the self-intersection number of E is precisely
1, and it follows that σ(CP2l) = 1.

Example 8. The signature of S4: the group H2(S4;Q) is zero, hence the bilinear form ω is null and
σ(S4) = 0.

1.3 Characteristic classes

In this section, we review some basic properties of characteristic classes; for a profound and complete
exposition, the reader can consult the book of Milnor [Mil74].

We start with a motivation: a vector bundle over a space X consists of a topological space E and
a continuous projection π : E −→ X such that each fiber π−1(x), for each x ∈ X, has the structure of
a vector space. Moreover, they are locally trivial, meaning that for each x ∈ X, we can find an open
neighborhood where the restriction is a trivial bundle (a trivial bundle is one of the form E = M × Rk
and π = p1) and the change of coordinates are linear isomorphisms. A vector bundle can be understood
as a continuous way of attaching to each point x an n-dimensional vector space. We are interested in a
way to classify all vector bundles, but to achieve this, we need to introduce an essential space which we
specify in the following paragraph.
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The space of n-dimensional planes in Rn+k, denoted by Gn(Rn+k), is known as the Grassmannian.
This space has a topological structure induced by the Gaussian elimination on n× (n+ k) matrices with
rank n. Thus the dimension of the Grassmannian Gn(Rn+k) is kn. Moreover, there is an n-dimensional
vector bundle γkn over Gn(Rn+k), with total space

E(γkn) := {(v, P ) | P ∈ Gn(Rn+k) and v ∈ P}.
This vector bundle is known as the canonical bundle. The Grassmannian is of great importance since
every smooth manifold X with an embedding into Rn+k admits a Gauss map f : X → Gn(Rn+k) which
maps each point to its tangent space. This is as follows:

Figure 4: The map f associates to each point its corresponding tangent space. In this picture X is a surface in
R3 and the tangent bundle is of dimension 2.

Notice that the map f is smooth. However, the definition of the Gauss map for an arbitrary vector
bundle needs further work using the local trivializations; such construction is explained in full detail in
[Mil74]. Now, we can increase k in Gn(Rn+k) and take the limit to infinity, and we obtain the infinite
Grassmannian

Gn := lim
k→∞

Gn(Rn+k) ,

where Gn has the topology induced by the direct limit of the finite-dimensional Grassmannians. The
infinite Grassmannian also inherits a canonical bundle built in a similar way as in the finite-dimensional
case.

A remarkable result states that for any n-dimensional vector bundle π : E −→ X, any two maps
of bundles with domain E and codomain the total space of the canonical bundle are always homotopic
through maps of bundles, see [Mil74]. As a consequence, their projections onto the base space are
homotopic. More precisely, this is the following theorem.

Theorem 9. Every real vector bundle of dimension n over X determines a smooth classifying map
f : X −→ Gn. Even more, the vector bundle is uniquely determined by the homotopy type of f up to
isomorphism.

In other words, there is a bijection{
Isomorphism classes of n-dimensional

vector bundles over X

}
←→

{
Homotopy classes
f : X −→ Gn

}
.
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Therefore, the problem of understanding vector bundles over X is equivalent to studying homotopy
invariants between X and Gn.

Cohomology is contravariant in the sense that the induced map of a continuous map goes in the
opposite direction. For this reason, cohomology classes in the Grassmannian produce invariants on the
cohomology of the base space. More precisely, given a vector bundle π : E −→ X with classifying map
f : X −→ Gn we have an induced map in cohomology f∗ : H∗(Gn) −→ H∗(X). For c an element of
H∗(Gn), we get the invariant f∗(c) ∈ H∗(X) which we call characteristic class. The first step is to take
Z2 coefficients and we obtain the Stiefel-Whitney classes.

If we consider complex vector bundles instead of working with real vector bundles, then we get the
complex Grassmanian. The associated characteristic classes are the Chern classes. If we consider real
vector bundles but those that are oriented, we get the oriented Grassmannian, and the characteristic
classes are the Pontryagin classes.

These three types of characteristic classes are related via the following constructions: start with an
n-dimensional vector bundle ξ, and then we get a complex vector bundle via the complexification ξ ⊗C.
Then we forget the complex structure and get a real 2n-dimensional vector bundle with a canonical
orientation. Finally, we forget the orientation and obtain a 2n-dimensional real vector bundle isomorphic
to ξ ⊕ ξ.

The following diagram schematically represents this situation:

Real bundle 

Complex bundle Oriented real bundle 

Forgetting 
the orientation

Complexi�cation

Forgetting 
the complex structure

1.3.1 The Thom isomorphism and the Euler class

A fundamental construction in algebraic topology is the Pontryagin-Thom construction, which associates
with an n-dimensional bundle, the space in which we collapse the complement of the disc bundle to a
single point. Despite the simple definition, the implications are remarkable. In a certain sense, this
construction has the behavior of an n-suspension of the base space. More precisely, this is the famous
theorem of Thom:

Theorem 10 (Thom isomorphism theorem). For an orientable vector bundle, there exists a unique
cohomology class u ∈ Hn(E,E0;Z) whose restriction to (F, F0) coincides with u|F for any fiber F and
F0 its nonzero elements. Furthermore, the map

^ u : Hi(E;Z) −→ Hi+n(E,E0;Z)
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is an isomorphism.

For a complete proof of this theorem, the reader can see [Mil74]. For p : E −→ B, the projection of
an n-dimensional vector bundle, we have an isomorphism defined by the composition:

φ : Hk(B;Z) Hk(E;Z) Hk+n(E,E0;Z).
p∗ ^u

Definition 11 (Euler class). For ξ an oriented n-dimensional real vector bundle and j : (E, ∅) ↪→ (E,E0)
the inclusion, we define the Euler class of ξ, denoted by e(ξ) ∈ Hn(B;Z), as the only cohomology class
that satisfies the following equation

p∗(e(ξ)) = j∗(u).

Proposition 12. In case we reverse the orientation of the bundle ξ, the Euler class changes sign.

For Z2-coefficients, the Euler class coincides with the top Stiefel-Whitney class ωn(ξ).

1.3.2 Stiefel-Whitney classes

The following properties completely determine the Stiefel-Whitney classes:

Theorem 13 (Stiefel-Whitney classes). There exists one and only one sequence of characteristic classes
ω0, ω1, . . . which assigns to each real n-dimensional vector bundle ξ of the form E −→ B, the class
wi(ξ) ∈ Hi(B;Z2), such that:

1. ω0(ξ) = 1 and wi(ξ) = 0 for i > n,

2. ωi(ξ) = f∗(ωi(η)), for all bundle map f : ξ → η ,

3. ωk(ξ ⊕ η) =
∑k
i=0 ωi(ξ) ^ ωk−i(η),

4. for the canonical bundle γ1
1 over S1, we have ω1(γ1

1) 6= 0.

An intelligent way to show the existence and uniqueness of the Stiefel-Whitney classes and gain an
understanding is by means of the Steenrod squares and Thom’s isomorphism. In what follows, we present
a rough idea of these themes.

Category theory arises to create a common language for the mathematical community. The reader can
consult the Founder’s book [Mac71] for a historical and mathematical overview. For a modern approach,
we refer the reader to [Rie14].

Algebraic topology works with invariants which are functors from the category of topological spaces to
some algebraic category: for example, the category of groups for the homotopy groups and the category
of rings for cohomology. We wonder what are the natural transformations in cohomology. These are
given by linear maps θ : Hn( ;H) −→ Hm( ;G) which satisfy certain commutative diagrams. Such
maps are known as cohomological operations. In case we are working with CW-complexes, the functor
of cohomology is a representable functor in the sense that it is equivalent to having the homotopy
classes of maps from the space in question to the so-called Eilenberg-MacLane spaces, i.e., Hn(X;H) ∼=
[X,K(H,n)].

For representable functors, a significant result is the Yoneda lemma, which states that the natural
transformations from a representable functor to any other functor (forgetting the structure) are in corre-
spondence with the image of the second functor applied to the element which represents the first functor.
In symbols
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Nat(Hom(−, X), F ) ∼= F (X).

In our case, we conclude the following bijection:

Nat([−,K(H,n)], [−,K(G,m)]) ∼= Hm(K(H,n);G).

As a consequence, to understand cohomological operations, it is enough to understand the cohomology
of the Eilenberg-MacLane spaces.

A basis for the cohomological operations are the Steenrod squares Sqj : Hi(B;Z2) −→ Hi+j(B;Z2).

For a real n-dimensional vector bundle ξ, of the form p : E → B, we have the Thom isomorphism
φ : Hk(B) −→ Hk+n(E,E0). The Stiefel-Whitney classes are defined as ωi(ξ) = φ−1Sqiφ(1). In other
words,

Hn(E,E0)
Sqi // Hn+i(E,E0)

φ−1

��
H0(B;Z2)

φ

OO

// Hi(B;Z2)

1 � // ωi(ξ)

As a consequence, we have shown the existence of the Stiefel-Whitney classes. It is relatively easy to
show their uniqueness [Mil74].

We finish the section with some bordism invariants known as the Stiefel-Whitney numbers. Take an
n-dimensional closed smooth manifold (possibly disconnected). Using Z2-coefficients there is only one
fundamental class in homology [B] ∈ Hn(B;Z2). Consider non-negative integers r1, · · · , rn such that r1 +
2r2+· · ·+nrn = n. For ξ a real vector bundle over B, we can associate the monomial ω1(ξ)r1 · · ·ωn(ξ)rn in
Hn(B;Z2). The Stiefel-Whitney number is defined as the evaluation of this monomial in the fundamental
class, i.e.,

ω1(ξ)r1 · · ·ωn(ξ)rn [B] := 〈ω1(ξ)r1 · · ·ωn(ξ)rn , [B]〉,
which is an element in Z2. Now, we use the formula ω(RPn) = (1 + a)n+1 with a the generator of the
cohomology of RPn, hence we have for n even that ωn(RPn) = (n+ 1)an and ω1(RPn) = (n+ 1)a both
different form zero. As a consequence, the Stiefel-Whitney numbers ωn[RPn] and ωn1 [RPn] are different
from zero. In the case n = 2k, these are the only non-trivial Stiefel-Whitney since ω(RPn) = 1 + a+ an.
For n odd, it is relatively easy to show that all the Stiefel-Whitney numbers are zero. In bordism theory
(non-necessarily oriented), we have that a manifold M of dimension n is the boundary of a manifold
of dimension n + 1, if and only if all the Stiefel-Whitney numbers are zero. The necessity of this fact
is straightforward, where we use the duality between the connections maps of the long exact sequence
(cohomology/homology) of the pair given by the bordism and M , see Milnor [Mil74]. However, the
sufficiency uses the Pontryagin-Thom construction. Let ξ be an n-dimensional vector bundle; the Thom
space is defined as the quotient of the total space by the vectors with a norm bigger or equal to 1. In
the case we have the canonical bundle γk, this space is denoted by MO(k) and an outstanding result of
Thom [Th54] says that the bordism group Ωn is isomorphic to the following homotopy group,

Ωn ∼= πn+k(MO(k)) ,

for k > n+ 1. This isomorphism is determined by the Whitney embedding theorem, which embeds any
manifold M inside a Rn+k for k > n + 1. Therefore, the normal bundle of such embedding induces a
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Thom space with a map to MO(k), using the one-point compactification of Rn+k we obtain a map from
the sphere Sn+k to MO(k). If M represents a non-trivial element in Ωn, we have that the associated
map Sn+k → MO(k) is not trivial in the homotopy group. Because Hn+k(MO(k);Z2) is generated by
some polynomial, which sent in Hn+k(Sn+k;Z2) = Z2 at least a non-trivial Stiefel-Whitney number.

1.3.3 Chern and Pontryagin classes

Chern classes are associated with complex vector bundles, which are completely determined by the
following properties:

Theorem 14 (Chern classes). There exists one and only one sequence of characteristic classes c1, c2, . . .
which assigns to each complex n-dimensional vector bundle ξ of the form E −→ B, the class ci(E) ∈
H2i(B;Z), such that:

1. c0(ξ) = 1 and ci(ξ) = 0 for i > n,

2. ci(ξ) = f∗(ci(η)), for all bundle maps f : ξ → η,

3. ck(ξ ⊕ η) =
∑k
i=0 ci(ξ) ^ ck−i(η),

4. for the canonical bundle γ1
1 over S2, we have c1(γ1

1) which is the generator of H2(CP1,Z).

In this case, the existence of the characteristic classes is explained relatively easily as follows: given a
complex n-dimensional vector bundle ξ of the form E −→ B equipped with a Hermitian metric, we form
a new bundle ξ0 over E0 whose fiber over each point is the orthogonal complement of the given vector.
As a consequence, ξ0 is an (n− 1)-dimensional complex vector bundle. We then use the Gysin sequence
with integer coefficients,

· · · −→ Hi−2n(B)
∪e−→ Hi(B)

π∗0−→ Hi(E0)→ Hi−2n+1(B)→ · · ·
for i < 2n − 1 the groups Hi−2n(B) and Hi−2n+1(B) are zero, hence we have the isomorphism π∗0 :
Hi(B)→ Hi(E0). Take cn(ξ) as the Euler class of the induced 2n-dimensional real vector bundle e(ξR).
We define for i < n the Chern class ci as

ci(ξ) = π∗0
−1ci(ξ0) ,

and for i > n the class ci(ξ) is defined to be zero.

These classes satisfy the axioms of Theorem 14.

An important property of Chern classes is their behavior under the conjugation x+ iy 7−→ x− iy of
a complex vector bundle ξ, where we have the following identity

ck(ξ) = (−1)kck(ξ) ,

hence the total class of the conjugated bundle ξ is given as

c(ξ) = 1− c1(ξ) + c2(ξ)−+ · · · ± cn(ξ) .

The Pontryagin classes are defined using the Chern classes for an n-dimensional real vector bundle.
More precisely, we consider the complexification ξ ⊗C given by the tensor product over the reals of each
fiber with the complex numbers. The bundle ξ ⊗ C has an induced structure of real vector bundle given
by the Whitney sum ξ ⊕ ξ with complex structure J(x, y) = (−y, x).

Now, we consider the conjugate ξ ⊗ C which is isomorphic to the complexification ξ⊗C, hence the odd
Chern classes c1(ξ⊗C), c3(ξ⊗C), · · · are zero. We define the i-th Pontryagin class for an n-dimensional
real vector bundle as
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pi(ξ) = (−1)ic2i(ξ ⊗ C),

which is an element in H4i(B;Z).

There are similar properties as in the case of Stiefel-Whitney classes and Chern classes. We have
p0(ξ) = 1 and pi(ξ) = 0 for i > n/2. For a trivial bundle εk, we obtain p(ξ ⊕ εk) = p(ξ). In this case, the
total class is defined as

p(ξ) = 1 + p1(ξ) + · · ·+ pdn/2e(ξ) ,

where dn/2e denotes the smallest integer that is not smaller than n/2. In this case, we have the Whitney
sum satisfies the formula

p(ξ ⊕ η) = p(ξ)p(η) mod 2 .

We end with two properties that determine the Pontryagin classes:

i) For ξ an n-dimensional complex vector bundle, we have the underlying 2n-dimensional real vector
bundle satisfies the following identity

1− p1 + p2 −+ · · · ± pn = (1− c1 + c2 −+ · · · ± cn)(1 + c1 + c2 + · · ·+ cn) (2)

where ci = ci(ξ) and pk = pk(ξR). As a consequence, the class pk(ξR) is equal to

ck(ξ)2 − 2ck−1(ξ)ck+1(ξ) +− · · · ± 2c1(ξ)c2k−1(ξ)∓ 2c2k(ξ) .

ii) For ξ a 2n-dimensional oriented real vector bundle, we have the Pontryagin class pn(ξ) is equal to
the square of the Euler class e(ξ).

Finally, we define the Pontryagin numbers associated with a smooth, compact, oriented manifold of
dimension 4n, which we denote by M . To this end, recall that a partition of a positive integer n is an
ordered collection of positive numbers I = {i1, . . . , ir} with a sum equal to n (notice that in this collection
some numbers can be repeated). For a partition I of n, the I-th Pontryagin number is defined as the
evaluation of the polynomial pi1(τM ) . . . pir (τM ) in the fundamental class, i.e.,

pi1 · · · pir [M ] = 〈pi1(τM ) . . . pir (τM ), [M ]〉 ,

where τM represents the tangent bundle and [M ] ∈ H4n(M ;Z) is the fundamental class. For the complex
projective spaces CP2n such numbers have the value

pi1 · · · pir [CP2n] =

(
2n+ 1

i1

)
· · ·
(

2n+ 1

ir

)
.

Just as for the Stiefel-Whitney numbers, if an oriented smooth manifold of dimension n is the boundary
of an oriented smooth manifold of dimension n + 1, all the Pontryagin numbers are zero. The converse
is satisfied when we tensor with the rational numbers.

2 The Hirzebruch signature theorem

A central element in the proof of the exotic spheres is the famous Hirzebruch signature theorem. This
theorem determines the signature of a manifold in terms of a polynomial in the Pontryagin classes with
rational coefficients. In this section, we give the proof of this theorem after introducing some algebraic
background.
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2.1 Multiplicative sequences

We start with a commutative graded algebra over a commutative and unitary ring Λ:

A =

∞⊕
i=0

Ai.

By AΠ we understand the ring of formal series a0 + a1 + a2 + . . . with ai ∈ Ai. Of particular interest is
the subset (AΠ)× consisting of formal series of the form 1 + a1 + a2 + . . . .

Remark 15. It is a classical exercise to show that (AΠ)× is a group. Set a = 1 + a1 + a2 + . . . . In
order to construct the inverse, we proceed inductively: consider b = 1 + b1 + b2 + · · · such that ab = 1 and
expand the product

ab = (1 + a1 + a2 + a3 + . . . )(1 + b1 + b2 + b3 + . . . )

= 1 + (a1 + b1) + (a2 + a1b1 + b2) + (b3 + b2a1 + a2b1 + a3) + . . .

= 1 + 0 + 0 + . . . .

Therefore, we define b1 = −a1 for the first coefficient. Then we have a2 + a1b1 + b2 = 0 and hence
b2 = −a2 − a1b1 = −a2 + a2

1, and so on.

We consider a sequence of polynomials K1(x1),K2(x1, x2), . . . subject to the following two properties:

• the polynomial Ki has degree i;

• the polynomial Ki is homogeneous where xj has weight j.

For example, these properties are satisfied for the sequence of polynomials:
K1(x1) = x1

K2(x1, x2) = x2
1 + x2

K3(x1, x2, x3) = x3
1 + x1x2 + x3

...

For an element a = 1+a1 +a2 + · · · ∈ (AΠ)×, we can evaluate the sequence of polynomials in a as follows

K(a) := 1 +K1(a1) +K2(a1, a2) +K3(a1, a2, a3) + . . . .

A sequence of polynomials Ki subject to the two aforementioned properties, is called multiplicative if for
any a, b ∈ (AΠ)× we have the equation

K(ab) = K(a)K(b).

We give below some examples.

Example 16.

1. Take λ ∈ Λ and define
Ki(x1, . . . , xi) = λixi.

For a, b ∈
(
AΠ
)×

, we compute

K(ab) = K(1 + (a1 + b1) + (a2 + a1b1 + b2) + . . . )

= 1 + λ(a1 + b1) + λ2(a2 + a1b1 + b2) + . . .
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and

K(a)K(b) = (1 + λa1 + λ2a2 + . . . )(1 + λb1 + λ2b2 + . . . )

= 1 + (λa1 + λb1) + (λ2a2 + λ2a1b1 + λ2b2) + . . .

= 1 + λ(a1 + b1) + λ2(a2 + a1b1 + b2) + . . .

= K(ab).

This shows that the sequence is multiplicative.

2. Define Ki(x1, . . . , xi) to be the i-th coefficient of (1 + x1 + x2 + . . . )−1. It is easy to see that this
sequence is homogeneous of degree i, and moreover, this sequence is multiplicative because, by
definition, K(a) = a−1. Therefore,

K(ab) = (ab)−1 = b−1a−1 = a−1b−1 = K(a)K(b).

Now, we see that multiplicative sequences are closely related to power series. Given a multiplicative
sequence {Kn}n∈N, we can associate a power series by setting

f(t) = K(1 + t) = 1 +K1(t) +K2(t, 0) +K3(t, 0, 0) + . . . .

The important point here is the reverse process; that is, given a power series f we can associate a
multiplicative sequence such that f(t) = K(1 + t). This is the purpose of the next section.

2.2 Digression: symmetric polynomials and the Hirzebruch’s lemma

Among all polynomials, some are distinguished for being invariant under the action of the symmetric
group, i.e., under permutations of their variables.

Example 17.

• The polynomial p(x, y, z) = x+ y+ z is invariant under the action of the symmetric group. Indeed,
any permutation, for instance τ : x −→ y −→ z gives

p(τ(x), τ(y), τ(z)) = p(y, z, x) = y + z + x = p(x, y, z).

• The polynomial q(x, y) = x2 + xy + y2 is also invariant.

Such polynomials are called symmetric polynomials.

Lemma 18. Consider the polynomials σ1, . . . , σn where σi is the component of degree i of the product
(1 + t1) · (1 + t2) · · · · · (1 + tn). Then each σi is a symmetric polynomial in n variables.

Proof. This follows from the equation

1 + σ1 + σ2 + · · ·+ σn =

n∏
i=1

(1 + ti)

where the right-hand side is invariant under permutations, and therefore, so the i-th degree component
is also invariant.

The polynomials σi in the previous lemma are called elementary symmetric polynomials.
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Example 19. In two variables, there are two elementary symmetric polynomials. Indeed, they are the
components of the product

(1 + x)(1 + y) = 1 + (x+ y) + xy.

Therefore, σ1(x, y) = x+ y and σ2(x, y) = xy.

In three variables, there are three elementary symmetric polynomials. Namely, the components of the
product

(1 + x)(1 + y)(1 + z) = 1 + (x+ y + z) + (xy + yz + xz) + (xyz).

Elementary symmetric polynomials are fundamental in mathematics due to the following theorem;
we refer the reader to [Mac] for a proof.

Theorem 20 (Fundamental theorem of elementary symmetric polynomials). Elementary symmetric
polynomials form a basis for the set of symmetric polynomials, in the sense that each symmetric polynomial
of degree n can be uniquely written as a polynomial in the variables σ1, . . . , σn.

For example, the symmetric polynomial

q(x, y) = x2 + xy + y2

can be written as
q(x, y) = (x+ y)2 − xy = σ2

1 − σ2.

Remark 21. Any monomial yields a symmetric polynomial by summing over all equivalent monomials
3 For example, the monomial m(x, y, z) = x2yz is not symmetric, however, the mentioned sum is the
symmetric polynomial

x2yz + y2xz + z2xy.

It is easy to see that this polynomial is, in fact, symmetric. In general, we will denote the polynomial
obtained by this process by Σm called the “symmetrization” of m. With this notation, the elementary
symmetric polynomials in n variables are elegantly given by

σi = Σt1 · · · ti.

We return to power series. Start with

f(t) = 1 + λ1t+ λ2t
2 + . . .

and consider the partition I = {i1, . . . , ir} of n (that is, they are all positive integers with i1+· · ·+ir = n).
We define λI as the product λi1 · · · · · λir and sI as the unique polynomial such that

sI(σ1, . . . , σn) = Σti11 · · · · · tirr .

The existence of sI is a direct consequence of the fundamental theorem of elementary symmetric poly-
nomials. Thus we define

Kn(x1, . . . , xn) :=
∑

I partition of n

λIsI(x1, . . . , xn).

3Two monomials are equivalent if there is a permutation that relates them.
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Example 22. Suppose we have a power series

f(t) = 1 +
t

3
− t2

45
+ . . .

and then we calculate the first two terms of the sequence above. For the first term, there is only one
partition of the number 1, namely the number 1, which we call I (this may seem unnecessary, but it is
meant to show the general procedure). To calculate sI we observe that Σt1 = t, in particular sI(σ1) = σ1

and since λI is just the first coefficient λ1, so

K1(x) =
1

3
x.

For the second term, we have two partitions of the number 2, given by 1 + 1 and 2 + 0, denoted by J and
H. Finding sJ amounts to finding a polynomial such that sJ(σ1, σ2) = Σt11t

1
2 = t1t2, i.e., sJ(σ1, σ2) = σ2

(recall that σ1 = x+ y and σ2 = xy). The coefficient λJ is given by λ1 · λ1, so the first summand is

λJsJ(x, y) =
1

9
y.

For the partition H, we see the polynomial sH satisfies sH(σ1, σ2) = Σt21 = t21 +t22 and hence sH(σ1, σ2) =
σ2

1 − 2σ2 and we conclude
sH(x, y) = (x+ y)2 − 2xy = x2 + y2.

The coefficient is just λH = λ2, hence the second summand is

λHsH(x, y) = − 1

45
(x2 − 2y).

Combining our computations yields

K2(x, y) =
1

9
y − 1

45
(x2 − 2y) =

1

45
(7y − x2). (3)

Now let us return to the multiplicative property of the sequence Kn(x1, · · · , xn) associated to the
power series. Denote by σi the i-th elementary symmetric polynomial in the variables x1, . . . , xn and by
σ′j the j-th elementary symmetric polynomial in the variables y1, . . . , yn. Then

σ′′k =

k∑
i=0

σiσ
′
k−i

is the k-th elementary symmetric polynomial in the variables x1, . . . , xn, y1, . . . , yn. This is because we
can compare the product

∏n
i=1(1+xi)

∏n
j=1(1+yj) with the definition of the k-th elementary symmetric

polynomial.

Given two disjoint partitions, say J and K, their juxtaposition is also a partition. More precisely, if
J = {j1, . . . , jr} is a partition of l and K = {k1, . . . , kp} is a partition of m, then

JK = {j1, . . . , jr, k1, . . . , kp}

is a partition of l +m.

Going back to our polynomial sequence, we claim that

sI(σ
′′
1 , . . . , σ

′′
k ) =

∑
JK=I

sJ(σ1, σ2, . . . ) · sK(σ′1, σ
′
2, . . . ),
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where the sum is taken over all partitions J,K such that their juxtaposition is I. For this purpose, we
use that

sI(σ
′′
1 , . . . , σ

′′
k ) = Σti11 · · · tirr ,

where in the right hand side appear all possible monomials ti1α1
· · · tirαr

with 0 ≤ αi ≤ 2n. For each
monomial, let J be the partition formed by all exponents iq such that 1 ≤ αq ≤ n and let K be
the partition formed by all exponents iq such that n + 1 ≤ αq ≤ 2n. By construction, the product
sJ(σ1, σ2, . . . )sK(σ′1, σ

′
2, . . . ) has all the possible combinations of this distribution of exponents in both

variables. The sum of all such decompositions implies the claim.

From the previous discussion, we can conclude the multiplicativity of the sequence Kn(x1, . . . , xn).

Indeed, for a, b ∈
(
AΠ
)×

, we obtain

K(ab) =
∑
I

λIsI(ab)

=
∑
I

λI
∑
HJ=I

sH(a)sJ(b)

=
∑
HJ=I

λHsH(a)λJsJ(b)

= K(a)K(b).

Furthermore, Kn(t, 0, . . . , 0) = λnt
n since the only partition involving this term is the trivial one (see

example 22). Consequently, K(1 + t) = f(t) which is the half of the following lemma:

Lemma 23 (Hirzebruch). Let

f(t) = 1 + λ1t+ λ2t
2 + · · · ∈ Λ[[t]]

be a formal power series. Then there exists a unique multiplicative sequence {Kn}n∈N satisfying K(1+t) =
f(t).

To show uniqueness, if

σ = (1 + t1) · · · (1 + tn) ∈
(
AΠ
)×
,

then
K(σ) = K((1 + t1) · · · (1 + tn)) = K(1 + t1) · · ·K(1 + tn) = f(t1) · · · f(tn).

Comparing the homogeneous component of each side, we see that Kn(σ1, . . . , σn) is determined only by
the values of f . We use the fundamental theorem of elementary symmetric polynomials to conclude that
the variables σ1, . . . , σn completely determine the polynomial; hence the Kn must be unique.

2.3 K-genus and the Hirzebruch theorem

For a multiplicative sequence Kn, we define the K-genus of a smooth, closed, oriented manifold M ,
denoted by K[M ] ∈ Q, as follows

Kn[M ] =

{
0 4 6 |dimM

〈Kn(p1, . . . , pn), [M ]〉 dimM = 4n,

where pi denotes the i-th Pontryagin class of M . Notice that the K-genus is a rational combination of
the Pontryagin numbers of M . In particular, if M is the boundary of a compact, oriented manifold, then
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the Pontryagin numbers are zero, and K[M ] = 0.

The K-genus satisfies the following essential properties: for M,N two manifolds, we have K[MtN ] =
K[M ] + K[N ] which, combined with the previous observation implies that the K-genus is a bordism
invariant. Furthermore, we have the multiplicative property K[M × N ] = K[M ]K[N ]. This property
is deduced as follows: for p, p′ the total Pontryagin classes of M and N respectively, the total class of
M ×N is congruent to p× p′ modulo torsion, and in addition, the codomain of the K-genus is the field
of rational numbers, so the torsion elements automatically vanish. More precisely, we have shown the
following lemma.

Lemma 24. The K-genus gives rise to a ring homomorphism

K : ΩSO∗ ⊗Q −→ Q.

Now we are ready to state the main theorem of this section.

Theorem 25 (Hirzebruch signature theorem). Let Ln be the multiplicative sequence associated with the
power series √

x

tanh
√
x

= 1 +
x

3
− x2

45
+ · · ·+ (−1)k−122kBkx

k

(2k)!
+ . . . ,

where Bk is the k-th Bernoulli number. Then for any compact, oriented smooth manifold M , σ(M) =
L[M ].

The proof of this theorem depends on the following fact. Since both L and σ define ring homomor-
phisms ΩSO∗ ⊗Q −→ Q (where here we implicitly extend the signature by 0 on dimensions not divisible
by 4), it is enough to verify that they agree on the generators, which we know thanks to the following
result of Thom [Th54]:

Theorem 26 (Thom). The oriented cobordism ring ΩSO∗ is finitely generated in dimensions divisible by
4 and finite otherwise. In particular

ΩSO∗ ⊗Q =

∞⊕
k=1

ΩSO4k ⊗Q.

Furthermore, the generators are given by combinations of the form

CP2i1 × CP2i2 × · · · × CP2ir .

We have already computed the signature of these complex projective spaces, which was precisely 1;
see Example 7. Therefore, we have to show that L(CP2l) = 1, which we do as follows.

First, recall that the total Pontryagin class of CP2l is given by p(CP2l) = (1+a2)2l+1. Since L(1+t) =√
t

tanh
√
t
, it follows that

L(1 + a2 + 0 + 0 + . . . ) =

√
a2

tanh
√
a

2 =
a

tanh a
.

Now, we use the multiplicative property of L and we see that

L((1 + a2)2l+1) =
( a

tanh a

)2l+1

.
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Thus the L-genus will be determined by the coefficient of a2l in the power series of (a/ tanh a)2l+1. For
this, we recall that in complex analysis, we can recover a coefficient of a power series

f(z) = c0 + c1z + c2z
2 + · · ·+ cmz

m + . . . ,

say cm, by first dividing by zm+1

f(z)

zm+1
=

c0
zm+1

+ · · ·+ cm
z

+ cm+1 + . . .

and then integrating around the origin∮
f(z)

zm+1
dz =

∮
cm
z
dz = 2πicm.

As a consequence, replacing a by z in the power series of (a/ tanh a)2l+1, we obtain

L[CP 2l] =
1

2πi

∫
dz

z2l+1

( z

tanh z

)2l+1

=
1

2πi

∮
dz

tanh z2l+1
.

The change of coordinates u = tanh z implies that dz = du
1−u2 = (1 + u2 + u4 + . . . )du and we get the

result

L[CP2l] =
1

2πi

∮
1 + u2 + u4 + · · ·+

u2l+1
du =

1

2πi

∮
u2k

u2k+1
du = 1.

This proves the Hirzebruch signature theorem.

We use the formula (3) in Example 22 and deduce the following.

Corollary 27. If M is an 8-dimensional compact oriented manifold then

σ(M) =
1

45

(
7p2(M)− p2

1(M)
)
.

3 Milnor’s explicit construction

3.1 Construction in terms of the canonical fibration

This section aims to construct a family of manifolds, some of which are exotic spheres. They are the
total space of fiber bundles over S4 with fiber S3 and structural group SO(4) (the transition maps are
given by matrices in the group SO(4)). In order to identify which of them are exotic spheres, we have to
classify all such fiber bundles. This section follows some parts of [McE16], [Giu09].

These fiber bundles have fibers identified with the ring of quaternions. The quaternions H are the set
of numbers of the form a + bi + cj + dk where a, b, c and d are real numbers and the symbols i, j, k are
subject to the following rules:

i2 = j2 = k2 = −1 ,

ij = −ji = k ,

jk = −kj = i ,

ki = −ik = j .
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Observe that quaternion multiplication is not commutative. The ring of quaternions H is a 4-
dimensional real vector space with the component-wise sum and scalar real multiplication. Similarly,
there is a conjugacy operator, as with the complex numbers, also a norm and an inverse for a quaternion
h = a+ bi+ cj + dk:

h = a− bi− cj − dk , ‖h‖ =
√
hh =

√
a2 + b2 + c2 + d2 and h−1 =

h

‖h‖2
.

We can define the quaternionic projective line HP1, which consists of all quaternionic lines in H2. The
elements are denoted by classes [h1 : h2] ∈ HP1, where [h1 : h2] = [λh1 : λh2] for each λ ∈ H non-zero.
The canonical bundle over HP1, denoted by γ1, has total space

E(γ1) = {((x, y), [z : w]) ∈ H2 ×HP1 | (x, y) ∈ [z : w]}.

The projection map π : E(γ1) −→ HP1 is given by the projection onto the second coordinate. Notice
that the canonical bundle is a 4-dimensional real vector bundle. In order to construct the exotic spheres,
we first consider a family of fiber bundles constructed from the canonical bundle. These bundles only
depend on the usual construction of HP1 by two charts, and we calculate the local trivializations. We
consider the open sets U1 = {[z : w] ∈ HP1 | w 6= 0} and U2 = {[z : w] ∈ HP1 | z 6= 0} where the first
chart is

φ1 : U1 −→ H ∼= R4

[z : w] 7−→ w−1z

and the second chart is given by

φ2 : U2 −→ H ∼= R4

[z : w] 7−→ z−1w.

Thus for the projection map π : E(γ1) −→ HP1, we obtain

π−1(U1) = {((x, y), [z : 1]) | yz = x} and π−1(U2) = {((x, y), [1 : w]) | xw = y}.

Therefore, the local trivializations are

ρ1 : π−1(U1) −→ φ1(U1)×H
((x, y), [z : 1]) 7−→ (z, y)

and

ρ2 : π−1(U2) −→ φ2(U2)×H
((x, y), [1 : w]) 7−→ (w, x).

Finally, the transition map ρ2 ◦ ρ−1
1 : φ1(U1 ∩ U2)×H −→ φ1(U1 ∩ U2)×H is given by

ρ2 ◦ ρ−1
1 ((z, y)) = ρ2

(
(yz, y),

[
1

z
: 1

])
=

(
1

z
, yz

)
.

Consequently, excluding the poles, we are gluing at the point y ∈ π−1([z : 1]) with the point yz ∈
π−1([1/z : 1]) two fibers which can be identified with H. Since multiplication in H is not commutative,
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we can have a different bundle if we glued y with zy. These provide a family of gluing maps fh,l :
φ1(U1 ∩ U2)×H −→ φ1(U1 ∩ U2)×H defined as follows:

fh,l((z, y)) =

(
1

z
, zhyzl

)
.

Thus, each gluing map has associated a vector bundle, denoted by ξh,l. For example, the bundle ξ0,1 is
precisely the canonical bundle γ1.

However, our initial purpose was to build bundles over S4 with fiber S3. Thus in the previous vector
bundles, we identify HP1 with S4 by means of the diffeomorphism HP1 −→ S4 ⊂ R5, which is given by

[z : w] 7→
(

2wz

‖z‖2 + ‖w‖2
,
‖z‖2 − ‖w‖2

‖z‖2 + ‖w‖2

)
,

and we restrict the fibers to S3 since S3 = {h ∈ H | ‖h‖ = 1)}. Therefore, the gluing maps are now of
the form fh,l : φ1(U1 ∩ U2)× S3 −→ φ1(U1 ∩ U2)× S3. These maps have to be normalized in the second
coordinate in order to be coherent with the restriction, so we set

fh,l((z, y)) =

(
1

z
,
zhyzl

‖z‖h+l

)
.

Thus we have constructed for each vector bundle ξh,l, via the restriction, an induced sphere bundle.
We denote these sphere bundles by σh,l and their total space by Mh,l. These spaces are manifolds of
dimension seven, which can be exotic spheres. In what follows, we show that for some particular h and l,
the space Mh,l is homeomorphic to the sphere S7 (see section 3.2) but not diffeomorphic to it (see section
3.3). For this purpose, we show that these sphere bundles σh,l are, in essence, all possible bundles with
the property that the transition map is orientation-preserving. This is stated in the following theorem:

Theorem 28. There is a bijection between the isomorphism classes of fiber bundles over S4 with fiber
S3 and structural group SO(4) and the homotopy classes of maps from S3 to SO(4).

As a consequence, each sphere bundles σh,l is classified up to isomorphism by an element in π3(SO(4)).
This group is relatively easy to understand since π3(SO(4)) ∼= Z ⊕ Z (see section 3.1.1) and thus the
sphere bundles σh,l and consequently the manifolds Mh,l are completely determined by a pair of integers
which are precisely (h, l).

3.1.1 Calculating π3(SO(4))

The orthogonal group O(n) consists of all matrices n×n, representing all the distance-preserving transfor-
mations of the Euclidean space Rn. They are given by matrices A ∈ Gl(n,R) such that AtrA = AAtr = I.
If we consider orientation-preserving transformations, we obtain matrices in O(n), with a determinant
equal to 1. This subgroup is denoted by SO(n) and is called the special orthogonal group of dimension
n.

Consider S3 as the unit quaternions. There is a well-defined homomorphism

P : S3 × S3 −→ SO(4),

which for each pair (u, v) ∈ S3 × S3, assigns the linear transformation f(u,v) : R4 −→ R4 defined for
x ∈ R4, be the product uxv−1. The homomorphism P is a continuous map with the following properties:

• The image of P is contained in SO(4) as a connected subset of O(4), since S3 × S3 is connected.
Moreover, the image of P is in the same connected component of the identity because P (1, 1) = Id.
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• P is a group homomorphism (as claimed). Indeed we have the equality

P (uu′, vv′) = P (u, v) ◦ P (u′, v′) ,

since both sides are equal to the map x 7→ uu′xv′−1v−1.

• We have the identity P (u, v) = P (−u,−v).

• Assume P (u, v) = Id and hence P (u, v)(1) = 1. Thus u1v−1 = 1 and therefore uv−1 = 1, which is
equivalent to u = v. In addition, we have the equations

P (u, u)(i) = uiu−1 = i, P (u, u)(j) = uju−1 = j and P (u, u)(k) = uku−1 = k.

For the first equation, set u = a+ bi+ cj + dk, and we get

uiu−1 = (a+ bi+ cj + dk)i(a− bi− cj − dk)

= (a+ bi+ cj + dk)(ai+ b− ck + dj)

= a2i+ ab− ack + adj

− ab+ b2i+ bcj + bdk

+ ack + bcj − c2i− cd
− adj + bdk + cd− d2i

= (a2 + b2 − c2 − d2)i+ 2bcj + 2bdk = i ,

from which we deduce the equations a2 + b2 − c2 − d2 = 1 and bc = bd = 0. Recalling that
a2 + b2 + c2 + d2 = 1 we get that c = d = 0. Proceeding similarly with the other equations, we
conclude that b = c = d = 0. Consequently, we obtain u = ±1 and the kernel of P is the group
with only two elements Z2

∼= {(1, 1), (−1,−1)}.

• The kernel of P acts properly and discontinuously on S3×S3 from which it follows that the image of
P is a 6-dimensional open submanifold of SO(4) (since dimS3 × S3 = 6). Because P is continuous
and S3 × S3 is compact, we have that P (S3 × S3) is compact, and since SO(4) is Hausdorff, the
image of P is also closed. Thus since SO(4) is connected, we have that P is surjective.

In conclusion, since the kernel of P is discrete and the homomorphism P : S3 × S3 −→ SO(4) is a 2-fold
covering, see [San07]. In other words, every point in SO(4) has a neighborhood covered by two copies of
itself, as shown in the picture
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Figure 5: The homomorphism P is a 2-fold covering.

As a consequence of the homotopy lifting property for covering spaces, see [Fom16], we have the following
theorem.

Theorem 29. If P : Y −→ X is a covering map between connected spaces, then P induces an isomor-
phism between the higher homotopy groups P∗ : πn(Y ) −→ πn(X) (i.e. with n > 1).

Finally, we obtain the following result.

Corollary 30.
π3(SO(4)) ∼= π3(S3 × S3) ∼= Z⊕ Z.

3.2 They are homeomorphic to the sphere S7

This section aims to show that if h + l = ±1, then Mh,l is homeomorphic to the standard sphere. We
need the concept of Morse function, a smooth function f : M → R such that all critical points are non-
degenerate (the Hessian matrix is non-degenerate). A significant result in Morse theory is the following,
see [Mil60].

Theorem 31 (Reeb). If M is a compact manifold with a Morse function F such that F has exactly two
critical points, then M is homeomorphic to the sphere in the corresponding dimension.

We apply this result to our manifolds Mh,l. As we have seen previously, Mh,l has a cover by two
charts, π−1(U1) and π−1(U2). We start with the first chart ρ1 : π−1(U1) −→ φ1(U1) × S3 defined by
ρ1([x, y], [z, 1]) = (z, y). Take the smooth function F1 : π−1(U1) −→ R by the composition

F1 ◦ ρ−1
1 : φ1(U1)× S3 −→ R

which has the form

F1 ◦ ρ−1
1 : (z, v) 7−→ Re(v)√

1 + ‖z‖2
.
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What are the critical points of F1 ◦ ρ−1
1 ? Since the domain of F1 ◦ ρ−1

1 is a product, the derivative must
vanish in each component. So we ask ourselves: fixing z, what are the critical points of F1 ◦ ρ−1

1 ?

Observe that, restricted to the second component, the map is just given by v 7−→ Re(v) with a re-
scaling. However, this map is just a + ib + cj + dk 7→ a (the projection onto the first coordinate). The
critical points of this map in the sphere are just the poles ±1. Thus we have established that v = ±1,
we have to find the critical points for the restriction of F1 ◦ ρ−1

1 to φ1(U1), which has the form

(z,±1) 7−→ ±1√
1 + ‖z‖2

.

Since φ1(U1) is isomorphic to R4, hence we have a problem in multivariable calculus:

∇F1 ◦ ρ−1
1 |(z,±1)(x1, x2, x3, x4) =

(
∂F1 ◦ ρ−1

1

∂x1
,
∂F1 ◦ ρ−1

1

∂x2
,
∂F1 ◦ ρ−1

1

∂x3
,
∂F1 ◦ ρ−1

1

∂x4

)
=

±1

(1 + ‖z‖2)
3
2

(x1, x2, x3, x4)

=
±z

(1 + ‖z‖2)
3
2

.

This gradient is null only if z = 0. Therefore, we show that in π−1(U1) there are only two critical points
given by (0,±1). It is a straightforward computation to see that the Hessian is ∓ Id. Thus the critical
points we have found so far are non-degenerate.

Now, we consider the second chart ρ2 : π−1(U2) −→ φ2(U2) × S3 defined by ρ2 : ((x, y), [1 : w]) =
(w, x). Take the smooth function F2 : π−1(U2) −→ R by the composition

F2 ◦ ρ−1
2 : φ2(U2)× S3 −→ R

which has the form

F2 ◦ ρ−1
2 : (w, u) 7→ Re(wu−1)√

1 + ‖wu−1‖2
=

Re(wu−1)√
1 + ‖w‖2

.

Here we used the multiplicativity of the norm and the fact that ‖u‖ = 1, since u ∈ S3.
Now, if u−1 = a + ib + jc + kd and w = x1 + ix2 + jx3 + kx4, then we differentiate with respect to the
first variable and we obtain

∇Re(wu−1)|w = ∇(ax1 − bx2 − cx3 − dx4)|w=(x1,x2,x3,x4)

= (a,−b,−c,−d)

= u.

Since the conjugate of u−1 is its own inverse for the unit quaternions, we get

∇F2 ◦ ρ−1
2 |w =

∇Re(wu−1)|w ·
√

1 + ‖w‖2 − 1

2
√

1+‖w‖2
2wRe(wu−1)

(1 + ‖w‖2)

=
u(1 + ‖w‖2)− wRe(wu−1)

(1 + ‖w‖2)
3
2

.
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Notice the numerator is never zero; if not, we have u(1 + ‖w‖2) = wRe(wu−1) and considering the norm
on both sides, we have the inequality

1 + ‖w‖2 = ‖w‖ |Re(wu−1)| ≤ ‖w‖
∥∥wu−1

∥∥ = ‖w‖2 ,

which is impossible. As a consequence, there are no critical points in the second chart.

It remains to show the compatibility in π−1(U1)∩π−1(U2) whenever h+ l = −1. It is enough to show
the following commutative diagram

(z, v) Re(v)√
1+‖z‖2

( 1
z ,

zhvzl

‖z‖h+l ) Re(wu−1)√
1+‖wu−1‖2 .

F1◦ρ−1
1

ρ2◦ρ−1
1 =

F2◦ρ−1
2

For this purpose, we express wu−1 in terms of z and v. Recall that u−1 = u
‖u‖2 and we know

u = zhvzl

‖z‖h+l . Thus we use the properties of the norm and conjugate in order to obtain the following

u−1 =
zhvzl

‖z‖h+l

1

‖v‖2

=
zlvzh

‖z‖h+l
,

and we multiply by w = 1
z :

wu−1 =
1

z

zlvzh

‖z‖h+l

=
zl+1vzh

‖z‖h+l+2

For the numerator, we recall that the real part of a quaternion is unchanged by conjugation with an
element x, i.e., Re(xyx−1) = Re(y). For h+ l = −1, we have h = −1− l and h+ l+ 2 = 1. Consequently,
we get

Re

(
zl+1vzh

‖z‖h+l+2

)
=

Re
(
zl+1vz−1−l)
‖z‖

=
Re(v)

‖z‖

=
Re(v)

‖z‖ .

For the denominator, we first calculate
∥∥wu−1

∥∥2
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∥∥wu−1
∥∥2

=

∥∥∥∥∥ zl+1vzh

‖z‖h+l+2

∥∥∥∥∥
2

=
‖v‖2

‖z‖2

=
1

‖z‖2
.

Hence, we substitute into the denominator:

Re(wu−1)√
1 + ‖wu−1‖2

=
Re(v)

‖z‖
1√

1 + 1
‖z‖2

=
Re(v)√
1 + ‖z‖2

Therefore, we have constructed maps that agree on the overlap, and they are glued together to form
a smooth map F defined on Mh,l.

Lastly, we have shown that if h + l = −1, then Mh,l is homeomorphic to S7 using Reeb’s Theorem
31. We will see in Section 3.3.2 that there exists an orientation-reversing isomorphism between ξh,l and
ξ−l,−h. We conclude that if h+ l = ±1, then Mh,l is homeomorphic to S7.

3.3 They are non-diffeomorphic to the sphere S7

Let us stand back for a moment and consider the different spaces involved. From Section 3.1, we have a
family of vector bundles ξh,l, and take the associated fibration given by all vectors of norm less or equal
to 1. Denote by Nh,l the total space of the fibration associated to ξh,l. Moreover, the boundary of Nh,l
consists of all vectors of norm equal to 1. Notice this space is precisely the manifold Mh,l.

Now we show that Mh,l is not always diffeomorphic to S7 through a contradiction. Assume that Mh,l

is diffeomorphic to S7, then we can attach an 8-disc smoothly along the boundary using a collar to get
a closed manifold Kh,l, as shown in the following picture:

Nh,l

D8

∂Nh,l = Mh,l

Figure 6: The manifold Kh,l obtained by gluing an 8-disc along Mh,l.

In Section 3.3.3, we find the first Pontryagin class of Kh,l using the first Pontryagin class of the total
space ξh,l.
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3.3.1 The characteristic classes of ξh,l

We recall two theorems from [Ste51]:

Theorem 32. For any topological group, there exists a group isomorphism

πn(BG) ∼= πn−1(G).

Theorem 33 (Steenrod). A bijection exists between isomorphism classes of orientable n-dimensional
vector bundles and homotopy classes of maps from the base space to BSO(n).

Thus π4(BSO(4)) ∼= π3(SO(4)) which is Z ⊕ Z by Section 3.1.1. By Steenrod’s Theorem 33, every
4-dimensional oriented vector bundle over S4, is defined by a continuous map f : S4 −→ BSO(4). Then
f as an element of π4(BSO(4)), coincides with an element in π3(SO(4)). This is precisely the pair of
integers (h, l) defining the vector bundle ξh,l.

In addition, there is a group homomorphism for every α ∈ H4(BSO(4))

Ψ : π4(BSO(4)) −→ H4(S4)

[f ] 7−→ f∗(α)

where [f ] denotes the homotopy class of f . We show that Ψ is a group homomorphism: recall the group
structure of π4(BSO(4)) where for two maps f, g : S4 −→ BSO(4) we have a composition with the
“pinching” map along the equator µ : S4 −→ S4 ∨ S4 as in the picture

−→
−→

−→

µ
f ∨ g

S4 S4 ∨ S4

BSO(4)

Figure 7: The group structure in π4(BSO(4)) is given by this composition.

Thus
f + g := (f ∨ g) ◦ µ : S4 −→ S4 ∨ S4 −→ BSO(4).

Besides that we have two maps ci : S4 ∨ S4 −→ S4 where ci collapses the i-th sphere, for i = 1, 2.
Considering the cell structure of S4 with 4-dimensional cells, one for each hemisphere, it is not hard to
verify that

µ∗ : H4(S4 ∨ S4) −→ H4(S4)

maps the sum of both 4-dimensional cells to a generator (the sum of both hemispheres). As a consequence,
the composition

H4(S4)×H4(S4) −→ H4(S4 ∨ S4) −→ H4(S4)

is given by
(α, β) 7→ c∗1(α) + c∗2(β) 7→ α+ β
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where η : H4(S4)×H4(S4) −→ H4(S4∨S4) is an isomorphism obtained by the Mayer-Vietoris sequence.

Therefore, for two maps f, g : S4 −→ BSO(4) we obtain

(f + g)∗(α) = µ∗(f ∨ g)∗(α)

= (µ∗ ◦ η∗) ◦ ((η−1)∗ ◦ (f ∨ g)∗)(α)

= (µ∗ ◦ η∗)(f∗(α), g∗(α))

= f∗(α) + g∗(α) ,

which shows that Ψ is a group homomorphism.

Denote by ϕ the isomorphism between π3(SO(4)) and π4(BSO(4)). We have the following commu-
tative triangle

π3(SO(4)) ∼= Z⊕ Z

π4(BSO(4)) H4(S4) ∼= Z .

ϕ

Ψ

Now we know ξh,l is represented by the element (h, l) ∈ Z⊕Z ∼= π3(SO(4)). In particular, if g = ϕ(h, l) ∈
π4(BSO(4)) is represented by a classifying map with the same name g : S4 −→ BSO(4)), then we use
the naturality of the Pontryagin classes to deduce that

g∗(p1) = p1(ξh,l).

In other words, if we choose p1 ∈ H4(BSO(4)), the canonical Pontryagin class over BSO(4) as our
cohomology class, it follows that

p1(ξh,l) = Ψ(g) = Ψ(ϕ(h, l)).

Since Ψ ◦ ϕ : Z⊕ Z −→ Z is a group homomorphism, there exist integers m, k such that

Ψ ◦ ϕ(h, l) = m · h+ k · l.

In the next section, we calculate the coefficients m and k.

3.3.2 Determining the coefficients

Recall that if x = a + bi + cj + dk is a quaternion, its conjugate is given by x = a − bi − cj − dk.
Furthermore, the transformation

T : H −→ H
x 7−→ x

is R-linear and reverses the orientation of H since its determinant is −1 (where we identify H with R4).
For a 4-dimensional oriented vector bundle with quaternion fiber, say ξ, we can consider its conjugate ξ.
This consists of taking the same underlying 4-dimensional real bundle but changing the multiplication
structure to conjugate multiplication in H. In other words, the identity transformation (in a set-theoretic
sense) between the total spaces

id : E(ξ) −→ E(ξ)

is turned into a conjugate-linear transformation in such a way that id(λv) = λv.
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Thus if a transition map is given by f : Ui ∩ Uj −→ SO(k), then our new transition map is subject
to the condition

f(x)(v) = f(x)(v).

Consequently, by construction, there exists a bundle isomorphism between ξ and ξ that reverses the
orientation (conjugating each fiber).

Going back to our particular case, if we conjugate ξh,l where the transition map is given by fh,l(u)(v) =
uhvul, then the transition map of ξ(h,l) is given by

f̃(u)(v) = fh,l(u)(v) = uhvul = u−lvu−h.

Here we used that u is an element of S3, and so its conjugate coincides with its inverse. From this it
follows (switching v by v) that the transition map is

f̃(u)(v) = u−lvu−h = f−l,−h(u)(v).

This proves the following lemma:

Lemma 34. There exists an orientation-reversing isomorphism which is given by the conjugate trans-
formation

ξh,l ∼= ξh,l ∼= ξ−l,−h.

For 4-dimensional bundles, the top Pontryagin class (in this case p1) is independent of the orientation.
Thus the first class of ξh,l and of ξ−l,−h coincide and we obtain

m · h+ k · l = m · (−l) + k · (−h).

In particular, setting (h, l) = (1, 0) we have that

m = −k,

and so
p1(ξh,l) = m(h− l).

In order to determine the constant m, it would suffice to evaluate in (1, 0) or (0, 1) and calculate the Pon-
tryagin class of the resulting space. Luckily, ξ0,1 is the canonical bundle over HP1, and the characteristic
classes are already calculated. For this purpose, we need the following lemma.

Lemma 35. The cohomology ring of HPn is described as

H∗(HPn) ∼= Z[e]/(en+1)

where e is the Euler class of the canonical bundle.

Proof. Since HPn has a cell structure that involves only 4-dimensional cells (the reader may compare this
to the construction of CPn, which has only cells of even dimension) the only non-zero cohomology groups
are those whose dimension is divisible by 4.

Let E be the total space of the canonical bundle γn. Denote by Σ the zero section and take

E \ Σ = {([x], v) | v ∈ [x], v 6= 0}.
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However, this space is homotopy equivalent (as a bundle) to a sphere bundle with total space S4n+3 via
the maps ([x], v) 7−→ v

‖v‖ and v 7−→ ([v], v).

Using the Gysin sequence:

. . . Hi(HPn) Hi+4(HPn) Hi+4(S4n+3) Hi+1(HPn) . . .^e π∗0

since most Hi(S4n+3) are zero, we have that multiplication by e gives an isomorphism that jumps 4
dimensions each time. Starting with H0(HP) ∼= Z (since HP is connected), it follows that H4(HPn) = eZ
and so on, while the other groups are zero. This proves the lemma.

Observe that the cohomological description given above has an interesting consequence: the first
Chern class of the canonical bundle is zero because c1(γn) ∈ H2(HPn) = 0. Also, the second Chern class
agrees with the Euler class c2(γn) = e. Thus

c(γn) = 1 + c1(γn) + c2(γn) = 1 + e.

On the other hand, by equation (2), we obtain

1− p1 + p2 − · · · = (1− c1 + c2 − . . . )(1 + c1 + c2 + . . . )

and so
1− p1(γn) + p2(γn) = (1 + c2(γn))(1 + c2(γn)) = (1 + e)2.

We conclude
p(γn) = 1− 2e+ e2.

Now we are ready to determine the coefficients of the first Pontryagin class. Recall

p1(ξh,l) = m(h− l)η

where η is a generator in cohomology. But then

p1(ξ0,1) = m(0− 1)η = −2e.

Thus, depending on our choice of the generator, we have that m = ±2, and we have shown the following.

Proposition 36.
p1(ξh,l) = ±2(h− l)η.

3.3.3 Calculating p1(Kh,l)

Now we use the characteristic classes of the bundles ξh,l in order to calculate the characteristic classes of
Kh,l from Section 3.3.

To a vector bundle π : E −→M we can associate the commutative diagram

π∗TM TM

E M

π′

π

where π′ : TM −→M is the standard projection for the tangent bundle. In particular, we have an exact
sequence

0 π∗E TE π∗TM 0 .
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In this sequence, we write π∗E as the set of pairs that commute with both projections, that is

π∗E = {(x, f) ∈ E × E | π(x) = π(f)}

and
π∗TM = {(x, v) ∈ E × TM | π(x) = π′(v)} .

The first map in the sequence can be defined by identifying f ∈ E as an element of TxE (since the fiber
over x is just a copy of Euclidean space, take f − x). The second map simply projects (tangentially) the
second coordinate, (x, v) 7→ (x, π∗(v)). It is clear that the image of the first map is contained in the kernel
of the second map. By a dimension argument, this sequence is exact. Moreover, choosing a Riemannian
metric on E, this sequence splits, i.e.,

TE ∼= π∗E ⊕ π∗TM.

Now we restrict both tangent bundles and the projections to vectors of norm less or equal to 1. We
obtain a similar splitting, and for the space Nh,l we get

TNh,l ∼= π∗ξh,l ⊕ π∗TS4.

It is known that by adding a trivial one-dimensional bundle to the tangent bundle of the sphere, one gets
a trivial bundle, i.e.,

TS4 ⊕ ε1 ∼= ε5.

As a consequence,

TNh,l ⊕ ε1 ∼= π∗ξh,l ⊕ π∗TS4 ⊕ ε1

∼= π∗ξh,l ⊕ π∗
(
TS4 ⊕ ε1

)
∼= π∗ξh,l ⊕ ε5 ,

hence

p1(Nh,l) = p1(π∗ξh,l ⊕ ε5)

= p1(π∗ξh,l)

= π∗p1(ξh,l).

Since π : Nh,l −→ S4 is a homotopy equivalence, hence the map π∗ : H4(S4) −→ H4(Nh,l) is an
isomorphism. Then

π∗(p1(ξh,l)) = π∗(2(h− l)η) = 2(h− l)π∗(η)

where π∗(η) is a generator.

Now the inclusion
ι : Nh,l ↪→ Kh,l

induces an isomorphism ι∗ in degree four cohomology because Kh,l differs from Nh,l by the addition of
an 8-cell (this does not affect the lower-degree cohomology). Therefore, we have a natural identification

p1(Kh,l) = 2(h− l)β

where β is a generator in degree four cohomology.
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Finally, by Hirzebruch’s signature theorem and corollary 27, we have the equation

σ(Kh,l) =
1

45

(
7p2(Kh,l)− (±2(h− l))2

)
.

On the left-hand side, since H4(Kh,l) is of dimension one, we have that σ(Kh,l) = ±1. We choose the
fundamental class in such a way that σ(Kh,l) = 1, i.e., such that 〈β2, [Kh,l]〉 = 1 (we can always do this
by reversing the orientation). Thus we get an equation of the form

45 = 7p2(Kh,l)− 〈(±2(h− l)β)2, [Kh,l]〉
= 7p2(Kh,l)− 4(h− l)2〈β2, [Kh,l]〉
= 7p2(Kh,l)− 4(h− l)2 .

Reducing modulo 7 we have

3 = −4(h− l)2 mod 7

= 3(h− l)2 mod 7 ,

which simplifies to
(h− l)2 = 1 mod 7.

This does not always hold! Just take h, l such that (h − l)2 6= 1 mod 7. By way of contradiction, we
have shown that the differentiable structure cannot coincide with the standard one.

4 A comparison with Milnor’s original work

In his famous paper of 1956, see [Mil56], Milnor defines an invariant associated with 7-manifolds.

We begin with a 7-dimensional, compact, oriented manifold M subject to the following condition

H3(M) = 0 = H4(M).

An important result is the following:

Lemma 37 (Thom). The oriented bordism group in degree 7 is trivial.

As a consequence, M is the boundary of an 8-dimensional manifold, which we denoted by B. The
Poincaré duality relates the long exact sequence of the pair (B,M) in cohomology and homology. This
is the following commutative diagram

. . . H3(M) H4(B,M) H4(B) H4(M) . . .

. . . H3(M) H4(M) H4(B,M) H3(M) . . . .

D

j

D D D

j

Since H3(M) = H3(M) = H4(M) = H4(M) = 0 we get that the morphisms j’s are isomorphisms. For
the fundamental classes [B] ∈ H8(B,M) and [M ] ∈ H7(M), we set V = H4(B,M)/Torsion and we get
a quadratic form Q : V × V −→ Z given by

Q(α) = 〈α ^ α, [B]〉.
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The Poincaré duality implies that Q is non-degenerate.

Denote by τ(B) the index of Q and since j is an isomorphism we define

q(B) := 〈
(
j−1p1

)2
, [B]〉.

The invariant λ(M) is the residue modulo 7 of 2q(B)− τ(B). Now we show that λ(M) is well-defined
(it is independent of B and only depends on M).

Take two disjoint manifolds B1,B2 such that ∂B1 = ∂B2 = M . We construct a new manifold C
obtained by smoothly gluing B1 and B2 along M , where we keep the original orientation of B1 and
reverse the orientation of B2. We illustrate C in the following picture:

M

B1

B2

Figure 8: The manifold C := B1 ∪ −M2.

By our choice of orientation, the fundamental class [C] restricts to [B1] and −[B2].

Lemma 38. The following equalities hold:

σ(C) = τ(B1)− τ(B2)

〈p2
1(C), [C]〉 = q(B1)− q(B2).

Proof. Using the Mayer-Vietories exact sequence, we have a commutative square

Hn(B1,M)⊕Hn(B2,M) Hn(C,M)

Hn(B1)⊕Hn(B2) Hn(C) .

j1⊕j2

h

j′

k

(4)

Since H3(M) = H4(M) = 0, for n = 4, the square consists of isomorphisms. In particular, if α ∈ H4(C)
is any cohomology class, then there exist α1, α2 such that α = j′h−1(α1 ⊕ α2). Thus

〈α2, [C]〉 = 〈(j′h−1(α1 ⊕ α2))2, [C]〉
= 〈α2

1 ⊕ α2
2, [B1]⊕ (−[B2])〉

= 〈α2
1, [B1]〉 − 〈α2

2, [B2]〉.

The index of the left-hand side is simply the signature of C (compare with section 1.1). This implies that
σ(C) = τ(B1)− τ(B2).
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Moreover, let α1, α2 be defined by α1 = j−1
1 p1(B1) and α2 = j−1

2 p1(B2). If ιi : Bi ↪→ M denote the
inclusions, then we have ι∗i p1(C) = p1(Bi) by naturality of characteristic classes. As a consequence,

k(p1(C)) = p1(B1)⊕ p1(B2)

where k is the isomorphism in (4). This implies

j′h−1(α1 ⊕ α2) = p1(C).

Similarly, as in the computation for the signature, we get

〈p2
1(C), [C]〉 = 〈α2

1, [B1]〉 − 〈α2
2, [B2]〉 = q(B1)− q(B2).

Recall Hirzebruch’s signature theorem (Corollary 27):

σ(C) = 〈 1

45

(
7p2(C)− p2

1(C)
)
, [C]〉.

After some manipulation we obtain

〈p2
1(C), [C]〉+ 45σ(C) = 7〈p2, [C]〉.

Reducing modulo 7 it follows that

〈p2
1(C), [C]〉+ 3σ(C) = 0 mod 7

and multiplying by 2 and reducing the coefficients gives

2〈p2
1(C), [C]〉 − σ(C) = 0 mod 7.

Lemma 38 implies the following

2q(B1)− τ(B1) = 2q(B2)− τ(B2) mod 7 .

This implies that λ(M) is well-defined.

In particular, if h+ l = −1 we know that Mh,l is homeomorphic to S7, which obviously satisfies the
condition H4(S7) = H3(S7) = 0. Furthermore, we can explicitly calculate λ(Mh,l) using that ∂Nh,l =
Mh,l. In Section 3.3.3 we have computed

p1(Nh,l) = ±2(h− l)ζ

with ζ = π∗(η). We chose an orientation of Nh,l such that 〈(j−1ζ)2, [Nh,l]〉 = 1 (we can always do this,
up to reversing the orientation) and from this we see

q(Nh,l) = 〈(j−1(±2(h− l)ζ))2, [Nh,l]〉 = 4(h− l)2.

Besides that the index τ is given by 〈(j−1ζ)2, [Nh,l]〉 which is exactly 1 due to our choice of orientation.
Therefore,

λ(Mh,l) = 2q − τ = 8(h− l)2 − 1 ≡ (h− l)2 − 1 mod 7.

If Mh,l is diffeomorphic to the standard sphere, we take the standard 8-ball as a bounding mani-
fold. For this case, both q and τ are zero since the fourth cohomology group is trivial. Thus λ(Mh,l) = 0
which means that for all values of h, l with h+ l = −1, we must have (h− l)2−1 6= 0 mod 7. This is false.
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5 Closing remarks

5.1 In summary

The proof of the existence of exotic spheres resides in a plethora of topological results that were freshly
developed in the fifties.

On one hand, the simple classification of oriented vector bundles over the sphere due to Steenrod’s
theorem and the relatively easy computation of π3(SO(4)) allow us to understand all sphere bundles with
structure group SO(4) over the 4-sphere. Then we use Reeb’s theorem to conclude that among all those
bundles, some are homeomorphic to the sphere.

The work of Thom and Hirzebruch provides powerful invariants associated with manifolds.

The cohomological description of these spaces implies prescribed values for the signature and the first
Pontryagin class. If they were diffeomorphic to the standard sphere, it would be possible to construct
new spaces that also admit a simple but rigid description of these invariants. Eliminating the second
Pontryagin class by working modulo 7 we get a contradiction by a specific choice of indices. From this,
we conclude that said manifolds are homeomorphic to the 7-sphere but not diffeomorphic.

5.2 A glimpse ahead

Figure 9: Michel Kervaire.

This was only the beginning of discovering the so-called ’Ex-
otic structures.’ The most immediate progress came from
Milnor and Kervaire [Ker63], who enumerated all exotic
spheres in 1963, summing up to 28 different exotic spheres in
dimension 7. The monoid of exotic structures in dimensions
different from four has been extensively studied and turns
out to be a group.

It is worth mentioning that even if many important re-
sults have been obtained in this direction, we still need to
understand more about exotic structures. A combination of
the work by Moise and Stallings [Sta62] shows that Rn has no
exotic structure for n different from 4, while Freedman was
the first to exhibit the existence of an “exotic R4” [Fre82].
A continuum of exotic structures has been found for R4. Fi-
nally, the question about exotic structures in the 4-sphere
remains open.
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