Contextual Stochastic Bandits
with Budget Constraints and Fairness Application

Gilles Stoltz

Laboratoire de mathématiques d'Orsay

“IH'L Mathématiques

Orsay

cnrs unlver5|te
PARIS-SACLAY

Joint work with Evgenii Chzhen, Christophe Giraud, and Zhen Li



Simplest setting
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K—-armed stochastic bandits

Simplest possible framework
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K probability distributions vy, ..., vk in a model D

with expectations u1, ..., uk —  pr= m?x] La
ac[K

At eachround t =1,2,...

1. Statistician picks arm A; € [K]

2. She gets a reward Y; drawn according to v4,
3. This is the only feedback she receives

— Exploration—exploitation dilemma
estimate the v, vs. get high rewards Y;

Goal:
Maximize expected cumulative rewards <— Minimize regret

ZYt = > (0" — pa) E[No(T)]

ag[K]
<— Control the E[N,(T)] for suboptimal arms a

Rr=Tu —E
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Setting:
Distributions vy, ..., vk with expectations ug,..., uk
At each round t > 1, pick arm A; € [K], get and observe Y; ~ va,

Proof of the rewriting of regret

Tower rule:  E[Y; | A¢] = pa, thus E[Y:] = E[ua,]

T T

Rr=> (u*—E[Y) => (1" —Elual)
t=1 t=1
= Z Z ,U - ,Ua H{At a}] Z (,U* - ,Ua) E[Na(T)}
t=1 ac[K] a€[K]

;
where  Ny(T) =) Ta_y
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Model: vy, ..., vk are distributions over [0, 1]

A popular strategy: UCB [upper confidence bound)]
Auer, Cesa-Bianchi and Fisher [2002]

R 2Int
For t > K, pick  Agy1 € argmax fia(t) + St
ac[K] Na(t)

Exploitation: cf. empirical mean fi,(t) = t) Z sIia—a)

Exploration: cf. 1/21Int/N,(t) favors arms a not pulled often
Regret bounds (suboptimal) of two types

InT
— Distribution-dependent bound:  R7 < Z 8T

*
aipLa<p* K Ha

— Distribution-free bound: sup Rr SV8KTInT

Vi, VK
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8InT
Proof of Rt < Z .
. » 7 — Ha
afra<pb
. . 2Int _3
Hoeffding—Azuma: P ‘,u,a — ,ua(t)‘ <y)=—=¢p=21-2t
N, (t)

If A; = b is not an optimal arm a*, then

. [ 2Int - [2Int
:U'a*(t) + Na*(t) < /’Lb(t) + Nb(t)

2Int
Np(t)

thus w.h.p. W< pup +

8InT

which imposes Np(t) L ——
S

Conclude with Ry = > (u* — pa) E[N,(T)]
ac[K]
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Proof of sup Rr SV8KTInT

We proved E[Ny(t)] <

Thus  Rr= 3 (i — a) /E[Na(T)] E[N(T)]

ac[K]

< VBT Y EN(T)]

a€lK]

<V8KTInT
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Contextual stochastic bandits with K arms

Linear modeling + Logistic modeling



At eachround t =1,2,.. .,

0. A context x; € R? is determined by the environment

1. Statistician picks arm A; € [K]

2. She gets a reward Y} with conditional expectation r(x¢, A¢)
3. This is the only feedback she receives

Goal:
Maximize expected rewards <— Minimize expected regret

:
S
t=1

Structural assumptions handy! E.g., linearity:

T
Rt = Z targets? — E
t=1

r(x,a) = p(x,a) 0 ~ targets  max p(x¢, a) 0,
a€[K]

Transfer function ¢ : RY x [K] — R™ known,
But parameters 6, € RY unknown
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Setting:  contexts x; € R, pick arms A; € [K], get rewards Y;

Regret R = Z ;2% o(x¢,a) 0, — Z E [p(x¢, Ar)"04]

t<T
Key: learn 6, (= estimate it while playing)

LinUCB with regularization A > 0 for bounded contexts
Abbasi-Yadkori, P3l, Szepesvari [2011]

Based on the idea Zga(xs, As)Ys ~ Zga(xs, As)p(xs, AS)TG*

t—1
Statement: let Mi_1 = XId + Z@(xs,As)gp(xs, Aq)"
s=1
R . t—1
and  O1 = (Meo1) ) (x5, As) Vs
s=1
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Setting:  bounded contexts x; € R?, arms A; € [K], rewards Y;

reward function r(x,a) = ¢(x, a)TG*, with ]E[Yt ‘ At7xt] = Lp(Xt,Af)Te*
t—1

§t,1 = Mt 1 Zcp Xs,As)Ys where M;_; =AId+ Z@(XS,AS)QO(XS,AS)T
s=1

Confidence region on 6,:

PL 00— Oe1yy,_, S OVIn(e/0)} =

where ||u||p = VuT Mu and provided that A is well set
Complex proof based on “Laplace’s method of mixtures”

Simultaneous confidence intervals on the r(x, a): based on
(%, 2) 01 = (%, @) 0] < (105 = Bea [y, [00x ) [,y
<Og V |n(t/5) || (,O(X, a) || (My_1)-1

:Etfl,é(xva)

where Zat_l,(;(xt,At) <VTIn(T/8) by linear algebra
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Setting:  bounded contexts x; € R?, arms A; € [K], rewards Y;
reward function r(x, a) = ¢p(x, a)TG*, with E Yt ! At,xt] = o(x¢, At)TQ*

Simultaneous confidence intervals: |?;_1(x,a) — r(x, a)| < e:—1,5(x, a)

where Zet 1,6(xt,Ar) S \FIn(T/é)

t<T

Optimistic choice:  A; € arg max{?t_l(xt, a) + e¢—1,6(xt, a)}

ac[K]
T T N
Regret bound: Ry = m% r(x¢,a) — Z Y: < O(ﬁ)
=1 € t=1

In high-probability (but algorithm depends on §)
Or in expectation (set § = t™*, e.g.)

We could also have obtained high-probability bounds based on the UCB strategy
in the non-contextual case
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Logistic bandits
Extended from Faury, Abeille, Calauzénes, Fercoq [2020]

At eachround t =1,2,...,

. A context x; € R? is determined by the environment

. Statistician picks arm A; € [K]

. The outcome Y: € {0,1} is drawn with probability P(x;, A)
. This is the only feedback Statistician receives

. Statistician gets the reward r(x¢, A¢) Yt

A~ W NN~ O

Conversion rate P unknown but reward function r known

Structural assumption:
1

1 + e
Similar results may be achieved as for linear bandits

P(x,a) = n(¢(x,a)"0,) where  7(x)

Estimation based on maximum likelihood
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Contextual stochastic bandits with K arms

And now, with budget constraints!
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At eachround t =1,2,...,

0. A context x; ~ Q is drawn at random

1. Statistician picks arm A; € [K]

2. She gets a reward Y} with conditional expectation r(x¢, A¢)

3. She also suffers costs Z; with conditional expectation c(x;, A)
4. Her feedback is Y; and Z;

Vector-valued costs: possibly several constraints

Goals:
Maximize Z Y:  while ensuring Z Z,<TB

t<T t<T

Known: budget TB

Unknown: reward function r, cost function c, distribution Q

but structural assumptions to be issued on r and c
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Setting called CBwK — contextual bandits with knapsacks

First reference for CBwK: Badanidiyuru, Langford, Slivkins [2014]
State of the art = TB at best T3/%: Agrawal and Devanur [2016], Han et al. [2022]

Fairness application
Inspired from Chohlas-Wood, Coots, Zhu, Brunskill, Goel [2021]

Fair budget spending among groups: Z; first component of Z;

T
Z Z; g TBtotaI
t=1

T T
1 1
and  Ve€G, |5 Zligea=g) ~ 7 2 4| ST
€ t=1 t=1

where v, = Q{gr( J) = g}
and 7 is a tolerance factor, ideally ~ 1/ﬁ

B contains a B,,. component, as well as components 7,7
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Setting: context x; ~ Q, arm A; € [K], reward Y; and costs Z;
Conditional expectations: r(x¢, A¢) and c(x¢, A¢)

Total budget constraints TB

Benchmark: static policies 7 : x — (Wa(x))aE[K] € P(IK])

We assume feasibility, and actually for B — el (OK if a null-cost action exists)

opt(r,c,B) =sup ¢ Exg Z r(X, a) ma(X)
T ac[K]

under Ex.q Zc(X,a)wa(X) <B
a€[K]

Regret: Ry = Topt(r,c,B) Z \
t<T

Hard constraint: Z Z,<TB

t<T
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Regret: Minimize Rt = T opt(r,c,B) — Z Y: where

t<T
opt(r,c,B)
=sup{ Exwg | > r(X,a)ma(X)| : Exg| Y €(X,a)ma(X)| <B
™ ac[K] ac[K] i
=sup inf Ex.g| Y r(X,a)m(X)+ <,\, B- ) cX,a) wa(X)>
m A0 a€[K] a€[K] l
= T}”& Ex~0 Lrgﬁ?]{r(x7 a) — (c¢(X, a) — B, )\>}]

— Suffices to learn r and ¢, as well as \* ~» parametric problems!
Cf. x¢; ~ QQ observed at each round

Learn r and c: via Tstructural assumptions (linearity or logistic)
Uniform bounds available
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Target:  opt(r,c,B) = &n>|ra Ex~q {;g%{r(x, a) — (c(X,a) — B, )\>}}

— Gradient descent on dual / best response for primal variable(s)

Algorithm with fixed step size
Fort=1,2,...,T:

1. Play A; € arg max{?t_l(xt, a)— <ét_1(xt, a) — (B — bl), )\t_1>}
ac[K]

2. Make gradient step A; = <)\t_1 + ﬁ,v(ét_l(xt, a)—(B— bl)))+

3. Update estimates 7; and €; of functions r and c
Optimistic estimates: ?; upper bounds r and ¢; lower bounds c

Idea already in Agrawal and Devanur [2016]
But the key to handle smaller budgets is the tuning of ~
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From Chzhen, Giraud, Li, Stoltz [2023]

1. Play A; € arg max{?t_l(xt, a) — (&t—1(x¢,a) — (B — b1), )\t_1>}
a€[K]

2. Make gradient step A¢ = (AH + (&1 (xt,a) — (B — bl)))+

Analysis, part 1
Cost margin Tb should be of order (1 + ||A*]|)/A

That margin adds a |\*[|(Tb+ v/T) to regret
— Oracle choice (1 + [|M]])/V/T for 7, leads to (1 + [[A*[|)v/T regret

Solving the issue

Typical bypass by estimating |A*|| on v/T preliminary rounds (see, e.g.:
Agrawal and Devanur [2016], Han et al. [2022]) imposes min B > T—1/4

We use a careful doubling trick v, = 2%/v/T
Only requires min B to be larger than 1/+/T up to poly-log terms

Theorem: Costs controlled, and
~ 2 opt B
Rr SO+ [IN)VT  where [\ < 20pt(r,c, B)

if null-cost action
min B
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