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8 Addendum: singulators and bisingulators.

Unlike the seven preceding sections, which merely re-hash old unpublished
material, the present Addendum was written quite recently and in some
haste, following a series of exchanges with Leila Schneps, who apprised us of
an – apparently quite brilliant – thesis, yet to be defended, by Samuel Bau-
mard, a PhD student of hers. Though we are not, by any stretch, cognizant
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of the full substance of the thesis1, what little we learnt of it caught our
attention and prompted us to write down a series of remarks – partly to put
the student’s investigation (about bisingulators) into perspective by relating
it to earlier work of ours (on singulators); partly to prove a conjecture by
L. Schneps who, on the strength of numerical evidence, correctly surmised
that the carma bialternals could be expressed as sums of some special ari-
brackets; and partly, in fact chiefly, to suggest further and to our mind quite
promising lines of investigation.2

8.1 A simple but useful lemma about push-invariants.

We have it from L.Schneps that her student proved the following lemma:

Lemma 8.1.1 Bialternal bimoulds of the form

Mw1,...,wr = Nw1,...,wr P (u0)P (u1) . . . P (ur)
(
u0 := −(u1 + ...+ur)

)
(1)

with N• u-entire and v-constant, are stable under ari.
In other words, for such bimoulds the ari-bracketing, contrary to expec-

tations, produces no “bad” poles of type P (ui + ...uj) with 1 < j−i < r−1.
We have not seen the proof in question3 but we wish to point out that

the lemma actually results from another statement which, though stronger,
is actually simpler to establish:

Lemma 8.1.2 Push-invariant bimoulds of the form

Mw1,...,wr = Nw1,...,wr P (u0)P (u1) . . . P (ur)
(
u0 := −(u1 + ...+ur)

)
(2)

with N• u-entire and v-constant, are stable under ari.
Since bialternality classically implies push-invariance, the latter Lemma

implies the former. Moreover, since in (2) the push-invariance of M• is equiv-
alent to that of N•, it suffices to check that for any pair S•1 , S

•
2 of arbitrary

bimoulds of lengths r1, r2, the ari-product

M• := ari(M•
1 ,M

•
2 ) with N•i := pushinvar.S•i (∀i ∈ {1, 2}) (3)

1We have to say that, though S.Baumard was apparently put to work on subjects close
to ours, and that too with methods due to us (flexion algebra etc), we were not at any
stage informed of his progress. In fact, we initially learnt of this PhD project by pure
happenstance, from a chance remark by our esteemed Orsay colleague, Pierre Pansu.

2To underscore the kinship and mutual convertibility between the earlier operators
(“singulators”) introduced by us in the early 2000s and those recently used by S.Baumard,
we shall refer to the latter as “bisingulators” and adhere throughout to a terminology and
notations probably alien to S.Baumard but as close as possible to the ones already in use
for the “singulators”.

3though L. Schneps gave us a sketch of the argument leading to it.
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has no “bad” poles. The verification is staightforward:

(i) one first deals with the case when the length-1 components of M•
1 , M•

2

have no poles at u1 = 0.
(ii) one calculates Mw while keeping P as P
(iii) for any (i, j) with 1 ≤ i < j ≤ r := r1 + r2 (due to the push-invariance
of M• one may in fact assume i to be 1) one calculates the coefficients H+

i,j

and H−i,j respectively of P (ui + ...+ uj) and P (−(ui + ...+ uj)) in Mw

(iv) one sets uj := −(u1 + ...+ uj−1) in H+
i,j and H−i,j, which thus become h+i,j

and h−i,j
(v) one then checks (preferably using the “long notation”, i.e. with u0) that
due to pairwise cancellations h+i,j and h−i,j, and not just the difference h+i,j−h−i,j,
separately vanish.
(vi) lastly, one easily removes the restriction (i). To do this, it is in fact
enough to deal with the case when Mw1

1 = P (u1).P (u0) = −P (u1)
2 and Mw1

2

is regular at u1 = 0.

Casual remark: As just mentioned, the proof makes no use of the actual
form of P , not even its imparity: it would work just as well with P changed
to an arbitrary meromorphic function with a simple pole at the origin.4

Important remark: Lemma 8.1.2 no longer holds if we remove the assump-
tion of v-constancy. Or rather, it still holds, but only if we impose special
constraints on the v-dependency. Now, it so happens that in the case of
n-coloured multizetas, we are led to consider bimoulds that do depend on the
vi-variables5 but which automatically verify these additional constraints.

8.2 (Bi)singulators, (bi)singulands, (bi)singulates.

The (bi)singulators are bimould operators that turn regular inputs of the
right parity – the (bi)singulands – into singular and bialternal outputs – the
(bi)singulates. All three come in two forms: simple or composite.

Let us start with the simple (bi)singulators (bi)slank r. These operators
turn (bi)singulands (bi)sønd r from BIMU 1 into (bi)singulates (bi)søtr in

4For instance, we might change P to Q with Q(t) := c/ tan(c t).
5they range over a discrete set Z/ 1

nZ.
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BIMU r:

slankr.sønd•r := senkr(pal•).sønd•r (cf.[E3], §5) (4)

bislankr.bisønd•r := ~ari(bisønd•r,

(r−1) times︷ ︸︸ ︷
κα•−2, . . . , κα

•
−2) (5)

Throughout, the length-1 bimoulds κα•d are defined by καw1
d := ud1.

The operator slank r produces a bialternal singulate if and only if the
singuland søndw1

r has the right parity in w1, namely odd when r is even,
and even when r is odd. The operator bislank r, on the other hand, produces
bialternal bisingulates if and only if the bisinguland bisøndw1

r is an even
function of w1, whatever the value of r.

Under slank r (resp. bislank r ), the homogeneous degree drops by r−1
(resp. 2 r−2) units.

Lastly, it was stated in [E3] (§5.7, p 107) that the singulates søt•r :=
slank r.sønd•r have only “good” poles, that is to say poles of the form P (ui) or
P (u0) := P (−u1...−ur), to the exclusion of “bad” poles of type P (ui+· · ·+uj)
with 1 < |i−j| < r−1, which the flexion operations might have been expected
to produce, and which they do indeed produce when the singuland does
not possess the right parity. Moreover, we are told by L.Schneps that her
student has proved an analogous statement for the bisingulates, assuming of
course the bisinguland to be even. As we shall see, due to the equivalence of
singulates and bisingulates and on the strength of the above Lemmas in §8.1,
both statements corroborate each other. The remarkable thing, however,
which we may note in passing, is that in both cases the parity condition
guaranteeing bialternality coincides with the one that keeps “bad” poles at
bay!

Let us now define the composite (bi)singulators (bi)slank r1,...,rn . These

operators turn (bi)singulands (bi)sønd•r1,...,rn from BIMU n into (bi)singulates

(bi)søt•r1,...,rn in BIMU r1+...rn . They are characterised by the following straight-
forward multilinearity property, valid for all degrees di:

slankr1,...,rn .mu(κα•d1 , ..., κα
•
dn) = ~ari(slankr1 .κα

•
d1
, ..., slankrn .κα

•
dn) (6)

bislankr1,...,rn .mu(κα•d1 , ..., κα
•
dn) = ~ari(bislankr1 .κα

•
d1
, ..., bislankrn .κα

•
dn) (7)

The notation ~ari signals that the bracketing goes from left to right.6

Although the simple (bi)singulators (bi)slank r make direct sense only for
r > 1, it is convenient to set:

slank1 = bislank1 := id : BIMU1 → BIMU1 (8)

6In [E3], we had adopted the opposite convention.

4



so as to be able to handle composite (bi)singulators (bi)slank r1,...,rn with
partial indices ri ≥ 1.

Another convenient tool has to be mentioned in this context: namely the
operators preslank r1,...,rn and prebislank r1,...,rn , which are defined exactly as

in (6) and (7) but with ~ari changed to ~preari . Taken in isolation, they fail to
produce bialternals (they do so only collectively, in the right combinations7)
but they have one great merit: they relieve us of the necessity of choosing
(necessarily arbitrary) bases in the spaces spanned by all (bi)slank r1,...,rn of
a given length r =

∑
ri.

8.3 Mutual convertibilty of singulates and bisingulates.
The algebra ALALsing .

The monomial pilot formula behind convertibility.

For any even d, consider the simple “atomic” (bi)singulates:

sat•r,d := slankr.κα
•
d+r−1 (9)

bisat•r,d := bislankr.κα
•
d+2 r−2 = ~ari(κα•d+2 r−2,

(r−1) times︷ ︸︸ ︷
κα•−2, . . . , κα

•
−2) (10)

Both have the same length r; the same homogeneous degree d; and the same
effective polarity8 of order r−1. Now, a careful calculation shows that:

bisatwr,d ≡
(r − 1)! (d+ 2 r − 2)!

(d+ r − 1)!
satwr,d mod Polarr−2 (11)

Incidentally, if we introduce the “weight” s := r+d, the conversion factor
(r−1)! (d+2 r−2)!

(d+r−1)! assumes the slightly more pleasant shape (r−1)! (s+r−2)!
(s−1)!

The general pilot formula, and what it tells us.

Consider now general (bi)singulands subject to no other restriction than
regularity at u1 = 0:

søt•r := slankr.sønd•r with søndw1
r := A(u1) (12)

bisøt•r := bislankr.bisønd•r with bisøndw1
r := B(u1) (13)

7i.e. in sums of type
∑
cr1,...,rn pre(bi)slankr1,...,rn

, with alternal coefficients c•.
8The term effective polarity really explains itself. It differs of course from the apparent

polarity (i.e. the degree of the denominator you get after brutally factoring everything),
which in the present instance would be r+1. For composite (bi)singulands, the discrepancy
between effective and apparent polarity is even larger.
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The corresponding (bi)singulates verify the following identities, which neatly
isolate the terms of highest polar order (in the present instance, of order
r−1):

søtwr =
∑

0≤i<j≤r

(−1)j−i−1(r−1)!

(j−i−1)!(r−j+i)!
.
A(ui)

(r−1)!

k 6∈{i,j}∏
0≤k≤r

P (uk) mod Polarr−2 (14)

=
∑

0≤i<j≤r

(−1)j−i+r(r−1)!

(j−i−1)!(r−j+i)!
.
A(uj)

(r−1)!

k 6∈{i,j}∏
0≤k≤r

P (uk) mod Polarr−2 (15)

bisøtwr =
∑

0≤i<j≤r

(−1)j−i−1(r−1)!

(j−i−1)!(r−j+i)!
.B(r−1)(ui)

k 6∈{i,j}∏
0≤k≤r

P (uk) mod Polarr−2 (16)

=
∑

0≤i<j≤r

(−1)j−i+r(r−1)!

(j−i−1)!(r−j+i)!
.B(r−1)(uj)

k 6∈{i,j}∏
0≤k≤r

P (uk) mod Polarr−2 (17)

Remark 8.3.1. Non-trivialness of desingularisation.
Due to the parity conditions laid upon the singuland A (resp. bisinguland
B), the right-hand sides of (12) and (13) (resp. (14) and (15)) clearly co-
incide modulo Polar r−2 and define a bimould Søt•r (resp. Bisøt•r) that is
automatically bisymmetral, but again only modulo Polar r−2. By suitably
modifying these right-hand sides, one could easily ensure the exact alter-
nality of Søt•r and Bisøt•r and even their exact alternality in combination
with their exact push-invariance.9 What no elementary trick can achieve,
though, is exact bialternality. Were that possible, we would be spared many
a headache: we could simply subtract from søt•r − bisøt•r the exactly bial-
ternal part Søt•r − Bisøt•r that carries all the polarity of order r−1, and
by so doing kick-start a simple and effective conversion algorithm. Unfortu-
nately, no such short-cut can work: the only way to remove polar parts of
a given order while respecting the double symmetries is the arduous process,
essentially perinomal in nature, that is explained in [E1], [E2], [E3] and that
shall be applied here, in §8.8 to the special task of converting singulates and
bisingulates into one another.

Remark 8.3.2. The apparent differentiation of bisingulands: a
strange phenomenon halfway between fact and artefact.
A striking difference between the pilot formula for singulates and binsin-
gulates is this: the highest polar part as given by (12) or (13) involves the

9Ultimately, this is due to the finitariness of the combination alternality+push-
invariance, in sharp contrast to the non-finitariness of bialternality. See §1 supra.
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singuland A in unadulterated form, whereas (14) and (15) involve the deriva-
tive B(r−1) of the bisinguland. This is not to say, of course, that bisingulators,
which as linear operators resolve into a sequence of purely algebraic manip-
ulations, actually differentiate the singulands they act upon. They do no
such thing: if bisøndw1

r := B(u1) has only simple poles away from zero10,
the bisinguland bisøtw1,...,wr

r also will exhibit only simple poles11 away from
zero. There is no danger of poles of order r popping out of thin air – as
would be the case if actual differentiation had taken place. Still, we should
not dismiss this apparent “differentiation” as a mere optical illusion, for it
has two momentous consequences.

First consequence: When converting bisingulates into singulates (see §8.8
infra) we shall have to subtract from the bisingulate bisøt• (produced from
B) a singulate søt• (produced from A := (r−1)!B(r−1)). This subtraction,
to which there is no alternative, shall lead to actual differentiation and to a
very tangible proliferation of multiple poles.

Second consequence: If we were to use bisingulates instead of singulates in
the perinomal construction of luma•/lumi• and ruma•/rumi• (see [E2], [E3]),
the difficulty would be exactly the reverse (integration rather than differen-
tiation), only ten times worse. Indeed, to offset singulands A(u1) carrying
simple poles c.(u1−n1)

−1 we would have no choice but to rope in bisingulands
B(u1) carrying logarithmic terms of the form c. 1

(r−1)! ∂
−r+1
u1

. (u1 − n1)
−1 =

c. (u1−n1)r−2

(r−1)! (r−2)! log(u1−n1)+(...), and this would at once land us into an almighty
mess. This fact alone, from the very start, disqualifies bisingulates as a ve-
hicle for perinomal calculus.

Conversion rules at length r = 2.

This is actually the only conversion rule that we shall require for tackling
the carma bialternals. So let us deal with it with some care. Let us first recall
the three polynomials that go into the making of the doma bialternals:12

fa(u1, u2) := u1 u2 (u1 + u2) (u1 − u2) (u1 + 2u2) (u2 + 2u1) (18)

ha(u1, u2) := u21 + u1 u2 + u22 (19)

ga(u1, u2) := (u1 + u2)
2 u21 u

2
2 (20)

10By definition, (bi)singulands are regular at the origin.
11respective to any given variable ui or to any given partial sum ui + ...+ uj .
12For details, see [E3], §7.2. The bimoulds doma constitute a basis for the space

of all length-2 bialternals. Here, we may adopt the simpler indexation domaw1.w2
m,n :=

fa(u1, u2)
(
ha(u1, u2)

)m (
ga(u1, u2)

)n
.
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In the “long notation” (with u0 := −u1− u2), they assume the simpler form:

fa(u1, u2) := u0 u1 u2 (u0 − u1) (u1 − u2) (u2 − u0) (21)

ha(u1, u2) := −u0 u1 − u1 u2 − u2 u0 (22)

ga(u1, u2) := u20 u
2
1 u

2
2 (23)

Let us now collect all our (bi)singulands inside generating power series of t:

sundw1
2 (t) :=

2u1
(1− u21 t2)2

(24)

bisundw1
2 (t) :=

u21
(1− u21 t2)

(25)

In the long notation we get:

(bislank2.bisund2)
w1,w2 − (slank2.sund2)

w1,w2 =

u0 u1 u2 (u0 − u1) (u1 − u2) (u2 − u0)
(
3 + (u0 u1 + u1 u2 + u2 u0) t

2
)
t6

(1− u20 t2)2 (1− u21 t2)2 (1− u22 t2)2
(26)

which readily translates into:

(bislank2.bisund2)
w1,w2 − (slank2.sund2)

w1,w2 =

(fa).(3− ha t2) t6

1−4 ha t2+6 ha2 t4−(2 ga+4 ha3) t6+(ha4+4 ha ga) t8−2 ha2ga t10+ga2 t12
(27)

Expanding both sides of (27) as power series of t and equating the coefficients
of td (d even), we immediately get the singulates and bisingulates of same
degree translated into each other plus a string of doma bialternals.

Conversion rules at higher lengths (r ≥ 3).

Proposition 8.3.1. The twin processes of singulation and bisingulation are
globally equivalent: they generate exactly the same space of singular bisym-
metrals with “good poles”. The mutual convertibility of singulates and bisin-
gulates is guaranteed by the existence, for all pairs (sønd•r, bisønd•r) such that

søndw1
r = (r−1)! ∂r−1u1

bisøndw1
r

(
sønd•r, bisønd•r ∈ BIMUent

1

)
(28)

of identities of the form:

bislankr.bisøndr
• = slankr.søndr

• +

∑
ri=r∑

2≤s≤r

slankr1,...,rs .sønd•r1,...,rs (29)

slankr.søndr
• = bislankr.bisøndr

• +

∑
ri=r∑

2≤s≤r

bislankr1,...,rs .bisønd•r1,...,rs (30)
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(i) with all singulands sønd•r1,...,rs v-constant and in BIMU ent
s

(ii) with all proper singulates søt•r1,...,rs = slank r1,...,rs .sønd•r1,...,rs in BIMU sing
r

(iii) with one last ‘improper’ singulate søt•1,...,1 in BIMU ent
r .

Thus, at lengths 3 and 4 we have:

bislank3.bisønd3
• = slank3.sønd3

• + slank1,2.sønd•1,2 + slank1,1,1.sønd•1,1,1 (31)

bislank4.bisønd4
• = slank4.sønd4

• + slank3,1.sønd•3,1 + slank2,2.sønd•2,2
+slank2,1,1.sønd•2,1,1 + slank1,1,1,1.sønd•1,1,1,1 (32)

Important remark: By itself, our pilot formula (11) does not tell us that
the difference bislank r.bisøndr

• − slank r.søndr
• can be expanded into pure

sums of singulates or pure sums of bisingulates. It just tells us that, if
such expansions exist, they can involve only strictly composite singulates or
bisingulates, i.e. terms of lesser polarity. The existence itself of expansions
of type (29) and (30) flows from other considerations – namely, from the
formula (67) in §8.8 infra which is an exact analogue of (29) in the perinomal
setting.13

8.4 Reminder about the elements of ALILent and their
representation.

We recall that the systems {løma•s; s odd} constructed in [E3], §6 through
an inductive shuttle of singularisation-desingularisation are of the form:

løma•s = adari(pal•).
(

søt•s;1 + søt•s;3 + søt•s;5 + søt•s;7 + . . .
)

(33)

with v-constant singulates søt•s;r in ALALsing

(i) of odd length r,
(ii) of homogeneous u-degree d = s−r,
(iii) of formal u-polarity14 ranging between 1 and r−2
(iv) with each søt•s;r (save of course the initial and trivial søt•s;1) given as a

13Remarkably, ( 30) has no perinomal analogue: if has to be derived directly from (29)
by inversion.

14The ban on terms of formal polarity 0 means that we exclude from søts;r any trivial
contribution of the form slank1,...,1.sønd

•
1,...,1. These are the “naive bialternals”. They

necessarily occur, for instance, in the conversion formulae (29) and (30). They are absent
from (35), (37) etc — simply because we banished them! However, distinct realisations of
løma•

s, like for instance the three canonical realisations lama•
s, loma•

s, luma•
s may, and

for large enough values of s always do, differ pairwise by quite special – and rather rare –
terms of the form slank1,...,1.sønd

•
1,...,1. These are the so-called “wandering bialternals”.
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sum of strictly composite elementary singulates slankr1 ,...,rn sønd•r1,...,rn with
0 < n < r. Thus:

søt•s;1 = κα•s−1 (καw1
d := ud1 ) (34)

søt•s;3 = slank2,1.sønd•2,1 (35)

søt•s;5 = slank4,1.sønd•4,1 + slank3,2.sød•3,2 + slank3,1,1.sønd•3,1,1
+slank2,1,2.sønd•2,1,2 + slank2,1,1,1.sønd•2,1,1,1 (36)

For instance, the singuland søndw1,w2

2,1 , which is the only one that we shall
require in the next paragraph, is a homogeneous polynomial in (u1, u2) of
degree s−2. When acted upon by the singulator slank 2,1, it produces a
singulate søtw1,w2,w3

2,1 that is a homogeneous rational fraction in (u1, u2, u3) of
degree s−3.

8.5 All carma bialternals can be expressed as sums of
singulates or bisingulates, at one’s choice.

For any fixed system {løma•s; s = 1, 3, 5 . . . }, the carma bialternals of degree
d are constructed (see E1] §17 , [E3] §7) from precarma polynomials of degree
d+2, i.e. from alternal polynomials of the form:

precarx1,x2 =

dieven≥2∑
d1+d2=d+2

cd1,d2 x
d1
1 xd22 (37)

with 0• ≡
dieven≥2∑
d1+d2=d+2

cd1,d2 ari(κα•d1 , κα
•
d2

) (38)

The corresponding carma bialternal cørma• ∈ BIMU 4 is then defined by the
following identity, taken at length r = 4:

cørma• =
1

2

dieven≥2∑
d1+d2=d+2

cd1,d2 ari(løma•1+d1 , løma•1+d2) (39)

In view of (33), (34), (35), this yields:

cørma• =
1

2
adari(pal•)

dieven≥2∑
d1+d2=d+2

cd1,d2 ari(søt•1+d1;1, søt•1+d2;1) (40)

+
1

2
adari(pal•)

dieven≥2∑
d1+d2=d+2

cd1,d2 ari(søt•1+d1;1, søt•1+d2;3) (41)

+
1

2
adari(pal•)

dieven≥2∑
d1+d2=d+2

cd1,d2 ari(søt•1+d1;3, søt•1+d2;1) (42)
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Due to (34) and (38), the right-hand side of (40) vanishes. So we are left with
the contributions (41) and (42), from which the operator adari(pal•) may be
removed, since it acts on bimoulds which are already in BIMU 4. Thus:

cørma• =
1

2

dieven≥2∑
d1+d2=d+2

cd1,d2 ari(søt•1+d1;1, søt•1+d2;3) (43)

+
1

2

dieven≥2∑
d1+d2=d+2

cd1,d2 ari(søt•1+d1;3, søt•1+d2;1) (44)

Or again, due to the alternality of precar:

cørma• =

dieven≥2∑
d1+d2=d+2

cd1,d2 ari(søt•1+d1;3, søt•1+d2;1) (45)

In view of (34) and (35), this means, quite simply, that cørma• is a com-
posite singulate of type søt•2,1,1, which as such immediately converts into a
composite bisingulate of type bisøt•2,1,1 (plus of course a harmless string of
trivial terms of the form søt•1,1,1,1 = bisøt•1,1,1,1) under the simple rule of §8.3
that exchanges simple singulates of type søt•2 and simple bisingulates of type
bisøt•2. Resorting to formula (27) and choosing for example the canonical
(“perinomal”) realisation luma• of løma• with the corresponding singulands
sut•2,1 given by the formula (6.28) in [E3] (set (r1, r2) = (1, 2) rather than
(2, 1) due to the change of ordering convention), we arrive at the perinomal
realisation curma of our cørma bialternals, with a totally explicit expansion
in terms of bisingulates – an expansion which, however, does not compare
too favourably with the original expression in terms of singulates.

8.6 The messy structure of ALALsing . “Wandering”
bialternals at all polar heights.

Polynomial (bi)singulands (bi)søndw1,...,ws
r1,...,rs

, that is to say (bi)singulands with
values in C[[u1, . . . , us]], often produce (bi)singulates of effective polarity
strictly less than their formal polarity

∑
(ri−1) = r−s. At the lowest end of

the polarity chain, they produce singularity-free (i.e polynomial) bialternals
– the proper “(bi)wandering bialternals” – which, while rather thin on the
ground (they are incomparably less numerous than the general polynomial
bialternals), are still responsible for the residual indeterminacy that mars the
so-called semi-canonical realisations of løma•, røma• etc.

This indeterminacy only disappears, at the cost of much hard work, in
the fully canonical realisationss, of which three types are known:
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(i) the perinomal type luma•, ruma• etc, which maximises functional smooth-
ness
(ii) the arithmetical type lama•, rama• etc, which maximises arithmetical
smoothness
(iii) the mixed type loma•, roma• etc, which makes the best of both worlds by
taking advantage of the symmetries observed in the perinomal construction
while retaining a measure of arithmetical smoothness.

The bottom-line is that these wandering bialternals are a very real nui-
sance. They make a whole mess of the structure of ALALsing – a hard fact
that cannot be papered over or done away with by a simple sleight of hand.15

One of the most glaring manifestations of the wandering bialternals with
their nuisance value is this: the perinomal decompositions (see (50), (51)
infra), which have the merit of uniqueness, sometimes express Taylor-rational
singulates16 in terms of Taylor-irrational singulands.17 No contadiction here
– this is just the wanderers at their tricks! For instance, it is still a moot
question (which we haven’t found the time to address) whether the perinomal
conversion formula (67) expresses the Taylor-rational bisingulate on the left-
hand side in terms of Taylor-rational or Taylor-irrational singulands on the
right-hand side.

8.7 The tidy structure of ALALeumero. Uniqueness of
decomposition.

Perinomal calculus.18

Consider the elementary singulands

sund•[
n1
r1

] := P (u1−n1) + (−1)r1 .P (u1+n1) (46)

They are in BIMU even
1 if r1 is odd and in BIMU odd

1 if r1 is even. They can
therefore be subjected to the singulators slank r1 to produce simple bialternal
singulates

sut•[
n1
r1

] := slankr1 .sund•[
n1
r1

] for r1 > 1 (47)

15We may be wrong, but we suspect that little would be gained by equating ALALsing

with other structures, for behind the changed appearance these stuctures would perforce
be of equal messiness.

16i.e. singulates which, after multiplication by u0u1..ur, produce power series with only
rational Taylor coefficients.

17i.e. singulands carrying at least some irrational Taylor coefficients.
18What follows is a very sketchy account of perinomal calculus. For a more detailed

introduction, see [E3] and also [E2].
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For r1 = 1, we must set sut•[
n1
1

] := sund•[
n1
1

]. Of course, the singulands

sund•[
n1
r1

] are in BIMU1 while the same-indexed singulates sut•[
n1
r1

] are in

BIMUr1 . This is one of those minor notational inconsistencies that cannot
be helped and that we must learn to take in our stride.

We can then proceed to form the composite bialternal singulates

sut•[
n1
r1

,...,
,...,

ns
rs

] := ~ari(sut•[
n1
r1

], ..., sut•[
ns
rs

]) (48)

Each such length-r singulate, whether simple or composite, posssesses three
outstanding properties:
P1 : it is bialternal (hence an even function of w, which here reduces to u)
P2 : it is a meromorphic function of u, with all its singularities located at
multi-integers n := (n1, ..., nr) and of eupolar type, i.e. of the form

ConstP(u1−n1
v1

,...,
,...,

ur−nr
vr

)
with P(u1

v1

,...,
,...,

ur
vr

) ∈ Flexr(Pa) (49)

P3 : it has only good poles at the origin, i.e. poles of the form P (ui) with
0 ≤ i ≤ r and the usual convention P (u0) := P (−(u1+...+ur)).

It is therefore tempting to consider the space ALAL#
eumero of all formal

combinations A•, finite or infinite, of eupolar multipoles (49) that verify19

the conditions P1, P2, P3.
Rather unsurprisingly, ALAL#

eumero turns out to be stable under ari20. But
the real beauty is that each length-r element A•r in the algebra ALAL#

eumero

can be expressed, in a unique way, as a perinomal expansion of the form

A•r =
∑
s≥1

∑
ri=r∑
ri≥1

∑
ni≥1

θ

(
n1
r1

∣∣ ...
...

∣∣ns
rs

)
presut •[

n1
r1

∣∣ ...
...

∣∣ns
rs

] (50)

=
∑
s≥1

∑
ri=r∑
ri≥1

∑
ni≥1

θ

(
n1
r1

∣∣ ...
...

∣∣ns
rs

)
1

s
sut •[

n1
r1

∣∣ ...
...

∣∣ns
rs

] (51)

with well-defined alternal coefficients θ• .

Remark 8.7.1. Of the two expansions (50) and (51), the former is the more
important from a theoretical viewpoint, since it automatically ensures the

19globally, i.e. when regrouped inside A•.
20Contrary to appearances, the calculation of C• = ari(A•, B•) offers no difficulty even

when A• and B• are both infinite combinations of eupolar multipoles, since for any given
multi-integer n, only a finite number of multipoles in A• and B• are liable to contribute
to the multipoles of C• over n.
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alternality of θ•. Its only drawback is the presence in it of preari-brackets

presut•[
n1
r1

,...,
,...,

ns
rs

] := ~preari(sut•[
n1
r1

], ..., sut•[
ns
rs

]) (52)

which, taken in isolation, do not belong to ALAL#
eumero . The expansion (51)

is of course to be preferred in practical calculations, since it involves fewer
individual summands21 and these, moreover, are all in ALAL#

eumero . The
drawback here is that (51), on its own, does not imply the alternality of
θ•. However, that can be easily remedied: if from the start we impose al-
ternality on θ• and choose a basis - any basis - in the space spanned by the
sut •[

n1
r1

∣∣ ...
...

∣∣ns
rs

], the corresponding coefficients θ• will be uniquely determined

and will, by alternality, unambiguously determine the whole system.

Remark 8.7.2. A remarkable feature of the expansions (50) or (51) is that
they often involve an infinite number of summands even when A• itself is only
a finite combination of eupolar multipoles. We shall encounter too striking
instances of this phenomenon – first in the conversion formulae (67), then in
the Exercise at the end of the subsection §8.8. (see (74)).

Remark 8.7.3. In all natural instances, the so-called perinomal coefficients
θ• featuring in (50) and (51) are calculable from definite induction rules
(that crucially involve the action of Sl s(Z)) and, oftener than not, express-
ible in terms of the entries of continuous fractions (when s = 2) or of higher-
dimensional analogues (when s ≥ 3).

Remark 8.7.4. The decompositions (50) and (51) associate to each A• in
ALAL#

eumero well-defined singulands

Potenr1,...,rs .A
• :=

∑
ni≥1

θ

(
n1
r1

∣∣ ...
...

∣∣ns
rs

)
mu(sund•[

n1
r1

], . . . , sund•[
ns
rs

]) (53)

Poten[r1,...,rs].A
• :=

∑
ni≥1

θ

(
n1
r1

∣∣ ...
...

∣∣ns
rs

)
1

s
~lu(sund•[

n1
r1

], . . . , sund•[
ns
rs

]) (54)

which may collectively be viewed as some sort of “potential” from which A•

is “derived”.

Remark 8.7.5. Nearly all elements of ALAL#
eumero encountered in actual

life possess nice convergence properties, and so do their canonical expansions

21due to the a priori relation between multiple Lie brackets.
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(50) and (51) – although the two statements are by no means equivalent (see
Remark 8.7.2 supra). These properties amount
(i) either to the absolute convergence of all summands (though this is rarely
the case)
(ii) or to the absolute convergence of the ‘corrected summands’, i.e. after
subtraction from each summand of a suitable constant or of a simple poly-
omial of fixed degree
(iii) or again to blockwise convergence, for some natural choice of blocks.

We won’t bother with these distinctions here, only state that there exists
a nice subalgebra ALALeumero of ALAL#

eumero whose elements A• are not just
formal combinations of eupolar multipoles but bona fide meromorphic func-
tions – eumeromorphic functions, for short.

Remark 8.7.6. For any such A•r of given length r, the question naturally
arises of resumming their “potentials” (53), (54) , i.e. the singulands implicit
in the canonical expansions (50), (51). Since the basic mono-singulands
possess these elementary Taylor expansions

sundw1[
n1
r1

] := −2

σ1+r1 odd∑
σ1≥1

n−σ11 uσ1−11 (55)

our “potentials”, if at all summable, ought to possess expansions of the form

(Potenr1,...,rs .A)w1,...,ws :=

σi+ri odd∑
σi≥1

ρ

(
σ1
r1

∣∣ ...
...

∣∣σs
rs

)
uσ1−11 . . . uσs−1s (56)

with Taylor coefficients given by

ρ

(
σ1
r1

∣∣ ...
...

∣∣σs
rs

)
:= (−2)s

∑
ni≥1

θ

(
n1
r1

∣∣ ...
...

∣∣ns
rs

)
n−σ11 . . . n−σss (57)

Now, in all instances investigated so far, the series (57) converge absolutely
for all large enough σi’s, and “semi-converge” for the remaining small val-
ues. In either case, summation or resummation is straightforward. It yields
the so-called perinomal numbers ρ•, whose arithmetical nature (rational, al-
gebraic, multizetaic, general-transcendental) is clearly of prime theoretical
importance. It is closely tied up with the shape of the perinomal induction
that defines the corresponding perinomal coefficient θ•.

These scanty indications should suffice to show how much we gain by
changing from ALALsing to ALALeumero . All the obnoxious irregularity, re-
dundancy and indeterminacy inherent in the first structure dissipate at one
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magic stroke, like the famed Mists of Avalon, when we move to ALALeumero .
New problems inevitably arise, but exhilarating ones, and of a totally new
order. They revolve around two main themes: the perinomal coefficients
θ• with their defining inductions; and the perinomal numbers ρ• with their
arithmetical properties. Perinomal equations and the group action of Sl r(Z)
dominate the whole field. Perinomal calculus is truly the beating heart of
flexion theory. It opens such rich vistas that one could be forgiven for calling
it a wonder within a wonder.

8.8 The perinomal conversion formula.

For the reasons laid down in Remark 8.3.2 (“First consequence”), if we are to
succeed in our attempt at expressing bisingulates in terms of singulates in the
perinomal context, we cannot avoid the introduction of higher-order poles.
So we must introduce new parameters πi to measure that “excess polarity”.

For the singulates, this leads to the following definitions:

sund •[n1
π1
r1

] := (u1 − n1)
−1−π1 + (−1)r1+π1 .(u1 + n1)

−1−π1 (58)

sut •[n1
π1
r1

] := slankr.sund •[n1
π1
r1

] ∈ BIMUr (59)

sut •[n1
π1
r1

,...,
,...,,...,

ns
πs
rs

] :=
→
ari (sut •[n1

π1
r1

], . . . , sut •[ns
πs
rs

]) (60)

presut •[n1
π1
r1

,...,
,...,,...,

ns
πs
rs

] :=
→

preari (sut •[n1
π1
r1

], . . . , sut •[ns
πs
rs

]) (61)

For the bisingulates, we have a parallel set of definitions

bisund •[n1
π1
r1

] := (u1 − n1)
−1−π1 − (−1)π1 .(u1 + n1)

−1−π1 (62)

bisut •[n1
π1
r1

] := slankr.bisund •[n1
π1
r1

] ∈ BIMUr (63)

bisut •[n1
π1
r1

,...,
,...,,...,

ns
πs
rs

] :=
→
ari (bisut •[n1

π1
r1

], . . . , bisut •[ns
πs
rs

]) (64)

prebisut •[n1
π1
r1

,...,
,...,,...,

ns
πs
rs

] :=
→

preari (bisut •[n1
π1
r1

], . . . , bisut •[ns
πs
rs

]) (65)

However, as we shall see, for bisingulates the only case of real relevance is
s = 1 and π1 = 0, since perinomal conversion will prove feasible in one di-
rection only – from bisingulates to singulates.
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The general conversion formula in perinomal form.

Proposition 8.7.1: Canonical perinomal conversion of bisingulates
into singulates. With the above notations there exists a unique, well-
defined, three-tiered 22, rational valued, alternal bimould θ• such that for any
r the identity holds

bisut•[ 1
0
r

] =
∑
s≥1

∑
ri=r∑
ri≥1

∑
πi=r−1∑
πi≥0

∑
ni≥1

θ

(
n1
π1
r1

∣∣ ...
......

∣∣ns
πs
rs

)
presut •[n1

π1
r1

∣∣ ...
......

∣∣ns
πs
rs

] (66)

=
∑
s≥1

∑
ri=r∑
ri≥1

∑
πi=r−1∑
πi≥0

∑
ni≥1

θ

(
n1
π1
r1

∣∣ ...
......

∣∣ns
πs
rs

)
1

s
sut •[n1

π1
r1

∣∣ ...
......

∣∣ns
πs
rs

] (67)

with an elementary first sum that reduces to a single term∑
n1≥1

θ

(
n1
r−1
r1

)
presut •[ n1

r−1
r1

] ≡ θ

(
1
r−1
r1

)
sut •[ 1

r−1
r1

] ≡ (−1)r−1
(
(r−1)!

)2
sut •[ 1

r−1
r1

] (68)

The existence and uniqueness of the above expansions, while far from trivial,
result from an adaptation of the two central lemmas of perinomal calculus –
despite the presence, unusual in the perinomal context, of higher-order poles.

A word about convergence: to get absolute convergence in the expansions
(74), (67), certain precautions have to be taken, such as subtracting suitable
constants (or simple polynomials of fixed degree) from each individual sum-
mand or, alternatively, taking care of performing the summation block-wise,
with suitable blocks. This is standard perinomal practice. In any case, when
calculating the Taylor coefficients, absolute convergence is automatic for all
but a finite number of them.

From perinomal to polynomial. Reverse conversion.

The singulands sund •[
n1
π1
r1

∣∣ ...
......

∣∣ns
πs
rs

] := mu
(
sund •[

n1
π1
r1

], . . . , sund •[
ns
πs
rs

]) implicitely

involved in the singulates sut •[n1
π1
r1

∣∣ ...
......

∣∣ns
πs
rs

] of (67) carry only multipoles of the

form
∏i=s

i=1 P (ui − ni) with ni ∈ Z∗. They can therefore be expanded into
power series of the ui’s. All these power series can be regrouped into one
(about convergence issues, see the above remarks) and then subjected to
the corresponding singulator slankr1,...,rs . Fixing a degree d and collecting
all terms of total homogeneous degree d on the right-hand side of (67) and

22i.e. with three tiers of indices (ni, πi, ri).
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on the left-hand side of (74), we clearly arrive at a conversion formula of
type (29), for any chosen monomial bisønd•r. This system of formulae (29),
in turn, is easily invertible to the system of formulae (30). The remarkable
thing, however, is that the original perinomal conversion formulae (38) or
(39) cannot, try as we may, be inverted in perinomal form, for the reasons
given in Remark 8.3.2 (“Second consequence”): any attempt to do so would
immediately unleash an epidemic of logarithmic singularities.

The case r = 2.

The general formula yields

bisut•[ 1
0
2

]= θ

(
1
1
2

)
sut•[ 1

1
2

]+∑
ni≥1

θ

(
n1
0
1

∣∣n2
1
1

)
presut •[n1

0
1

∣∣ns
1
1

]+∑
ni≥1

θ

(
n1
0
1

∣∣n2
1
1

)
presut •[n1

1
1

∣∣ns
0
1

]
= θ

(
1
1
2

]
sut•[ 1

1
2

) +
∑
ni≥1

θ

(
n1
0
1

∣∣n2
1
1

)
sut •[n1

0
1

∣∣ns
1
1

] (69)

with alternal coefficients θ

(
n1
0
1

∣∣n2
1
1

)
≡ −θ

(
n2
1
1

∣∣n1
0
1

)
easily calculable by the fol-

lowing induction

θ

(
n1
0
1

∣∣n2
1
1

)
= 0 if (n1, n2) not co-prime

= 1
2

if (n1, n2) = (1, 1)

= θ

(
n1−n2

0
1

∣∣n2
1
1

)
if n1 > n2

= θ

(
n1
0
1

∣∣n2−n1
1
1

)
− θ
(
n2−n1

0
1

∣∣n1
1
1

)
if n2 > n1

The general case r ≥ 3.

For r = 3 when get ten non-trivial perinomal coefficients θ•, which due
to alternality reduce to four, for example these four:

θ

(
n1
0
1

∣∣n2
2
2

)
, θ

(
n1
1
1

∣∣n2
1
2

)
, θ

(
n1
0
1

∣∣n2
0
1

∣∣n3
2
1

)
, θ

(
n1
0
1

∣∣n2
1
1

∣∣n3
1
1

)
(70)

All are calculable under simple induction rules similar to the one we just
encountered in the case r = 2. All vanish when (n1, n2) or (n1, n2, n3) are
not co-prime. The first two coefficients θ• (of length 2) are still expressible in
terms of the continued fraction of n1/n2, while for the last two coefficients θ•

(of length 3) the continuous fraction has to be replaced by a quite interesting
analogue for homogeneous integer triplets (n1, n2, n3).
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Such ‘higher-order continuous fractions’ in fact exist for integer sequences
(n1, ..., ns) of any length and have to be taken into consideration when study-
ing the perinomal coefficients θ• of the general conversion formula (67). We
intend to soon return to the subject in a much more detailed and explicit
paper. Meanwhile, here is a nice little warm-up exercise for readers who
might wish to acquaint themselves with perinomal calculus.

Recommended exercise: conversion formulae for ari and oddari .

Consider the elementary, length-1 bimoulds Ev •n and Od•n

Evw1
n := P (u1−n)− P (u1+n)

(
Ev•n ∈ BIMUeven

1

)
(71)

Odw1
n := P (u1−n) + P (u1+n)

(
Od•n ∈ BIMUodd

1

)
(72)

and recall the definition the oddari-bracket from BIMU odd
1 × BIMU odd

1 into

BIMU
al/al
2 :

C• = oddari(A•, B•) =⇒ (73)

C
(u1
v1

,
,
u2
v2

)
:= +A

(u1
v1

)
B

(u2
v2

)
+ A

(−u1−u2
v2

)
B

( u1
v1−v2

)
+ A

( u2
v2−v1

)
B

(−u1−u2−v1
)

−B(u1
v1

)
A

(u2
v2

) −B(−u1−u2−v2
)
A

( u1
v1−v2

) −B( u2
v2−v1

)
A

(−u1−u2−v1
)

Show that for any fixed pair of positive integers (m1,m2) (resp. (n1, n2))
there exist unique expansions of the form

oddari(Od•m1
,Od•m2

) =
∑

0<n1<n2

H n1,n2
m1,m2

ari(Ev•n1
,Ev•n2

) (74)

ari(Ev•n1
,Ev•n2

) =
∑

0<m1<m2

Km1,m2
n1,n2

oddari(Od•m1
,Od•m2

) (75)

Show that the structure coefficients H n1,n2
m1,m2

, Km1,m2
n1,n2

automatically vanish
unless gcd(m1,m2) = gcd(n1, n2). We may therefore assume that each pair
(m1,m2) and (n1, n2) is co-prime. Show further that H•• and K•• always
assume their values in the set {0, 2,−2} except when the upper and lower
indices coincide, in which case H n1,n2

n1,n2
≡ K n1,n2

n1,n2
≡ −1. Concentrate on the

coefficients H •• which are somewhat simpler than the K •• . Show that for
any fixed (m1,m2) the vanishing or non-vanishing of H n1,n2

n1,n2
only depends on

the last entry in the continuous fraction cofra(n2/n1) and that, in the non-
vanishing case, the sign before 2 depends only on the parity of the length
#cofra(n2/n1) of that continued fraction. Thus, for (m1,m2) = (1, 2) and
(n1, n2) 6= (1, 2) and co-prime, H n1,n2

n1,n2
never vanishes and is given by H n1,n2

n1,n2
≡

(−1)#cofra(n2/n1) 2.
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8.9 Singulates vs bisingulates. Merits and demerits.

Let us now take stock:

8.9.1. Deceptive simplicity of the bisingulators.
On the face of it, the bisingulators are much simpler to define than the singu-
lators. The former require only multiple ari-bracketing, while the latter draw
on the bisymmetral pal•/pil• with all the attendant paraphernalia. Unlike
the singulators, bisingulators are also capable of acting on bimoulds of any
length, not just of length one. But this appearance turns out to be deceptive.
The bisingulators’ ease of definition is more a liability than an asset – an
index of rawness, so to speak. The complexity in the singulators’ make, on
the other hand, is really a measure of their sophistication – the price to pay
for fine-tuning our singularity-generating operators and achieving maximal
economy of means in the operands.

8.9.2. Built-in redundancy in the bisingulands.
In the polynomial context, bisingulate expansions are needlessly wasteful
in the sense of requiring polynomial singulands of abnormally high degree.
Indeed, fix a length r, a degree δ, and a polar order π. The only monomial
(bi)singulands capable of generating (bi)singulates of length r, homogeneous
degree δ, and effective polarity π, are of the form:

søndw1,...,ws[
d1
r1

,...,
,...,

ds
rs

] = ud11 ...u
ds
s with

∑
di = δ+π and ri+di odd (76)

bisøndw1,...,ws[
d1
r1

,...,
,...,

ds
rs

] = ud11 ...u
ds
s with

∑
di = δ+2π and di even ≥ 2 (77)

(and s = r − π ,
∑

ri = r in both cases)

The latter clearly span a larger space than the former:

dim(SANDr,δ,π) =: α(r, δ, π)� β(r, δ, π) := dim(BISANDr,δ,π) (78)

8.9.3. Built-in indeterminacy in the bisingulates.
Let (BI )SAT r,δ,π denote the space of (bi)singulates generated by all the
(bi)singulands in (BI )SANDr,δ,π. One is a good deal larger than the other,
but due to the polynomial conversion formulae (29) and (30), their quotient
by Polar r,δ,π−1 coincide:

dim
(
SATr,δ,π/Polarr,δ,π−1

)
= dim

(
BISATr,δ,π/Polarr,δ,π−1

)
=: γ(r, δ, π) (79)

As a consequence, the mass of “biwandering bialternals” is going to exceed
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that of “wandering bialternals”:

dim
(
WANDERr,δ,π−1

)
= α(r, δ, π)− γ(r, δ, π) (80)

dim
(
BIWANDERr,δ,π−1

)
= β(r, δ, π)− γ(r, δ, π) (81)

This applies for all π > 0, including π = 1. This in turn means that the
“semi-canonical” realisations of løma•/lømi• or røma•/rømi• that rely on
bisingulates will be blighted by a greater indeterminacy than the “semi-
canonical” realisations based on singulates.

8.9.4. Asymmetry in the singulate-bisingulate conversion rules.
Moving now from the polynomial to the perinomal setting, we note this ar-
resting fact: while there are explicit and beautiful formulae for converting the
perinomal bisingulates bisut• into perinomal singulates sut•, no such formu-
lae exist for the reverse change – at least not in perinomal form (they exist of
course in polynomial form (30)). So we have mutual convertibility all right,
but of a highly asymmetric sort – smooth and explicit from bisingulates to
singulates, complicated and derivative in the reverse direction.

8.9.5. Because they violate ‘simple polarity’, bisingulators are con-
stitutionally unsuited for perinomal calculus.
Multizeta algebra, when reframed in what is its natural language – flexion
theory – makes constant use of eumeromorphic functions without poles of or-
der higher than 1 (with respect, that is, to any given variable or combination
of variables). While the singulators effortlessly move, breathe and operate
within this pre-ordained setting, the bisingulators immediately drag us out
of it (as explained in Remark 8.3.2) either by generating (albeit indirectly)
poles of higher order23 or by introducing (again, indirectly) logarithmic sin-
gularities.24 This inadequation to perinomal calculus is perhaps the most
damning indictment of bisingulators, and the reason why they could never
step into the full spectrum of roles filled by the singulators.

8.9.6. Residual importance of bisingulators.
For all their flaws, bisingulators constitute one of the two big operator fami-
lies capable of producing singular bialternality ‘on demand’, and it certainly
would be rash to dismiss them as undeserving of attention. The fact remains
that exploration is still in its early stages and that our knowledge of these
objects is scanty at best.25 Situations may yet emerge, for all we know,

23like in the formula (57)
24See Remark 8.3.2, “Second consequence”.
25As far as we are concerned, we originally (about twelve years ago) dabbled with bisin-
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where the bisingulators could show themselves at an advantage and manifest
greater flexibility than their elders, the well-established singulators. In any
case, the bare fact of their existence is of already of some consequence: it
has inspired the beautiful, richly structured conversion formula (67), some
aspects of which (like the nature – rational or otherwise – of the Taylor co-
efficients carried by the singulands sund• implicit in (67)) are still unclear.
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gulators only at length 2 and 3; soon noticed that they were outperformed by singulators;
and in the sequel completely forgot about them – somewhat prematurely, we now suspect.
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