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Abstract : In a sprawling field like multizeta arithmetic, connected with in-
tricate new structures and teeming with ‘special objects’ (functions, moulds
etc), there is room for expositions of all formats : short, medium-sized, huge.
Here is a survey on the tiniest scale possible, based on a talk given at the
2002 Luminy conference on Resurgent Analysis.

Résumé : Le texte qui suit, aussi ramassé que possible, reprend un ex-
posé fait à Luminy en novembre 2002. Il présente un panorama des récents
progrès en arithmétique ‘dimorphique’ des multizêtas et esquisse les théories
(ARI/GARI, objets périnomaux, moules spéciaux) qui ont permis ces progrès.
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0. Overview. Some notations.
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We begin (§1, §2) with a few reminders about arithmetical dimorphy and
then focus on the prototypical instance of dimorphy : the Q-ring of multize-
tas. The next two sections (§3, §4) outline, for future use, two special theories
– one called forth by the study of dimorphy, the other predating it. They
are the theory of perinomal objects ; and the flexion structure – mainly the
Lie algebra ARI and its group GARI. Next, we try (§5) to order the field
of multizeta arithmetic as a hierarchy of increasingly arduous tasks, with a
red thread running through everything : the search for canonical irreducibles.
We then (§7 through §11) develop the tools (special moulds etc) which make
it possible not only to explicitly decompose all multizetas into irreducibles
(§12), but also to express these irreducibles directly and in a way that truly
reflects their neutral position, half-way between the two natural bases of mul-
tizetas (§13). But before getting started, we must get a few definitions (about
moulds, mould operations, and mould symmetries) out of the way.

Moulds A• = {Aω} = {Aω1,...,ωr} are simply functions of a variable num-
ber of variables. These variables are noted as upper indices, with bold face
reserved for sequences, which often get subsumed as a simple dot •. Mould
addition is trivially defined, but mould multiplication is non-commutative
and involves the breaking-up of sequences :

{C• = A• ×B•} ⇐⇒ {Cω =
∑

ω=ω1ω2

Aω
1

Bω
2} (1)

Depending on the context, many other secondary operations may come into
play. Moreover, useful moulds tend to fall into one or the other of a few
symmetry types, which are either preserved by the basic operations, or trans-
formed in transparent manner. Only six symmetry types will be relevant
here, to wit : symmetral/alternal, symmetrel/alternel, symmetril/alternil.

A mould A• is said to be symmetral (resp alternal) or again symmetrel
(resp. alternel) if the following identities hold for all ω1,ω2 :∑

ω∈sha(ω1,ω2)

Aω = Aω
1

Aω
2

(resp = 0) (symmetral/alternal) (2)

∑
ω∈she(ω1,ω2)

Aω = Aω
1

Aω
2

(resp = 0) (symmetrel/alternel) (3)

with sha(ω1,ω2) (resp. she(ω1,ω2)) denoting the set of all ordinary (resp.
contracting) shufflings 1 of ω1,ω2. The last pair symmetril/alternil applies

1under ordinary/contracting shufflings, adjacent indices ωi, ωj stemming from different
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only to moulds with a double-storeyed indexation, i.e. with indices of the
form wi = (ui

vi
). It resembles symmetrel/alternel, except that the straightfor-

ward addition (ωi, ωj) 7→ ωi + ωj makes way for the subtler contractions :(
A

( ...,ui,...
...,vi,...

)
, A

( ...,uj ,...
...,vj ,...

)
)
7→ 1

vi − vj

(
A

( ...,ui+uj,...
...,vi,...

) − A( ...,ui+uj,...
...,vj ,...

)
)

(4)

Throughout, we shall use the following abbreviations for sums/differences :

ui,j := ui+uj , ui,j,k := ui+uj+uk etc ; vi:j := vi − vj (5)

1. Multizeta numbers and numerical dimorphy.

Some extremely important Q-rings of transcendental numbers are dimorphic,
i.e. possess two natural Q-bases 2 {αm}, {βn} with a simple conversion rule
and two independent multiplication tables, all of which involve only rational
coefficients and finite sums :

αm =
∑∗Hn

m βn , βn =
∑∗Km

n αm (Hn
m , K

m
n ∈ Q)

αn1 αn2 =
∑∗An3

n1,n2
αn3 , βn1 βn2 =

∑∗Bn3
n1,n2

βn3 (An3
n1,n2

, Bn3
n1,n2

∈ Q)

The simplest, most basic of all such rings is Zeta , which is not only mul-
tiplicatively generated but also linearly spanned by the so-called multizetas.3

In the first basis, the multizetas are given by polylogarithmic integrals :

Waα1,...,αl
∗ := (−1)l0

∫ 1

0

dtl
(αl − tl)

. . .

∫ t3

0

dt2
(α2 − t2)

∫ t2

0

dt1
(α1 − t1)

(6)

with indices αj that are either 0 or unit roots4.

In the second basis, multizetas are expressed as familiar-looking sums :

Ze∗
( ε1
s1

,...,
,...,

εr
sr

)
:=

∑
n1>···>nr>0

n−s11 . . . n−srr e−n1
1 . . . e−nrr (7)

sequences are forbidden/allowed to merge into ωi,j := ωi +ωj . Thus, for a pair ω1 = (ω1)
and ω2 = (ω2, ω3), we have sha(ω1,ω2) = {(ω1, ω2, ω3), (ω2, ω1, ω3), (ω2, ω3, ω1)} but
she(ω1,ω2) = {(ω1, ω2, ω3), (ω2, ω1, ω3), (ω2, ω3, ω1), (ω1 + ω2, ω3), (ω1, ω2 + ω3)}.

2with some natural countable indexation {m}, {n}, not necessarily on N or Z.
3or MZV, short for multiple zeta values.
4l0 is the number of zeros in the sequence {α1, . . . , αl}.
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with sj ∈ N∗ and unit roots ej := exp(2πiεj) with ‘logarithms’ εj ∈ Q/Z.

The stars ∗ means that the integrals or sums are provisionally assumed
to be convergent or semi-convergent : for Waα∗ this means that α1 6= 0 and

αl 6= 1, and for Ze
( ε
s
)

∗ this means that ( ε1
s1

) 6= (0
1
) i.e. ( e1

s1
) 6= (1

1
).

The corresponding moulds Wa•∗ and Ze•∗ turn out to be respectively sym-
metral and symmetrel :

Waα
1

∗ Waα
2

∗ =
∑

α∈ sha(α1,α2)

Waα∗ ∀α1,∀α2 (8)

Ze
( ε1

s1
)

∗ Ze
( ε2

s2
)

∗ =
∑

( s
ε
)∈ she(( ε1

s1
),( ε2

s2
))

Ze
( ε
s
)

∗ ∀( ε1

s1
),∀( ε2

s2
) (9)

These are the so-called “quadratic relations”, which express dimorphy. As
for the conversion rule, it reads :5

Wa∗
e1,0[s1−1],...,er,0[sr−1]

:= Ze∗
( εr
sr

,
,
εr−1:r
sr−1

,...,
,...,

ε1:2
s1

)
(10)

Ze∗
( ε1
s1

,
,
ε2
s2

,...,
,...,

εr
sr

)
=: Wa∗

e1...er,0[sr−1],...,e1e2,0[s2−1],e1,0[s1−1]

(11)

There happen to be unique extensions Wa•∗ → Wa• and Ze•∗ → Ze• to the
divergent case that keep our moulds symmetral/symmetrel while conforming

to the ‘initial conditions’ Wa0 = Wa1 = 0 and Ze( 0
1
) = 0. The only price to

pay is a slight modification of the conversion rule : see §2 infra.

Basic gradations/filtrations : Four parameters dominate the discussion :
– the weight s :=

∑
si (in the Ze•-encoding) or := l (in the Wa•-encoding)

– the length r := number of εi’s or si’s or non-zero αi’s.
– the degree d := s−r = number of zeros in the Wa•-encoding.6

– the root order p := smallest p such that all εi are in 1
p
Z/Z.

Only s defines an (additive and multiplicative) gradation; the other param-
eters merely induce filtrations.

2. Generating series/functions.

The natural encodings Wa• and Ze• being unwieldy and too heterogeneous
in their indexations, we must replace them by suitable generating series, so

5with the usual shorthand for differences : εi:j := εi − εj .
6d is called degree, because under the correspondence scalars → generating series, the

multizetas become coefficients of monomials of total degree d. See (12),(13).
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chosen as to preserve the simplicity of the two quadratic relations and that
of the conversion rule. This essentially imposes the following definitions :

Zag
(u1
ε1

,...,
,...,

ur
εr

)
:=

∑
1≤sj

Wae1,0
[s1−1],...,er,0[sr−1]

us1−1
1 us2−1

12 . . . usr−1
12...r (12)

Zig
( ε1
v1

,...,
,...,

εr
vr

)
:=

∑
1≤sj

Ze
( ε1
s1

,...,
,...,

εr
sr

)
vs1−1

1 . . . vsr−1
r (13)

These power series are actually convergent : they define generating functions 7

that are meromorphic, with multiple poles at simple locations. These func-
tions, in turn, verify simple difference equations, and admit an elementary
mould factorisation :

Zag• := lim
k→∞

(doZag•k × coZag•k) (14)

Zig• := lim
k→∞

(coZig•k × doZig•k) (15)

with dominant parts doZag•/doZig• that carry the u/v-dependence8 :

doZag
(u1
ε1

,...,
,...,

ur
εr

)

k :=
∑

1≤mi≤k

e−m1
1 ...e−mrr P (m1−u1)P (m1,2−u1,2)...P (m1..r−u1..r) (16)

doZig
( ε1
v1

,...,
,...,

εr
vr

)

k :=
∑

k≥n1>n2>...nr≥1

e−n1
1 ...e−nrr P (n1−v1)P (n2−v2)...P (nr−vr) (17)

and corrective parts coZag•/coZig• that reduce to constants :

coZag
(u1

0
,...,
,...,

ur
0

)

k := (−1)r
∑

1≤mi≤k

P (m1)P (m1,2)...P (m1...r) (18)

coZig
( 0
v1

,...,
,...,

0
vr

)

k := (−1)r
∑

k≥n1≥n2≥...nr≥1

µn1,...,nr P (n1)P (n2)...P (nr) (19)

coZag
(u1
ε1

,...,
,...,

ur
εr

)

k := 0 if (ε1, ..., εr) 6= (0, ..., 0) (20)

coZig
( ε1
v1

,...,
,...,

εr
vr

)

k := 0 if (ε1, ..., εr) 6= (0, ..., 0) (21)

with P (t) := 1/t (here and throughout) and with µn1,n2,..,nr := 1
r1! r2!..rl!

if

the non-increasing sequence (n1, ..., nr) attains r1 times its highest value, r2
times its second highest value, etc.

7still denoted by the same symbols
8with the usual abbreviations mi,j := mi +mj ,mi,j,k := mi +mj +mk etc
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Setting Mini •k := Zig •k‖v=0 we find :9

Mini
( 0
v1

,...,
,...,

0
vr

)

k :=

[
1≤l≤ r/2
1≤ni≤k

]∑[
2≤r1≤r2...≤rl
r1+r2+...rl=r

](−1)(r−l)µ r1,...,rl
(P (n1))

r1

r1
...

(P (nl))
rl

rl
(22)

Mini
( ε1
v1

,...,
,...,

εr
vr

)

k := 0 if (ε1, ..., εr) 6= (0, ..., 0) (23)

We have an exact equivalence between old and new symmetries :

{Wa• symmetral} ⇐⇒ {Zag• symmetral} (24)

{Ze• symmetrel} ⇐⇒ {Zig• symmetril} (25)

and the old conversion rule for scalar multizetas 10 becomes :

Zig• = Mini• × swap(Zag)• (26)(
⇐⇒ swap(Zig•) = Zag• × Mana•

)
(27)

with the involution swap defined as in (43) infra and with elementary moulds
Mana•/Mini• := limk→∞Mana•k/Mini•k whose only non-zero components :

Mana(u1
0
,...,
,...,

ur
0

) ≡ Mini
( 0
v1

,...,
,...,

0
vr

) ≡ Monor (28)

due to (22) are expressible in terms of monozetas :

1 +
∑
r≥2

Monor t
r := exp

(∑
s≥2

(−1)s−1ζ(s)
ts

s

)
(29)

To these relations one must add the so-called self-consistency relations :

Zag
( u1
q ε1

,...,
,...,

ur
q εr

) ≡
∑

qε∗i=qεi

Zag
(
q u1
ε∗1

,...,
,...,

q ur
ε∗r

) ∀q|p ,∀ui ∈ C ,∀εi, ε∗i ∈
1

p
Z/Z (30)

which merely reflect trivial identities between unit roots of order p.

3. Perinomal objects : equations, functions, numbers.

9if we had no factor µn1,...,nr in (19), we would have Zig •k ‖v=0 = 0 and therefore no
Mini•k terms. But the mould Zig•k would fail to be symmetril, as required. Here lies the
origin of the corrective terms in the conversion rule.

10some modified form of (10),(11).
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Let Slr(Z) denote the ‘special group’ (integer entries, unit determinant) with
its natural action M : f 7→M f on functions of r variables :

M f(. . . , xi, . . . ) := f(. . . ,
∑

Mi,j xj, . . . ) ∀M ∈ Slr(Z) (31)

A perinomal system is a system of equations of the form :

{
1

M f =
1
ϕ(x, f), . . . ,

s

M f =
s
ϕ(x, f)} (f unknown ,

i

M∈ Slr(Z)) (32)

with data
i
ϕ(x, f) usually linear or affine in f and ‘elementary’ in x.

A perinomal function is a solution of such a system.

A function is said to have finite perinomal degrees di,j if f(x1, .., xi+k xj, .., xr)
is polynomial in k of degree di,j.

A perinomal number is a number attached to a perinomal function – by in-
tegration, summation, or taking its Taylor coefficients at the origin, etc.

Perinomal systems are a cross between difference and q-difference systems,
but they also commend themselves to our attention for a number of more
specific reasons :

1. Finiteness properties : Important spaces of perinomal functions admit a
natural gradation by a global degree d, with a finite basis for any given d.
The subject is of course closely tied up with the theory of finite linear repre-
sentations of Slr(Z).

2. Closure properties : Perinomal functions tend to be stable under partial
differentiation, multiplication, various types of convolution, etc

3. Self-duality under Fourier/Borel/Laplace : This tends to be the case when-
ever any of these transforms applies. For instance, we have a correspondence
between homogeneous linear perinomal systems of the form :

{exi∂xj f(x) = Li,j(f), ∀i, j} F/B/L←→ {e−∂ξj ξi f̂(ξ) = Li,j(f̂), ∀i, j} (33)

which is reminiscent of the self-duality properties for homogeneous linear
differential equations with polynomial coefficients :(∑

am,n x
m ∂nx

)
.f(x)

)
B/L←→

(∑
(−1)n am,n ∂

m
ξ ξ

n
)
.f̂(ξ)

)
(34)

4. Duality between perinomal meromorphic functions and their residues :
This applies in particular to eupolar meromorphic functions f with multipoles
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of maximal order, located ‘at’ multi-integers n and carrying multiresidues ρ.
Thus, for a rather trivial type of eupolarity :11

f(x)
ess
:=
∑
ni∈Z

ρ(n1, ..., nr)

(n1 − x1)...(nr − xr)
: {f perinomal} ⇔ {ρ perinomal} (35)

5. Link with multizeta arithmetic : Multizeta arithmetic makes extensive use
of perinomal numbers ρ# attached to discrete perinomal functions ρ via the
series :

ρ#(s1, . . . , sr)
ess
:=

∑
ni∈N∗

ρ(n1, . . . , nr) n
−s1
1 . . . n−srr (36)

or, equivalently, attached to meromorphic perinomal functions f under the
taking of Taylor coefficients.

To put some flesh on these definitions, let us give two simple examples :

Example 1 : Fix (k1, ..., kr) in Nr. The perinomal function f :

f(x)
ess
:=

∑
ni ∈Z∗

ρ(n1, ..., nr)

(n1 − x1)...(nr − xr)
(37)

with ρ(n1, ..., nr) := |n1|k1 . . . |nr|kr if (n1, . . . , nr) coprime

:= 0 otherwise

has Taylor coefficients ρ# of the form12 :

ρ#(s1, . . . , sr) = 2r
ζ(s1−k1) . . . ζ(sr−kr)

ζ(
∑
si −

∑
ki)

if all si are even

= 0 otherwise.

Despite being given as infinite sums, these ρ# are clearly rational whenever
all data ki are even integers. This phenomenon shall be pivotal to the con-
struction of the rational-coefficiented bimould loma•/lomi•.

Example 2 : Consider now the less simplistic perinomal function :

f(x) :=
∑
ni∈Z•

ρ(n1, n2)

(n1 − x1)(n2 − x2)
(38)

{ ρ(n1 + n2, n2) = ρ(n1, n2) + 1 , ρ(n1, n1 + n2) = ρ(n1, n2)− 1 } (39)

ρ(n1, n2) = sign(n1) sign(n2) (c1−c2+c3−c4+ ...) (40)

if
∣∣∣n1

n2

∣∣∣ = [c1, c2, c3, c4, ...]=continued fraction (41)

11in (35) and throughout the sequel, the warning “ess(entially)” shall mean : up to the
addition of simple (usually constant) corrective terms that ensure absolute convergence,
or after suitable regroupings that ensure semi-convergence.

12for homogeneity reasons, ρ#(s1, ..., sr) always denotes the coefficient of xs1−1
1 ...xsr−1

r .
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with residues ρ defined by the perinomal system (39). What about the
arithmetical nature of the corresponding perinomal numbers ?

ρ#(s1, s2)
ess
:=

∑
ni∈N∗

ρ(s1, s2)n
−s1
1 n−s22 (42)

Whether we start from (39) or (40), that nature is far from clear. But the
moment we form the functions fa and fi :

f(x1, x2)
fa(u1, u2) := ↙ ↘ fi (v1, v2) :=

+f(u1, u2)− f(u2, u1) ‖ +f(v1, v2)− f(v2, v1)
+f(u1 + u2, u1)− f(u1, u1 + u2) ‖ +f(v1 − v2, v2)− f(v2, v1 − v2)
−f(u1 + u2, u2) + f(u2, u1 + u2) ‖ −f(v1, v2 − v1) + f(v2 − v1, v1)

we see that the multiresidues simplify dramatically, and that the ρ#(s1, s2)
are in fact simple rational combinations of multizetas. Furthermore, fa links
the ρ#(s1, s2) to the Wa•-basis, while fi links them to the Ze•-basis. This
example is but the tip of a mighty iceberg – namely the direct-impartial ex-
pression of the multizeta irreducibles.

4. The adequate structure: ARI/GARI and AXI/GAXI.

The starting point is the algebra BIMU. Its elements are bimoulds, ie moulds

A• = {Aw1,...,wr} = {A(u1
v1

,...,
,...,

ur
vr

)} with double-storeyed indices wi = (ui
vi

).
BIMU is endowed with the ordinary mould product ×, which is often noted
mu to avoid confusion with a host of other operations on bimoulds. All these
operations involve simultaneous additions of the ui-variables and subtrac-
tions of the vi-variable, which makes it expedient to systematically use the
abbreviations (5) for sums and differences.

There is on BIMU a basic involution, the swap, which exchanges both
sets of variables :

B• = swap(A•) ⇐⇒ B
(u1
v1

,
,
...
...
,
,
ur
vr

)
= A

( vr
u1,...,r

,
,
vr−1:r

u1,...,r−1

,
,
...
...
,
,
v2:3
u1,2

,
,
v1:2
u1

)
(43)

and a basic shift operator13, the push, which acts as follows :

C• = push(A•) ⇐⇒ C
(u1
v1

,
,
...
...
,
,
ur
vr

)
= A

(−u1,..,r
vr

,
,
u1
v1:r

,
,
u2
v2:r

,
,
...
...
,
,
ur−1
vr−1:r

)
(44)

All further operations involve ‘sequence flexions’ a.b 7→ aebb or acdb. Thus,
relative to the factorisation w = ...a.b... = ...(u3

v3

,
,
u4
v4

,
,
u5
v5

)(u6
v6

,
,
u7
v7

,
,
u8
v8

,
,
u9
v9

)... the

13of order r+1 when restricted to components of length r.
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flexion markers e , d , c , b should be interpreted as follows :

ae := (u3
v3

,
,
u4
v4

,
,
u5,6,7,8,9

v5
) bb := ( u6

v6:5

,
,
u7
v7:5

,
,
u8
v8:5

,
,
u9
v9:5

) (45)

ac := ( u3
v3:6

,
,
u4
v4:6

,
,
u5
v5:6

) db := (u3,4,5,6
v6

,
,
u7
v7

,
,
u8
v8

,
,
u9
v9

) (46)

The binary operation ari defined by the flexions 14 :

C• = ari(A•, B•) ⇐⇒ Cw =
∑

w=b.c

(AbBc −BbAc)

+
∑

w=b.c.d

(AbcBbed −BbcAbed) +
∑

w=a.b.c

(AadcBbc −BadcAbc) (47)

turns BIMU∗
15 into a Lie algebra known as ARI.

Likewise, the binary operation gari defined by the flexions 16 :

C• = gari(A•, B•) ⇐⇒ Cw =∑
w=a1.b1.c1...as.bs.cs.as+1

Adb
1e...dbseBa1c . . . BascBas+1cBbc

1

? . . . Bbc
s

? (48)

turns BIMU∗17 into a Lie group GARI, with ARI as its Lie algebra.

Central bimoulds, by definition, gari-commute with, and ari-annihilate,
everyone else. They are of the form :

Cw1,...,wr := c(r) ∈ C if (v1, ..., vr) = (0, ..., 0) (∀(u1, ..., ur)) (49)

:= 0 if (v1, ..., vr) 6= (0, ..., 0) (∀(u1, ..., ur)) (50)

The following are important subalgebras/subgroups of GARI/ARI :

ARIpush := {A• ; A• push-invariant }
ARIal := {A• ; A• alternal }
ARIal/al := {A• ; A• alternal , swap(A•) alternal , IP }
ARIal/il := {A• ; A• alternal , swap(A•) alternil , IP }

GARIspush := {A• ; A• spush-invariant }
GARIas := {A• ; A• symmetral }
GARIas/as := {A• ; A• symmetral , swap(A•) symmetral , IP }
GARIas/is := {A• ; A• symmetral , swap(A•) symmetril , IP }
14with b 6= ∅, c 6= ∅ in all three sums; but a and d may be empty.
15i.e. the set of all A• with vanishing length-0 component (A∅ = 0).
16with s ≥ 2 and all factor sequences bi 6= ∅ and ci.ai+1 6= ∅. The factors ci et ai+1 may

turn empty but separately so and the extreme factors a1,cs,as+1 may also turn empty,
separately or jointly. As for B•? , it denotes the inverse invmu(B•) of B• with respect to
ordinary mould multiplication mu (same as ×).

17i.e. the set of all A• with unit length-0 component (A∅ = 1).
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Initial parity clause (IP) : in the above definitions, we demand that bimoulds
in ARIal/al or ARIal/il (resp. GARIas/as or GARIas/is) should have as their
length-1 component an even function of w1, but we allow for the addition of
(resp. multiplication by) a central bimould C• before taking the swap.

We have the non-trivial inclusions and isomorphisms :

ARIpush ⊃ ARIal/al
algebra isom.←→ ARIal/il

↓expari ↓expari ↓expari
GARIspush ⊃ GARIal/as

group isom.←→ GARIas/is

and a non-trivial action arit/garit of ARI/GARI on the mu-algebra BIMU.

Though ARI/GARI traces its origins to singularity theory, its double
series of variables ui and vi as well as its property of accommodating and re-
producing double symmetries, makes it an ideal tool for investigating arith-
metical dimorphy. ARI/GARI is actually part of a larger umbrella struc-
ture, AXI/GAXI, which regroups all flexion derivations/automorphisms18 of
BIMU.

5. Multizeta arithmetic : the main steps.

R1 . Formalisation : from numbers to symbols.
Formalising the scalar multizetas means replacing the familiar systems of
numbers Wa•/Ze• by symbols wa•/ze• subject to the same quadratic rela-
tions, conversion rule, and self-consistency constraints. In terms of generat-
ing series, it means replacing Zag•/Zig• by the most general pair zag•/zig• of
symmetral/symmetril bimoulds connected under the swap :19

swap(zig)• = gari(zag•,mana•) (with mana• central ) (51)

and subject to the old self-consistency constraints (30) but with components
that are arbitrary power series instead of well-defined meromorphic functions.

R2 . Free generation.
It says that the Q-rings of (scalar) formal multizetas are polynomial rings in

18i.e. of all those derivations or automorphisms of the mu-algebra BIMU that can be
expressed in terms of the flexions (45),(46). Elements of AXI/GAXI are determined not
by single bimoulds A•, but by pairs (A•L, A

•
R) consisting of a left and a right bimould.

19due to mana• being a central bimould, we have in fact :
gari(mana•, zag•) = gari(zag•,mana•) = mu(zag•,mana•)

(
but 6= mu(mana•, zag•)

)
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countably many indeterminates – the so-called irreducibles.

R3 . From the atomic to the subatomic level.
It means re-interpreting the apparently unbreakable irreducibles as elements

of a Lie algebra ARI
reg,disc

al,il
20, which opens the way to a finer analysis.

R4 . Free subgeneration.
It says that the finer and truly ultimate building blocks21, or subgenerators,
are either free (for small values of the root order p) or “very nearly free”
(for larger p). The various dimensions (additive/multiplicative) that can be
attached to subspaces/subrings of multizetas and that depend on the various
filtrations/gradations (by s, r, d, p... etc) mostly follow from that.

R5 . Decomposition into irreducibles : constructive.
It should be fully constructive, i.e. amenable to effective computation.

R6 . Decomposition into irreducibles : explicit.
In a context such as this, if we are to maintain a meaningful distinction be-
tween constructive and explicit, the latter can mean only one thing, namely :
given by direct formulas which, though inevitably complex, are nonetheless
perspicuous enough 22 and reasonably compact 23. Above all, explicit means
that we are not required to solve larger and larger linear systems as the nat-
ural filtration/gradation parameters (s, r, d, p etc) increase.

R7 . Decomposition into irreducibles : canonical.
Though redolent of subjectivity, the notion of canonicity matters immensely.
Here, we are fortunate in being able to construct, among all possible, more
or less natural systems of irreducibles, one that is indisputably canonical.

R8 . Direct and ‘impartial’ expression of the irreducibles.
It goes way beyond the mere reversing of the canonical-explicit decomposi-
tion of multizetas into irreducibles; rather, it asks for a direct and ‘impartial’
(i.e. ‘equidistant’ from the two competing bases wa• and ze•) expression of
the irreducibles. This is where perinomal algebra comes in.

R9 . Materialisation: from symbols to numbers.
That would mean : showing that the Q-ring of ‘actual’ or ‘genuine’ multize-
tas is actually isomorphic to its formalisation. This is the one great challenge

20the upper index reg means regular in u at the origin, i.e. without Laurent terms etc;
the upper index disc for discrete means with v-variables in Q/Z ; the underlining of both
upper indices means subject to the self-consistency constraints (30).

21in ARI.
22to make the main features, symmetries etc of the objects at hand easily detectable.
23both as mathematical text or as computation programmes.
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that still lies ahead. It apparently defies extant mathematical tools, but the
advent of direct 24 numerical derivations 25 might change that.

6. The general scheme.

To simplify, we set out the general procedure for ordinary multizetas26.
The Q-ring of multizetas splits into two/three factors rings :

Zeta = Zeta
I+II
⊗ Zeta

III
(52)

Zeta = Zeta
I
⊗ Zeta

II+III
(53)

Zeta = Zeta
I
⊗ Zeta

II
⊗ Zeta

III
with Zeta

I
= Q[π2] (54)

The factor-ring Zeta
I

is generated by π2.
The factor-ring Zeta

II
contains all irreducibles of even weight and ‘length’.

The factor-ring Zeta
III

contains all irreducibles of odd weight and ‘length’.

This splitting of the ring Zeta stems from a corresponding factorisation
of the generating functions :

zag• = gari(zag•
I+II
, zag•

III
) (zag•

III
∈ GARIo.l.as/is) (55)

zag• = gari(zag•
I
, zag•

II+III
) (zag•

II+III
∈ GARIas/is) (56)

zag• = gari(zag•
I
, zag•

II
, zag•

III
) (zag•

II
∈ GARIe.l.as/is) (57)

The factors zag•
I

and zag•
II

carry only terms of even weight. As a consequence,
their components of even/odd length are even/odd functions of u.

The factor zag•
III

carries only terms of odd weight. As a consequence, its com-
ponents of even/odd length are odd/even functions of u.

The factor zag•
I

is symmetral/il 27 but doesn’t verify the initial parity con-
dition IP (see §4). Therefore, its gari-logarithm is not alternal/il 28. The
factors zag•

II
and zag•

III
, on the other hand, do verify that condition and so

belong to the proper symmetral/il group GARIas/is. Consequently, their gari-
logarithms lozag•

II
and lozag•

III
belong to the proper alternal/il algebra ARIal/il

and can be further analysed therein. Actually, it turns out that lozag•
II

and
lozag•

III
can be uniquely generated by the u-homogeneous parts of a crucial

24all the emphasis here is on direct; other derivations are useless chaff.
25that annihilate Q but act non-trivially on Q-rings of transcendental numbers
26i.e. multizetas without unit roots.
27i.e. symmetral and with a symmetral swappee.
28i.e. more exactly, it is alternal all right, but its swappee is not.
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bimould, loma• ∈ ARIal/il , with well-defined coefficients in front of the multi-
brackets. These coefficients are none other than the formal irreducibles.

Isolating the factor zag•
III

from the other two is quite easy. Indeed :29

gari(zag•
III
, zag•

III
) = gari(nepar(invgari(zag•)), zag•) (58)

But separating zag•
I

from zag•
II

is a far more arduous undertaking, especially
if we insist, as we do, on getting a ‘canonical’ separation. This requires
an elaborate construction, with the introduction of three special bimoulds,
leading to a subfactorisation of zag•

I
:

zag•
I

= gari• (tal•, invgari(pal•), expari(roma•)) (59)

= gari• (tal•, expari(viroma•), invgari(pal•)) (60)

– with a ‘eupolar’ factor pal• ∈ GARIas/as but 6∈ GARIas/as (see §7);
– with a ‘eutrigonometric’ factor tal• ∈ GARIas/as but 6∈ GARIas/as (see §7);
– with a ‘corrective factor’ roma• ∈ ARIal/il or its variant viroma• ∈ ARIal/al.

In sum, everything begins with the construction of two special bimoulds 30 :
– pal•/pil• and tal•/til•

– both symmetral/symmetral (as bimoulds)
– both relatively elementary (as functions of u)

but the really sensitive part consists in constructing and understanding two
further, even more crucial, and highly non-elementary, bimoulds :
– loma•/lomi• and roma•/romi•

– both alternal/alternil (as bimoulds)
– both with rational coefficients31 (as formal series in u)
– both strongly transcendental (as meromorphic functions of u) and actually
of perinomal and eupolar type.

7. The bisymmetral bimoulds pal•/pil• and tal•/til•.

The two semi-elementary factors in the decomposition of Zag•I are built from

29invgari denotes the gari-inversion; and nepar multiplies each length-r component by
(−1)r while changing the signs of all ui’s and vi’s.

30as usual, the swappee of a bimould bears the same name, with i instead of a.
31in the case of roma•/romi•, the coefficients become rational after an elementary rescal-

ing π2 7→ 1.
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the following simple ingredients:

P (t) := 1/t (61)

Q(t) := π/ tan(πt) (62)

Qaw0 = Qa
(u0
v0

)
:=

1

p

∑
1≤k≤p

e2πikv0 Q(u0 +
k

p
) if v0 ∈

1

p
Z/Z (63)

Eaw0 = Ea
(u0
v0

)
:= π if v0 = 0Q/Z (resp. 0 if v0 6= 0Q/Z) (64)

The simpler bimould, pal•, depends only on the u-variables. It is called
eupolar because of the very specific form of its poles. Its length-r component
is a homogeneous polynomial of total degree r in simple P -expressions :

palw1,...,wr ∈ Q [P (u1), P (u2), . . . , P (ur) , P (u1,2), P (u1,2,3), . . . , P (u1,..,r)]

The second bimould, tal•, is called eutrigonometric. For vanishing v-variables,
it closely resembles the eupolar bimould since its length-r component is again
a homogeneous polynomial32 of degree r in Q-expressions and π :

talw1,...,wr ∈ Q [π , Q(u1), Q(u2), . . . , Q(ur) , Q(u1,2), Q(u1,2,3), . . . , Q(u1,..,r)]

For general v-variables, talw1,...,wr is still a homogeneous polynomial of total
degree r, but in the variables Eaw

∗
i and Qaw

∗
i , with double indices w∗i = (u

∗
i
v∗i

)

subject to
∑
u∗i v

∗
i =

∑
uivi and of the form (uj

vj
) or ( uj

vj:k
) or (u1,...,j

vk
) .

Both bimoulds verify the self-consistency constraints and both are bissym-
metral 33 with, in the case of tal•, an elementary connection factor mana•I
much like the ‘global’ mana• in (26) but carrying only even powers of π :

swap(pil•) = pal• = symmetral (65)

swap(til•) = gari(tal•,mana•I ) = gari(mana•I , tal•) = symmetral (66)

These properties34 completely determine pal•/pil• and tal•/til•. These
bimoulds admit fully explicit expressions and enjoy an incredible number of
properties. As far as multizeta algebra is concerned, they intervene at three
critical junctures :
– tal• describes ‘almost all’ poles of Zag•I . It is therefore the mainstay of the
canonical-rational Drinfel’d associator.
– pal• provides us with a canonical-explicit isomorphism between the two

32but with only even powers of π in it.
33however, pal•, tal• 6∈ GARIas,as since pal w1 and tal w1 are odd functions of w1.
34together with the initial conditions pal w1 = − 1

2 u1
and tal w1 = − 1

2Qa
w1 .
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‘doubly symmetric’ or ‘dimorphic’ algebras ARIal/al and ARIal/il.
– pal• enables us to construct the so-called “singulators” and these in turn
make it possible to remove all the unwanted singularities at u = 0 which
appear during the inductive construction of the moulds loma• and roma•.

8. From the atomic to subatomic level. Free generation and sub-
generation.

ARIal/al is easily shown to be closed under the ari bracket. Under the adjoint
action of pal• in ARI, this closure property carries over to ARIal/il :

adari(pal•) : ARIal/al
algebra isom.−→ ARIal/il (67)

Further, using the factorisation (or stability) property :

GARIas/is = GARIas/is . GARIas/is (68)

zag• = gari(zag•0 , expari(A•)) with A• ∈ ARI
ent/disc
al/il (69)

we get the general zag• verifying all the constraints of R1 in §5 by postcom-
posing any particular solution35 zag•0 by the ari-exponential of the generic

element A• of ARI
ent/disc
al/il . Expanding A• :=

∑
cJ A

•
J along any rational lin-

ear basis {AJ} of ARI
ent/disc
al/il , we get one degree of freedom per basis element.

The corresponding scalar coefficients cJ are none other than the sought-after
irreducibles. Thus, the Q-ring Zetaform is seen to be isomorphic to the poly-
nomial ring Q[π2]⊗Q[cJ1 , cJ2 , . . . ] : this is the free generation theorem.

Now, as scalars, the irreducibles aJ are ‘atoms’, i.e. incapable of further
analysis. But they correspond one-to-one to dual objects A•J which, being

elements of the Lie algebra ARI
ent/disc
al/il , may be broken down as Lie brack-

ets of still ‘simpler’ and much less numerous ‘subatoms’ B•J . Moreover, for
small values of the root-order p, in particular for p = 1, 2, 3, the subatoms
in question freely generate ARI

ent/disc
al/il as an algebra. This is the so-called

free subgeneration theorem. And even for general values of p, the relations
between the subatoms B•J are few in number and easy to describe, so that
we may speak of a nearly free subgeneration. In all instances, knowledge
of the subatoms implies knowledge of all the relevant dimensions : additive,
multiplicative, etc (see §5).

35For example the ready-made Zag• constructed from the genuine multizetas, or the
factor zag•I in (56).
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We already saw how the change scalars→ generating series/functions en-
tails a far-going restoration of symmetry between the two fundamental encod-
ings, and a welcome ‘compactification’ of the conversion rule and quadratic
constraints. We now register another, more decisive gain : the possibility of
moving from the atomic to the subatomic level, leading to a complete under-
standing of the irreducibles. As for the further shift, from generating series to
generating functions, the specific reward it brings is the notion of perinomal
function, with the attendant direct-impartial description of the irreducibles.

9. Constructing loma•/lomi• and roma•/romi• : the easy steps.

This leaves us with two main tasks :

– constructing in ARI
ent/disc
al/il a mould loma• :=

∑
s loma•s, regular in u at the

origin, and with weight-homogeneous summands 36 loma•s that shall yield the
afore-mentioned sub-atoms BJ and support the description of all irreducibles
but π2.

– constructing in ARI
sing/disc

al/il a mould roma•, singular in u at the origin, but

with singularities that exactly compensate those of the factors pal• and tal•

in (59),(60) so as to produce a regular factor zag•I , leading to an automatic
separation of the ‘rogue’ irreducible π2 from all others.

Both constructions rely on an induction on the component length r 37

but there is a sharp dichotomy between easy steps :
– for loma• : going from length r odd to length r+1 even
– for roma• : going from length r even to length r+1 odd

which are automatic under the ARI/GARI machinery, and tricky steps ( the
alternate ones !) which involve a complex compensation mechanism.

36the summand loma•s of weight s has s non-vanishing components, and its component
of length r is a polynomial lomaw1,...,wr

s ∈ Q[u1, ..., ur] of total degree d := s− r.
37in the sequel, M•‖r denotes M• defined modulo all components of length > r.
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Here is a table setting forth the easy induction steps for loma• :

loma•‖r ∈ ARIal/il and regular at 0.

↓ adari(pal•)−1

viloma•‖r ∈ ARIal/al and singular at 0.

↓ trivial extension

viloma•‖r+1 ∈ ARIal/al and singular at 0.

↓ adari(pal•)

loma•‖r+1 ∈ ARIal/il and regular at 0.

The trivial extension viloma•‖r 7→ viloma•‖r+1 consists of course in setting
the r+1th component of viloma•‖r+1 equal to 0.

The same basic procedure holds for roma•, but with even/odd exchanged
and with the regular/singular dichotomy applying not to roma• itself, but to
the product zag•I .

10. Singulators and the removal of singularities : the tricky steps.

If we apply the same procedure for the ‘tricky steps’, the machinery will
work all right and still produce an extension loma‖•r+1 with the proper sym-
metries, but with unwanted singularities at the origin. To removed these,
some finely honed terms have to be added. The key notion here is that of
singulator. These are operators slankr0 and slangr0 that turn elementary bi-
moulds (regular in u at 0, and with a single non-zero component, for r = 1)
into bimoulds with the proper symmetries (either al/al or al/il ) and the
proper singularities (‘eupolar’) at the component of length r0.

Here is how they are defined :

slank•r0 H• := neginvar . lengr0 .adari(pal•)−1 .mu(mupaj•, leng1 .H
•, paj•) (70)

≡ pushinvarr . lengr .mu(anti . pal•, garit(pal•). leng1 .H
•, pari. pal•) (71)

slang•r0 H• := adari(pal•) . slank•r0 H• (72)

slank•r0 H• ∈ ARIal/al ; slang•r0 H• ∈ ARIal/il (r0 ∈ N∗) (73)
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and here is how they affect their argument H• :

H• ∈ ARI
reg/disc
al/al ‖ sole non-zero component for r=1,

regular in u at 0.

↓
slankr0 H

• ∈ ARI
sing/disc
al/al ‖ sole non-zero component for r=r0,

polar part in u of order r0−1 at 0.

↓
slangr0 H

• ∈ ARI
sing/disc
al/il ‖ sole non-zero components for r≥r0,

polar part in u of order r−1 at 0.

In the above relations lengr, neginvar, pushinvar denote projectors onBIMU :
– lengr retains the component of length r and annihilates all others.
– neginvar turns any bimould into one that is an even function of w.
– pushinvar turns any bimould into one that is push-invariant (see (44)).
The elementary symmetral bimoulds paj•,mupaj• are mutually inverse under
the ordinary mould product mu and depend only on the u-variables :

pajw1,...,wr = P (u1)P (u1,2) . . . P (u1,...,r) (74)

mupajw1,...,wr = (−1)rP (u1,...,r)P (u2,...,r) . . . P (ur) (75)

The operator pari multiplies components of length r by (−1)r and anti re-
verses the order in index sequences. Lastly, garit denotes the natural action
of GARI on BIMU.38

11. Explicit formulae for loma•/lomi•.

Starting from the two elementary bimoulds H•s and K•n with length-1 com-
ponents of the form Hw1

s := us−1
1 and Kw1

n := P (n−u1) and applying slangr,
we get two series of bimoulds :

H•[ s
r
] := slangrH

•
s ∈ ARI

sing/disc
al/il , K•[n

r
] := slangrK

•
n ∈ ARI

sing/disc
al/il (76)

that make it possible to compensate the unwanted singularities produced at
each tricky step of the induction. This leads to two parallel expansions.

First expansion of loma• and each loma•s : as power series in u.

act(loma•s) := +act(H•[ s
1
])

(r = 3) ‖ +
∑

[ s1+s2=s
1+2=3

]

β[ s1
1
,
,
s2
2

] act(H•[ s1
1

]) act(H•[ s2
2

])

‖ ......................................................................

(r odd ≥ 5) ‖ +
∑

[ s1+...sq=s
r1+...rq=r

]

β
[ s1
r1

,...,
,...,

sq
rq

]
act(H•[ s1

r1
]) ... act(H

•
[ sq
rq

])

‖ ......................................................................

38which of course is distinct from the adjoint action of GARI in ARI.
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Second expansion of loma• : as meromorphic-perinomal functions in u.

act(loma•)
ess
:= +act(K•

[ 1
1
]
)

(r = 3) ‖ +
∑

[ (n1,n2) coprime
1+2=3

]

ρ[n1
1
,
,
s2
2

] act(K•[n1
1

]) act(K•[n2
2

])

‖ ......................................................................

(r odd ≥ 5) ‖ +
∑

[ (n1,..,nq) coprime
r1+...rq=r

]

ρ
[n1
r1

,...,
,...,

nq
rq

]
act(K•[n1

n1
]) ... act(K

•
[nq
rq

])

‖ ......................................................................

The second expansion is unique. It involved well-defined, rational mul-
tiresidues ρ• that are discrete perinomal functions of the integers ni.

The first expansion is not unique, but becomes so if we want it to coincide
with the second one. It then involves well-defined coefficients β• which are,
unexpectedly but crucially, rational numbers. Each one of them is expressible
as a ratio of finitely many hyper-bernoullian numbers. In fact, for r = 3, they
are quotients β′β′′/β′′′ of just three ordinary Bernouilly numbers.39

As moulds, both ρ• and β• are alternal.

We have similar expansions for the bimould roma•.

12. Explicit-canonical decomposition of multizetas into irreducibles.

Let τ s be the projector on ARI
reg/disc
al/il which, when applied to a bimould

M•, retains only the part of weight s. For a component of length r, this
means retaining only the part of degree d = s−r in the u-variables.

τ s M
(u1
v1

,...,
,...,

ur
vr

)
:= M

(u1
v1

,...,
,...,

ur
vr

)||u-part of degree s− r (77)

For the generating series of the multizetas, whether ‘genuine’40 or formal41,
this leads to unique decompositions, with a loma•-part that carries only ratio-

39the step 3 7→ 4 requiring no corrections, these harmless quotients β′β′′/β′′′ already
yield the explicit-canonical decomposition of all multizetas of length r ≤ 4 and of any
weight s , up to infinity !

40with upper-case initials.
41with lower-case initials.
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nal coefficients, and coefficients Irr•/irr• that absorb all the transcendence :

act(Zag•
II
) = 1 +

∑
Irr

II

s1,...,sr act(τ s1 loma•) . . . act(τ sr loma•) (78)

act(Zag•
III

) = 1 +
∑

Irr
III

s1,...,sr act(τ s1 loma•) . . . act(τ sr loma•) (79)

act(zag•
II
) = 1 +

∑
irr

II

s1,...,sr act(τ s1 loma•) . . . act(τ sr loma•) (80)

act(zag•
III

) = 1 +
∑

irr
III

s1,...,sr act(τ s1 loma•) . . . act(τ sr loma•) (81)

In all four sums, the indices si are odd integers ≥ 3 and “act” denotes any
transitive action of ARI/GARI in BIMU – it doesn’t matter which. The
gari-factorisations between symmetral bimoulds :

Zag•
II+III

:= gari• (Zag•
II
, Zag•

III
) (82)

zag•
II+III

:= gari• (zag•
II
, zag•

III
) (83)

induce corresponding mu-factorisations for the symmetral, scalar moulds :

Irr•
II+III

:= Irr•
II
× Irr•

III
(84)

irr•
II+III

:= irr•
II
× irr•

III
(85)

Moreover, due to the parity which governs everything here, the only non-
zero components in the mould logarithms logmu(Irr•

II
) and logmu(irr•

II
) (resp.

logmu(Irr•
III

) and logmu(irr•
III

)) are those of even (resp. odd) length r. As an
easy consequence, the mould irr•

II+III
, or irr• for short, actually determines

its two factors irr•
II

and irr•
III

. Summing up, we may say :

Together with the symbol irr 2
I
∼ “π2”, the symmetral mould 42 :

irr•
II+III

= irr• = {irrs1,s2,...,sr ∈ C} , r = 1, 2, 3 . . . , si ∈ {3, 5, 7, 9 . . . } (86)

constitutes a system, both complete and free 43, of canonical irreducibles for
the (ordinary or ‘rootless’) formal multizetas. More precisely, any such mul-
tizeta may be uniquely linearised as a sum :∑

r≥0

s0 even≥0∑
s1,...,sr odd≥3

γ s0 ; s1,...,sr πs0 irr s1,...,sr (γ• ∈ Q) (87)

42i.e. subject to no other constraints than symmetrality.
43that is, free up to the symmetrality constraints. These constraints could easily be

removed by working with the alternal mould logmu(irr•) and picking some Lyndon basis
in the corresponding Lie algebra, but that would entail a slight loss of canonicity. The
truth of the matter is that the irreducibles spontaneously present themselves in the shape
of a symmetral mould – and there is no going against that. The whole point of the
reduction, of course, lies in the change from a mould ze• with a double symmetry and
indices si running through {1, 2, 3, 4...}, to a mould irr• with a single symmetry and
indices si running through {3, 5, 7, 9...}.
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. Analogous results hold for the rooted multizetas.

13. ‘Impartial’ expression of the irreducibles as perinomal numbers.

Plugging (59),(80),(81) into the factorisation (57) and then picking the Tay-
lor coefficients of either zag• or zig•, we get the formal multizetas, in both
encodings wa• and ze•, automatically44, uniquely, and explicitly expanded
as finite sums of irreducibles irr•. The process of course may be reversed,
yielding expressions of irr• in terms of either wa• and ze•, but these reverse
formulae are trebly defective : they are not particularly explicit; they are
decidedly non-unique; and they are ‘partial’, in the sense of leaning towards
one or the other of the two natural encodings. To remove these blemishes,
we require expansions which, like (78)-(79), express Zag•II , Zag•III in terms
of loma•, but treating these bimoulds as perinomal-meromorphic functions
and no longer as power series. So, instead of breaking up loma• under the
projectors τ s, we now apply the following dilation automorphisms 45 δn :

δn M
(u1
v1

,...,
,...,

ur
vr

)
:= n−r M

(u1/n
v1

,...,
,...,

ur/n
vr

)
(88)

The new expansions read (with all ni running through N∗) :

act(Zag•
II
)

ess
= 1 +

∑
Urr

II

n1,...,nr act(δn1 loma•) . . . act(δnr loma•) (89)

act(Zag•
III

)
ess
= 1 +

∑
Urr

III

n1,...,nr act(δn1 loma•) . . . act(δnr loma•) (90)

with symmetral moulds Urr•
II
,Urr•

III
that are rational-valued perinomal func-

tions of the integers ni.

A first fallout (from inverting (90)) is yet another expansion for loma• :

act(loma•)
ess
=

∑
Orr

III

n1,...,nract(δn1Zag•
III
− 1•) . . . act(δnrZag•

III
− 1•) (91)

which is often referred to as “wasteful-useful” 46. But the main consequence
is a direct-impartial expression for the irreducibles. Indeed, if for any index

44via the ARI/GARI machinery
45they are automorphisms of ARIal/al and, thanks to the factor n−r, of ARIal/il as well.
46“wasteful”, because it derives an object with sparse poles and rational Taylor coeffi-

cients from one with “dense” poles and transcendental Taylor coefficients; “useful”, be-
cause it automatically transports important properties (like invariance under the digonal
involution : see [E2], Appendix) from upper-case Zag• and Zag•

III
over to loma• and then,

via (59),(80),(81), back to lower-case zag•, thus proving that these properties (digonal
invariance etc) are algebraically implied by the quadratic relations.
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X of the form II, III or II+III we set :

Yrrs1,...,sr
X

ess
:=
∑
ni≥1

Urrn1,...,nr
X

n−s11 ...n−srr (92)

we get three parallel identities between symmetral moulds :

Zag•
II+III

= gari• (Zag•
II
, Zag•

III
) (93)

Urr•
II+III

:= Urr•
II
× Urr•

III
(94)

Yrr•
II+III

:= Yrr•
II
× Yrr•

III
(95)

and we find that the moulds Irr•X and Yrr•X actually coincide, though they
vastly differ as to the way they are defined.

Remark : there is also a notion of formal perinomal numbers, parallel to that
of formal multizetas (but relative to constraints altogether different from the
quadratic relations) and the above relations translate into a direct-impartial
expression of the irreducibles irr•X attached to the formal multizetas.

The whole theory also carries over to the case of rooted multizetas, but with
the new phenomenon of retroaction.47 Results are particularly simple for the
root orders p = 2 and p = 3. If anything, the case of Eulerian multizetas
(p = 2) is even simpler than that of ordinary multizetas (p = 1). Perinomal
functions still rule the roost. They fall into six main classes :48

root
order

Bimoulds in

ARI
reg/disc
al/il

Eupolar functions
(meromorphic-perinomal)

Residues ρ
(discrete-perinomal)

Taylor coefficients ρ#

(perinomal numbers)

p = 1 loma•

roma•
“sparse”

multipoles
well-defined

perinomal degrees di,j

rational and
“Bernoullian”

p = 2 loma•

roma•
“dense”

multipoles
well-defined

perinomal degrees di,j

rational and
“Bernoullian”

p ≥ 1 logari(Zag•II)
logari(Zag•III)

“dense”
multipoles

well-defined
perinomal degrees di,j

multizetaic and
“impartial”

15. Conclusion. Looking back/ahead/sideways.

Looking back : Despite interesting work by M. Petitot, J. van der Ho-
even, Minh, etc, and some vigorous numerical exploration by Broadhurst,

47which means that, for a fixed weight s, some of the constraints binding the multizetas
of a given length r0 < s do not result from the double symmetries written down for
r = 1, .., r0 : the full sequence r = 1, ..., s must be taken into account.

48we say that a meromorphic-eupolar functions on Cr with multipoles “at” the multi-
integers ∈ Zr has “dense” (resp. “sparse”) multipoles if the latters’ number inside a ball
of radius l grows like O(lr) (resp. o(lr)).
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Borwein, Kreimer etc, plus some inspired conjectures based on these numer-
ical data, the main problems in multizeta arithmetic were still open by the
end of the 90s. The intervention in the last months of 2000 of the (pre-
existing) ARI/GARI apparatus unfroze the situation. It yielded at once the
free generation theorem and the basic dimorphic special bimoulds, leading to
the canonical-explicit decomposition into irreducibles. Later still, in 2002, the
recourse to perinomal objects opened the way for the direct-impartial expan-
sion of irreducibles.

Looking ahead : Here are four possible avenues for further research :
– going through the list of known multizetaic constraints and showing that
each of them is algebraically derivable from the quadratic relations. This has
already been done in special instances. The trouble with that process is of
course its open-endedness. . .
– attempting to establish once and for all the rigorous arithmetical isomor-
phism of formal and genuine multizetas. The most promising approach here
is that of direct numerical derivations patterned on the alien derivations of
analysis, which have largely systematised the proving of transcendence re-
sults for resurgent functions.
– pursuing the investigation of dimorphy beyond multizetas, in the next main
dimorphic Q-rings ⊂ C that have already been identified, beginning of course
with suitable formalisations of these rings.
– exploring the trigebra NNa of natural analysable germs 49 and its numerical
accompaniment, the ring Na of natural numbers, as the (probably) broadest
setting for the understanding of numerical dimorphy.

Looking sideways : strangely, multizeta theory is rife with mistakes and
misconceptions, some of which persist long after exposure. Here is a sample :
– the conversion rule (26)-(28) : though long known and immediate to
derive (see §2), it sometimes receives needlessly convoluted proofs.
– the meromorphic continuation of Ze• in the s-variables : this al-
most self-evident fact (two lines of proof !) has been questioned, even denied,
and then given clumsy, roundabout proofs50. Nor is there any awareness of
the existence of another s-continuable bimould Z̧a•, analogous to Ze• but
linked to the Wa• encoding.51 The only difficult, and still open, question
in this context pertains to the irreducibles Irr• : these are easily definable
as holomorphic functions for large positive s-variables, but do they admit a
meromorphic continuation on the negative side ?
– status of the self-consistency constraints (30) : it has been vari-

49with its two sets of exotic derivations : alien and foreign.
50which fall well short of a full description of the multipoles and their residues.
51it is closesy connected with the Taylor coefficients of the gari-inverse of Zag•.

24



ously stated or suggested that they don’t exhaust the additional constraints
for rooted multizetas52. In fact the exact opposite is the case : they are always
sufficient and for small values of the root order p they are even redundant.
– status of ARI/GARI : it has been likened to various constructs, in
particular the Ihara algebra, which is downright absurd, if only because :
(i) the Ihara algebra lacks the dual set of variables u/v which is indispens-
able for a ‘symmetrical’ treatment of dimorphy 53

(ii) it cannot accommodate the singular functions 54 which fit effortlessly into
the ARI/GARI framework and on which everything revolves
(iii) it has no place for any of the sixty-odd special moulds 55 which are es-
sential to the construction and description of irreducibles.
– status of numerical dimorphy : when not ignored purely and simply,
this central fact about transcendental numbers is often discussed within the
quite uncongenial framework of “period theory” which, due to its partiality
for integrals over series, distorts at the outset all the symmetries that under-
pin dimorphy.
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[E3],[E4] shall be available as Orsay preprints in February 2005, and [E5],[E6]
shall appear later on in the course of that same year. All four texts [E3,4,5,6]
are extremely lengthy, but abridged versions shall be submitted to ordinary
mathematical journals. Electronic files of the unabridged versions shall be
put on the WEB, along with an assortment of Tables and Maple programmes.
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