The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles.

Jean Ecalle (CNRS) with computational assistance from S. Carr.

Abstract

We present a self-contained survey of the flexion structure and its core $\mathrm{ARI} / / \mathrm{GARI}$. We explain why this pair algebra//group is uniquely suited to the generation, manipulation, description and illumination of double symmetries, and therefore conducive to an in-depth understanding of arithmetical dimorphy. Special emphasis is laid on the monogenous algebras generated by flexion units, their special bimoulds, and the corresponding singulators. We then attempt a broad-brush overview of the whole question of canonical irreducibles and introduce the promising subject of perinomal algebra. As a recreational aside, we also state, justify, and computationally check a refinement of the standard conjectures about the enumeration of multizeta irreducibles.

1. Introduction and reminders.

1.1 Multizetas and dimorphy.
1.2 From scalars to generating series.
1.3 ARI//GARI and its dimorphic substructures.
1.4 Singulators and double symmetries.
1.5 Enumeration of multizeta irreducibles.
1.6 Purpose of the present survey.

2. Basic dimorphic algebras.

2.1 Basic operations.
2.2 The algebra $A R I$ and its group $G A R I$.
2.3 Action of the basic involution swap.
2.4 Straight symmetries and subsymmetries.
2.5 Main subalgebras.
2.6 Main subgroups.
2.7 The dimorphic algebra $A R I^{a l / a l}$ and its embedding in $A R I^{a l / a l}$.

3. Flexion units and twisted symmetries.

3.1 The free monogenous algebras Flex(\mathfrak{E}).
3.2 Flexion units.
3.3 Unit-generated algebras Flex(E).
3.4 Twisted symmetries and subsymmetries in universal mode.
3.5 Twisted symmetries and subsymmetries in polar mode.
4. Flexion units and basic dimorphic bimoulds.
4.1 Remarkable substructures of Flex (\mathfrak{E}).
4.2 Main secondary bimoulds $\mathfrak{e s 5}^{\circ}$ and $\mathfrak{e s z}^{\circ}$.
4.3 Related primary bimoulds $\mathfrak{e s}{ }^{\circ}$ and $\mathfrak{e z}{ }^{\circ}$.
4.4 Some basic bimould identities.
4.5 Trigonometric and bitrigonometric bimoulds.
4.6 Dimorphic isomorphisms in universal mode.
4.7 Dimorphic isomorphisms in polar mode.
5. Singulators, singulands, singulates.
5.1 Some heuristics. Double symmetries and imparity.
5.2 Universal singulators $\operatorname{senk}\left(\mathrm{ess}^{\circ}\right)$ and $\operatorname{seng}\left(\mathrm{es}^{\bullet}\right)$.
5.3 Universal singulators: description and properties.
5.4 Polar singulators: description and properties.
5.5 Simple polar singulators.
5.6 Composite polar singulators.
5.7 From $\underline{a l} / \underline{a l}$ to $\underline{a l} / \underline{i l}$. Nature of the singularities.
6. A natural basis for $A L I L \subset A R I^{\underline{a l} / \underline{i l} \text {. }}$
6.1 Singulation-desingulation: the general scheme.
6.2 Singulation-desingulation up to length 2.
6.3 Singulation-desingulation up to length 4.
6.4 Singulation-desingulation up to length 6.
6.5 The basis lama ${ }^{\bullet} /$ lami $^{\bullet}$.
6.6 The basis loma ${ }^{\bullet} /$ lomi $^{\bullet}$.
6.7 The basis luma ${ }^{\bullet} /$ lum $^{\bullet}$.
6.8 Arithmetical vs analytic smoothness.
6.9 Singulator kernels and "wandering" bialternals.
7. A conjectural basis for $A L A L \subset A R I^{\underline{a l} / a l}$.
7.1 Basic bialternals: the enumeration problem.
7.2 The regular bialternals: ekma, doma.
7.3 The irregular bialternals: carma.
7.4 Main differences between regular and irregular bialternals.
7.5 The pre-doma potentials.
7.6 The pre-carma potentials.
7.7 Construction of the carma bialternals.
7.8 Alternative approach.
7.9 The global bialternal ideal and the universal 'restoration' mechanism.

8. The enumeration of bialternals. Conjectures and computational evidence.

8.1 Primary, sesquary, secondary algebras.
8.2 The factor algebra $E K M A$ and its subalgebra $D O M A$.
8.3 The factor algebra CARMA.
8.4 The total bialternal algebra $A L A L$ and the original BK conjectures.
8.5 The factor algebras and our sharper conjectures.
8.6 Cell dimensions for $A L A L$.
8.7 Cell dimensions for $E K M A$.
8.8 Cell dimensions for DOMA.
8.9 Cell dimensions for CARMA.
8.10 Computational checks (by Sarah Carr).
9. Canonical irreducibles and perinomal algebra.
9.1 The general scheme.
9.2 Arithmetical criteria.
9.3 Functional criteria.
9.4 Notions of perinomal algebra.
9.5 The four classes of perinomal singulates.
9.6 A glimpse of perinomal splendour.

10. Provisional conclusion.

10.1 Arithmetical and functional dimorphy.
10.2 Moulds and bimoulds. The flexion structure.
10.3 ARI // GARI and the handling of double symmetries.
10.4 What has already been achieved.
10.5 Looking ahead: what is within reach and what beckons from afar.

11. Complements.

11.1 Origin of the flexion structure.
11.2 From simple to double symmetries. The scramble.
11.3 The bialternal tessellation bimould tes ${ }^{\bullet}$.
11.4 Trigonometric symmetries.
11.5 The separative algebras $\operatorname{Inter}(Q i) \subset \operatorname{Exter}(Q i)$.
11.6 Multizeta cleansing: elimination of unit weights.
11.7 Multizeta cleansing: elimination of odd degrees.
11.8 $G A R I_{\mathfrak{s e}}$ and the two separation lemmas.
11.9 Bisymmetrality of $\mathfrak{e s 5}^{\circ}$: conceptual proof.
11.10 Bisymmetrality of $\mathfrak{e s s}{ }^{\circ}$: combinatorial proof.
12.1 Table 1: basis for Flex (\mathfrak{E}).
12.2 Table 2: basis for Flexin (\mathfrak{E}).
12.3 Table 3: basis for Flexinn(\mathfrak{E}).
12.4 Table 4: $\mathfrak{e s s}^{\circ}$.
12.5 Table 5: $\mathfrak{e s z}^{\bullet}$.
12.6 Table 6: taal ${ }^{\bullet} /$ tiil $^{\bullet}$.
12.7 Index of terms and notations.
12.8 References.

1 Introduction and reminders.

1.1 Multizetas and dimorphy.

Let us take as our starting point arithmetical dimorphy, which in its purest form manifests in the ring of multizetas. Some extremely important \mathbb{Q}-rings of transcendental numbers happen to be dimorphic, i.e. to possess two natural \mathbb{Q}-prebases ${ }^{1}\left\{\alpha_{m}\right\},\left\{\beta_{n}\right\}$ with a simple conversion rule and two independent multiplication tables, all of which involve only rational coefficients and finite sums:

$$
\begin{array}{lllr}
\alpha_{m}=\sum^{*} H_{m}^{n} \beta_{n} & , & \beta_{n}=\sum^{*} K_{n}^{m} \alpha_{m} & \left(H_{m}^{n}, K_{n}^{m} \in \mathbb{Q}\right) \\
\alpha_{m_{1}} \alpha_{m_{2}}=\sum^{*} A_{m_{1}, m_{2}}^{m_{3}} \alpha_{m_{3}} & , & \beta_{n_{1}} \beta_{n_{2}}=\sum^{*} B_{n_{1}, n_{2}}^{n_{3}} \beta_{n_{3}} & \left(A_{n_{1}, n_{2}}^{n_{3}}, B_{n_{1}, n_{2}}^{n_{3}} \in \mathbb{Q}\right)
\end{array}
$$

The simplest, most basic of all such rings is Zeta, which is not only multiplicatively generated but also linearly spanned by the so-called multizetas. ${ }^{2}$

In the first prebasis, the multizetas are given by polylogarithmic integrals :

$$
\begin{equation*}
\mathrm{Wa}_{*}^{\alpha_{1}, \ldots, \alpha_{l}}:=(-1)^{l_{0}} \int_{0}^{1} \frac{d t_{l}}{\left(\alpha_{l}-t_{l}\right)} \cdots \int_{0}^{t_{3}} \frac{d t_{2}}{\left(\alpha_{2}-t_{2}\right)} \int_{0}^{t_{2}} \frac{d t_{1}}{\left(\alpha_{1}-t_{1}\right)} \tag{1.1}
\end{equation*}
$$

[^0]with indices α_{j} that are either 0 or unit roots, and $l_{0}:=\sum_{\alpha_{i}=0} 1$.
In the second prebasis, multizetas are expressed as "harmonic sums":
\[

\mathrm{Ze}_{*}\left($$
\begin{array}{c}
\left.\epsilon_{1}^{\epsilon_{1}, \ldots, e_{r}, s_{r}}\right) \tag{1.2}
\end{array}
$$=\sum_{n_{1}>\cdots>n_{r}>0} n_{1}^{-s_{1}} ··· n_{r}^{-s_{r}} e_{1}^{-n_{1}} ··· e_{r}^{-n_{r}}\right.
\]

with $s_{j} \in \mathbb{N}^{*}$ and unit roots $e_{j}:=\exp \left(2 \pi i \epsilon_{j}\right)$ with 'logarithms' $\epsilon_{j} \in \mathbb{Q} / \mathbb{Z}$.
The stars $*$ means that the integrals or sums are provisionally assumed to be convergent or semi-convergent: for $W a_{*}^{\alpha}$ this means that $\alpha_{1} \neq 0$ and $\alpha_{l} \neq 1$, and for $Z e_{*}^{\left(\begin{array}{c}\epsilon_{\mathrm{s}}\end{array}\right)}$ this means that $\binom{\epsilon_{1}}{s_{1}} \neq\binom{ 0}{1}$ i.e. $\binom{e_{1}}{s_{1}} \neq\binom{ 1}{1}$.

The corresponding moulds $W a_{*}^{\bullet}$ and $Z e_{*}^{\bullet}$ turn out to be respectively symmetral and symmetrel: ${ }^{3}$

$$
\begin{align*}
& \mathrm{Wa}_{*}^{\boldsymbol{\alpha}^{1}} \mathrm{Wa}_{*}^{\boldsymbol{\alpha}^{2}}=\sum_{\boldsymbol{\alpha} \in \operatorname{sha}\left(\boldsymbol{\alpha}^{1}, \boldsymbol{\alpha}^{2}\right)} \mathrm{Wa}_{*}^{\boldsymbol{\alpha}} \quad \forall \boldsymbol{\alpha}^{1}, \forall \boldsymbol{\alpha}^{2} \tag{1.3}
\end{align*}
$$

These are the so-called quadratic relations, which express multizeta dimorphy. As for the conversion rule, it reads: ${ }^{4}$

$$
\begin{align*}
& \left.\mathrm{Wa}_{*}{ }^{e_{1}, 0^{\left[s_{1}-1\right]}, \ldots, e_{r},{ }^{\left[s_{r}-1\right]}}:=\mathrm{Ze}_{*}{ }^{\left(\begin{array}{c}
\varepsilon_{r}, \\
s_{r}, \epsilon_{r-1, r}, \ldots, s_{r-1}
\end{array}, \ldots, s_{1}, 2\right.}\right) \tag{1.5}\\
& \mathrm{Ze}_{*}{ }^{\left(\begin{array}{c}
\epsilon_{1} \\
s_{1}, s_{2} \\
\varepsilon_{2}, \ldots, \epsilon_{2}
\end{array}, \ldots, s_{r}\right)}=: \mathrm{Wa}_{*}{ }^{e_{1} \ldots e_{r}, 0^{\left[s r_{r}-1\right]}, \ldots, e_{1} e_{2},{ }^{\left[s_{2}-1\right]}, e_{1}, 0^{\left[s_{1}-1\right]}} \tag{1.6}
\end{align*}
$$

with $0^{[k]}$ denoting a subsequence of k zeros.
There happen to be unique extensions $W a_{*}^{\bullet} \rightarrow W a^{\bullet \bullet}$ and $Z e_{*}^{\bullet} \rightarrow Z e^{\bullet}$ that cover the divergent cases and keep our moulds symmetral or symmetrel while conforming to the 'initial conditions' $W a^{0}=W a^{1}=0$ and $Z e^{\left({ }_{1}^{0}\right)}=0$. The only price to pay will be a slight modification of the conversion rule : see $\S 1.2$ infra.

Basic gradations/filtrations.

Four parameters dominate the discussion:

- the weight $s:=\sum s_{i}$ (in the $Z e^{\bullet}$-encoding) or $s:=l$ (in the $W a^{\bullet}$-encoding)
- the length or "depth" $r:=$ number of ϵ_{i} 's or s_{i} 's or non-zero α_{i} 's.

[^1]- the degree $d:=s-r=$ number of zero α_{i} 's in the $W a^{\bullet}$-encoding. ${ }^{5}$
- the "coloration" $p:=$ smallest p such that all root-related ϵ_{i} be in $\frac{1}{p} \mathbb{Z} / \mathbb{Z}$.

Only the weight s defines an (additive and multiplicative) gradation; the other parameters merely induce filtrations.

1.2 From scalars to generating series.

The natural encodings $W a^{\bullet}$ and $Z e^{\bullet}$ being unwieldy and too heterogeneous in their indexations, we must replace them by suitable generating series, so chosen as to preserve the simplicity of the two quadratic relations and of the conversion rule. This essentially imposes the following definitions: ${ }^{6}$

$$
\begin{align*}
\operatorname{Zag}^{\binom{u_{1}, \ldots, u_{r}}{\epsilon_{1}, \ldots, \epsilon_{r}}} & :=\sum_{1 \leq s_{j}} \mathrm{Wa}^{e_{1}, 0^{\left[s_{1}-1\right]}, \ldots, e_{r}, 0^{\left[s_{r}-1\right]}} u_{1}^{s_{1}-1} u_{1,2}^{s_{2}-1} \ldots u_{1 \ldots r}^{s_{r}-1} \tag{1.7}\\
\operatorname{Zig}^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{v_{1}, \ldots, v_{r}}} & :=\sum_{1 \leq s_{j}} \mathrm{Ze}^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{s_{1}, \ldots, s_{r}}} v_{1}^{s_{1}-1} \ldots v_{r}^{s_{r}-1} \tag{1.8}
\end{align*}
$$

The first series $Z a g^{\bullet}$, via its Taylor coefficients, gives rise to yet another \mathbb{Q} prebasis $\left\{Z a^{\bullet}\right\}$ for the \mathbb{Q}-ring of multizetas. The mould $Z a^{\bullet}$ is symmetral like $W a^{\bullet}$ but quite distinct from it and much closer, in form and indexation, to the symmetrel mould $Z e^{\bullet}$:

These power series are actually convergent: they define generating functions ${ }^{7}$ that are meromorphic, with multiple poles at simple locations. These functions, in turn, verify simple difference equations, and admit an elementary mould factorisation (mark the exchange in the positions of $d o$ and $c o$):

$$
\begin{align*}
\mathrm{Zag}^{\bullet} & :=\lim _{k \rightarrow \infty} \mathrm{Zag}_{k}^{\bullet}=\lim _{k \rightarrow \infty}\left(\operatorname{doZag}_{k}^{\bullet} \times \operatorname{coZag}_{k}^{\bullet}\right) \tag{1.10}\\
\mathrm{Zig}^{\bullet} & :=\lim _{k \rightarrow \infty} \mathrm{Zig}_{k}^{\bullet}=\lim _{k \rightarrow \infty}\left(\operatorname{coZi}_{k}^{\bullet} \times \operatorname{doZig}_{k}^{\bullet}\right) \tag{1.11}
\end{align*}
$$

with dominant parts $d o Z a g^{\bullet} / d o Z i g^{\bullet}$ that carry the $\boldsymbol{u} / \boldsymbol{v}$-dependence ${ }^{8}$:

$$
\begin{align*}
& \operatorname{doZag}_{k}^{\left(\begin{array}{l}
\left.\varepsilon_{1}, \ldots, u_{r}, e_{r}\right)
\end{array}\right.}:=\sum_{1 \leq m_{i} \leq k} e_{1}^{-m_{1}} \ldots e_{r}^{-m_{r}} P\left(m_{1}-u_{1}\right) P\left(m_{1,2}-u_{1,2}\right) \ldots P\left(m_{1 . . r}-u_{1 . . r} \times 1.12\right) \\
& \operatorname{doZig}_{k}^{\left(\begin{array}{l}
\epsilon_{1}, \ldots, \epsilon_{r} \\
\left.v_{1}, \ldots, v_{r}\right)
\end{array}\right.}:=\sum_{k \geq n_{1}>n_{2}>\ldots n_{r} \geq 1} e_{1}^{-n_{1}} \ldots e_{r}^{-n_{r}} P\left(n_{1}-v_{1}\right) P\left(n_{2}-v_{2}\right) \ldots P\left(n_{r}-v_{r}(1.13)\right.
\end{align*}
$$

[^2]and corrective parts $\mathrm{coZag}{ }^{\bullet} / \mathrm{coZig}{ }^{\bullet}$ that reduce to constants:
\[

$$
\begin{align*}
\operatorname{coZag}_{k}^{\left(\begin{array}{l}
u_{1}, \ldots, u_{r} \\
\left.0, \ldots, 0_{0}\right)
\end{array}\right.} & :=(-1)^{r} \sum_{1 \leq m_{i} \leq k} P\left(m_{1}\right) P\left(m_{1,2}\right) \ldots P\left(m_{1 \ldots r}\right) \tag{1.14}\\
\operatorname{coZig}_{k}^{\binom{0}{v_{1}, \ldots, v_{r}}} & :=(-1)^{r} \sum_{k \geq n_{1} \geq n_{2} \geq \ldots n_{r} \geq 1} \mu^{n_{1}, \ldots, n_{r}} P\left(n_{1}\right) P\left(n_{2}\right) \ldots P\left(n_{r}\right) \tag{1.15}\\
\operatorname{coZag}_{k}^{\binom{u_{1}, \ldots, u_{r}}{c_{1}, \ldots, \iota_{r}}} & :=0 \quad \text { if } \quad\left(\epsilon_{1}, \ldots, \epsilon_{r}\right) \neq(0, \ldots, 0) \tag{1.16}\\
\left.\operatorname{coZig}_{k}^{\left(\epsilon_{1}, \ldots, \epsilon_{r}\right)} v_{1}, \ldots, v_{r}\right) & :=0 \quad \text { if } \quad\left(\epsilon_{1}, \ldots, \epsilon_{r}\right) \neq(0, \ldots, 0) \tag{1.17}
\end{align*}
$$
\]

with $P(t):=1 / t$ (here and throughout) and with $\mu^{n_{1}, n_{2}, . ., n_{r}}:=\frac{1}{r_{1}!r_{2}!\ldots r_{l}!}$ if the non-increasing sequence $\left(n_{1}, \ldots, n_{r}\right)$ attains r_{1} times its highest value, r_{2} times its second highest value, etc.
Setting $\operatorname{Mini} i_{k}^{\bullet}:=Z i g_{k}^{\bullet} \|_{\mathrm{v}=0}$ we find $:{ }^{9}$

$$
\begin{align*}
\operatorname{Mini}_{k}^{\binom{0}{v_{1}, \ldots, \ldots, v_{r}}}:=\sum_{\left[\begin{array}{c}
2 \leq r_{1} \leq r_{2} \ldots \leq r_{l} \\
r_{1}+r_{2}+\ldots r_{l}=r
\end{array}\right]}^{\left[\begin{array}{l}
1 \leq \leq \leq r^{2} \\
1 \leq n_{i} \leq k
\end{array}\right]}(-1)^{(r-l)} \mu^{r_{1}, \ldots, r_{l}} \frac{\left(P\left(n_{1}\right)\right)^{r_{1}}}{r_{1}} \ldots \frac{\left(P\left(n_{l}\right)\right)^{r_{l}}}{r_{l}} \tag{1.18}\\
\operatorname{Mini}_{k}^{\left(\begin{array}{c}
\epsilon_{1}, \ldots, \epsilon_{1} \\
\left.v_{1}, \ldots, v_{r}\right)
\end{array}\right.}:=0 \quad \text { if }\left(\epsilon_{1}, \ldots, \epsilon_{r}\right) \neq(0, \ldots, 0) \tag{1.19}
\end{align*}
$$

Let us now compare the bimoulds \bar{C}_{k}^{\bullet} and $\underline{C}_{k}^{\bullet}$ thus defined:

$$
\begin{equation*}
\text { swap.Zag }{ }_{k}^{\bullet}=\overbrace{\text { swap.coZag }}^{k} \times \overbrace{\text { swap.doZag }}^{k}=\bar{A}_{k}^{\bullet} \times \bar{B}_{k}^{\bullet}=: \bar{C}_{k}^{\bullet} \tag{1.20}
\end{equation*}
$$

$$
\begin{equation*}
\left(\operatorname{Mini}_{k}^{\bullet}\right)^{-1} \times \operatorname{Zig}_{k}^{\bullet}=\overbrace{\left(\operatorname{Mini}_{k}^{\bullet}\right)^{-1} \times \operatorname{coZig}_{k}^{\bullet}} \times \overbrace{\operatorname{doZig}_{k}^{\bullet}}=\underline{A}_{k}^{\bullet} \times \underline{B}_{k}^{\bullet}=: \underline{C}_{k}^{\bullet} \tag{1.21}
\end{equation*}
$$

with \times standing for ordinary mould or bimould multiplication ${ }^{10}$; with $\left(\operatorname{Mini}{ }_{k}^{\bullet}\right)^{-1}$ denoting the multiplicative inverse of $\left(\operatorname{Mini}_{k}\right)$; and with the involution swap defined as in (2.9) infra. Here, the \boldsymbol{v}-dependent factors $\bar{B}_{k}^{\left({ }_{v}^{\epsilon}\right)}$ and $\underline{B}_{k}^{\left({ }_{v}^{\epsilon}\right)}$ are both given by the finite sum

$$
\begin{equation*}
\sum e_{1}^{-n_{1}} \ldots e_{r}^{-n_{r}} P\left(n_{1}-v_{1}\right) \ldots P\left(n_{r}-v_{r}\right) \tag{1.22}
\end{equation*}
$$

[^3]with summation respectively over the domains $\overline{\mathcal{B}}_{r, k}$ and $\underline{\mathcal{B}}_{r, k}$ $\overline{\mathcal{B}}_{r, k}:=\left\{k \geq n_{r} \geq 1,2 k \geq n_{r-1}>n_{r}, \ldots,(r-1) k \geq n_{2}>n_{3}, r k \geq n_{1}>n_{2}\right\}$ $\underline{\mathcal{B}}_{r, k}:=\left\{k \geq n_{1}>n_{2}>\ldots n_{r-1}>n_{r} \geq 1\right\}$

Likewise, the \boldsymbol{v}-independent factors $\bar{A}_{k}^{\left({ }_{v}^{\epsilon}\right)}$ and $\underline{A}_{k}^{\left({ }_{v}^{\epsilon}\right)}$ vanish unless $\boldsymbol{\epsilon}=0$, in which case they are both given by the finite sum

$$
\begin{equation*}
\sum(-1)^{r} P\left(n_{1}\right) \ldots P\left(n_{r}\right) \tag{1.23}
\end{equation*}
$$

with summation respectively over the domains $\overline{\mathcal{A}}_{r, k}$ and $\underline{\mathcal{A}}_{r, k}$

$$
\begin{aligned}
& \overline{\mathcal{A}}_{r, k}:=\left\{k \geq n_{1} \geq 1,2 k \geq n_{2} \geq n_{1}, \ldots,(r-1) k \geq n_{r-1} \geq n_{r-2}, r k \geq n_{r} \geq n_{r-1}\right\} \\
& \mathcal{A}_{r, k}:=\left\{k \geq n_{r} \geq n_{r-1} \geq \ldots n_{2} \geq n_{1} \geq 1\right\}
\end{aligned}
$$

It easily follows from the above that for any compact $K \subset \mathbb{C}^{r}$ and k large enough, the difference $\bar{C}_{k}^{\left({ }_{v}^{\epsilon}\right)}-\underline{C}_{k}^{(\epsilon)}$ is holomorphic on K, and that there exists a constant c_{K} such that:

$$
\begin{equation*}
\left\|\bar{C}_{k}^{(\epsilon)}-\underline{C}_{k}^{\left(\epsilon_{v}^{\epsilon}\right)}\right\| \leq\left(c_{K}\right)^{r} \frac{(\log k)^{r-1}}{k} \quad(\boldsymbol{v} \in K, k \text { large }) \tag{1.24}
\end{equation*}
$$

Summing up, we have an exact equivalence between old and new symmetries: ${ }^{11}$

$$
\begin{align*}
\left\{\mathrm{Wa}{ }^{\bullet} \text { symmetral }\right\} & \Longleftrightarrow\left\{\mathrm{Zag}^{\bullet} \text { symmetral }\right\} \tag{1.25}\\
\left\{\mathrm{Ze}^{\bullet} \text { symmetrel }\right\} & \Longleftrightarrow\left\{\mathrm{Zig}^{\bullet} \text { symmetril }\right\} \tag{1.26}
\end{align*}
$$

and the old conversion rule for scalar multizetas ${ }^{12}$ becomes:

$$
\begin{array}{r}
\mathrm{Zig}^{\bullet}=\operatorname{Mini}{ }^{\bullet} \times \operatorname{swap}(\mathrm{Zag})^{\bullet} \\
\left(\Longleftrightarrow \operatorname{swap}\left(\mathrm{Zi}^{\bullet}\right)=\mathrm{Zag}^{\bullet} \times \operatorname{Mana} a^{\bullet}\right) \tag{1.28}
\end{array}
$$

with elementary moulds $\operatorname{Mana} \boldsymbol{}^{\bullet} / \operatorname{Min} \imath^{\bullet}:=\lim _{k \rightarrow \infty} \operatorname{Mana}_{k}^{\bullet} / \operatorname{Min} \boldsymbol{i}_{k}^{\bullet}$ whose only non-zero components:

$$
\operatorname{Mana}^{\left(\begin{array}{c}
u_{1}, \ldots, u_{r} \tag{1.29}\\
0, \ldots, \\
0
\end{array}\right)} \equiv \operatorname{Mini}^{\binom{0}{v_{1}, \ldots, v_{r}}} \equiv \text { Mono }_{r}
$$

[^4]due to (1.18), may be expressed in terms of monozetas:
\[

$$
\begin{equation*}
1+\sum_{r \geq 2} \operatorname{Mono}_{r} t^{r}:=\exp \left(\sum_{s \geq 2}(-1)^{s-1} \zeta(s) \frac{t^{s}}{s}\right) \tag{1.30}
\end{equation*}
$$

\]

To these relations one must add the so-called self-consistency relations:

$$
\left.\operatorname{Zag}^{\left(\begin{array}{l}
u_{1}, \ldots, u_{r} \tag{1.31}\\
q \epsilon_{1}, \ldots, \\
q \epsilon_{r}
\end{array}\right)} \equiv \sum_{q \epsilon_{i}^{*}=q \epsilon_{i}} \operatorname{Zag}^{\left(\begin{array}{c}
q u_{1}, \ldots, q u_{r} \\
\epsilon_{1}^{1}
\end{array}, \ldots, \epsilon_{r}\right)} \quad \forall q \right\rvert\, p, \forall u_{i} \in \mathbb{C}, \forall \epsilon_{i}, \epsilon_{i}^{*} \in \frac{1}{p} \mathbb{Z} / \mathbb{Z}
$$

which merely reflect trivial identities between unit roots of order p.

1.3 ARI//GARI and its dimorphic substructures.

What is required at this point is an algebraic apparatus capable of accommodating Janus-like objects like $Z a g^{\bullet} / Z i g^{\bullet}$, i.e. an apparatus with operations that not only respect double symmetries and reproduce them under composition, but also construct them from scratch, i.e. from a few simple generators.

Such a machinery is at hand: it is the flexion structure, which arose in the early 90 s in the context of singularity analysis, more precisely in the investigation of parametric or "co-equational" resurgence. Its objects are bimoulds, i.e. moulds M^{\bullet} of the form

$$
\begin{equation*}
M^{\bullet} \in \operatorname{BIMU} \quad \Longleftrightarrow \quad M^{\bullet}=\left\{M^{w_{1}, \ldots, w_{r}}=M^{\binom{u_{1} \ldots u_{r}}{v_{1} \ldots v_{r}}}\right\} \tag{1.32}
\end{equation*}
$$

with a double-layered indexation $w_{i}=\binom{u_{i}}{v_{i}}$. What makes these M^{\bullet} into bimoulds, however, is not so much their double indexation as the very specific manner in which upper and lower indices transform and interact: all bimould operations can be expressed in terms of four elementary flexions that go by pairs, \rceil with \lfloor and \rfloor with \lceil, and have the effect of adding together several consecutive u_{i} and of pairwise subtracting several v_{i}, and that too in such a way as to conserve the scalar product $\langle\boldsymbol{u}, \boldsymbol{v}\rangle:=\sum u_{i} v_{i}$ and the symplectic form $d \boldsymbol{w}:=\sum d u_{i} \wedge d v_{i}$. Lastly, central to the flexion structure is a basic involution swap which acts on BIMU by turning the u_{i} 's into differences of v_{j} 's, and the v_{i} 's into sums of u_{j} 's (see $\S 2.1$ below).

The flexion structure, to put it loosely but tellingly, is the sum total of all interesting operations and structures that can be constructed on BIMU by deftly combining the four elementary flexions. It turns out that these interesting structures consist, up to isomorphism, of

- seven + one Lie groups
- seven + one Lie algebras (each with its pre-Lie structure)
- seven + one pre-Lie algebras.

In the three series, there exist exactly two triplets of type group//algebra//superalgebra, which "respect dimorphy", namely GARI//ARI//SUARI and GALI//ALI//SUALI.

Moreover, when restricted to dimorphic bimoulds (i.e. bimoulds displaying a double symmetry), these two triplets actually coincide, thus sparing us the agony of choosing between them.

1.4 Flexion units, singulators, double symmetries.

To understand dimorphy, and in particular to decompose the pair $Z a g^{\bullet} / Z i g^{\bullet}$ into the elementary building blocks capable of yielding the multizeta irreducibles, we require bimoulds M^{\bullet} which combine three properties that do not sit well together:

- M^{\bullet} must possess a given symmetry, say alternal or symmetral
- swap. M^{\bullet} must possess its own symmetry, which usually coincides with that of M^{\bullet} or a variant thereof
- M^{\bullet} and swap. M^{\bullet} must be entire, i.e. for a given length r their dependence on the complex indices (the u_{i} 's in the case of M^{\bullet} and the v_{i} 's in the case of swap. M^{\bullet}) must be polynomial or holomorphic or a power series. That precludes, in particular, singularities at the origin.

The strange thing, however, is that in order to come to grips with"entire dimorphy" in the above sense, we cannot avoid making repeated use of bimoulds that are dimorphic alright, but with abundant poles at the origin. We must then get rid of these poles by subtracting suitable bimoulds, with exactly the same singular part, but without destroying the double symmetry. The only way to pull this off is by using very specific operators, the so-called singulators, whose basic ingredients are quite special dimorphic bimoulds, which:

- possess poles at the origin
- lack the crucial parity property which most other dimorphic bimoulds possess and which ensures their stability under the $A R I$ or $G A R I$ operations. - are constructed from very elementary functions $\mathfrak{E}^{w_{1}}=\mathfrak{E}^{\left(v_{1}\right)}$, the so-called flexion units, of which there exist about a dozen. These units are odd in w_{1} and verify an elementary functional equation, the tripartite relation, which is the most basic relation expressible in terms of flexions.

1.5 Enumeration of multizeta irreducibles.

The \mathbb{Q}-ring \mathbb{Z} eta of formal multizetas (i.e. of multizeta symbols subject only to the two quadratic relations $(1.3),(1.4))$ is known to be a polynomial ring,
freely generated by a countable set of so-called irreducibles. ${ }^{13}$ Hence the question: how many irreducibles (let us call that number $D_{d, r}$) must one pick in each cell of degree d and length r to get a complete and free system of irreducibles? The so-called BK-conjectures, ${ }^{14}$ which were formulated in 1996 (they applied to the genuine rather than formal multizetas, and resulted from purely numerical tests) suggest a startlingly complicated formula for $D_{d, r}$ but no plausible rationale for its strange form. Soon after that, we published in [E2] a convincing explanation for the formula, which however went largely unnoticed. We therefore return to the question in $\S 5$ and $\S 7$ in much greater detail. We actually enunciate four new conjectures which considerably improve on the original BK-formula, and in $\S 8$ we report on formal computations carried out by S. Carr to test these strengthened conjectures. But the key lies in the theoretical explanation: in our approach, the irreducibles correspond one-to-one to polynomial bialternal bimoulds, of which there exist two series: the regular and utterly simple $e k m a \bullet$ on the one hand, and the exceptional, highly intricate carma• on the other. We explain in detail the mechanism responsible for the creation of these exceptional generators. That mechanism crucially involves the singulators mentioned in the preceding section.

1.6 Canonical irreducibles and perinomal algebra.

In $\S 6$ and $\S 9$ we move from the (d, r)-gradation to the more natural s gradation, s being the weight. In that new setting, the irreducibles correspond to entire bimoulds which are no longer alternal/alternal (or bialternal for short) but alternal/alternil and which for that reason never reduce to a single component, as bialternals do. That may seem a complication, and it is, but it also brings a drastic simplification in its wake: instead of the dual system of generators $\left\{e k m a_{d}^{\bullet}\right.$, carma $\left._{d, k}^{\bullet}\right\}$ for the algebra $A L A L \subset A R I_{e n t}^{\text {al/al }}$ of entire bialternals, we now have a single system, either $\left\{\operatorname{lama} a_{s}^{\bullet}\right\}$ or $\left\{l o m a_{s}^{\bullet}\right\}^{15}$, of generators for the algebra $A L I L \subset A R I_{e n t}^{\mathrm{al} / \mathrm{il}}$ of all entire bimoulds of alternal/alternil type, with a transparent indexation by all odd weights $s=3,5,7$

[^5]etc. Like carma ${ }^{\bullet}$, but to an even greater extent, lama ${ }^{\bullet}$ and loma ${ }^{\bullet}$ depend for their construction on the repeated use of singulators, with parasitical poles being alternately produced and then destroyed. In $\S 6.7$ and $\S 9$ we also introduce a third system of generators for $A L I L$, namely $\left\{{ }^{n} l u m a^{\bullet}\right\}$, with indices n now running through \mathbb{N}^{*} and with functional simplicity ${ }^{16}$ replacing arithmetical simplicity ${ }^{17}$ as guiding principle. Just like with lama ${ }^{\bullet}$ and loma ${ }^{\bullet}$, the singulators are key to the construction of $\operatorname{luma}{ }^{\bullet}$, but under a quite different mechanism, which involves infinitely many (interrelated) linear representations of $S l_{r}(\mathbb{Z})$. This is a whole new field unto itself, and a fascinating one at that, which we call perinomal algebra, and of which we try to give a foretaste.

1.7 Purpose of the present survey.

A four-volume series (on the flexion structure and its applications) is 'in the works', but as often happens with fast-evolving subjects, centrifugal temptations are hard to resist, centripetal discipline difficult to maintain, and the whole bloated project shows more signs of expanding and mutating than of converging. To remedy this, we intend to post some of the accumulated material (including a library of Maple programmes for $A R I / / G A R I$ calculations) online, on our Web-page, before the end of 2010. But we feel that a compact Survey like the present one might also serve a purpose - not least that of fixing notations and nomenclature. ${ }^{18}$

Some of the subject-matter laid out here is fairly old - going back eight years in some cases - but unpublished for the most part. ${ }^{19}$ There are novelties, too, the main one being perhaps the systematic use of flexion units as a means of introducing order into the theory's bewildering plethora of notions and objects: operations, symmetries, structures (algebras, groups) and substructures, bimoulds, bimould identities etc.
'The' flexion unit \mathfrak{E}^{\bullet} is an unspecified function $\mathfrak{E}^{w_{1}}$ that is odd in $w_{1}:=$ $\binom{u_{1}}{v_{1}}$ and verifies a bilinear, three-term relation ${ }^{20}$ - the so-called tripartite relation. From \mathfrak{E}^{\bullet} one then constructs a whole string of objects (bimoulds, symmetries, subalgebras of $A R I$, subgroups of GARI, etc) which, despite

[^6]their considerable complexity, owe all their properties to the tripartite relation verified by the seed-unit \mathfrak{E}^{\bullet}. As it happens, \mathfrak{E}^{\bullet} is capable of a dozen or so distinct realisations as a concrete function of w_{1}, each of which automatically induces a realisation of the whole string of satellite objects (bimoulds, symmetries, etc). The total effect is thus a drastic and welcome 'division by twelve' of the flexion jungle.

Throughout, there is as much emphasis on the apparatus - the flexion structure and its special bimoulds - as on the applications to multizeta theory. We wind up with a sketch of perinomal algebra, in the hope of stimulating interest in this brand-new subject and of paving the way for a collective programme of exploration, ${ }^{21}$ to start hopefully in the course of 2011.

One last word of caution: throughout this paper, the somewhat contentious word canonical is never used as a substitute for unique (when meaning unique, we say unique) but as a pointer to the existence, within a class of seemingly undistinguishable objects (like the many conceivable systems of multizeta irreducibles) of genuinely privileged representatives. To single out these representatives, esthetic considerations are unavoidable, with the residual (often minimal) fuzziness that this entails. But the subjectivity that attaches to the notion in no way detracts from its importance. Quite the opposite, in fact.

2 Basic dimorphic algebras.

2.1 Basic operations.

Elementary flexions.

In addition to ordinary, non-commutative mould multiplication $m u($ or \times):

$$
\begin{equation*}
A^{\bullet}=B^{\bullet} \times C^{\bullet}=\operatorname{mu}\left(B^{\bullet}, C^{\bullet}\right) \Longleftrightarrow A^{\boldsymbol{w}}=\sum_{\boldsymbol{w}^{1} \cdot \boldsymbol{w}^{2}=\boldsymbol{w}}^{r\left(\boldsymbol{w}^{\mathbf{1}}\right), r\left(\boldsymbol{w}^{2}\right) \geq 0} B^{\boldsymbol{w}^{1}} C^{\boldsymbol{w}^{2}} \tag{2.1}
\end{equation*}
$$

and its inverse invmu:

$$
\begin{equation*}
(\text { invmu. } A)^{\boldsymbol{w}}=\sum_{1 \leq s \leq r(\boldsymbol{w})}(-1)^{s} \sum_{\boldsymbol{w}^{1} \ldots \boldsymbol{w}^{s}=\boldsymbol{w}} A^{\boldsymbol{w}^{1}} \ldots A^{\boldsymbol{w}^{s}} \quad\left(\boldsymbol{w}^{i} \neq \emptyset\right) \tag{2.2}
\end{equation*}
$$

the bimoulds A^{\bullet} in $B I M U=\oplus_{0 \leq r} B I M U_{r}(\text { see }(1.32))^{22}$ can be subjected to a host of specific operations, all constructed from four elementary flex-

[^7]ions $\lfloor\rceil,,\lceil$,$\rfloor that are always defined relative to a given factorisation of the$ total sequence \boldsymbol{w}. The way the flexions act is apparent from the following examples:
\[

$$
\begin{aligned}
& \boldsymbol{w}=\boldsymbol{a} . \boldsymbol{b} \quad \boldsymbol{a}=\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}} \quad \boldsymbol{b}=\binom{u_{4}, u_{5}, u_{6}}{v_{4}, v_{5}, v_{6}} \\
& \Longrightarrow \quad \boldsymbol{a}\rfloor=\binom{u_{1}, u_{2}, u_{3}}{v_{1: 4}, v_{2: 4}, v_{3: 4}} \quad\left\lceil\boldsymbol{b}=\left(\begin{array}{c}
u_{4}, u_{123}, u_{5}, u_{6} \\
v_{4}, \\
v_{5}, v_{6}
\end{array}\right)\right. \\
& \boldsymbol{w}=\boldsymbol{b} . \boldsymbol{c} \quad \boldsymbol{b}=\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}} \quad \boldsymbol{c}=\binom{u_{4}, u_{5}, u_{6}}{v_{4}, v_{5}, v_{6}} \\
& \Longrightarrow \quad \boldsymbol{b}\rceil=\binom{u_{1}, u_{2}, u_{3456}}{v_{1}, v_{2}, v_{3}} \quad\left\lfloor\boldsymbol{c}=\binom{u_{4}, u_{5}, u_{6}}{v_{4}: 3, v_{5: 3}, v_{6: 3}}\right. \\
& \boldsymbol{w}=\boldsymbol{a} . \boldsymbol{b} . \boldsymbol{c} \quad \boldsymbol{a}=\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}} \quad \boldsymbol{b}=\binom{u_{4}, u_{5}, u_{6}}{v_{4}, v_{5}, v_{6}} \quad \boldsymbol{c}=\binom{u_{7}, u_{8}, u_{9}}{v_{7}, v_{8}, v_{9}} \\
& \Longrightarrow \quad \boldsymbol{a}\rfloor=\binom{u_{1}, u_{2}, u_{3}}{v_{1: 4}, v_{2: 4}, v_{3: 4}} \quad\lceil\boldsymbol{b}\rceil=\left(\begin{array}{c}
4, \\
u_{123}, u_{1}, u_{5}, u_{6789} \\
v_{4}, \\
v_{5}, \\
v_{6}
\end{array}\right) \quad\left\lfloor\boldsymbol{c}=\left(\begin{array}{c}
u_{7}, u_{8}, \\
v_{7: 6}, v_{8}, 6 \\
v_{9}, v_{9}
\end{array}\right)\right.
\end{aligned}
$$
\]

with the usual short-hand: $u_{i, \ldots, j}:=u_{i}+\ldots+u_{j}$ and $v_{i: j}:=v_{i}-v_{j}$. Here and throughout the sequel, we use boldface (with upper indexation) to denote sequences ($\boldsymbol{w}, \boldsymbol{w}^{i}, \boldsymbol{w}^{j}$ etc), and ordinary characters (with lower indexation) to denote single sequence elements (w_{i}, w_{j} etc), or sometimes sequences of length $r(\boldsymbol{w})=1$. Of course, the 'product' $\boldsymbol{w}^{1} \cdot \boldsymbol{w}^{\mathbf{2}}$ denotes the concatenation of the two factor sequences.

Short and long indexations on bimoulds.

For bimoulds $M^{\bullet} \in B I M U_{r}$ it is sometimes convenient to switch from the usual short indexation (with r indices w_{i} 's) to a more homogeneous long indexation (with a redundant initial w_{0} which gets bracketted for distinctiveness). The correspondence goes like this:

$$
\begin{equation*}
M^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}} \cong M^{\left.\binom{\left(u_{0}^{*}\right), u_{1}^{*}, \ldots, u_{*}^{*}}{\left[v_{0}^{*}\right]}, v_{1}^{*}, \ldots, v_{r}^{*}\right)} \tag{2.3}
\end{equation*}
$$

with the dual conditions on upper and lower indices:

$$
\begin{array}{lll}
u_{0}^{*}=-u_{1 \ldots r}:=-\left(u_{1}+\ldots+u_{r}\right) & , & u_{i}^{*}=u_{i} \\
v_{0}^{*} \text { arbitrary } & , v_{i}^{*}-v_{0}^{*}=v_{i} & \forall i \geq 1
\end{array}
$$

and of course $\sum_{1 \leq i \leq r} u_{i} v_{i} \equiv \sum_{0 \leq i \leq r} u_{i}^{*} v_{i}^{*}$.
Unary operations.

The following linear transformations on BIMU are of constant use: ${ }^{23}$

$$
\begin{align*}
& B^{\bullet}=\operatorname{minu} . A^{\bullet} \quad \Rightarrow \quad B^{w_{1}, \ldots, w_{r}}=-A^{w_{1}, \ldots, w_{r}} \tag{2.4}\\
& B^{\bullet}=\text { pari. } A^{\bullet} \quad \Rightarrow \quad B^{w_{1}, \ldots, w_{r}}=(-1)^{r} A^{w_{1}, \ldots, w_{r}} \tag{2.5}\\
& B^{\bullet}=\operatorname{anti} . A^{\bullet} \Rightarrow B^{w_{1}, \ldots, w_{r}}=A^{w_{r}, \ldots, w_{1}} \tag{2.6}\\
& B^{\bullet}=\text { mantar. } A^{\bullet} \Rightarrow B^{w_{1}, \ldots, w_{r}}=(-1)^{r-1} A^{w_{r}, \ldots, w_{1}} \tag{2.7}\\
& B^{\bullet}=\text { neg. } A^{\bullet} \Rightarrow B^{w_{1}, \ldots, w_{r}}=A^{-w_{1}, \ldots,-w_{r}} \tag{2.8}\\
& \left.B^{\bullet}=\text { swap. } A^{\bullet} \Rightarrow B^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=A^{\left(\begin{array}{ll}
v_{r} & , \ldots, v_{3: 4}, v_{2: 3}, v_{1: 2} \\
u_{1} . . r
\end{array}, \ldots, u_{123}, u_{12}, u_{1}\right.} u_{1}\right) ~ \tag{2.9}\\
& B^{\bullet}=\text { pus. } A^{\bullet} \Rightarrow B^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=A^{\binom{u_{r}, u_{1}, u_{2}, \ldots, u_{r-1}}{v_{r}, v_{1}, v_{2}, \ldots, v_{r-1}}} \tag{2.10}\\
& B^{\bullet}=\text { push. } A^{\bullet} \Rightarrow B^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=A^{\binom{\left(\begin{array}{l}
-u_{1} \ldots, u_{1}, u_{1} \\
-v_{r}
\end{array}, v_{1: r}, v_{2: r}, \ldots, u_{r-1}\right.}{v_{r-1: r}}} \tag{2.11}
\end{align*}
$$

All are involutions, save for pus and push, whose restrictions to each $B I M U_{r}$ reduce to circular permutations of order r resp. $r+1:^{24}$

$$
\begin{align*}
\text { push } & =\text { neg.anti.swap.anti.swap } \tag{2.12}\\
\text { leng }_{r} & =\text { push }^{r+1} \cdot \text { leng }_{r}=\text { pus }^{r} \cdot \text { leng }_{r} \tag{2.13}
\end{align*}
$$

with $l e n g_{r}$ standing for the natural projection of BIMU onto $B I M U_{r}$.

Inflected derivations and automorphisms of BIMU.

Let $B I M U_{*}$ resp. $B I M U^{*}$ denote the subset of all bimoulds M^{\bullet} such that $M^{\emptyset}=0$ resp. $M^{\emptyset}=1$. To each pair $\mathcal{A}^{\bullet}=\left(\mathcal{A}_{L}^{\bullet}, \mathcal{A}_{R}^{\bullet}\right) \in B I M U_{*} \times B I M U_{*}$ resp. $B I M U^{*} \times B I M U^{*}$ we attach two remarkable operators:

$$
\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \in \operatorname{Der}(B I M U) \quad \text { resp. } \quad \operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \in \operatorname{Aut}(B I M U)
$$

whose action on BIMU is given by: ${ }^{25}$

$$
\begin{align*}
& N^{\bullet}=\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{1} M^{a\lceil c} \mathcal{A}_{L}^{b\rfloor}+\sum^{2} M^{a\rfloor c} \mathcal{A}_{R}^{\lfloor b} \tag{2.14}\\
& N^{\bullet}=\operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{3} M^{\left\lceil b^{1}\right\rceil \ldots\left\lceil b^{s}\right\rceil} \mathcal{A}_{L}^{\left.a^{1}\right\rfloor} \ldots \mathcal{A}_{L}^{\left.a^{s}\right\rfloor} \mathcal{A}_{R}^{\left\lfloor c^{1}\right.} \ldots \mathcal{A}_{R}^{\lfloor\llcorner(6)}(2.15)
\end{align*}
$$

[^8]and verifies the identities:
\[

$$
\begin{align*}
\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot \operatorname{mu}\left(M_{1}^{\bullet}, M_{2}^{\bullet}\right) & \equiv \operatorname{mu}\left(\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot M_{1}^{\bullet}, M_{2}^{\bullet}\right)+\operatorname{mu}\left(M_{1}^{\bullet}, \operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot M_{2}^{\bullet}(2.16)\right. \\
\operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \cdot \operatorname{mu}\left(M_{1}^{\bullet}, M_{2}^{\bullet}\right) & \equiv \operatorname{mu}\left(g \operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \cdot M_{1}^{\bullet}, \operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \cdot M_{2}^{\bullet}\right) \tag{2.17}
\end{align*}
$$
\]

The BIMU-derivations axit are stable under the Lie bracket for operators. More precisely, the identity holds:

$$
\begin{equation*}
\left[\operatorname{axit}\left(\mathcal{B}^{\bullet}\right), \operatorname{axit}\left(\mathcal{A}^{\bullet}\right)\right]=\operatorname{axit}\left(C^{\bullet}\right) \quad \text { with } \quad \mathcal{C}^{\bullet}=\operatorname{axi}\left(\mathcal{A}^{\bullet}, \mathcal{B}^{\bullet}\right) \tag{2.18}
\end{equation*}
$$

relative to a Lie law axi on $B I M U_{*} \times B I M U_{*}$ given by:

$$
\begin{align*}
& \mathcal{C}_{L}^{\bullet}:=\operatorname{axit}\left(\mathcal{B}^{\bullet}\right) \cdot \mathcal{A}_{L}^{\bullet}-\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot \mathcal{B}_{L}^{\bullet}+\operatorname{lu}\left(\mathcal{A}_{L}^{\bullet}, \mathcal{B}_{L}^{\bullet}\right) \tag{2.19}\\
& \mathcal{C}_{R}^{\bullet}:=\operatorname{axit}\left(\mathcal{B}^{\bullet}\right) \cdot \mathcal{A}_{R}^{\bullet}-\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot \mathcal{B}_{R}^{\bullet}-\operatorname{lu}\left(\mathcal{A}_{R}^{\bullet}, \mathcal{B}_{R}^{\bullet}\right) \tag{2.20}
\end{align*}
$$

Here, lu denotes the standard (non-inflected) Lie law on BIMU:

$$
\begin{equation*}
\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right)-\operatorname{mu}\left(B^{\bullet}, A^{\bullet}\right) \tag{2.21}
\end{equation*}
$$

Let $A X I$ denote the Lie algebra consisting of all pairs $\mathcal{A}^{\bullet} \in B I M U_{*} \times B I M U_{*}$ under this law axi.

Likewise, the BIMU-automorphisms gaxit are stable under operator composition. More precisely:

$$
\begin{equation*}
\operatorname{gaxit}\left(\mathcal{B}^{\bullet}\right) \cdot \operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right)=\operatorname{gaxit}\left(\mathcal{C}^{\bullet}\right) \text { with } \quad \mathcal{C}^{\bullet}=\operatorname{gaxi}\left(\mathcal{A}^{\bullet}, \mathcal{B}^{\bullet}\right) \tag{2.22}
\end{equation*}
$$

relative to a law gaxi on $B I M U^{*} \times B I M U^{*}$ given by:

$$
\begin{align*}
\mathcal{C}_{L}^{\bullet} & :=\operatorname{mu}\left(\operatorname{gaxit}\left(\mathcal{B}^{\bullet}\right) \cdot \mathcal{A}_{L}^{\bullet}, \mathcal{B}_{L}^{\bullet}\right) \tag{2.23}\\
\mathcal{C}_{R}^{\bullet} & :=\operatorname{mu}\left(\mathcal{B}_{R}^{\bullet}, \operatorname{gaxit}\left(\mathcal{B}^{\bullet}\right) \cdot \mathcal{A}_{R}^{\bullet}\right) \tag{2.24}
\end{align*}
$$

Let $G A X I$ denote the Lie group consisting of all pairs $\mathcal{A}^{\bullet} \in B I M U^{*} \times B I M U^{*}$ under this law gaxi. This group GAXI clearly admits $A X I$ as its Lie algebra.
The mixed operations amnit $=$ anmit:
For $\mathcal{A}^{\bullet}:=\left(A^{\bullet}, 0^{\bullet}\right)$ and $\mathcal{B}^{\bullet}:=\left(0^{\bullet}, B^{\bullet}\right)$ the operators $\operatorname{axit}\left(\mathcal{A}^{\bullet}\right)$ and $\operatorname{axit}\left(\mathcal{B}^{\bullet}\right)$ reduce to $\operatorname{amit}\left(A^{\bullet}\right)$ and $\operatorname{anit}\left(B^{\bullet}\right)$ respectively (see (2.32) and (2.33) infra) and the identity (2.18) becomes:

$$
\begin{equation*}
\operatorname{amnit}\left(A^{\bullet}, B^{\bullet}\right) \equiv \operatorname{anmit}\left(A^{\bullet}, B^{\bullet}\right) \quad\left(\forall A^{\bullet}, B^{\bullet} \in \operatorname{BIMU}_{*}\right) \tag{2.25}
\end{equation*}
$$

with

$$
\begin{align*}
\operatorname{amnit}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{amit}\left(A^{\bullet}\right) \cdot \operatorname{anit}\left(B^{\bullet}\right)-\operatorname{anit}\left(\operatorname{amit}\left(A^{\bullet}\right) \cdot B^{\bullet}\right) \tag{2.26}\\
\operatorname{anmit}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{anit}\left(B^{\bullet}\right) \cdot \operatorname{amit}\left(A^{\bullet}\right)-\operatorname{amit}\left(\operatorname{anit}\left(B^{\bullet}\right) \cdot A^{\bullet}\right) \tag{2.27}
\end{align*}
$$

When one of the two arguments $\left(A^{\bullet}, B^{\bullet}\right)$ vanishes, the definitions reduce to:

$$
\begin{align*}
& \operatorname{amnit}\left(A^{\bullet}, 0^{\bullet}\right)=\operatorname{anmit}\left(A^{\bullet}, 0^{\bullet}\right): \tag{2.28}\\
& \operatorname{amnit}\left(0^{\bullet}, B^{\bullet}\right)=\operatorname{anmit}\left(A^{\bullet}\right) \tag{2.29}\\
&\left.0^{\bullet}, B^{\bullet}\right)=\operatorname{anit}\left(B^{\bullet}\right)
\end{align*}
$$

Moreover, when amnit operates on a one-component bimould $M^{\bullet} \in B I M U_{1}$ (such as the flexion units $\mathfrak{E} \bullet_{\bullet \bullet}$, see $\S 3.1$ and $\S 3.3$ infra), its action drastically simplifies :

$$
N^{\bullet}:=\operatorname{amnit}\left(A^{\bullet}, B^{\bullet}\right) \cdot M^{\bullet} \equiv \operatorname{anmit}\left(A^{\bullet}, B^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}:=\sum_{\boldsymbol{a} w_{i} \boldsymbol{b}=\boldsymbol{w}} A^{\boldsymbol{a}\rfloor} M^{\left\lceil w_{i}\right\rceil} B^{\lfloor\boldsymbol{b}}(2.30)
$$

Unary substructures.

We have two obvious subalgebras//subgroups of $A X I / / G A X I$, answering to the conditions:

$$
\begin{array}{rlll}
\mathrm{AMI} \subset \mathrm{AXI}: & \mathcal{A}_{R}^{\bullet}=0^{\bullet} & , & \mathrm{GAMI} \subset \mathrm{GAXI}: \\
\text { ANI } \subset \mathrm{AXI}: & \mathcal{A}_{R}^{\bullet}=1^{\bullet}=0^{\bullet} & , & \mathrm{GANI} \subset \mathrm{GAXI}: \\
\mathcal{A}_{L}^{\bullet}=1^{\bullet}
\end{array}
$$

but we are more interested in the mixed unary substructures, consisting of elements of the form:

$$
\begin{equation*}
\mathcal{A}^{\bullet}=\left(\mathcal{A}_{L}^{\bullet}, \mathcal{A}_{R}^{\bullet}\right) \quad \text { with } \quad \mathcal{A}_{R}^{\bullet} \equiv \mathrm{h}\left(\mathcal{A}_{L}^{\bullet}\right) \quad \text { and } \mathrm{h} \text { a fixed involution } \tag{2.31}
\end{equation*}
$$

with everything expressible in terms of the left element $\mathcal{A}_{L}^{\bullet}$ of the pair \mathcal{A}^{\bullet}. There exist, up to isomorphism, exactly seven such mixed unary substructures:

algebra	h	swap	algebra	h
$\ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots$	\ldots	$\ldots \ldots$.	$\ldots \ldots . \ldots .$.
ARI	minu	\leftrightarrow	IRA	minu.push
ALI	anti.pari	\leftrightarrow	ILA	anti.pari.neg
ALA	anti.pari.neg $_{u}$	\leftrightarrow	ALA	anti.pari.neg
ILI	anti.pari.neg $_{v}$	\leftrightarrow	ILI	anti.pari.neg
ILI				
AWI	anti.neg	\leftrightarrow	IWA	anti
AWA	anti.neg $_{u}$	\leftrightarrow	AWA	anti.neg
IWI	anti.neg $_{v}$	\leftrightarrow	IWI	anti.neg

group	h	swap	group	h
$\ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots$	\ldots	$\ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
GARI	invmu	\leftrightarrow	GIRA	push.swap.invmu.swap
GALI	anti.pari	\leftrightarrow	GILA	anti.pari.neg
GALA	anti.pari.neg			
GILI	anti.pari.neg	\leftrightarrow	GALA	anti.pari.neg
and				
GAWI	anti.neg	\leftrightarrow	GILI	anti.pari.neg
GAWA	anti.neg $_{u}$	\leftrightarrow	GAWA	anti
GIWI	anti.neg $_{v}$	\leftrightarrow	GIWI	anti.neg $_{u}$
anti.neg				

Each algebra in the first table (e.g. $A R I$) is of course the Lie algebra of the like-named group (e.g. GARI). Conversely, each Lie group in the second table is essentially determined by its eponymous Lie algebra and the condition of left-linearity. ${ }^{26}$

Dimorphic substructures.

Among all seven pairs of substructures, only two respect dimorphy, namely $A R I / / G A R I$ and $A L I / / G A L I$. Moreover, when restricted to dimorphic objects, they actually coincide:

$$
\begin{aligned}
& \operatorname{ARI}^{\underline{\mathrm{al}} / \underline{\mathrm{al}}}=\operatorname{ALI}^{\underline{\mathrm{al}} / \text { al }} \text { with }\{\underline{\mathrm{a}} / \underline{\mathrm{al}}\}=\{\text { alternal/alternal and even }\} \\
& \operatorname{GARI}^{\underline{\mathrm{as}} / \underline{\mathrm{as}}}=\mathrm{GALI}^{\text {as } / \text { as }} \text { with } \quad\{\underline{\mathrm{as}} / \underline{\mathrm{as}}\}=\{\text { symmetral } / \text { symmetral and even }\}
\end{aligned}
$$

We shall henceforth work with the pair $A R I / / G A R I$, whose definition involves a simpler involution h (it dispenses with the sequence inversion anti: see above table).

2.2 The algebra $A R I$ and its group GARI.

Basic anti-actions.

The proper way to proceed is to define the anti-actions (on BIMU, with its uninflected product $m u$ and bracket $l u$) first of the lateral pairs $A M I / / G A M I$, $A N I / / G A N I$ and then of the mixed pair $A R I / / G A R I$:

$$
\begin{align*}
N^{\bullet}=\operatorname{amit}\left(A^{\bullet}\right) \cdot M^{\bullet} & \Leftrightarrow N^{\boldsymbol{w}}=\sum^{1} M^{a\lceil c} A^{b\rfloor} \tag{2.32}\\
N^{\bullet}=\operatorname{anit}\left(A^{\bullet}\right) \cdot M^{\bullet} & \Leftrightarrow N^{\boldsymbol{w}}=\sum^{2} M^{a\rfloor c} A^{\lfloor b} \tag{2.33}\\
N^{\bullet}=\operatorname{arit}\left(A^{\bullet}\right) \cdot M^{\bullet} & \Leftrightarrow N^{\boldsymbol{w}}=\sum^{1} M^{a\lceil c} A^{b\rfloor}-\sum^{2} M^{a\rfloor c} A^{\lfloor b} \tag{2.34}
\end{align*}
$$

with sums \sum^{1} (resp. \sum^{2}) ranging over all sequence factorisations $\boldsymbol{w}=\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}$ such that $\boldsymbol{b} \neq \emptyset, \boldsymbol{c} \neq \emptyset($ resp. $\boldsymbol{a} \neq \emptyset, \boldsymbol{b} \neq \emptyset)$.

$$
\begin{align*}
& N^{\bullet}=\operatorname{gamit}\left(A^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{1} M^{\left\lceilb ^ { 1 } \ldots \left\lceil b^{\boldsymbol{s}}\right.\right.} A^{\left.\boldsymbol{a}^{1}\right\rfloor} \ldots A^{\left.\boldsymbol{a}^{s}\right\rfloor} \tag{2.35}\\
& N^{\bullet}=\operatorname{ganit}\left(A^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{2} M^{\left.\left.b^{1}\right\rceil \ldots b^{s}\right\rceil} A^{\left\lfloor c^{1}\right.} \ldots A^{\left\lfloor c^{s}\right.} \tag{2.36}\\
& N^{\bullet}=\operatorname{garit}\left(A^{\bullet}\right) . M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{3} M^{\left\lceil b^{1}\right\rceil} \ldots\left\lceil b^{s}\right\rceil A^{\left.a^{1}\right\rfloor} \ldots A^{\left.a^{s}\right\rfloor} A_{*}^{\left\lfloor c^{1}\right.} \ldots A_{*}^{\left\lfloor c^{〔}\right.}(2.37)
\end{align*}
$$

[^9]with $A_{*}^{\bullet}:=\operatorname{invmu}\left(A^{\bullet}\right)$ and with sums $\sum^{1}, \sum^{2}, \sum^{3}$ ranging respectively over all sequence factorisations of the form:
\[

$$
\begin{array}{llll}
\boldsymbol{w}=\boldsymbol{a}^{\mathbf{1}} \boldsymbol{b}^{1} \ldots \boldsymbol{a}^{\boldsymbol{s}} \boldsymbol{b}^{\boldsymbol{s}} & (s \geq 1, & \text { only } \left.\boldsymbol{a}^{\mathbf{1}} \text { may be } \emptyset\right) \\
\boldsymbol{w}=\boldsymbol{b}^{1} \boldsymbol{c}^{1} \ldots \boldsymbol{b}^{\boldsymbol{s}} \boldsymbol{c}^{\boldsymbol{s}} & (s \geq 1, & \text { only } \left.\boldsymbol{c}^{\boldsymbol{s}} \operatorname{may} \text { be } \emptyset\right) \\
\boldsymbol{w}=\boldsymbol{a}^{\mathbf{1}} \boldsymbol{b}^{1} \boldsymbol{c}^{1} \ldots \boldsymbol{a}^{\boldsymbol{s}} \boldsymbol{b}^{\boldsymbol{s}} \boldsymbol{c}^{\boldsymbol{s}} & (s \geq 1, & \text { with } \left.\boldsymbol{b}^{i} \neq \emptyset \text { and } \boldsymbol{c}^{\boldsymbol{i}} \boldsymbol{a}^{i+1} \neq \emptyset\right)
\end{array}
$$
\]

More precisely, in \sum^{3} two inner neighbour factors \boldsymbol{c}^{i} and \boldsymbol{a}^{i+1} may vanish separately but not simultaneously, whereas the outer factors \boldsymbol{a}^{1} and \boldsymbol{c}^{s} may of course vanish separately or even simultaneously.

Lie brackets and group laws.

We can now concisely express the Lie algebra brackets ami, ani, ari and the group products gami, gani, gari :

$$
\begin{align*}
\operatorname{ami}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{amit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{amit}\left(A^{\bullet}\right) \cdot B^{\bullet}+\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right) \tag{2.38}\\
\operatorname{ani}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{anit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{anit}\left(A^{\bullet}\right) \cdot B^{\bullet}-\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right) \tag{2.39}\\
\operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{arit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{arit}\left(A^{\bullet}\right) \cdot B^{\bullet}+\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right) \tag{2.40}
\end{align*}
$$

$$
\begin{align*}
\operatorname{gami}\left(A^{\bullet}, B^{\bullet}\right) & \left.:=\operatorname{mu}\left(\operatorname{gamit}\left(B^{\bullet}\right) \cdot A^{\bullet}\right), B^{\bullet}\right) \tag{2.41}\\
\operatorname{gani}\left(A^{\bullet}, B^{\bullet}\right) & \left.:=\operatorname{mu}\left(B^{\bullet}, \operatorname{ganit}\left(B^{\bullet}\right) \cdot A^{\bullet}\right)\right) \tag{2.42}\\
\operatorname{gari}\left(A^{\bullet}, B^{\bullet}\right) & \left.:=\operatorname{mu}\left(\operatorname{garit}\left(B^{\bullet}\right) \cdot A^{\bullet}\right), B^{\bullet}\right) \tag{2.43}
\end{align*}
$$

Pre-Lie products ('pre-brackets').

Parallel with the three Lie brackets, we have three pre-Lie brackets:

$$
\begin{align*}
\operatorname{preami}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{amit}\left(B^{\bullet}\right) \cdot A^{\bullet}+\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) \tag{2.44}\\
\operatorname{preani}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{anit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) \quad(\operatorname{sign}!) \tag{2.45}\\
\operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{arit}\left(B^{\bullet}\right) \cdot A^{\bullet}+\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) \tag{2.46}
\end{align*}
$$

with the usual relations:

$$
\begin{align*}
\operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right) & \equiv \operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right)-\operatorname{preari}\left(B^{\bullet}, A^{\bullet}\right) \tag{2.47}\\
\operatorname{assopreari}\left(A^{\bullet}, B^{\bullet}, C^{\bullet}\right) & \equiv \operatorname{assopreari}\left(A^{\bullet}, C^{\bullet}, B^{\bullet}\right) \tag{2.48}
\end{align*}
$$

with assopreari denoting the associator ${ }^{27}$ of the pre-bracket preari. The same holds of course for $a m i$ and ani.

[^10]
Exponentiation from $A R I$ to $G A R I$.

Provided we properly define the multiple pre-Lie brackets, i.e. from left to right:

$$
\begin{equation*}
\operatorname{preari}\left(A_{1}^{\bullet}, \ldots, A_{s}^{\bullet}\right)=\operatorname{preari}\left(\operatorname{preari}\left(A_{1}^{\bullet}, \ldots, A_{s-1}^{\bullet}\right), A_{s}^{\bullet}\right) \tag{2.49}
\end{equation*}
$$

we have a simple expression for the exponential mapping from a Lie algebra to its group. Thus, the exponential expari : ARI $\rightarrow G A R I$ can be expressed as a series of pre-brackets:

$$
\begin{equation*}
\operatorname{expari}\left(A^{\bullet}\right)=\sum_{0 \leq n} \frac{1}{n!} \operatorname{preari}(\overbrace{A^{\bullet}, \ldots, A^{\bullet}}^{n \text { times }})=1^{\bullet}+\sum_{0<n} \frac{1}{n!} \operatorname{preari}(\ldots) \tag{2.50}
\end{equation*}
$$

or, what amounts to the same, as a mixed $m u+$ arit-expansion:

$$
\begin{equation*}
\operatorname{expari}\left(A^{\bullet}\right)=1^{\bullet}+\sum_{1 \leq r, 1 \leq n_{i}} \operatorname{Ex}^{n_{1}, \ldots, n_{r}} \operatorname{mu}\left(A_{n_{1}}^{\bullet}, \ldots, A_{n_{r}}^{\bullet}\right) \tag{2.51}
\end{equation*}
$$

with $A_{n}^{\bullet}:=\left(\operatorname{arit}\left(A^{\bullet}\right)\right)^{n-1} \cdot A^{\bullet}$ and with the symmetral mould $E x^{\bullet}$:

$$
\begin{equation*}
\operatorname{Ex}^{n_{1}, \ldots, n_{r}}:=\frac{1}{\left(n_{1}-1\right)!} \frac{1}{\left(n_{2}-1\right)!} \cdots \frac{1}{\left(n_{r}-1\right)!} \frac{1}{n_{1 \ldots r} n_{2 \ldots r} \ldots n_{r}} \tag{2.52}
\end{equation*}
$$

The operation from GARI to ARI that inverses expari shall be denoted as logari. It, too, can be expressed as a series of multiple pre-ari products, but in a much less straightforward manner than (2.50).

For any alternal mould L^{\bullet} we also have the identities:

$$
\begin{align*}
& \sum_{\sigma \subset \mathfrak{G}(r)} L^{\left.\omega_{\sigma(1)}, \ldots, \omega_{\sigma(r)}\right)} \operatorname{preari}\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \equiv \\
& \frac{1}{r} \sum_{\sigma \subset \mathfrak{G}(r)} L^{\omega_{\sigma(1)}, \ldots, \omega_{\sigma(r)}} \operatorname{ari}\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{2.53}
\end{align*}
$$

which actually characterise preari.

Adjoint actions.

We shall require the adjoint actions, adgari and adari, of GARI on GARI and ARI respectively. The definitions are straightforward:

$$
\begin{equation*}
\operatorname{adgari}\left(A^{\bullet}\right) \cdot B^{\bullet}:=\operatorname{gari}\left(A^{\bullet}, B^{\bullet}, \text { invgari } A^{\bullet}\right) \quad\left(A^{\bullet}, B^{\bullet} \in \operatorname{GARI}\right) \tag{2.54}
\end{equation*}
$$

$$
\begin{aligned}
\operatorname{adari}\left(A^{\bullet}\right) \cdot B^{\bullet} & :=\text { logari }\left(\operatorname{adgari}\left(A^{\bullet}\right) \cdot \operatorname{expari}\left(B^{\bullet}\right)\right) \\
& :=\operatorname{fragari}\left(\operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right), A^{\bullet}\right) \quad\left(A^{\bullet} \in \operatorname{GARI}, B^{\bullet} \in \operatorname{ARI}\right)(2.56)
\end{aligned}
$$

except for definition (2.56), which results from (2.55) and (2.43) and uses the pre-ari product ${ }^{28}$ defined as in (2.46) supra and the gari-quotient ${ }^{29}$ defined as in (2.60) infra.

Definition (2.56) has over the equivalent definition (2.55) the advantage of bringing out the B^{\bullet}-linearity of $\operatorname{adari}\left(A^{\bullet}\right) . B^{\bullet}$ and of leading to much simpler calculations. ${ }^{30}$

The centers of $A R I$ and GARI.
The sets Center(ARI) resp. Center(GARI) consist of all bimoulds M^{\bullet} that verify
(i) $M^{\emptyset}=0$ resp. $M^{\emptyset}=1$
(ii) $M^{\left(\begin{array}{c}u_{1}, \ldots, u_{r} \\ 0, \ldots, \\ 0\end{array}\right)}=m_{r} \in \mathbb{C} \quad \forall u_{i}$
(iii) $M^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=0 \quad$ unless $\quad 0=v_{1}=\cdots=v_{r}$

Moreover, in view of (2.43), gari-multiplication by a central element $C \bullet$ amounts to ordinary post-multiplication by that same C^{\bullet} :

$$
\begin{equation*}
\operatorname{gari}\left(C^{\bullet}, A^{\bullet}\right) \equiv \operatorname{gari}\left(A^{\bullet}, C^{\bullet}\right) \equiv \operatorname{mu}\left(A^{\bullet}, C^{\bullet}\right) \quad\left(C^{\bullet} \in \operatorname{Center}(\mathrm{GARI})\right) \tag{2.57}
\end{equation*}
$$

Relatedness of the four main group inversions.

Lastly, we may note that the inversions relative to the four group laws $m u$, gari, gami, gani are not totally unrelated, but verify the rather unexpected identity:

$$
\begin{equation*}
\text { invmu }=\text { invgari.invgami.invgani }=\text { invgani.invgami.invgari } \tag{2.58}
\end{equation*}
$$

In fact, the group generated by these four involutions is isomorphic to the group with presentation $<a, b, c, d>/\left\{a^{2}, b^{2}, c^{2}, d^{2}, a b c d\right\}$.

Complexity of the flexion operations.

Compared with the uninflected mould operations, the flexion operations on

[^11]bimoulds tend to be staggeringly complex. Here is the natural complexity ranking for some of the main unary operations:
$$
\text { invgami } \sim \text { invgan } i \ll \text { invgari } \ll \text { logar } i \ll \text { expari }
$$
and here is the number of summands involved ${ }^{31}$ in $\operatorname{invgari}\left(A^{\bullet}\right)$ or $\operatorname{expari}\left(A^{\bullet}\right)$ as the length r increases:

length r	1	2	3	4	5	6	7	8	\ldots
$\#$ (invgari)	1	4	20	112	672	4224	27459	183040	\ldots
$\#$ (expari)	1	4	21	126	818	5594	39693	289510	\ldots

Fortunately, the whole field is so strongly and harmoniously structured, and offers so many props to intuition, that this underlying complexity remains manageable. While formal computation is often indispensable at the exploratory stage, the patterns and properties that it brings to light tend to yield rather readily to rigorous proof.

2.3 Action of the basic involution swap.

Dimorphy is a property that bears on a bimould and its swappee. However, even the group product most respectful of dimorphy, i.e. gari, does not commute with the involution swap. But if we set

$$
\begin{align*}
\operatorname{gira}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{swap.gari}\left(\text { swap. } A^{\bullet}, \text { swap. } B^{\bullet}\right) \tag{2.59}\\
\operatorname{fragari}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{gari}\left(A^{\bullet}, \text { invgari. } B^{\bullet}\right) \tag{2.60}\\
\operatorname{fragira}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{gira}\left(A^{\bullet}, \text { invgira. } B^{\bullet}\right) \tag{2.61}
\end{align*}
$$

the operation gari//gira and fragari//fragira, though distinct, can be expressed in terms of each other

$$
\begin{align*}
\operatorname{gira}\left(A^{\bullet}, B^{\bullet}\right) & \equiv \operatorname{ganit}\left(\operatorname{rash} . B^{\bullet}\right) \cdot \operatorname{gari}\left(A^{\bullet}, \operatorname{ras} . B^{\bullet}\right) \tag{2.62}\\
\operatorname{gari}\left(A^{\bullet}, B^{\bullet}\right) & \equiv \operatorname{ganit}\left(\operatorname{rish} . B^{\bullet}\right) \cdot \operatorname{gira}\left(A^{\bullet}, \operatorname{ris} . B^{\bullet}\right) \tag{2.63}\\
\operatorname{fragira}\left(A^{\bullet}, B^{\bullet}\right) & \equiv \operatorname{ganit}\left(\operatorname{crash} . B^{\bullet}\right) \cdot \operatorname{fragari}\left(A^{\bullet}, B^{\bullet}\right) \tag{2.64}\\
\operatorname{fragari}\left(A^{\bullet}, B^{\bullet}\right) & \equiv \operatorname{ganit}\left(\operatorname{crish} . B^{\bullet}\right) \cdot \operatorname{fragira}\left(A^{\bullet}, B^{\bullet}\right) \tag{2.65}
\end{align*}
$$

via the anti-action $\operatorname{ganit}\left(B_{*}^{\bullet}\right)$ and with inputs B_{*}^{\bullet} related to B^{\bullet} through one of the following, highly non-linear operations

$$
\begin{align*}
\operatorname{ras} . B^{\bullet} & :=\text { invgari.swap.invgari.swap. } B^{\bullet} \tag{2.66}\\
\text { rash. } B^{\bullet} & :=\mathrm{mu}\left(\text { push.swap.invmu.swap. } B^{\bullet}, B^{\bullet}\right) \tag{2.67}\\
\text { crash. } B^{\bullet} & :=\text { rash.swap.invgari.swap. } B^{\bullet} \tag{2.68}
\end{align*}
$$

[^12]\[

$$
\begin{align*}
\text { ris } & :=\text { ras }^{-1}=\text { swap.invgari.swap.invgari } \tag{2.69}\\
\text { rish } & :=\text { invgani.rash.ris } \tag{2.70}\\
\text { crish } & :=\text { invgani.crash }=\text { rish.invgari } \tag{2.71}
\end{align*}
$$
\]

2.4 Straight symmetries and subsymmetries.

- alternality and symmetrality.

Like a mould, a bimould A^{\bullet} is said to be alternal (resp. symmetral) if it verifies

$$
\begin{equation*}
\sum_{\boldsymbol{w} \in \operatorname{sha}\left(\boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}\right)} A^{\boldsymbol{w}} \equiv 0 \quad\left(\text { resp. } \equiv A^{\boldsymbol{w}^{\prime}} A^{\boldsymbol{w}^{\prime \prime}}\right) \quad \forall \boldsymbol{w}^{\prime} \neq \emptyset, \forall \boldsymbol{w}^{\prime \prime} \neq \emptyset \tag{2.72}
\end{equation*}
$$

with \boldsymbol{w} running through the set sha $\left(\boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}\right)$ of all shufflings of \boldsymbol{w}^{\prime} and $\boldsymbol{w}^{\prime \prime}$.

- $\{$ alternal $\} \Longrightarrow\{$ mantar-invariant, pus-neutral $\}$.

Alternality implies mantar-invariance, with mantar $=$ minu.pari.anti defined as in (2.7).
It also implies pus-neutrality, which means this:

$$
\begin{equation*}
\left(\sum_{1 \leq l \leq r(\bullet)} \operatorname{pus}^{l}\right) . A^{\bullet} \equiv 0 \quad \text { i.e. } \quad \sum_{\substack{\boldsymbol{w}^{\text {circ }} \boldsymbol{\sim}}} A^{\boldsymbol{w}^{\prime}} \equiv 0 \quad(\text { if } r(\boldsymbol{w}) \geq 2) \tag{2.73}
\end{equation*}
$$

- $\{$ symmetral $\} \Longrightarrow\{$ gantar-invariant, gus-neutral $\}$.

Symmetrality implies likewise gantar-invariance, with

$$
\begin{equation*}
\text { gantar }:=\text { invmu.anti.pari } \tag{2.74}
\end{equation*}
$$

as well as gus-neutrality, which means $\left(\sum_{1 \leq l \leq r(\bullet)}\right.$ pus $\left.^{l}\right) \cdot \operatorname{logmu} . A^{\bullet} \equiv 0$ i.e.

$$
\begin{equation*}
\sum_{1 \leq k \leq r(\boldsymbol{w})}(-1)^{k-1} \sum_{\substack{\boldsymbol{w}^{1} \ldots \boldsymbol{w}^{k} \stackrel{\text { circ }}{\sim} \boldsymbol{w}}} A^{\boldsymbol{w}^{1}} \ldots A^{\boldsymbol{w}^{k}} \equiv 0 \quad(\text { if } r(\boldsymbol{w}) \geq 2) \tag{2.75}
\end{equation*}
$$

- \{bialternal $\} \stackrel{\text { essly }}{ }$ \{neg-invariant, push-invariant $\}$.

Bialternality implies not only invariance under neg.push but also separate neg-invariance and push-invariance for any $A^{\bullet} \in B I M U_{r}$ but the implication holds only if $r>1$, since on $B I M U_{1}$ we have neg=push. So neg.push=id, meaning that there is no constraint at all on elements of $B I M U_{1}$. But we must nonetheless impose neg-invariance on $B I M U_{1}$ (or what amounts to the
same, push-invariance) to ensure the stability of bialternals under the aribracket: see $\S 2.7$.

- \{bisymmetral $\} \stackrel{\text { ess }{ }^{\text {ly }}}{ }$ \{neg-invariant, gush-invariant $\}$.

Bisymmetrality implies not only invariance under neg.gush, with

$$
\begin{equation*}
\text { gush }:=\text { neg.gantar.swap.gantar.swap } \tag{2.76}
\end{equation*}
$$

but also separate neg-invariance and gush-invariance, but only if we assume neg-invariance for the component of length 1 . If we do not make that assumption, every bisymmetral bimould in GARI splits into two bisymmetral factors: a regular right factor (invariant under neg) and an irregular left factor (invariant under pari.neg)

Let us now examine the stable combinations of alternality or 'subalternality' (resp. symmetrality or 'subsymmetrality'), i.e. the combinations that are preserved under at least some flexion operations and give rise to interesting algebras or groups.

Primary and secondary subalgebras and subgroups.

Broadly speaking, simple symmetries or subsymmetries (i.e. those that bear only on bimoulds or their swappees but not both) tend to be stable under a vast range of binary operations, both uninflected (like the $l u$-bracket or the $m u$-product) or inflected (like ari/gari or ali/gali). The corresponding algebras or groups are called primary. On the other hand, double symmetries or subsymmetries (i.e. those that bear simultaneously on bimoulds and their swappees) are only stable - when at all - under (suitable) inflected operations. We speak in this case of secondary algebras or groups.

"Finitary" and "infinitary" constraints.

Another important distinction lies in the character - "finitary" or otherwise - of the contraints corresponding to each set of symmetries of subsymmetries. These constraints always assume the form

$$
\begin{align*}
0 & =\sum_{\tau} \epsilon(\tau) M^{\tau(\boldsymbol{w})}+\sum_{\sigma} \epsilon(\sigma, \boldsymbol{w}) M^{\sigma(\boldsymbol{w})} \tag{2.77}\\
\text { with } \quad & \quad \boldsymbol{w}=\left(w_{1}, \ldots, w_{r}\right) ; \quad \epsilon(\tau) \in \mathbb{Z}, \quad \epsilon(\sigma, \boldsymbol{w}) \in \mathbb{C}, \quad \tau \in \mathrm{Gl}_{r}(\mathbb{Z}) \tag{2.78}
\end{align*}
$$

with a first sum involving a finite number of sequences $\tau(\boldsymbol{w})$ (resp. $\sigma(\boldsymbol{w})$) that are linearly dependent on \boldsymbol{w} and of equal (resp. lesser) length. What really matters is the subgroup $\langle\tau\rangle_{r}$ of $\mathrm{Gl}_{r}(\mathbb{Z})$ generated by the τ in the first sum and unambiguously determined (up to isomorphism) by the constraints.

When $\langle\tau\rangle_{r}$ is finite ${ }^{32}$ we speak of finitary constraints. The corresponding algebras or groups are always easy to investigate; the algebras in particular split into 'cells', or component subspaces in $B I M U_{r}$, whose dimensions are readily calculated by using standard invariant theory. When $\langle\tau\rangle_{r}$ is infinite ${ }^{33}$ things can of course get much trickier, but the important point to note is this: whereas simple symmetries (like alternality) are always finitary, and full double symmetries (like bialternality) always infinitary, there exists a very useful intermediary class - that namely of finitary double symmetries. The prototypal case is the (ari-stable) combination of alternality and pushinvariance. ${ }^{34}$

We can now proceed to catalogue all the basic symmetry-induced algebras and groups - basic in the sense that all others can be derived from them by intersection.

Throughout, we adopt the following convenient notations. For any set $E \subset B I M U:$
(i) E^{h} or $E^{h / *}$ denotes the subset of all bimoulds M^{\bullet} with the property h
(ii) $E^{h / k}$ denotes the subset of all bimoulds such that M^{\bullet} has the property h and swap. M^{\bullet} has the property k.
(iii) if h or k is a unary operation, the property in question should be taken to mean h - or k-invariance
(iv) $\overline{p u s n u}$ or $\overline{g u s n u}$ denote pus- or gus-neutrality (see $\S 2.4$)
(v) the underlining (as in $\underline{a l} / \underline{a l}$ or $\underline{a s} / \underline{a s}$) always signals the parity condition for the length-1 component
(vi) boldface ARI or GARI is used to distinguish the few infinitary subalgebras or subgroups of ARI or GARI.

The only infinitary algebras are:

As for the intersection $\mathbf{A R I}^{\overline{\text { pusnu }} / \text { pusnu }} \cap$ ARI $^{\text {push }}$, it can be shown to coincide with ARI ${ }^{\text {al/al }}$ deprived of its length-one component. The same pattern holds the groups.

[^13]
2.5 Main subalgebras.

$1 a^{\bullet}$		$\mathrm{li}^{\bullet}:=\operatorname{swap}(\mathrm{la}$ •		subalgebra
push-invariant	\Leftrightarrow	push-invariant		ARI $^{\text {push }}$
pus-neutral				ARI ${ }^{\text {pusnu/* }}$
		pus-neutral (strictly)	. .	$\mathrm{ARI}^{* / \overline{\text { pusnu }}}$
pus-neutral (strictly)		pus-neutral (strictly)	\ldots	ARI ${ }^{\overline{\text { pusnu}} / \overline{\text { pusnu }}}$
push-neutral	\Leftrightarrow	push-neutral	\ldots	unstable
pus-invariant			\ldots	unstable
		pus-invariant	. .	unstable
mantar-invariant				ARI ${ }^{\text {mantar/* }}$
		mantar-invariant	\ldots	unstable
mantar-invariant		mantar-invariant		unstable
mantar-invariant		mantar-invariant	neg	ARI $\underline{\text { mantar }}$ / mantar
push-invariant		mantar-invariant	\ldots	ARI ${ }^{\text {push/mantar }}$
mantar-invariant		push-invariant	\ldots	ARI ${ }^{\text {mantar/push }}$
alternal			\cdots	ARI ${ }^{\text {al/* }}$
		alternal	\ldots	unstable
alternal		alternal		unstable
alternal		alternal	neg	$\mathbf{A R I}^{\text {al/ }}$ al
alternal		mantar-invariant		unstable
alternal		mantar-invariant	neg	$\mathrm{ARI}^{\text {al/mantar }}$
alternal		push-invariant	\ldots	ARI ${ }^{\text {al/push }}$
mantar-invariant		alternal		unstable
mantar-invariant		alternal	neg	ARI ${ }^{\text {mantar/al }}$
push-invariant		alternal	. .	ARI ${ }^{\text {push/al }}$

2.6 Main subgroups.

ga ${ }^{\text {- }}$		gi • $=\operatorname{swap}\left(\mathrm{ga}{ }^{\bullet}\right.$)		subgroup
gush-invariant	\Leftrightarrow	gush-invariant		GARI ${ }^{\text {gush }}$
gus-neutral				GARI ${ }^{\text {gusnu/* }}$
		gus-neutral (strictly)	.	GARI*/gusnu
gus-neutral (strictly)		gus-neutral (strictly)	\ldots	GARI ${ }^{\text {gusnu} / \text { gusnu }}$
gush-neutral	\Leftrightarrow	gush-neutral		unstable
gus-invariant				unstable
		gus-invariant		unstable
gantar-invariant				GARI ${ }^{\text {gantar/* }}$
		gantar-invariant	\ldots	unstable
gantar-invariant		gantar-invariant		unstable
gantar-invariant		gantar-invariant	neg	GARI ${ }^{\text {gantar } / \text { gantar }}$
gush-invariant		gantar-invariant	.	GARI ${ }^{\text {gush/gantar }}$
gantar-invariant		gush-invariant	.	GARI ${ }^{\text {gantar/gush }}$
alternal				GARIas/*
		symmetral		unstable
symmetral		symmetral		unstable
symmetral		symmetral	neg	GARI ${ }^{\text {as/ }}$ /as
symmetral		gantar-invariant		unstable
symmetral		gantar-invariant	neg	GARI ${ }^{\text {as/gantar }}$
symmetral		gush-invariant	\ldots	$\mathrm{GARI}^{\text {as/gush }}$
gantar-invariant		symmetral		unstable
gantar-invariant		symmetral	neg	GARI ${ }^{\text {gantar/as }}$
gush-invariant		symmetral		GARI ${ }^{\text {gush/as }}$

2.7 The dimorphic algebra $\left.A R I^{a l} / a l\right) A R I^{a l / a l}$.

The space $A R I^{a l / a l}$ of bialternal and even bimoulds is a subalgebra of $A R I$. The total space $A R I^{a l / a l}$ of all bialternals is only marginally larger, since

$$
\begin{equation*}
\mathrm{ARI}^{\mathrm{al} / \mathrm{al}}=\mathrm{ARI}^{\mathrm{a} 1 / \mathrm{al}} \oplus \mathrm{ARI}^{\mathrm{al} / \mathrm{al}} \tag{2.79}
\end{equation*}
$$

with a complement space $A R I^{\dot{a} / / a l}:=B I M U_{1, o d d}$ that simply consists of all odd bimoulds with a single non-zero component of length 1 . The total space
$A R I^{a l / a l}$ is not an algebra, but there is some additional structure on it, in the form of a bilinear mapping oddari of $A R I^{\dot{a} / \dot{a} l}$ into $A R I^{a l / a l}$:

$$
\begin{equation*}
\text { oddari : } \left.\quad\left(\mathrm{ARI}^{\mathrm{a} l} / \mathrm{al}^{\mathrm{a}}, \mathrm{ARI}^{\mathrm{a} 1 / \mathrm{a} \mathrm{l}}\right) \longrightarrow \mathrm{ARI}^{\mathrm{I} \mathrm{l} / \mathrm{al}} \quad \text { (oddari } \neq \text { ari }\right) \tag{2.80}
\end{equation*}
$$

with

$$
\begin{align*}
& C^{\bullet}=\operatorname{oddari}\left(A^{\bullet} \cdot B^{\bullet}\right) \Longrightarrow \tag{2.81}\\
& C^{\binom{u_{1}, u_{2}}{v_{1}, v_{2}}}:=+A^{\left(u_{1}^{\left(u_{1}\right)}\right.} B^{\left(u_{1} v_{2}\right)}+A^{\left(-u_{1}-u_{2}\right)} B^{\left(v_{2} u_{1} v_{1} v_{2}\right)}+A^{\left(v_{2} v_{2}-v_{1}\right)} B^{\left(-u_{1}-v_{1}\right)} \\
& \left.\left.-B^{\left({ }_{v}^{u_{1}}\right)} A^{\left(u_{2}\right)}-B^{\left(-u_{1}-u_{2}\right.}{ }_{-v_{2}}\right) A^{\left(v_{1}-v_{2}\right)}-B^{\left(v_{2}-v_{1}\right)} A^{\left(-u_{1}-u_{1}\right.}{ }_{-v_{1}}\right)
\end{align*}
$$

Remark. Although swap doesn't act as an automorphism on $A R I$, it does on $A R I^{\text {all/al }}$, essentially because all elements of $A R I^{\text {all/al }}$ are push invariant.

2.8 The dimorphic group $G A R I^{\underline{a s} / \underline{a s}} \subset G A R I^{a s / a s}$.

The set GARIIl/al of bisymmetral and even bimoulds is a subgroup of GARI. The total set GARI ${ }^{a s / a s}$ of all bisymmetrals is only marginally larger, since we have the factorisation

$$
\begin{align*}
\mathrm{GARI}^{\mathrm{as} / \mathrm{as}} & =\operatorname{gari}\left(\mathrm{GARI}^{\text {as/as }}, \mathrm{GARI}^{\mathrm{as}} / \underline{\text { as }}\right) \tag{2.82}\\
\mathrm{GARI}^{\text {as//as }} & =\bigcup_{\mathfrak{E}} \mathfrak{e s s}_{\mathfrak{E}}^{\bullet} \quad\left(\mathfrak{E}=\text { flexion unit }, \mathfrak{e s s}_{\mathfrak{E}}^{\bullet} \text { bisymmetral }\right) \tag{2.83}
\end{align*}
$$

with a left factor GARI ${ }^{\dot{a s} / \dot{a} s}$ consisting of bisymmetral bimoulds that are invariant under pari.neg (rather than neg) and correspond one-to-one to very special bimoulds of $B I M U_{1}$, the so-called flexion units (see $\S 3.2$ and $\S 3.5$). Of course, the union $\bigcup_{\mathbb{C}^{\bullet}}$ extends to the vanishing unit $\mathfrak{E}^{\bullet \bullet}=0^{\bullet}$, to which there corresponds $\mathfrak{e s s e}_{\mathfrak{E}}=i d_{G A R I}$. The total set $G A R I^{a s / a s}$ is not a group, but the above decomposition makes it clear that it is stable under postcomposition by $G A R I^{\text {as/as }}$:

$$
\begin{equation*}
\operatorname{gari}\left(\mathrm{GARI}^{\mathrm{as} / \mathrm{as}}, \mathrm{GARI}^{\mathrm{as} / \underline{\mathrm{as}}}\right)=\mathrm{GARI}^{\mathrm{as} / \mathrm{as}} \tag{2.84}
\end{equation*}
$$

Remark. Although swap doesn't act as an automorphism on GARI, it does on $G A R I^{\underline{\text { ass }} / \underline{\text { as }} \text {, essentially because all elements of } G A R I^{\text {as }} \text { /as } \text { are } g u s h ~}$ invariant. In fact, for B^{\bullet} in $G A R I^{\underline{\text { as }} / \underline{\text { as }}}$, formula (2.62) reads $\operatorname{gira}\left(A^{\bullet}, B^{\bullet}\right)=$ $\operatorname{gari}\left(A^{\bullet}, B^{\bullet}\right)$ since in that case $\operatorname{rash}\left(B^{\bullet}\right)=1^{\bullet}$ and $\operatorname{ras}\left(B^{\bullet}\right)=B^{\bullet}$.

3 Flexion units and twisted symmetries.

3.1 The free monogenous flexion algebra Flex (\mathfrak{E}).

To any $\mathfrak{E}^{\bullet \bullet} \in B I M U_{1}$ of a given parity type $\binom{s_{1}}{s_{2}}$, i.e. such that

$$
\begin{equation*}
\mathfrak{E}^{\left(\epsilon_{v_{1}}^{\left(\epsilon u_{1}\right.}\right)} \equiv \epsilon^{s_{1}} \eta^{s_{2}} \mathfrak{E}^{\left(\frac{u_{1}}{v_{1}}\right)} \quad \text { with } s_{1}, s_{2} \in\{0,1\} ; \epsilon, \eta \in\{+,-\} ; \forall u_{1}, v_{1} \tag{3.1}
\end{equation*}
$$

let us attach the space Flex (\mathfrak{E}) of all bimoulds generated by $\mathfrak{E} \bullet$ under all flexion operations, unary or binary ${ }^{35}$. Flex (\mathfrak{E}) thus contains subalgebras not just of $A R I$ but of all $7+1$ distinct flexion algebras, and subgroups not just of $G A R I$ but of all $7+1$ distinct flexion groups. Moreover, for truly random generators \mathfrak{E}^{\bullet}, all realisations Flex (\mathfrak{E}) are clearly isomorphic: they depend only on the parity type $\binom{s_{1}}{s_{2}}$. Lastly, for all four parity types, we have the same universal decomposition of Flex (\mathfrak{E}) into cells Flex $_{r}(\mathfrak{E}) \subset B I M U_{r}$ whose dimensions are as follows :

$$
\begin{equation*}
\operatorname{Flex}(\mathfrak{E})=\bigoplus_{r \geq 0} \operatorname{Flex}_{r}(\mathfrak{E}) \quad \text { with } \quad \operatorname{dim}\left(\operatorname{Flex}_{r}(\mathfrak{E})\right)=\frac{(3 r)!}{r!(2 r+1)!} \tag{3.2}
\end{equation*}
$$

The reason is that Flex $_{r}(\mathfrak{E})$ can be freely generated by just two operations, namely $m u$ and amnit:

$$
\begin{align*}
& A_{i}^{\bullet} \in \text { Flex }_{r_{i}}(\mathfrak{E}) \Longrightarrow \operatorname{mu}\left(A_{1}, \ldots, A_{s}\right) \in \text { Flex }_{r_{1}+. . r_{s}}(\mathfrak{E}) \tag{3.3}\\
& A_{i}^{\bullet} \in \text { Flex }_{r_{i}}(\mathfrak{E}) \Longrightarrow \operatorname{amnit}\left(A_{1}, A_{2}\right) . \mathfrak{E}^{\bullet} \in \text { Flex }_{1+r_{1}+r_{2}}(\mathfrak{E}) \tag{3.4}
\end{align*}
$$

As a consequence, each cell Flex $_{r}(\mathfrak{E})$ can be shown to possess four natural bases of exactly the required cardinality, namely $\left\{\mathfrak{e}_{\boldsymbol{\bullet}}^{\bullet}\right\} \sim\left\{\mathfrak{e}_{\boldsymbol{p}}^{\boldsymbol{\bullet}}\right\} \sim\left\{\mathfrak{e}_{\boldsymbol{o}}^{\bullet}\right\} \sim\left\{\mathfrak{e}_{\boldsymbol{g}}^{\boldsymbol{\bullet}}\right\}$. Theses bases are actually one, and merely differ by the indexation:

1) t runs through all r-node ternary trees.
2) \boldsymbol{p} runs through all r-fold arborescent parenthesisings.
3) \boldsymbol{o} runs through all arborescent, coherent orders on $\{1, \ldots, r\}$.
4) \boldsymbol{g} runs through all pairs $\boldsymbol{g}=(\boldsymbol{g a}, \boldsymbol{g} \boldsymbol{i})$ of r-edged, non-overlapping graphs.

The basis $\left\{\mathfrak{e}_{t}^{\bullet}\right\}$.

The free generation of Flex $_{r}(\mathfrak{E})$ under the operations (3.3) and (3.4) produces an indexation by trees $\boldsymbol{\theta}$ of a definite sort which, though not ternary, stand in one-to-one correspondence with ternary trees \boldsymbol{t}. We need not bother with that here.

[^14]
The basis $\left\{\mathfrak{e}_{g}^{\bullet}\right\}$.

We fix r and puncture the unit circle at all points $S i_{k}$ and $S a_{k}$ of the form

$$
S i_{k}:=\exp \left(2 \pi i \frac{k}{r+1}\right) \quad, \quad S a_{k}:=\exp \left(2 \pi i \frac{k+\frac{1}{2}}{r+1}\right) \quad(k \in \mathbb{Z} /(r+1) \mathbb{Z})
$$

Let \boldsymbol{G}_{r} be the set of all $\frac{(3 r)!}{r!(2 r+1)!}$ pairs $\boldsymbol{g}=(\boldsymbol{g a}, \boldsymbol{g i})$ such that:
(i) $\boldsymbol{g} \boldsymbol{a}$ is a connected graph with vertices at each $S a_{j}$ and with exactly r straight, non-intersecting edges.
(ii) $\boldsymbol{g} \boldsymbol{i}$ is a connected graph with vertices at each $S i_{j}$ and with exactly r straight, non-intersecting edges.
(iii) $\boldsymbol{g} \boldsymbol{a}$ and $\boldsymbol{g} \boldsymbol{i}$ are 'orthogonal' in the sense that each edge of one intersects exactly one edge of the other. ${ }^{36}$
To each such $\boldsymbol{g}=(\boldsymbol{g a}, \boldsymbol{g i})$ we attach the bimould $\mathfrak{e}_{\boldsymbol{g}}^{\boldsymbol{g}} \in$ Flex $_{r}(\mathfrak{E})$ defined by

$$
\begin{equation*}
\mathfrak{e}_{g}^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}:=\prod_{x \in \boldsymbol{g} \boldsymbol{a} \cap \boldsymbol{g i}} \mathfrak{E}^{\binom{u(x)}{v(x)}} \quad \text { (exactly } r \text { factors) } \tag{3.5}
\end{equation*}
$$

with

$$
\begin{aligned}
& u(x):=\sum_{\left[\mathrm{Si}_{0}<\mathrm{Sa}_{m_{1}}<\operatorname{Sa}_{n}<\mathrm{Sa}_{m_{2}}\right]} u_{n}^{\text {circ }} \quad u_{n} \quad(\text { with } 1 \leq n \leq r) \\
& v(x):=v_{n_{2}}-v_{n_{1}} \quad\left(n_{2} \neq 0 ; v_{n_{1}}=0 \text { if } n_{1}=0\right)
\end{aligned}
$$

with $S a_{m_{1}}, S a_{m_{2}}$ (resp. $S i_{n_{1}}, S i_{n_{2}}$) denoting the end-points of the edge of $\boldsymbol{g} \boldsymbol{a}$ (resp. gi) going through x and with the indexation order so chosen as to ensure

$$
\left[\mathrm{Si}_{0}<\mathrm{Sa}_{m_{1}}<\mathrm{Sa}_{m_{2}}\right]^{\text {circ }} \quad \text { and } \quad\left[\mathrm{Si}_{n_{1}}<\mathrm{Sa}_{m_{1}}<\mathrm{Si}_{n_{2}}<\mathrm{Sa}_{m_{2}}\right]^{\text {circ }}
$$

The basis $\left\{\mathfrak{e}_{o}^{\bullet}\right\}$.

A partial order \boldsymbol{o} on $\{1, \ldots, r\}$ is arborescent if each i in $\{1, \ldots, r\}$ has at most one direct \boldsymbol{o}-antecedent i_{-}, and it is coherent if the following implication (which involves both the natural order \leq and the \boldsymbol{O}-order \preceq) holds:

$$
\begin{equation*}
\left\{i_{1} \leq i_{2} \leq i_{3}, i \preceq i_{1}, i \preceq i_{3}\right\} \Longrightarrow\left\{i \preceq i_{2}\right\} \tag{3.6}
\end{equation*}
$$

This amounts to saying that the set of all j such that $i \preceq j$ has to be an interval $i^{-} \leq j \leq i^{+}$for the natural order. The basis elements are then

[^15]defined as follows
$\mathfrak{e}_{o}^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}:=\prod_{1 \leq i \leq r} \mathfrak{E}^{\binom{u(i)}{v(i)}}$ with $\quad u(i):=\sum_{i \preceq j} u_{j}=\sum_{j=i^{-}}^{j=i^{+}} u_{j}, \quad v(i):=v_{i}-v_{i_{-}}$
If i has no \boldsymbol{o}-antecedent i_{-}we must of course set $v(i):=v_{i}$.
The basis $\left\{\mathfrak{e}_{p}^{\bullet}\right\}$.
The set \mathcal{P}_{r} of all r-fold arborescent parenthesisings may be visualised as consisting of non-commutative words \boldsymbol{p} made up of r letters a ("opening parentheses"), r letters b ("inter-parenthesis content") and r letters c ("closing parentheses"). These words, in turn, are defined by a simple induction: each non-prime \boldsymbol{p} admits a unique factorisation into prime factors \boldsymbol{p}_{i}, and each prime \boldsymbol{p} admits a unique expression of the form
\[

$$
\begin{equation*}
\boldsymbol{p}=a . \boldsymbol{p}_{1} . b . \boldsymbol{p}_{2} . c \quad\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2} \in \mathcal{P}\right) \tag{3.7}
\end{equation*}
$$

\]

with factors $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ that need not be prime, and one of which may be empty. ${ }^{37}$ Thus $\mathcal{P}_{1}=\{a b c\}, \mathcal{P}_{2}=\{a a b c b c, a b a b c c, a b c a b c\}$, etc.

To define the correspondance between the \boldsymbol{p} - and \boldsymbol{o}-indexations, we assimilate each i in $\{1, \ldots, r\}$ to the i-th letter b in the words $\boldsymbol{p} \in \mathcal{P}_{r}$ and set

$$
\begin{equation*}
h(i):=\alpha-\gamma=\gamma^{\prime}-\alpha^{\prime} \tag{3.8}
\end{equation*}
$$

if that i-th letter b is preceded in \boldsymbol{p} by α letters a and γ letters c or, what amounts to the same, followed by α^{\prime} letters a and γ^{\prime} letters c. We then define the order \boldsymbol{o} on $\{1, \ldots, r\}$ by decreeing that $i \prec j$ iff $h(i)<h(j)$ and $h(i)<h(k)$ for all k between i and $j .{ }^{38}$

3.2 Flexion units.

As it happens, the most useful monogenous algebras Flex (\mathfrak{E}) are not those spawned by 'random' generators \mathfrak{E} but on the contrary by very special ones - the so-called flexion units.

Exact flexion units. The tripartite relation.

A flexion unit is a bimould $\mathfrak{E}^{\bullet} \in B I M U_{1}$ that is odd in w_{1} and verifies the

[^16]tripartite relation below. More precisely:
\[

$$
\begin{align*}
& \mathfrak{E}^{-w_{1}} \equiv-\mathfrak{E}^{w_{1}} \quad, \quad \mathfrak{E}^{w_{1}} \mathfrak{E}^{w_{2}} \equiv \mathfrak{E}^{\left.w_{1}\right\rfloor} \mathfrak{F}^{\left\lceil w_{2}\right.}+\mathfrak{E}^{\left.w_{1}\right\rceil} \mathfrak{E}^{\left\lfloor w_{2}\right.} \quad \text { i.e } \tag{3.9}
\end{align*}
$$
\]

In view of the imparity of $\mathfrak{E} \bullet$ the tripartite identity may also be written in more symmetric form:

Another way of characterising flexion units is via the push-neutrality of their powers $m u^{n}(\mathfrak{E} \bullet)$. Indeed, if we set:

$$
\begin{equation*}
\operatorname{mu}^{n}\left(\mathfrak{E}^{\bullet}\right)=\operatorname{mu}(\overbrace{\mathfrak{E}^{\bullet}, \ldots, \mathfrak{E}^{\bullet}}^{n \text { times }}) \tag{3.10}
\end{equation*}
$$

then \mathfrak{E} is a flexion unit iff $m u^{1}\left(\mathfrak{E}^{\bullet}\right)$ and $m u^{2}\left(\mathfrak{E}^{\bullet}\right)$ are push-neutral, in which case it can be shown that all powers $m u^{n}\left(\mathfrak{E}^{\bullet}\right)$ are automatically push-neutral:

$$
\begin{equation*}
\{\mathfrak{E} \text { is a flexion unit }\} \Leftrightarrow\left\{\left(\sum_{0 \leq k \leq n} \operatorname{push}^{k}\right) \cdot \mathrm{mu}^{n}\left(\mathfrak{E}^{\bullet}\right)=0, \quad \forall n \in \mathbb{N}^{*}\right\} \tag{3.11}
\end{equation*}
$$

If two units $\mathfrak{E}^{\bullet \bullet}$ and \mathfrak{O}^{\bullet} are constant respectively in v_{1} and u_{1}, then the sum $\mathfrak{E}^{\bullet}+\mathfrak{O}^{\bullet}$ is also a unit.

Lastly, if $\mathfrak{E} \bullet$ is a unit, then for each $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ the relation

$$
\begin{equation*}
\mathfrak{E}_{[\alpha, \beta, \gamma, \delta]}^{\left(\frac{u_{1}}{u_{1}}\right)}:=\delta e^{\gamma u_{1} v_{1}} \mathfrak{E}^{\left(\frac{u_{1} / \alpha}{v_{1} / \beta}\right)} \tag{3.12}
\end{equation*}
$$

defines a new unit $\mathfrak{E}_{[\alpha, \beta, \gamma, \delta]}^{\bullet}$.

Conjugate units:

If \mathfrak{E}^{\bullet} is a unit, then the relation $\left.\mathfrak{O}^{\left(u_{1}\right)}{ }_{v_{1}}\right):=\mathfrak{E}^{\left(u_{1}\right)}$ ($\left.u_{1}\right)$ define another unit \mathfrak{O}^{\bullet} - the so-called conjugate of $\mathfrak{E} \bullet^{\bullet}$. Indeed, setting $\left(u_{1}, u_{2}\right):=\left(v_{1}^{\prime}, v_{2}^{\prime}-v_{1}^{\prime}\right),\left(v_{1}, v_{2}\right):=$ $\left(u_{1}^{\prime}+u_{2}^{\prime}, u_{2}^{\prime}\right)$, then using the imparity of \mathfrak{E}^{\bullet} and re-ordering the terms, we find that (3.9) becomes:

$$
\mathfrak{O}^{\binom{u_{1}^{\prime}}{v_{1}^{\prime}}} \mathfrak{O}^{\binom{u_{2}^{\prime}}{v_{2}^{\prime}}} \equiv \mathfrak{O}^{\binom{u_{1}^{\prime}}{v_{1: 2}^{\prime}}} \mathfrak{O}^{\binom{u_{12}^{\prime}}{v_{2}^{\prime}}}+\mathfrak{O}^{\binom{u_{12}^{\prime}}{v_{1}^{\prime}}} \mathfrak{O}^{\binom{u_{2}^{\prime}}{v_{2}^{2}}} \quad \text { with } \quad \mathfrak{O}^{\binom{u_{1}}{v_{1}}}:=\mathfrak{E}^{\binom{v_{1}}{u_{1}}}
$$

i.e. conserves its form.

Let us now mention the most useful flexion units, some exact and others only approximate. Throughout the sequel, we shall set:

$$
\begin{equation*}
P(t):=\frac{1}{t} \quad, \quad Q(t):=\frac{1}{\tan (t)} \quad, \quad Q_{c}(t):=\frac{c}{\tan (c t)} \tag{3.13}
\end{equation*}
$$

Polar units:

They consist purely of poles at the origin:

$$
\begin{align*}
\mathrm{Pa}^{w_{1}} & =P\left(u_{1}\right) \tag{3.14}\\
\mathrm{Pi}^{w_{1}} & =P\left(v_{1}\right) \tag{3.15}\\
\operatorname{Pai}_{\alpha, \beta}^{w_{1}} & =P\left(\frac{u_{1}}{\alpha}\right)+P\left(\frac{v_{1}}{\beta}\right)=\frac{\alpha}{u_{1}}+\frac{\beta}{v_{1}} \tag{3.16}
\end{align*}
$$

$P a^{\bullet}, P i^{\bullet}, P a i_{\alpha, \beta}^{\bullet}$ are exact units.

Trigonometric units:

They are 'periodised' variants of the polar units:

$$
\begin{align*}
\mathrm{Qa}_{c}^{w_{1}} & =Q_{c}\left(u_{1}\right)=\frac{c}{\tan \left(c u_{1}\right)} \tag{3.17}\\
\mathrm{Qi}_{c}^{w_{1}} & =Q_{c}\left(v_{1}\right)=\frac{c}{\tan \left(c v_{1}\right)} \tag{3.18}\\
\operatorname{Qai}_{c, \alpha, \beta}^{w_{1}} & =Q_{c}\left(\frac{u_{1}}{\alpha}\right)+Q_{c}\left(\frac{v_{1}}{\beta}\right)=\frac{c}{\tan \left(\frac{c u_{1}}{\alpha}\right)}+\frac{c}{\tan \left(\frac{c v_{1}}{\beta}\right)} \tag{3.19}\\
\operatorname{Qaih}_{c, \alpha, \beta}^{w_{1}} & =Q_{c}\left(\frac{u_{1}}{\alpha}\right)-Q_{c i}\left(\frac{v_{1}}{\beta}\right)=\frac{c}{\tan \left(\frac{c u_{1}}{\alpha}\right)}-\frac{c}{\tanh \left(\frac{c v_{1}}{\beta}\right)} \tag{3.20}
\end{align*}
$$

$Q a_{c}^{\bullet}, Q i_{c}^{\bullet}$ are approximate units but $Q a i_{c, \alpha, \beta}^{\bullet}, Q a i h_{c, \alpha, \beta}^{\bullet}$ are exact.
Elliptic units (after C. Brembilla):
Let $\sigma\left(z ; g_{2}, g_{3}\right)$ be the classical Weierstrass sigma function:

$$
\begin{align*}
& \sigma\left(z ; g_{2}, g_{3}\right)=z-\frac{g_{2}}{2^{4} \cdot 3.5} z^{5}-\frac{g_{3}}{2^{3} .3 .5 .7} z^{7}+\mathcal{O}\left(z^{9}\right) \quad \text { with } \\
& \sigma\left(z ; g_{2}, g_{3}\right) \equiv-\sigma\left(-z ; g_{2}, g_{3}\right) \equiv t \sigma\left(z t^{-1} ; g_{2} t^{4}, g_{3} t^{6}\right)
\end{align*}
$$

Then for all $g_{2}, g_{3}, \alpha, \beta, \gamma, \delta \in \mathbb{C}(\alpha \beta \neq 0)$, the relation

$$
\begin{equation*}
\mathfrak{E}_{g_{2}, g_{3}}^{\left(u_{1}\right)},=\frac{\sigma\left(u_{1}+v_{1} ; g_{2}, g_{3}\right)}{\sigma\left(u_{1} ; g_{2}, g_{3}\right) \sigma\left(v_{1} ; g_{2}, g_{3}\right)} \tag{3.21}
\end{equation*}
$$

defines a two-parameter family of exact flexion units, which in turn, under the standard parameter saturation of (3.12), give rise to:

$$
\begin{align*}
& \mathfrak{E}_{g_{2}, g_{3}, \alpha, \beta, \gamma, \delta}^{\left(\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right.}:=\delta e^{\gamma u_{1} v_{1}} \quad \mathfrak{E}_{g_{2}, g_{3}}^{\binom{u_{1} / \alpha}{v_{1} / \alpha}} \tag{3.22}\\
& \mathfrak{E}_{g_{2}, g_{3}, \alpha, \beta, \gamma, \delta}^{\bullet} \equiv \mathfrak{E}_{g_{2} t^{4}, g_{3} t^{6}, \alpha t, \beta t, \gamma, \delta t^{-1}}^{\bullet} \quad(\forall t) \tag{3.23}
\end{align*}
$$

This six-parameter, five-dimensional complex variety of flexion units contains all previously listed exact units (polar or trigonometric) as limit cases. In fact, it would seem (the matter is still under investigation) that it exhausts all flexion units meromorphic in both u_{1} and v_{1}.

We must now examine further units, exact or approximate, that fail to be meromorphic in one of these variables, or both.

Bitrigonometric units:

Qaa ${ }_{c}^{w_{1}}$ (resp. Qii ${ }_{c}^{w_{1}}$) is defined for $u_{1} \in \mathbb{C}$ and $v_{1} \in \mathbb{Q} / \mathbb{Z}$ (resp. vice versa):

$$
\begin{align*}
\operatorname{Qaa}_{c}^{\binom{u_{1}}{v_{1}}} & :=\sum_{n_{1} \in \mathbb{Z}} \frac{c e^{-2 \pi i n_{1} v_{1}}}{\pi n_{1}+c u_{1}}=\sum_{1 \leq n_{1} \leq \operatorname{den}\left(v_{1}\right)} \frac{c e^{-2 \pi i n_{1} v_{1}}}{\operatorname{den}\left(v_{1}\right)} Q_{c}\left(\frac{\pi n_{1}+c u_{1}}{\operatorname{den}\left(v_{1}\right)}\right) \tag{3.24}\\
\left.\operatorname{Qii}_{c}^{\left(u_{1} u_{1}\right)} v_{1}\right) & :=\sum_{n_{1} \in \mathbb{Z}} \frac{c e^{-2 \pi i n_{1} u_{1}}}{\pi n_{1}+c v_{1}}=\sum_{1 \leq n_{1} \leq \operatorname{den}\left(u_{1}\right)} \frac{c e^{-2 \pi i n_{1} u_{1}}}{\operatorname{den}\left(u_{1}\right)} Q_{c}\left(\frac{\pi n_{1}+c v_{1}}{\operatorname{den}\left(u_{1}\right)}\right)=\operatorname{Qaa}_{c}^{\binom{\left(v_{1}\right)}{u_{1}}}
\end{align*}
$$

with den denoting the denominator (of a rational number). $Q a a_{c}^{\bullet}$ and $Q i i_{c}^{\bullet}$ are both approximate units (see (3.30),(3.31) below).

Flat units:

Let σ be the sign function on \mathbb{R}, i.e. $\sigma\left(\mathbb{R}^{ \pm}\right)= \pm 1$ and $\sigma(0)=0$. Then set:

$$
\begin{equation*}
\mathrm{Sa}^{w_{1}}=\sigma\left(u_{1}\right) \quad, \quad \mathrm{Si}^{w_{1}}=\sigma\left(v_{1}\right) \quad, \quad \mathrm{Sai}^{w_{1}}=\sigma\left(u_{1}\right)+\sigma\left(v_{1}\right) \tag{3.25}
\end{equation*}
$$

$S a^{\bullet}, S i^{\bullet}$ are approximate units but $S a i^{\bullet}$ is exact. ${ }^{39}$

Mixed units:

$$
\begin{equation*}
\operatorname{Qas}_{c, \pm}^{w_{1}}=\mathrm{Q}_{c}\left(u_{1}\right) \pm c i \sigma\left(v_{1}\right) \quad, \quad \operatorname{Qis}_{c, \pm}^{w_{1}}=\mathrm{Q}_{c}\left(v_{1}\right) \pm c i \sigma\left(u_{1}\right) \tag{3.26}
\end{equation*}
$$

$Q a s_{c, \pm}^{\bullet}, Q i s_{c, \pm}^{\bullet}$ are exact units.

[^17]"False" units:
\[

$$
\begin{equation*}
\mathrm{Qi}_{c, \pm}^{w_{1}}=Q i_{c}^{w_{1}} \pm c i=c Q\left(c v_{1}\right) \pm c i= \pm 2 c i \frac{e^{ \pm 2 c i v_{1}}}{e^{ \pm 2 c i v_{1}}-1} \tag{3.27}
\end{equation*}
$$

\]

$Q i_{c,+}^{\bullet}$ and $Q i_{c,-}^{\bullet}$ verify the exact tripartite relation but not the imparity condition. ${ }^{40}$

Approximate flexion units. Tweaking the tripartite relation.

The approximate flexion units listed above verify tweaked variants of the tripartite relation:

$$
\begin{align*}
\mathrm{Qa}_{c}^{w_{1}} \mathrm{Qa}_{c}^{w_{2}} & \equiv \mathrm{Qa}_{c}^{\left.w_{1}\right\rfloor} \mathrm{Qa}_{c}^{\left\lceil w_{2}\right.}+\mathrm{Qa}_{c}^{\left.w_{1}\right\rceil} \mathrm{Qa}_{c}^{\left\lfloor w_{2}\right.}+c^{2} \tag{3.28}\\
\mathrm{Qii}_{c}^{w_{1}} \mathrm{Qi}_{c}^{w_{2}} & \equiv \mathrm{Qi}_{c}^{\left.w_{1}\right\rfloor} \mathrm{Qi}_{c}^{\left\lceil w_{2}\right.}+\mathrm{Qi}_{c}^{\left.w_{1}\right\rceil} \mathrm{Qi}_{c}^{\left\lfloor w_{2}\right.}-c^{2} \tag{3.29}\\
\mathrm{Qaa}_{c}^{w_{1}} \mathrm{Qaa}_{c}^{w_{2}} & \equiv \mathrm{Qaa}_{c}^{\left.w_{1}\right\rfloor} \mathrm{Qaa}_{c}^{\left\lceil w_{2}\right.}+\mathrm{Qaa}_{c}^{\left.w_{1}\right\rceil} \mathrm{Qaa}_{c}^{\left\lfloor w_{2}\right.}+c^{2} \delta\left(v_{1}\right) \delta\left(v_{2}\right)(3.30) \tag{3.30}\\
\mathrm{Qii}_{c}^{w_{1}} \mathrm{Qii}_{c}^{w_{2}} & \equiv \mathrm{Qii}_{c}^{\left.w_{1}\right\rfloor} \mathrm{Qii}_{c}^{\left\lceil w_{2}\right.}+\mathrm{Qii}_{c}^{\left.w_{1}\right\rceil} \mathrm{Qii}_{c}^{\left\lfloor w_{2}\right.}-c^{2} \delta\left(u_{1}\right) \delta\left(u_{2}\right)(3.31) \\
\mathrm{Sa}^{w_{1}} \mathrm{Sa}^{w_{2}} & \equiv \mathrm{Sa}^{\left.w_{1}\right\rfloor} \mathrm{Sa}^{\left\lceil w_{2}\right.}+\mathrm{Sa}^{\left.w_{1}\right\rceil} \mathrm{Sa}^{\left\lfloor w_{2}\right.}-1+\delta\left(u_{1}\right) \delta\left(u_{2}\right) \tag{3.32}\\
\mathrm{Si}^{w_{1}} \mathrm{Si}^{w_{2}} & \equiv \mathrm{Si}^{\left.w_{1}\right\rfloor} \mathrm{Si}^{\left\lceil w_{2}\right.}+\mathrm{Si}^{\left.w_{1}\right\rceil} \mathrm{Si}^{\left\lfloor w_{2}\right.}+1-\delta\left(v_{1}\right) \delta\left(v_{2}\right) \tag{3.33}
\end{align*}
$$

In the last four relations, $\delta(t):=1$ if $t=0$ and $\delta(t):=0$ otherwise.

3.3 Unit-generated algebras Flex (\mathfrak{E}).

For an exact flexion unit \mathfrak{E}^{\bullet} the monogenous flexion algebra Flex (\mathfrak{E}), also known as eumonogeneous ${ }^{41}$ algebra, is richer in interesting bimoulds, though much smaller in size than in the case of a random generator $\mathfrak{E} \bullet$. The total algebra $F l e x(\mathfrak{E})$ can still, as in $\S 3.1$, be freely-canonically generated, but under the sole operation amnit and without mould multiplication mu. In other words, we retain only the steps (3.4) and forego the steps (3.3). As a consequence, Flex (\mathfrak{E}) decomposes into cells $F l e x_{r}(\mathfrak{E}) \subset B I M U_{r}$ whose dimensions are given by the Catalan numbers and whose inductive construction goes like

[^18]this:
\[

$$
\begin{align*}
\operatorname{Flex}(\mathfrak{E}) & =\bigoplus_{r \geq 0} \operatorname{Flex}_{r}(\mathfrak{E}) \quad \text { with } \quad \operatorname{dim}\left(\operatorname{Flex}_{r}(\mathfrak{E})\right)=\frac{(2 r)!}{r!(r+1)!} \tag{3.34}\\
\operatorname{Flex}_{r}(\mathfrak{E}) & =\bigoplus_{\substack{r_{1}+r_{2}=r-1 \\
r_{1}, r_{2} \geq 0}} \operatorname{amnit}\left(\operatorname{Flex}_{r_{1}}(\mathfrak{E}), \operatorname{Flex}_{r_{2}}(\mathfrak{E})\right) \cdot \mathfrak{E} \bullet \tag{3.35}
\end{align*}
$$
\]

The new basis $\left\{\mathfrak{e}_{t}^{\bullet}\right\}$.

It follows from (3.35) that Flex $_{r}(\mathfrak{E})$ has a natural basis $\left\{\mathfrak{e}_{t}^{\bullet}\right\}$ indexed by all r-node binary trees \boldsymbol{t}. The construction is by induction on r :

$$
\begin{equation*}
\mathfrak{e}_{t}^{\bullet}=\operatorname{amnit}\left(\mathfrak{e}_{t_{1}}^{\bullet}, \mathfrak{e}_{t_{2}}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet}=\operatorname{anmit}\left(\mathfrak{e}_{t_{1}}^{\bullet}, \mathfrak{e}_{t_{2}}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet} \tag{3.36}
\end{equation*}
$$

where $\boldsymbol{t}_{\mathbf{1}}, \boldsymbol{t}_{\mathbf{2}}$ denote the left and right subtrees (one of them possibly empty) attached to the root of the binary tree \boldsymbol{t}.

This new basis $\left\{\mathfrak{e}_{t}^{\bullet}\right\}$ is a natural subset of the analogous basis of $\S 3.1$, which was indexed by ternary trees.

The new basis $\left\{\varepsilon_{g}^{\bullet}\right\}$.

It coincides with the analogous system in $\S 3.1$, but restricted to the pairs $\boldsymbol{g}=(\boldsymbol{g a}, \boldsymbol{g i})$ meeting either of these two equivalent conditions:
(i) the graph $\boldsymbol{g} \boldsymbol{a}$ has no pair of edges issuing from the same vertex and containing $S i_{0}$ in the angle so defined.
(ii) the graph $\boldsymbol{g} \boldsymbol{i}$ has no pair of edges with end-points $\left(S i_{p}, S i_{k}\right),\left(S i_{k+1}, S i_{q}\right)$ disposed in the circular order $0 \leq p<k<k+1<q \leq r+1$.
The new basis $\left\{\mathfrak{e}_{o}^{\bullet}\right\}$.
It coincides with its prototype in of $\S 3.1$, but under restriction to the separative orders \boldsymbol{o}, i.e. to orders such that:

$$
\begin{equation*}
\{i-j=1\} \Longrightarrow\{i \preceq j\} \text { or }\{j \preceq i\} \tag{3.37}
\end{equation*}
$$

In other words, elements that are consecutive in the natural order must be comparable in the \boldsymbol{o}-order. This implies that \boldsymbol{o} has a smallest element. It also implies that if i, j are not \boldsymbol{o}-comparable, then the intervals $\left[i^{-}, i^{+}\right]$and $\left[j^{-}, j^{+}\right]$ cannot be contiguous (which justifies calling the order \boldsymbol{o} "separative").
The new basis $\left\{\mathfrak{e}_{p}^{\bullet}\right\}$.
It coincides with the analogous system in $\S 3.1$, but restricted to the words \boldsymbol{p} constructed from the sole induction rule (3.7), without recourse to word concatenation. These less numerous \boldsymbol{p} are necessarily prime, and can be compactly represented by sequences $\boldsymbol{h}=[h(1), \ldots, h(r)]$, with $h(i)$ denoting the height of the i-th letter b in \boldsymbol{p}, as defined in (3.8). For the lengths $r \leq 3$
we have thus:

$$
\begin{array}{ll}
\mathcal{H}_{1}=\{[1]\} & \longleftrightarrow \mathcal{P}_{1}=\{a b c\} \\
\mathcal{H}_{2}=\{[1,2],[2,1]\} & \longleftrightarrow \mathcal{P}_{2}=\{a b a b c c, a a b c b c\} \\
\mathcal{H}_{3}=\{[1,2,3],[1,3,2],[2,1,2],[2,3,1],[3,2,1]\} & \longleftrightarrow \mathcal{P}_{3}=\{a b a b a b c c c, \ldots\}
\end{array}
$$

The involution syap between conjugate flexion structures.

All monogenous structures Flex (\mathfrak{E}) generated by the exact flexion units listed in $\S 3.2$ are actually isomorphic. In the case of two conjugate units, the isomorphism becomes an involution, denoted syap:

$$
\begin{equation*}
\text { syap : } \quad \operatorname{Flex}_{r}(\mathfrak{E}) \leftrightarrow \operatorname{Flex}_{r}(\mathfrak{O}) \quad, \quad \mathfrak{e}_{\boldsymbol{t}}^{\bullet \bullet} \leftrightarrow \mathfrak{o}_{t}^{\bullet} \quad(\mathfrak{E}, \mathfrak{O} \text { conjugate }) \tag{3.38}
\end{equation*}
$$

The involution syap, being defined only on monogenous structures, is quite distinct from the universal involution swap, which applies to the whole of BIMU. On the other hand, syap is more regular: it commutes with all flexion operations, whether unary or binary, whereas swap commutes only with a few, such as ami//gami.

The involution sap on each flexion structure.

Both mappings swap and syap exchange Flex(E) and Flex(ํ). Since these two involutions actually commute, their product sap is also a linear involution, with eigenspaces $\{ \pm 1\}$ of approximately equal size :

$$
\begin{array}{rll}
\text { syap } & : & \operatorname{Flex}_{r}(\mathfrak{E}) \leftrightarrow \operatorname{Flex}_{r}(\mathfrak{O}) \\
\text { swap } & : & \operatorname{Flex}_{r}(\mathfrak{E}) \leftrightarrow \operatorname{Flex}_{r}(\mathfrak{O}) \\
\text { sap } & : & \operatorname{Flex}_{r}(\mathfrak{E}) \leftrightarrow \operatorname{Flex}_{r}(\mathfrak{E}), \operatorname{Flex}_{r}(\mathfrak{O}) \leftrightarrow \operatorname{Flex}_{r}(\mathfrak{O}) \\
\text { with } \text { sap } & := & \tag{3.42}\\
\text { syap.swap }=\operatorname{swap.syap} \text { : }
\end{array}
$$

For r even, the dimensions $d_{r}^{ \pm}$of sap's eigenspaces of eigenvalues ± 1 are equal, but for r odd d_{r}^{+}is slightly larger than d_{r}^{-}. In fact, computational evidence supports the following conjectures ${ }^{42}$:

$$
\begin{align*}
d_{2 r}^{+}-d_{2 r}^{-} & =0 \\
d_{2 r+1}^{+}-d_{2 r+1}^{-} & =\frac{(2 r)!}{r!(r+1)!}=d_{r}^{+}+d_{r}^{-}
\end{align*}
$$

Polar specialisation and graphic interpretation.

In the specal case $\left(\mathfrak{E}^{\bullet}, \mathfrak{D}^{\bullet}\right)=\left(P a^{\bullet}, P i^{\bullet}\right)$, both the canonical basis and the involution syap have a simple interpretation, as shown on the polygonal diagrams in $\S 12.1$, with the dotted resp. full lines representing the variables \boldsymbol{u} resp. \boldsymbol{v}.

[^19]
3.4 Twisted symmetries and subsymmetries in universal mode.

To every exact flexion unit \mathfrak{E} there correspond twisted variants of all straight symmetries and subsymmetries listed in $\S 2.4$. But before defining these, we must introduce two elementary bimoulds $\mathfrak{e} \mathfrak{z}^{\bullet}$ and $\underline{\mathfrak{e}}^{\bullet}=$ pari. $\mathfrak{e z}{ }^{\bullet}$:

$$
\begin{equation*}
\mathfrak{e z} \mathfrak{z}^{w_{1}, \ldots, w_{r}}:=\mathfrak{E}^{w_{1}} \ldots \mathfrak{E}^{w_{r}} \quad, \quad \underline{\mathfrak{z}}^{w_{1}, \ldots, w_{r}}:=(-1)^{r} \mathfrak{E}^{w_{1}} \ldots \mathfrak{E}^{w_{r}} \tag{3.45}
\end{equation*}
$$

as well as the symmetral bimould $\mathfrak{e s}{ }^{\bullet}:=$ sap. $\mathfrak{e z}{ }^{\bullet}$. (see also (4.70)).

- \mathfrak{E}-alternality and \mathfrak{E}-symmetrality.

The simplest characterisation of the \mathfrak{E}-twisted symmetries is by means of the equivalence:
$\left\{B^{\bullet} \mathfrak{E}\right.$-alternal resp. \mathfrak{E}-symmetral $\} \Longleftrightarrow\left\{A^{\bullet}\right.$ alternal resp. symmetral $\}$
with $B^{\bullet \bullet}=\operatorname{ganit}\left(\mathfrak{e z} \mathfrak{z}^{\bullet}\right) \cdot A^{\bullet}$ or $B^{\bullet}=\operatorname{gamit}(\mathfrak{e z}) \cdot A^{\bullet}$, on choice. ${ }^{43}$
As for the analytic expression of the twisted symmetries, it reproduces that of the straight symmetries on which they are patterned, except for the systematic occurence of inflected pairs $\left(w_{i}, w_{j}\right)$, with w_{i}, w_{j} not in the same factor sequence. Let us illustrate the \mathfrak{E}-alternality (resp. \mathfrak{E}-symmetrality) relations for two sequences $\boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}$ first of length 1 :

$$
\begin{aligned}
& B^{w_{1}, w_{2}}+B^{w_{2}, w_{1}}+B^{\left.w_{1}\right\rceil} \underline{\mathfrak{e z}}^{\left\lfloor w_{2}\right.}+B^{\left\lceil w_{2}\right.} \underline{\mathfrak{e}}^{\left.w_{1}\right\rfloor}=0\left(\text { resp. } B^{w_{1}} B^{w_{2}}\right) \quad \text { i.e }
\end{aligned}
$$

and then of length 2 :

$$
\begin{aligned}
& B^{w_{1}, w_{2}, w_{3}, w_{4}}+B^{w_{1}, w_{3}, w_{2}, w_{4}}+B^{w_{3}, w_{1}, w_{2}, w_{4}}+B^{w_{1}, w_{3}, w_{4}, w_{2}}+B^{w_{3}, w_{1}, w_{4}, w_{2}}+B^{w_{3}, w_{4}, w_{1}, w_{2}} \\
& +B^{\left.w_{1}\right\rceil, w_{2}, w_{4}} \underline{\mathfrak{e} z}^{\left\lfloor w_{3}\right.}+B^{\left\lceil w_{3}, w_{2}, w_{4}\right.} \underline{\mathfrak{z}}^{\left.w_{1}\right\rfloor}+B^{\left.w_{1}\right\rceil, w_{4}, w_{2}} \underline{\mathfrak{e}}^{\left\lfloor w_{3}\right.}+B^{\left\lceil w_{3}, w_{4}, w_{2}\right.}{\underline{\mathfrak{e}} \underline{\mathfrak{z}}^{\left.w_{1}\right\rfloor}}^{w_{1}} \\
& +B^{\left.w_{3}, w_{1}\right\rceil, w_{2}} \underline{\mathfrak{z}}^{\left\lfloor w_{4}\right.}+B^{w_{3},\left\lceil w_{4}, w_{2}\right.} \underline{\mathfrak{z}}^{\left.w_{1}\right\rfloor}+B^{\left.w_{1}, w_{2}\right\rceil, w_{4}} \underline{\mathfrak{e}} \mathfrak{z}^{\left\lfloor w_{3}\right.}+B^{w_{1},\left\lceil w_{3}, w_{4}\right.} \underline{\mathfrak{e}}^{\left.w_{2}\right\rfloor} \\
& +B^{\left.w_{1}, w_{3}, w_{2}\right\rceil} \underline{\mathfrak{e} z}^{\left\lfloor w_{4}\right.}+B^{w_{1}, w_{3},\left\lceil w_{4}\right.} \underline{\mathfrak{e}}^{\left.w_{2}\right\rfloor}+B^{\left.w_{3}, w_{1}, w_{2}\right\rceil} \underline{\mathfrak{e}}^{\left\lfloor w_{4}\right.}+B^{w_{3}, w_{1},\left\lceil w_{4}\right.} \underline{\mathfrak{e}}^{\left.w_{2}\right\rfloor} \\
& +B^{\left.\left.w_{1}\right\rceil, w_{2}\right\rceil} \underline{\mathfrak{e}}^{\left\lfloor w_{3},\left\lfloor w_{4}\right.\right.}+B^{\left\lceil w_{3}, w_{2}\right\rceil} \underline{\mathfrak{e}}^{\left.\left.w_{1}\right\rfloor\right\rfloor w_{4}}+B^{\left.w_{1}\right\rceil,\left\lceil w_{4}\right.} \underline{\mathfrak{e z}}^{\left\lfloor w_{3}, w_{2}\right\rfloor}+B^{\left\lceil w_{3},\left\lceil w_{4}\right.\right.} \underline{\mathfrak{e}}^{\left.\left.w_{1}\right\rfloor, w_{2}\right\rfloor} \\
& =0\left(\text { resp. } B^{w_{1}, w_{2}} B^{w_{3}, w_{4}}\right)
\end{aligned}
$$

These two examples should suffice to make the pattern clear. Remarkably, when \mathfrak{E} runs through the set of all flexion units, the corresponding

[^20]\mathfrak{E}-symmetralities essentially exhaust all commutative flexion products ${ }^{44}$ that may be defined on BIMU.

Like their straight models, the twisted symmetries induce important subsymmetries, which we must now sort out.

- $\{\mathfrak{E}$-alternal $\} \Longrightarrow\{\mathfrak{E}$-mantar-invariant, \mathfrak{E}-pus-neutral $\}$.

$\mathfrak{E}-m a n t a r$ is a linear operator conjugate to mantar:

$$
\begin{equation*}
\mathfrak{E} \text {-mantar }:=\operatorname{ganit}\left(\mathfrak{e z}^{\bullet}\right) \cdot \text { mantar.ganit }\left(\mathfrak{e z}^{\bullet}\right)^{-1} \tag{3.46}
\end{equation*}
$$

and with explicit action:

$$
\begin{equation*}
\left((\mathfrak{E} \text {-mantar). } B)^{\boldsymbol{w}}=(-1)^{r-1} \sum_{\prod_{i} \boldsymbol{a}^{i} b_{i} \mathfrak{c}^{i}=\tilde{\boldsymbol{w}}} B^{\left\lceil b_{1}\right\rceil \ldots\left\lceil b_{s}\right\rceil} \prod_{i} \underline{\mathfrak{e z}}^{\left.\boldsymbol{a}^{i}\right\rfloor} \prod_{i} \underline{\mathfrak{e}}^{\left\lfloor c^{i}\right.}\right. \tag{3.47}
\end{equation*}
$$

(Note that $\tilde{\boldsymbol{w}}$ always denotes the sequence \boldsymbol{w} in reverse order). \mathfrak{E}-pus-neutrality also is derived from straight pus-neutrality:

$$
\left(\sum_{1 \leq l \leq r(\bullet)} \text { pus }^{l}\right) \cdot \operatorname{ganit}(\mathfrak{e z})^{-1} \cdot B^{\bullet} \equiv 0
$$

and admits a simpler direct expression :

$$
\begin{equation*}
\sum_{\boldsymbol{w}^{\prime} \stackrel{\text { circ }}{\sim} \boldsymbol{w}} B^{\boldsymbol{w}^{\prime}}+(-1)^{r(\boldsymbol{w})} \sum_{\boldsymbol{a}^{i} w_{i} \boldsymbol{b}^{i}=\boldsymbol{w}} B^{\left\lceil w_{i}\right\rceil} \underline{\mathfrak{e z}}^{\left.a^{i}\right\rfloor} \underline{\mathfrak{e z}}^{\left\lfloor b^{i}\right.} \equiv 0 \tag{3.48}
\end{equation*}
$$

- $\{\mathfrak{E}$-symmetral $\} \Longrightarrow\{\mathfrak{E}$-gantar-invariant, \mathfrak{E}-gus-neutral $\}$.
$\mathfrak{E}-$ gantar is a non-linear operator conjugate to gantar:

$$
\begin{aligned}
& \mathfrak{E} \text {-gantar }:=\operatorname{ganit}\left(\mathfrak{e z} \mathfrak{z}^{\bullet}\right) \text {.gantar.ganit }\left(\mathfrak{e g}^{\bullet}\right)^{-1} \\
& =\operatorname{ganit}\left(\mathfrak{e}_{\mathfrak{z}}^{\bullet}\right) \text {.invmu.anti.pari.ganit }\left(\mathfrak{e}_{\mathfrak{z}}^{\bullet}\right)^{-1} \\
& =\operatorname{ganit}\left(\mathfrak{e g}^{\bullet}\right) \text {.invmu.anti.pari.minu.ganit }\left(\mathfrak{e z}{ }^{\bullet}\right)^{-1} \text { minu } \\
& \left.=\text { invmu.ganit }\left(\mathfrak{e g}^{\bullet}\right) \text {.anti.pari.minu.ganit }(\mathfrak{e z})^{\bullet}\right)^{-1} \text { minu } \\
& =\text { invmu.(E-mantar).minu }
\end{aligned}
$$

To establish the above sequence, we used the commutation of $\operatorname{ganit}\left(M^{\bullet}\right)$ with both minu and invmu, and the mutual commutation of minu, anti, pari.

Using the last identity, we see that the action of \mathfrak{E}-gantar is given by:

[^21]\mathfrak{E}-gus-neutrality also is derived from straight gus-neutrality:
$$
\left(\sum_{1 \leq l \leq r(\bullet)} \operatorname{gus}^{l}\right) \cdot \operatorname{ganit}(\mathfrak{e z})^{-1} \cdot B^{\bullet} \equiv 0
$$
and admits a simpler direct expression :
\[

$$
\begin{equation*}
\sum_{1 \leq s}(-1)^{s} \sum_{\boldsymbol{w}^{1} \ldots \boldsymbol{w}^{s} \underset{\sim}{\text { circ }} \boldsymbol{w}} B^{\boldsymbol{w}^{1}} \ldots B^{\boldsymbol{w}^{s}} \equiv(-1)^{r(\boldsymbol{w})} \sum_{\boldsymbol{a}^{i} w_{i} \boldsymbol{b}^{i}=\boldsymbol{w}} B^{\left\lceil w_{i}\right\rceil} \underline{\mathfrak{e}}^{\left.\boldsymbol{a}^{i}\right\rfloor} \underline{\mathfrak{e}}^{\left[\boldsymbol{b}^{i}\right.} \tag{3.50}
\end{equation*}
$$

\]

One should take care to interpret the circular sums correctly, i.e. without repetitions. Thus, if \boldsymbol{w} has length 4 , on the left-hand side of (3.50) the terms $B^{w_{1}, w_{2}} B^{w_{3}, w_{4}}$ and $B^{w_{2}, w_{3}} B^{w_{4}, w_{1}}$ occur once rather than twice, and the term $B^{w_{1}} B^{w_{2}} B^{w_{3}} B^{w_{4}}$ also occurs once, not four times.

- \{alternal $/ / \mathfrak{O}$-alternal $\} \stackrel{\text { essly }}{ }\{\mathfrak{E}-$ neg-invariant, \mathfrak{E}-push-invariant $\}$.

As mentioned in $\S 2.4$, bialternality implies invariance not just under negpush $=$ mantar.swap.mantar.swap but also ${ }^{45}$ separate invariance under neg and push. Likewise, given any pair of conjugate flexion units ($\mathfrak{E}, \mathfrak{O}$), a bimould B^{\bullet} of type $\underline{\text { al }} / \underline{\mathfrak{o l}}$ (i.e. alternal and with a \mathfrak{O}-alternal swappee) is ipso facto invariant not just under \mathfrak{E}-negpush but also ${ }^{46}$ separately so under \mathfrak{E}-neg and \mathfrak{E}-push. The definitions of these operators run parallel to those of the straight case ${ }^{47}$:

$$
\begin{align*}
\mathfrak{E} \text {-negpush } & :=\text { mantar.swap.(E)-mantar).swap } \tag{3.51}\\
\mathfrak{E} \text {-neg } & \left.\left.:=\text { neg.adari(es } \mathfrak{s}^{\circ}\right)=\text { adari(pari.es } \mathfrak{s}^{\bullet}\right) \text {.neg } \tag{3.52}\\
\mathfrak{E} \text {-push } & :=(\mathfrak{E} \text {-neg).mantar.swap.(E-mantar).swap } \tag{3.53}
\end{align*}
$$

In fact, invariance under \mathfrak{E}-push is equivalent to invariance under a distinct and simpler operator \mathfrak{E}-push h_{*}, which is defined as follows:

$$
\begin{equation*}
\mathfrak{E} \text {-push }_{*}:=(\mathfrak{E} \text {-ter })^{-1} \text {.push.mantar.(} \mathfrak{E} \text {-ter).mantar } \tag{3.54}
\end{equation*}
$$

with

$$
\begin{align*}
\left((\mathfrak{E}-\text { ter }) \cdot B^{\bullet}\right)^{w_{1}, \ldots, w_{r}} & :=B^{w_{1}, \ldots, w_{r}}-B^{w_{1}, \ldots, w_{r-1}} \mathfrak{E}^{w_{r}}+B^{\left.w_{1}, \ldots, w_{r-1}\right\rceil} \mathfrak{E}^{\left\lfloor w_{r}\right.}(3.55) \\
\left((\mathfrak{E} \text {-ter })^{-1} \cdot B^{\bullet}\right)^{w_{1}, \ldots, w_{r}} & :=\sum_{a . b . c=\boldsymbol{w}=\left(w_{1}, \ldots, w_{r}\right)} B^{a \boldsymbol{a}} \mathfrak{m u e s}^{\lfloor b} \mathfrak{e s}^{\boldsymbol{c}} \tag{3.56}
\end{align*}
$$

[^22]and with $\mathfrak{m u e s}{ }^{\bullet}:=$ invmu.ess ${ }^{\bullet}=$ pari.anti.es ${ }^{\bullet}$ and $\mathfrak{e s} \mathfrak{s}^{\bullet}$ as in (4.70).
The reason for this equivalence is the identity:
\[

$$
\begin{equation*}
\left(\text { id }-\mathfrak{E}-\text { push }_{*}\right) \cdot B^{\bullet} \equiv \operatorname{swamu}\left(\mathfrak{e s}^{\bullet},(\mathrm{id}-\mathfrak{E} \text {-push }) \cdot B^{\bullet}\right) \quad \forall B^{\bullet} \tag{3.57}
\end{equation*}
$$

\]

with swamu defined as the swap-conjugate of $m u .^{48}$
The notable advantage of \mathfrak{E}-push ${ }_{*}$-invariance over \mathfrak{E}-push-invariance is that it leads straightaway to the so-called senary relation: ${ }^{49}$

$$
\begin{equation*}
(\mathfrak{E} \text {-ter }) \cdot B^{\bullet}=\text { push.mantar. }(\mathfrak{E} \text {-ter }) \cdot \operatorname{mantar} . B^{\bullet} \tag{3.58}
\end{equation*}
$$

which is the simplest way of expressing the \mathfrak{E}-push-invariance of B^{\bullet}.

- \{symmetral $/ / \mathfrak{O}$-symmetral $\} \stackrel{\text { ess }{ }^{\text {ly }}}{ }$ \{E.geg-invariant, \mathfrak{E}-gush-invariant $\}$.

Here, the first induced subsymmetry is the same as above, namely invariance under the linear operator \mathfrak{E}-geg, defined as \mathfrak{E}-neg in (3.52) but with adari replaced by adgari:

$$
\begin{equation*}
\mathfrak{E} \text {-geg }:=\text { neg.adgari }\left(\mathfrak{e s}^{\bullet}\right)=\operatorname{adgari}\left(\text { pari. } \mathfrak{e s}{ }^{\bullet}\right) \text {.neg } \tag{3.59}
\end{equation*}
$$

The second induced subsymmetry is \mathfrak{E}-gush-invariance, with:

$$
\begin{equation*}
\mathfrak{E} \text {-gush }:=\text { (E-geg).gantar.swap.(E゚-gantar).swap } \tag{3.60}
\end{equation*}
$$

The only moot point is whether \mathfrak{E}-gush-invariance is equivalent to invariance under some simpler operator \mathfrak{E}-gush W_{*} defined along the same lines as (3.54). Even though the existence of a senary relation, or for that matter of a relation of finite arity is unlikely, it ought to be possible to improve considerably on \mathfrak{E}-gush.

3.5 Twisted symmetries and subsymmetries in polar mode.

Let us now restate the above results for the most important unit specialisation, which is the polar specialisation $\left(\mathfrak{E}^{\bullet}, \mathfrak{O}^{\bullet}\right)=\left(P a^{\bullet}, P i^{\bullet}\right)$. The transposi-

[^23]tion goes like this:

\mathfrak{E}-alternal	\rightarrow	alternul	(*)	\mathfrak{O}-alternal	\rightarrow	alternil	
\mathfrak{E}-symmetral	\rightarrow	symmetrul	(*)	\mathfrak{O}-symmetral	\rightarrow	symmetril	
E-mantar	\rightarrow	mantur	(*)	\mathfrak{O}-mantar	\rightarrow	mantir	
E-gantar	\rightarrow	gantur	(*)	\mathfrak{O}-gantar	\rightarrow	gantir	
\mathfrak{E}-pus	\rightarrow	pusu	(*)	\mathfrak{O}-mantar	\rightarrow	pusi	
E-gus	\rightarrow	gusu	(*)	\mathfrak{O}-gus	\rightarrow	gusi	
\mathfrak{E}-push	\rightarrow	pushu		\mathfrak{O}-push	\rightarrow	pushi	(*)
E-gush	\rightarrow	gushu		\mathfrak{O}-gush	\rightarrow	gushi	(*)
\mathfrak{E}-neg	\rightarrow	negu		\mathfrak{O}-neg	\rightarrow		(*)
E-geg	\rightarrow	gegu		\mathfrak{O}-geg			(*)
E-ter	\rightarrow	teru		\mathfrak{O}-ter	\rightarrow	teri	(*)

And of course:

$$
\begin{aligned}
\text { alternal } / \mathfrak{O} \text {-alternal } & \rightarrow \text { alternal/alternil } \\
\text { alternal/E-alternal } & \rightarrow \text { alternal/alternul }(*)
\end{aligned}
$$

In the above tables, the stars $(*)$ accompany all symmetry types that are incompatible with entireness. For further details, see §4.7.

- Alternility and symmetrility.

Let us write down the alternility (resp. symmetrility) relations for two sequences $\boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}$ first of length $(1,1)$:
$\left.B^{\binom{u_{1}, u_{2}}{v_{1}, v_{2}}}+B^{\left(u_{1}, u_{2}\right.} v_{1}, v_{2}\right)-B^{\left(u_{1} v_{1}\right)} P^{v_{2: 1}}-B^{\left(u_{12}\right)} P^{v_{2}} P^{v_{12}}=0 \quad\left(\right.$ resp. $\left.B^{\left(u_{1} v_{1}\right)} B^{\left(u_{2} v_{2}\right)}\right)$
then of length $(1,2)$:

$$
\begin{aligned}
& B^{\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}}}+B^{\binom{\left(u_{2}, u_{1}, u_{3}\right.}{v_{2}, v_{1}, v_{3}}}+B^{\binom{u_{2}, u_{3}, u_{1}}{v_{2}, v_{3}, v_{1}}}-B^{\binom{u_{12}, u_{3}}{v_{1}, v_{3}}} P^{v_{2: 1}}-B^{\binom{u_{12}, u_{3}}{v_{2}, v_{3}}} P^{v_{1: 2}} \\
& -B^{\left(u_{2}, u_{1}, v_{1}\right)} P^{v_{3}: 1}-B^{\left({ }_{v 2}, v_{2}, v_{3}\right)} P^{v_{1}: 3}=0 \quad\left(\text { resp. } B^{\binom{u_{1}}{v_{1}}} B^{\left(u_{2}, u_{2}, v_{3}\right)}\right)
\end{aligned}
$$

and then of length $(2,2)$:

$$
\begin{aligned}
& B^{\left(\begin{array}{l}
\left(\begin{array}{l}
1 \\
v_{1}, u_{2}, u_{3}, v_{3}, v_{4} \\
v_{1}, v_{3}, v_{4}
\end{array}\right)
\end{array} B^{\binom{u_{1}, u_{3}, u_{2}, u_{4}}{v_{1}, v_{3}, v_{2}, v_{4}}}+B^{\binom{u_{3}, u_{1}, u_{2}, u_{4}}{v_{3}, v_{1}, v_{2}, v_{4}}}\right.} \\
& \left.+B^{\binom{u_{1}, u_{3}, u_{4}, u_{2}}{v_{1}, v_{3}, v_{4}, v_{2}}}+B^{\binom{u_{3}, u_{1}, u_{4}, u_{2}}{v_{3}, v_{1}, v_{4}, v_{2}}}+B^{\left(u_{3}, u_{4}, u_{4}, u_{1}, u_{2}\right.} v_{3}, v_{4}, v_{1}, v_{2}\right) \\
& -B^{\binom{u_{13}, u_{2}, u_{4}}{v_{1}, v_{2}, v_{4}}} P^{v_{3: 1}}-B^{\binom{u_{13}, u_{2}, u_{4}}{v_{3}, v_{2}, v_{4}}} P^{v_{1: 3}}-B^{\binom{u_{13}, u_{4}, v_{2}}{v_{1}, v_{4}, v_{2}}} P^{v_{3: 1}}-B^{\binom{u_{13}, u_{4}, u_{2}}{v_{3}, v_{4}, v_{2}}} P^{v_{1: 3}} \\
& -B^{\binom{u_{13}, u_{1}, u_{2}}{v_{3}, v_{1}, v_{2}}} P^{v_{4: 1}}-B^{\binom{u_{13}, u_{14}, u_{2}}{v_{3}, v_{4}, v_{2}}} P^{v_{1: 4}}-B^{\binom{u_{1}, u_{2}, u_{4}}{v_{1}, v_{2}, v_{4}}} P^{v_{3: 2}}-B^{\binom{u_{1}, u_{23}, u_{4}}{v_{1}, v_{3}, v_{4}}} P^{v_{2: 3}}
\end{aligned}
$$

$$
\begin{aligned}
& +B^{\left({ }_{13}^{\left(u_{13}, u_{24}\right)} v_{v_{2}}\right)} P^{v_{3: 1}} P^{v_{4: 2}}+B^{\left(u_{13}, v_{3}, v_{2}\right)} P^{v_{1: 3}} P^{v_{4}: 2} \\
& +B^{\binom{u_{13}, u_{24}}{v_{1}, v_{4}}} P^{v_{3: 1}} P^{v_{2: 4}}+B^{\left(\begin{array}{c}
u_{13}, u_{24} \\
v_{3}, ~
\end{array} v_{4}\right)} P^{v_{1: 3}} P^{v_{2: 4}} \\
& =0 \quad\left(\text { resp } . B^{\left({ }^{\left(u_{1}, u_{2}\right.} v_{2}\right)} B^{\left(u_{3}, v_{3}, v_{4}\right.}\right)
\end{aligned}
$$

Here and in all such formulas, we set $P^{v_{i}}:=P\left(v_{i}\right):=1 / v_{i}$, purely for typographical coherence.

- \{alternil\} \Longrightarrow \{mantir-invariant, pusi-neutral\}.

For length $r=1,2,3$ the mantir operator acts thus: ${ }^{50}$
and pusi-neutrality means this:

$$
\begin{aligned}
\sum_{\text {circ }} B^{\binom{u_{1}, u_{2}}{v_{1}, v_{2}}} & =+B^{\left(u_{v_{1}}\right)} P^{v_{2: 1}}+B^{\left(u_{v_{2}}\right)} P^{v_{1: 2}} \\
\left.\sum_{\text {circ }} B^{\left(u_{1}, u_{2}, u_{3}\right.} v_{1}, v_{2}, v_{3}\right) & =+B^{\left(u_{v_{1}}^{\left(u_{1}\right)}\right)} P^{v_{2: 1}} P^{v_{3: 1}}+B^{\left(u_{123}\right)} P^{v_{1: 2}} P^{v_{3: 2}}+B^{\left(u_{123}\right)} P^{v_{1: 3}} P^{v_{2: 3}}
\end{aligned}
$$

- \{symmetril\} \Longrightarrow \{gantir-invariant, gusi-neutral\}.

For length $r=1,2,3$ the gantir operator acts thus:
$\left.\left.(\text { gantir. } B)^{\left({ }^{\left(u_{1}\right)}\right.}{ }_{v_{1}}\right)=+B^{\left({ }^{\left(u_{1}\right.} v_{1}\right.}\right)$

$$
\left.-B^{\binom{u_{23}, u_{1}}{v_{3}, v_{1}}} P^{v_{2: 3}}-B^{\binom{u_{23}, u_{1}}{v_{2}, v_{1}}} P^{v_{3: 2}}-B^{\binom{u_{3}, u_{12}}{v_{3}, v_{2}}} P^{v_{1: 2}}-B^{\left(u_{3}, u_{12}\right.} v_{v_{3}, v_{1}}\right) \quad P^{v_{2: 1}}
$$

$$
\left.+B^{\left(u_{23}\right)} B_{v_{3}}^{\left(u_{1}\right)}{ }_{v_{1}}^{u_{1}} P^{v_{2: 3}}+B^{\left(u_{23}\right)} B^{\left(u_{2} v_{1}\right.} v_{1}\right) P^{v_{3: 2}}+B^{\left(u_{v_{3}}\right)} B^{\left(u_{12}\right)} P^{v_{2}: 2}+B^{\left(u_{3}\right)} B^{\left(v_{3}\right)} B_{v_{1}}^{\left(u_{1}\right)} P^{v_{2: 1}}
$$

$$
+B^{\left(u_{123}\right)} P^{v_{2: 1}} P^{v_{3: 1}}+B^{\left(u_{12} v_{2}\right)} P^{v_{1: 2} 2} P^{v_{3: 2}}+B^{\left(u_{v_{3}}\right) 3} P^{v_{1: 3}} P^{v_{2: 3}}
$$

As for gusi-neutrality, it has the same expression as pusi-neutrality, but with left-hand side replaced for $r=2,3$, etc, respectively by:
etc.

- \{alternal//alternil $\} \Longrightarrow$ \{negu-invariant, pushu-invariant $\}$.

The first induced subsymmetry here is invariance under negu, with

$$
\begin{equation*}
\text { negu } \left.:=\text { neg.adari }\left(\text { pa } \mathbf{j}^{\bullet}\right)=\text { adari(pari.pa } \boldsymbol{j}^{\bullet}\right) \cdot \text { neg } \tag{3.61}
\end{equation*}
$$

[^24]\[

$$
\begin{aligned}
& \left.\left.\left.B^{\left(u_{1}, u_{2}\right.}{ }_{v_{1}, v_{2}}^{v_{2}}\right)+B^{\left(u_{2}, u_{1}\right.}{ }_{2}, v_{1}\right)-B^{\left(u_{1}\right)}{ }^{u_{1}}{ }_{1}\right) B^{\left(u_{3}\right)}{ }_{v_{3}}^{\left(u_{3}\right)}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { (mantir. } B)^{\binom{u_{1}}{v_{1}}}=+B^{\binom{u_{1}}{v_{1}}} \\
& (\text { mantir. } B)^{\binom{u_{1}, u_{2}}{v_{1}, v_{2}}}=-B^{\binom{u_{2}, u_{1}}{v_{2}, v_{1}}}+B^{\binom{u_{12}}{v_{1}}} P^{v_{2: 1}}+B^{\binom{u_{12}}{v_{2}}} P^{v_{1: 2}} \\
& (\text { mantir. } B)^{\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}}}=+B^{\binom{u_{3}, u_{2}, u_{1}}{v_{3}, v_{2}, v_{1}}} \\
& -B^{\binom{u_{23}, u_{1}}{v_{3}, v_{1}}} P^{v_{2: 3}}-B^{\binom{u_{23}, u_{1}}{v_{2}, v_{1}}} P^{v_{3: 2}}-B^{\binom{u_{3}, u_{12}}{v_{3}, v_{2}}} P^{v_{1: 2}}-B^{\binom{u_{3}, u_{12}}{v_{3}, v_{1}}} P^{v_{2: 1}} \\
& +B^{\left(u_{123}\right)} P^{v_{2: 1}} P^{v_{3: 1}}+B^{\left(u_{123}\right)} P^{v_{1: 2}} P^{v_{3: 2}}+B^{\left(u_{v_{3}}\right)} P^{v_{1: 3}} P^{v_{2: 3}}
\end{aligned}
$$

and with $p a j^{\bullet}$ defined as in (4.72). The second induced subsymmetry is invariance under pushu,with
pushu := negu.mantar.swap.mantir.swap
with mantar as in (2.7) and mantir as above; and it is in fact equivalent to invariance under the simpler operator pushu*:

$$
\begin{equation*}
\text { pushu }_{*}:=\text { teru }^{-1} \text {.push.mantar.teru.mantar } \tag{3.63}
\end{equation*}
$$

whose main ingredient is the arity-3 operator teru and its inverse: ${ }^{51}$

$$
\begin{aligned}
\left(\text { teru. } B^{\bullet}\right)^{w_{1}, \ldots, w_{r}} & :=B^{w_{1}, \ldots, w_{r}}-B^{w_{1}, \ldots, w_{r-1}} \mathfrak{E}^{w_{r}}+B^{\left.w_{1}, \ldots, w_{r-1}\right\rceil} P a^{\left\lfloor w_{r}\right.} \\
\left(\text { teru }^{-1} . B^{\bullet}\right)^{w_{1}, \ldots, w_{r}} & :=\sum_{\boldsymbol{a} . \boldsymbol{b} . \boldsymbol{c}=\boldsymbol{w}=\left(w_{1}, \ldots, w_{r}\right)} B^{a\rceil} \text { mupaj }^{\lfloor\boldsymbol{b}} \mathrm{paj}^{\boldsymbol{c}}
\end{aligned}
$$

leading to the linear senary relation:

$$
\begin{equation*}
\text { teru. } B^{\bullet}=\text { push.mantar.teru.mantar. } B^{\bullet} \tag{3.64}
\end{equation*}
$$

- \{symmetral//symmetril\} \Longrightarrow \{negu-invariant, gushu-invariant $\}$. Here, the first induced subsymmetry is gegu-invariance, with gegu defined as negu in(3.61), but with adari replaced by adgari:

$$
\begin{equation*}
\text { gegu } \left.:=\text { neg.adgari(paj•})=\text { adgari(pari.paj }{ }^{\bullet}\right) \cdot n e g \tag{3.65}
\end{equation*}
$$

and the second is gushu-invariance, with
gushu := gegu.gantar.swap.gantir.swap
with gantar as in (2.74) and gantir as above.

4 Flexion units and dimorphic bimoulds.

4.1 Remarkable substructures of Flex(\mathfrak{E}).

We shall now use the flexion units to construct two objects of pivotal importance: two very special secondary or dimorphic bimoulds (i.e. bimoulds with a double symmetry) which are, uncharacteristically, invariant under pari.neg

[^25]rather than neg, and which, owing to that rare property, will prove helpful - in bridging the gap between straight and twisted double symmetries - in connecting GARI $I^{a s / a s}$ with $G A R I^{\underline{a s} / \underline{a s}}$

- in constructing the singulators on which all the deeper results rest.

To do this, however, we must proceed step by step, and begin by constructing some important subspaces of $\operatorname{Flex}(\mathfrak{E})$ and some remarkable bimould families like the $\mathfrak{r e}{ }_{r}^{\bullet}$ which, though not exactly dimorphic, come very close.

The subspaces Flexinn $(\mathfrak{E}) \subset$ Flexin $(\mathfrak{E}) \subset$ Flex (\mathfrak{E}).
For each integer sequence $\boldsymbol{r}:=\left(r_{1}, \ldots, r_{s}\right)$ let us define inductively the three bimoulds $\mathfrak{m e} \mathfrak{e}_{\boldsymbol{\bullet}}^{\bullet}, \mathfrak{n} \mathfrak{e}_{\boldsymbol{r}}^{\bullet}, \mathfrak{r} \mathfrak{e}_{r}^{\bullet} .{ }^{52}$

$$
\begin{aligned}
& \mathfrak{m} \mathfrak{e}_{1}^{\boldsymbol{\bullet}}:=\mathfrak{E}^{\bullet} ; \quad \mathfrak{m} \mathfrak{e}_{r}^{\bullet}:=\operatorname{amit}\left(\mathfrak{m} \mathfrak{e}_{r-1}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet} ; \quad \mathfrak{m} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet}:=\operatorname{mu}\left(\mathfrak{m} \mathfrak{e}_{r_{1}}^{\bullet}, \ldots, \mathfrak{m} \mathfrak{e}_{r_{s}}^{\bullet}\right) \\
& \mathfrak{n} \mathfrak{e}_{1}^{\bullet}:=\mathfrak{E}^{\bullet} \quad ; \quad \mathfrak{n} \mathfrak{e}_{r}^{\bullet}:=\operatorname{anit}\left(\mathfrak{n} e_{r-1}^{\bullet}\right) . \mathfrak{E}^{\bullet \bullet} \quad ; \quad \mathfrak{n} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet}:=\operatorname{mu}\left(\mathfrak{n} \mathfrak{r}_{r_{1}}^{\bullet}, \ldots, \mathfrak{n} \mathfrak{e}_{r_{s}}^{\bullet}\right) \\
& \mathfrak{r e} \mathfrak{e}_{1}^{\boldsymbol{\bullet}}:=\mathfrak{E}^{\bullet \bullet} \quad ; \quad \mathfrak{r e}{ }_{r}^{\bullet}:=\operatorname{arit}\left(\mathfrak{r e}_{r-1}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet} \quad ; \quad \mathfrak{r e} \boldsymbol{e}_{r_{1}, \ldots, r_{s}}^{\bullet}:=\operatorname{mu}\left(\mathfrak{r e}_{r_{1}}^{\bullet}, \ldots, \mathfrak{r e}_{r_{s}}^{\bullet}\right)
\end{aligned}
$$

Clearly, $\mathfrak{m e} \mathfrak{e}_{r}^{\bullet}, \mathfrak{n} \mathfrak{e}_{r}^{\bullet}, \mathfrak{r e}_{r}^{\bullet}$ are in Flex $_{r}(\mathfrak{E})$ with $r:=\|\boldsymbol{r}\|=\sum r_{i}$. In fact, one can show that all three sets: $\left\{\mathfrak{m} \mathfrak{e}_{r}^{\bullet},\|\boldsymbol{r}\|=r\right\},\left\{\mathfrak{n} \mathfrak{e}_{r}^{\bullet},\|\boldsymbol{r}\|=r\right\},\left\{\mathfrak{r} \mathfrak{e}_{r}^{\bullet},\|\boldsymbol{r}\|=r\right\}$ span one and the same ${ }^{53}$ subspace Flexin $_{r}(\mathfrak{E})$ of Flex (\mathfrak{E}), with dimension 2^{r-1}.

These three bases of Flexin $_{r}(\mathfrak{E})$ are connected by six simple matrices (two of them rational-valued, the other four entire-valued). Indeed:

$$
\begin{aligned}
& \mathfrak{m} \mathfrak{e}_{r_{0}}^{\bullet}=\sum_{1 \leq s} \sum_{\sum r_{i}=r_{0}}(-1)^{s+r} \mathfrak{n} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet} \\
& \mathfrak{n} \mathfrak{e}_{r_{0}}^{\bullet}=\sum_{1 \leq s} \sum_{\sum r_{i}=r_{0}}(-1)^{s+r} \mathfrak{m} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet} \\
& \mathfrak{r} \mathfrak{e}_{r_{0}}^{\bullet}=\sum_{1 \leq s} \sum_{\sum r_{i}=r_{0}}(-1)^{s+1} r_{s}{\mathfrak{m} \mathfrak{e}_{r_{1}}^{\bullet}, \ldots, r_{s}} \\
& \mathfrak{r} \mathfrak{e}_{r_{0}}^{\bullet}=\sum_{1 \leq s} \sum_{\sum r_{i}=r_{0}}(-1)^{s+r} r_{1} \mathfrak{n} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet} \\
& \mathfrak{m} \mathfrak{e}_{r_{0}}^{\bullet}=\sum_{1 \leq s} \sum_{\sum r_{i}=r_{0}} \frac{1}{r_{1} r_{12} \ldots r_{12 \ldots s}} \mathfrak{r e}_{r_{1}, \ldots, r_{s}}^{\bullet} \\
& \mathfrak{n} \mathfrak{e}_{r_{0}}^{\boldsymbol{\bullet}}=\sum_{1 \leq s} \sum_{\sum r_{i}=r_{0}} \frac{(-1)^{s+r}}{r_{12 \ldots s} \ldots r_{s-1, s} r_{s}} \mathfrak{r e} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\boldsymbol{e}}
\end{aligned}
$$

with $r_{i, j, \ldots}$ or even $r_{i j \ldots \text {... }}$ standing as usual for $r_{i}+r_{j}+\ldots$

[^26]If we now denote by $\left\{r_{1}, \ldots, r_{s}\right\}$ any non-ordered integer set with repetitions allowed (or 'partition', if you prefer) and if we set: ${ }^{54}$

$$
\begin{aligned}
& \mathfrak{r e}_{\left\{r_{1}, \ldots, r_{s}\right\}}^{\bullet}=\sum_{\left\{r_{1}^{\prime}, \ldots, r_{s}^{\prime}\right\}=\left\{r_{1}, \ldots, r_{s}\right\}} \\
& \frac{1}{s!} \operatorname{preari}\left(\mathfrak{v e}_{r_{1}^{\prime}}^{\bullet}, \ldots, \mathfrak{r} \mathfrak{r}_{r_{s}^{\prime}}^{\bullet}\right) \\
& \mathfrak{S e}_{\left\{r_{1}, \ldots, r_{s}\right\}}^{\bullet}=\sum_{\left\{r_{1}^{\prime}, \ldots, r_{s}^{\prime}\right\}=\left\{r_{1}, \ldots, r_{s}\right\}} \frac{1}{r_{1}^{\prime} r_{12}^{\prime} \ldots r_{12 \ldots s}^{\prime}} \operatorname{preari}\left(\mathfrak{r e}_{r_{1}^{\prime}}^{\bullet}, \ldots, \mathfrak{e v}_{r_{s}^{\prime}}^{\bullet}\right)
\end{aligned}
$$

then it can be shown that, despite the very different summation weights, the two sets $\left\{\mathfrak{r e}_{\{r\}}^{\bullet},\|\boldsymbol{r}\|=r\right\},\left\{\mathfrak{s e}_{\{r\}}^{\bullet},\|\boldsymbol{r}\|=r\right\}$ span one and the same ${ }^{55}$ subspace Flexinn $_{r}(\mathfrak{E})$ of Flexin $_{r}(\mathfrak{E})$, with dimension $p(r)$ equal to the number of partitions of r. Summing up, we have:
$F \operatorname{lexinn}(\mathfrak{E})=\oplus$ Flexinn $_{r}(\mathfrak{E}) \subset F \operatorname{lexin}(\mathfrak{E})=\oplus \operatorname{Flexin}_{r}(\mathfrak{E}) \subset F \operatorname{lex}(\mathfrak{E})=\oplus F l e x_{r}(\mathfrak{E})$
$\operatorname{dim}\left(\operatorname{Flexinn}_{r}(\mathfrak{E})\right)=p(r) ; \operatorname{dim}\left(\operatorname{Flexin}_{r}(\mathfrak{E})\right)=2^{r-1} ; \operatorname{dim}\left(\operatorname{Flex}_{r}(\mathfrak{E})\right)=\frac{(2 r)!}{r!(r+1)!}$
(i) Flex (\mathfrak{E}) is stable under all flexion operations.
(ii) $\operatorname{Flexin}(\mathfrak{E})$ is stable under $m u$, lu, and $\operatorname{arit}\left(\mathfrak{r e}_{r_{0}}^{\bullet}\right)\left(\forall r_{0}\right)$.
(iii) Flexinn (\mathfrak{E}) is stable under nothing much, but crucial nonetheless.

Action of $\operatorname{arit}\left(\mathfrak{r e}_{r}^{\bullet}\right)$ on Flexin((\mathfrak{E}).
It is neatly encapsulated in the formulas:

$$
\begin{align*}
\operatorname{arit}\left(\mathfrak{r e}_{q}^{\bullet}\right) \cdot \mathfrak{m} \mathfrak{e}_{p}^{\bullet} & =\sum_{s \geq 1} \sum_{\sum r_{i}=p+q, r_{1} \geq p}(-1)^{1+s} r_{s} \mathfrak{m e}_{r_{1}, \ldots, r_{s}}^{\bullet} \tag{4.1}\\
\operatorname{arit}\left(\mathfrak{r e}_{q}^{\bullet}\right) \cdot \mathfrak{n e _ { p } ^ { \bullet }} & =\sum_{s \geq 1} \sum_{\sum r_{i}=p+q, r_{s} \geq p}(-1)^{1+s+q} r_{1} \mathfrak{n e}_{r_{1}, \ldots, r_{s}}^{\bullet} \tag{4.2}\\
\operatorname{arit}\left(\mathfrak{r e}_{q}^{\bullet}\right) \cdot \mathfrak{r e}{ }_{p}^{\bullet} & =p \mathfrak{r} \mathfrak{e}_{p+q}^{\bullet}+\sum_{i \leq q} \operatorname{lu}\left(\mathfrak{r e} e_{i}^{\bullet}, \mathfrak{r e}_{p+q-i}^{\bullet}\right) \tag{4.3}\\
& =p \mathfrak{r} \mathfrak{e}_{p+q}^{\bullet}+\sum_{i<p} \operatorname{lu}\left(\mathfrak{r e} \mathfrak{e}_{i}^{\bullet}, \mathfrak{r e}_{p+q-i}^{\bullet}\right) \tag{4.4}
\end{align*}
$$

The algebra $A R I_{<\text {re> }}$ and its group $G A R I_{<\text {se }>}$.
Of the three bases of $\operatorname{Flex}(\mathfrak{E})$, the first two are simplest, in the sense that

[^27]here we have atomic basis elements $\mathfrak{m e}_{r_{1}, \ldots, r_{s}}^{\bullet}$ or $\mathfrak{n} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet}$, i.e. elements that reduce to single products of the form $\mathfrak{E}^{w_{1}^{\prime}} \ldots \mathfrak{E}^{w_{r}^{\prime}}$ for suitably inflected w_{i}^{\prime}. With the third basis, on the other hand, we have molecular basis elements that can only be expressed as superpositions of at least $\prod r_{i}$ atoms. But the individual $\mathfrak{r e}{ }_{r}^{\bullet}\left(r \in \mathbb{N}^{*}\right)$, whose definition we recall:
\[

$$
\begin{align*}
\mathfrak{r e}_{r}^{w_{1}, \ldots, w_{s}} & :=0 & & \text { if } r \neq s \\
\mathfrak{r e}_{1}^{w_{1}} & :=\mathfrak{E}^{w_{1}} \quad, \quad \mathfrak{r e}_{r}^{\bullet}:=\operatorname{arit}\left(\mathfrak{r e}_{r-1}^{\bullet}\right) \cdot \mathfrak{r e} e_{1}^{\bullet} & & \text { if } r \geq 2 \tag{4.5}
\end{align*}
$$
\]

more than make up for their 'molecularity' by possessing three essential properties:
(i) The bimoulds $\mathfrak{r e}_{r}^{\bullet}$ thus defined are alternal.
(ii) When suitably combined, they exhibit traces of dimorphy, since the bimould $\mathfrak{s r e}$:

$$
\begin{equation*}
\mathfrak{s r e}:=\frac{1}{2} \mathfrak{r e} \mathfrak{e}_{1}^{\bullet}+\frac{1}{6} \mathfrak{r} \mathfrak{e}_{2}^{\bullet}+\frac{1}{12} \mathfrak{r} \mathfrak{e}_{3}^{\bullet}+\cdots=\sum_{r \geq 1} \frac{1}{r(r+1)} \mathfrak{r} \mathfrak{e}_{r}^{\bullet} \quad \in \mathrm{ARI}^{\mathrm{al} / \mathfrak{o l}} \tag{4.6}
\end{equation*}
$$

is not only alternal, but has a \mathfrak{O}-alternal swappee $\mathfrak{s r o ̈ ⿻}$.
(iii) But the real importance of the $\mathfrak{r} \mathfrak{e}_{r}^{\bullet}$ derives from the remarkable identities:

$$
\begin{equation*}
\operatorname{ari}\left(\mathfrak{r e}_{r_{1}}^{\bullet}, \mathfrak{r e}_{r_{2}}^{\bullet}\right)=\left(r_{1}-r_{2}\right) \mathfrak{r} \mathfrak{e}_{r_{1}+r_{2}}^{\bullet} \quad \forall r_{1}, r_{2} \geq 1 \tag{4.7}
\end{equation*}
$$

which lead straightaway to the following commutative diagram:

Here, $G I F F_{<x\rangle}$ denotes the group of (formal, one-dimensional) identitytangent mappings of the form:

$$
\begin{equation*}
f:=x \mapsto x .\left(1+\sum_{1 \leq r} a_{r} x^{r}\right) \tag{4.8}
\end{equation*}
$$

and $D I F F_{<x>}$ denotes its infinitesimal algebra, whose elements may be represented as sums $\sum_{1 \leq r} a_{r} x^{r+1} \partial_{x}$, provided we change the sign before their natural bracket.

Of course, since the Lie algebra $A R I_{<\text {re> }}$ contains only alternal bimoulds, its exponential, the group $G A R I_{<\text {se> }}$, contains only symmetral bimoulds. Moreover, since elements of $A R I_{<\mathfrak{r e}>}$ also possess traces of dimorphy, so too
will their images in $G A R I_{<\mathfrak{s e}>}$. In the case of two remarkable bimoulds, $\mathfrak{e s s}^{\circ}$ and $\mathfrak{e s j}^{\bullet}$ of $G A R I_{<\mathfrak{s e}>}$, we shall even get exact dimorphy rather than 'traces'.

But rather than jumping ahead, let us first explicate the isomorphisms $f \leftrightarrow \mathfrak{S e}_{f}^{\bullet}$ between the classical group $G I F F_{<x>}$ and its counterpart $G A R I_{<\mathfrak{s e}>}$ in the flexion structure. We begin with the easier direction, i.e. from flexion to classical.
The isomorphism $G A R I_{<\text {se> }} \rightarrow G I F F_{<x>}$ made explicit.
Let $\mathfrak{S e}_{f}^{\bullet}$ in $G A R I_{<\mathfrak{s e}>}$ be the image of some $f(x):=x\left(1+\sum a_{r} x^{r}\right)$ in $G I F F_{<x>}$. How do we read the coefficients a_{r} directly off the bimould $\mathfrak{S e}_{f}^{\bullet}$ itself, without going through the costly operation logari? The answer is given by the bilinear operator gepar:

$$
\begin{equation*}
\text { gepar. } H^{\bullet}:=\operatorname{mu}\left(\text { anti.swap. } H^{\bullet} \text {, swap. } H^{\bullet}\right) \tag{4.9}
\end{equation*}
$$

and by the formula:

$$
\text { (gepar. } \left.\mathfrak{S e}_{f}\right)^{w_{1}, \ldots, w_{r}} \equiv(r+1) a_{r} \mathfrak{O}^{w_{1}} \ldots \mathfrak{D}^{w_{r}} \quad \text { with } \mathfrak{O} \text { conjugate to } \mathfrak{E} \text { (4.10) }
$$

The isomorphism $G I F F_{<x>} \rightarrow G A R I_{<\text {se> }}$ made explicit.
The isomorphism from classical to flexion is more difficult but also more interesting to unravel. We may of course transit through $D I F F_{<x>}$ and $A R I_{<\text {re> }}$ in the above diagram, but that involves performing the 'costly' operation expari and leads, in the course of the calculations, to rational coefficients with large denominators, which vanish in the end result. Concretely, that means forming the infinitesimal generator f_{*} of f (see (4.13),(4.15)) and inserting its coefficients ϵ_{n} into (4.11). Fortunately, there exists a much more direct scheme, which involves only integer coefficients: this time, we form the infinitesimal dilator $f_{\#}$ of f, which is a far more accessible object than f_{*} (see (4.14),(4.16)) and inject its coefficients γ_{n} into (4.12).

$$
\begin{align*}
\mathfrak{S e}_{f}^{\bullet} & =\sum_{\{r\}} \mathfrak{r e}_{\{r\}}^{\bullet} \epsilon_{\{\boldsymbol{r}\}} \quad \text { with } \quad \boldsymbol{\epsilon}_{\left\{r_{1}, \ldots, r_{s}\right\}}:=\epsilon_{r_{1} \ldots \epsilon_{r_{s}}} \tag{4.11}\\
\mathfrak{S e}_{f}^{\bullet} & =\sum_{\{\boldsymbol{r}\}} \mathfrak{s e}_{\{r\}}^{\bullet} \gamma_{\{\boldsymbol{r}\}} \quad \text { with } \quad \gamma_{\left\{r_{1}, \ldots, r_{s}\right\}}:=\gamma_{r_{1}} \ldots \gamma_{r_{s}} \tag{4.12}\\
f_{*}(x) & =x \sum_{1 \leq k} \epsilon_{k} x^{k}=\quad \text { infinitesimal generator of } f \tag{4.13}\\
f_{\#}(x) & =x \sum_{1 \leq k} \gamma_{k} x^{k}=x-\frac{f(x)}{f^{\prime}(x)}=\text { infinitesimal dilator of } f(
\end{align*}
$$

$$
\begin{align*}
\left(\exp \left(f_{*}(x) \partial_{x}\right)\right) \cdot x & =f(x) \tag{4.15}\\
\left(f \circ\left(i d+\epsilon f_{\#}\right)\right)(x) & =x+\sum_{1 \leq n}(1+\epsilon n) a_{n} x^{n+1}+\mathcal{O}\left(\epsilon^{2}\right) \tag{4.16}
\end{align*}
$$

Ultimately, of course, the coefficients γ_{n} of $f_{\#}$ have to be expressed in terms of those of f itself. Here, however, we have the choice between the three main representations of $G I F F_{<x\rangle}$:

$$
\begin{array}{rlrl}
x & \mapsto f(x) & =x+\sum_{1 \leq n} a_{n} x^{1+n} & \\
y \mapsto \underline{f}(y) & =y+\sum_{1 \leq n} b_{n} y^{1-n}=1 / f\left(y^{-1}\right) & (y \sim 0) \\
z \mapsto \underline{f}(z) & =z+\sum_{1 \leq n} c_{n} e^{n z}=\log f\left(e^{z}\right) & & (z \sim 0)
\end{array}
$$

leading for γ_{n} to three rather similar expressions:

$$
\begin{equation*}
\sum \gamma_{n} x^{n} \equiv \frac{\sum n a_{n} x^{n}}{1+\sum(n+1) a_{n} x^{n}} \equiv \frac{-\sum n b_{n} x^{n}}{1-\sum(n-1) b_{n} x^{n}} \equiv \frac{\sum n c_{n} x^{n}}{1+\sum n c_{n} x^{n}} \tag{4.17}
\end{equation*}
$$

Under closer examination, it turns out that the coefficients $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ of $f, \underline{f}, \underline{\underline{f}}$ are well-suited for expressing $\mathfrak{S e}_{f}^{\bullet}$ in the bases $\left\{\mathfrak{n} \mathfrak{e}_{r}^{\bullet}\right\},\left\{\mathfrak{m} \mathfrak{e}_{r}^{\bullet}\right\},\left\{\mathfrak{r e}{ }_{r}^{\bullet}\right\}$ respectively (mark the order!), leading to three expansions:

$$
\begin{equation*}
\mathfrak{S} \mathfrak{e}_{f}^{\bullet}=\sum_{r} \mathbf{A}^{r} \mathfrak{n} \mathfrak{e}_{r}^{\bullet}=\sum_{r} \mathbf{B}^{r} \mathfrak{m} \mathfrak{e}_{r}^{\bullet}=\sum_{r} \mathbf{C}^{r} \mathfrak{r e}{ }_{r}^{\bullet} \tag{4.18}
\end{equation*}
$$

To get a complete grip on the situation, we must calculate the moulds $\mathbf{A}^{\boldsymbol{\bullet}}$, $\mathbf{B}^{\bullet}, \mathbf{C}^{\bullet}$ in terms of the a_{n}, b_{n}, c_{n}. To this end, we lift the infinitesimal dilation identity (4.16) from $G I F F_{<x>}$ to $G A R I_{<\mathfrak{s e}>}$. We find:

$$
\begin{equation*}
r(\bullet) \cdot \mathfrak{S} \mathfrak{e}_{f}^{\bullet}=\operatorname{arit}\left(\mathfrak{T}_{f}^{\bullet}\right) \cdot \mathfrak{S e}_{f}^{\bullet}+\operatorname{mu}\left(\mathfrak{S e}_{f}^{\bullet}, \mathfrak{T}_{f}^{\bullet}\right) \quad \text { with } \quad \mathfrak{T}_{\mathfrak{e}}^{\bullet}:=\sum_{1 \leq r} \gamma_{r} \mathfrak{r} \mathfrak{e}_{r}^{\bullet} \tag{4.19}
\end{equation*}
$$

or more compactly:

$$
\begin{equation*}
r(\bullet) . \mathfrak{S e}_{f}^{\bullet}=\operatorname{preari}\left(\mathfrak{S e}_{f}^{\bullet}, \mathfrak{T}_{f}^{\bullet}\right) \quad \text { with } \quad \mathfrak{T}_{f}^{\bullet}:=\sum_{1 \leq r} \gamma_{r} \mathfrak{r e} \mathfrak{e}_{r}^{\bullet} \tag{4.20}
\end{equation*}
$$

In view of the formulas (4.1), (4.2), (4.3) for the action of $\operatorname{arit}\left(\mathfrak{r e}_{r}^{\bullet}\right)$ on Flexin (\mathfrak{E}), the identity (4.19) immediately translates into these three sim-
ple induction rules for the calculation of $\mathbf{A}^{\boldsymbol{\bullet}}, \mathbf{B}^{\boldsymbol{\bullet}}, \mathbf{C}^{\boldsymbol{\bullet}}$:

$$
\begin{align*}
&\|\boldsymbol{r}\| \mathbf{A}^{r}=\sum_{r^{1} \boldsymbol{r}^{2}=r} \mathrm{~A}^{r^{1}} \mathcal{N}_{0}^{r^{2}}+\sum_{r^{1} \boldsymbol{r}^{2} r^{3}=r} \sum_{1 \leq r_{0}<\left\|\boldsymbol{r}^{2}\right\|} \mathrm{A}^{r^{1} r_{0} r^{3}} \mathcal{N}_{r_{0}}^{r^{2}} \tag{4.21}\\
&\|\boldsymbol{r}\| \mathbf{B}^{r}=\sum_{r^{1} r^{2}=r} \mathrm{~B}^{r^{1}} \mathcal{M}_{0}^{r^{2}}+\sum_{r^{1} r^{2} r^{3}=r} \sum_{1 \leq r_{0}<\left\|r^{2}\right\|} \mathrm{B}^{r^{1} r_{0} r^{3}} \mathcal{M}_{r_{0}}^{r^{2}} \tag{4.22}\\
&\|\boldsymbol{r}\| \mathbf{C}^{r}=\sum_{r^{1} r^{2}=r} \mathbf{C}^{r^{1}} \mathcal{R}_{0}^{r^{2}}+\sum_{r^{1} r^{2} r^{3}=r} \sum_{1 \leq r_{0}<\left\|\boldsymbol{r}^{2}\right\|} \mathrm{C}^{r^{1} r_{0} r^{3}} \mathcal{R}_{r_{0}}^{r^{2}} \tag{4.23}
\end{align*}
$$

The auxiliary moulds $\mathcal{N}^{\bullet}, \mathcal{M}^{\bullet}, \mathcal{R}^{\bullet}$ are defined as follows:

$$
\begin{align*}
\mathcal{N}_{r_{0}}^{r} & :=\gamma_{\|\boldsymbol{r}\|-r_{0}}(\boldsymbol{a})(-1)^{1+s+\|\boldsymbol{r}\|-r_{0}} r_{1}\left(\Xi_{0<r_{0} \leq r_{s}}-\Xi_{0=r_{0}}\right) \tag{4.24}\\
\mathcal{M}_{r_{0}}^{r} & :=\gamma_{\|\boldsymbol{r}\|-r_{0}}(\boldsymbol{b})(-1)^{1+s} r_{s}\left(\Xi_{0 \leq r_{0} \leq r_{1}}\right) \tag{4.25}\\
\mathcal{R}_{r_{0}}^{r_{1}} & :=\gamma_{\|\boldsymbol{r}\|-r_{0}}(\boldsymbol{c})\left(\Xi_{0=r_{0}=r_{1}}+r_{0} \Xi_{0<r_{0}<r_{1}}\right) \tag{4.26}\\
\mathcal{R}_{r_{0}}^{r_{1}, r_{2}} & :=\gamma_{\|\boldsymbol{r}\|-r_{0}}(\boldsymbol{c})\left(\Xi_{r_{1}<r_{0} \leq r_{2}}-\Xi_{r_{2}<r_{0} \leq r_{1}}\right) \tag{4.27}\\
\mathcal{R}_{r_{0}}^{r_{1}, \ldots, r_{s}} & :=0 \quad \text { if } s \geq 3 \tag{4.28}
\end{align*}
$$

(i) with $\boldsymbol{r}:=\left(r_{1}, \ldots, r_{s}\right)$ for any $s, r_{i} \in \mathbb{N}^{*}$
(ii) with $\Xi_{\mathcal{S}}$ denoting the characteristic function of any given set \mathcal{S},
(iii) with $\gamma_{n}(\boldsymbol{a}), \gamma_{n}(\boldsymbol{b}), \gamma_{n}(\boldsymbol{c})$ denoting the coefficients of the infinitesimal dilator $f_{\#}$ expressed (via the formulas (4.17)) in terms of the coefficients a_{i}, b_{i}, c_{i} respectively.

The main facts here are these:
(i) The moulds \mathbf{B}^{\bullet} and \mathbf{A}^{\bullet} are symmetrel whereas \mathbf{C}^{\bullet} is symmetral.
(ii) $\mathbf{A}^{r}, \mathbf{B}^{r}, \mathbf{C}^{r}$ are homogeneous polynomials of total degree $\|\boldsymbol{r}\|$ in the variables a_{i}, b_{i}, c_{i} respectively, but whereas \mathbf{C}^{r} has (predictably) rational coefficients, \mathbf{A}^{r} and \mathbf{B}^{r} have (unexpectedly) entire coefficients.
(iii) These rational (resp. entire) coefficients display remarkable symmetry properties: see (4.31),(4.32) below.

Here are the first structure polynomials $\mathbf{A}^{r}, \mathbf{B}^{r}, \mathbf{C}^{r}$ up to $\|\boldsymbol{r}\|=4$:

$$
\begin{array}{lllll}
\mathbf{B}^{1}=-b_{1} & \mathbf{A}^{1}=a_{1} \quad \mathbf{C}^{1}=c_{1} \\
\mathbf{B}^{2}=-2 b_{2}+b_{1}^{2} & \mathbf{A}^{2}=-2 a_{2}+a_{1}^{2} \quad \mathbf{C}^{2}=+c_{2} \\
\mathbf{B}^{1,1}=+b_{2} & \mathbf{A}^{1,1}=+a_{2} & \mathbf{C}^{1,1}= & +\frac{1}{2} c_{1}^{2} \\
\mathbf{B}^{3}=-3 b_{3}+3 b_{1} b_{2}-b_{1}^{3} & \mathbf{A}^{3}=+3 a_{3}-3 a_{1} a_{2}+a_{1}^{3} \mathbf{C}^{3}=+c_{3} \\
\mathbf{B}^{1,2}=+2 b_{3} & \mathbf{A}^{1,2}=-a_{3}-a_{1} a_{2}+a_{1}^{3} & \mathbf{C}^{1,2}= & +c_{1} c_{2}-\frac{1}{6} c_{1}^{3} \\
\mathbf{B}^{2,1}=+b_{3}-b_{1} b_{2} & \mathbf{A}^{2,1}=-2 a_{3}+2 a_{1} a_{2}-a_{1}^{3} & \mathbf{C}^{2,1}= & +\frac{1}{6} c_{1}^{3} \\
\mathbf{B}^{1,1,1}=-b_{3} & \mathbf{A}^{1,1,1}=+a_{3} & \mathbf{C}^{1,1,1}= & +\frac{1}{6} c_{1}^{3}
\end{array}
$$

$$
\begin{array}{llllll}
\mathbf{B}^{4} & = & -4 b_{4} & +4 b_{1} b_{3} & +2 b_{2}^{2} & -4 b_{1}^{2} b_{2}
\end{array}+b_{1}^{4}
$$

$$
\mathbf{A}^{4} \quad=-4 a_{4} \quad+4 a_{1} a_{3} \quad+2 a_{2}^{2} \quad-4 a_{1}^{2} a_{2} \quad+a_{1}^{4}
$$

$$
\mathbf{A}^{1,3}=+a_{4}+2 a_{1} a_{3}+a_{2}^{2}-5 a_{1}^{2} a_{2}+2 a_{1}^{4}
$$

$$
\mathbf{A}^{3,1} \quad=+3 a_{4}-3 a_{1} a_{3} \quad-3 a_{2}^{2} \quad+6 a_{1}^{2} a_{2} \quad-2 a_{1}^{4}
$$

$$
\mathbf{A}^{2,2} \quad=+2 a_{4}-2 a_{1} a_{3} \quad+a_{2}^{2}
$$

$$
\mathbf{A}^{1,1,2}=-a_{4} \quad-a_{2}^{2} \quad+a_{1}^{2} a_{2}
$$

$$
\mathbf{A}^{1,2,1} \quad=-a_{4} \quad-a_{1} a_{3} \quad+2 a_{1}^{2} a_{2} \quad-a_{1}^{4}
$$

$$
\mathbf{A}^{2,1,1}=-2 a_{4}+2 a_{1} a_{3} \quad+a_{2}^{2}-3 a_{1}^{2} a_{2} \quad+a_{1}^{4}
$$

$$
\mathbf{A}^{1,1,1,1}=+a_{4}
$$

$$
\mathbf{C}^{4} \quad=+c_{4}
$$

$$
\mathbf{C}^{1,3} \quad=\quad+c_{1} c_{3} \quad+\frac{1}{2} c_{2}^{2} \quad-\frac{1}{2} c_{1}^{2} c_{2} \quad+\frac{1}{24} c_{1}^{4}
$$

$$
\mathbf{C}^{3,1} \quad=\quad-\frac{1}{2} c_{2}^{2}+\frac{1}{2} c_{1}^{2} c_{2}-\frac{1}{24} c_{1}^{4}
$$

$$
\mathbf{C}^{2,2} \quad=\quad+\frac{1}{2} c_{2}^{2}
$$

$$
\mathbf{C}^{1,1,2} \quad=\quad+\frac{1}{2} c_{1}^{2} c_{2} \quad-\frac{1}{8} c_{1}^{4}
$$

$$
\mathbf{C}^{1,2,1} \quad=\quad+\frac{1}{12} c_{1}^{4}
$$

$$
\mathbf{C}^{2,1,1}=
$$

$$
+\frac{1}{24} c_{1}^{4}
$$

$$
\mathbf{C}^{1,1,1,1}=
$$

$$
+\frac{1}{24} c_{1}^{4}
$$

For any unordered integer sequence $\{\boldsymbol{r}\}:=\left\{r_{1}, \ldots, r_{s}\right\}$, with repetitions allowed, we set:

$$
\begin{equation*}
\boldsymbol{a}_{\{r\}}:=\prod_{i} a_{r_{i}} \quad ; \quad \boldsymbol{b}_{\{r\}}:=\prod_{i} b_{r_{i}} \quad ; \quad \boldsymbol{c}_{\{r\}}:=\prod_{i} c_{r_{i}} \tag{4.29}
\end{equation*}
$$

There exist efficient algorithms for calculating the three series of structure coefficients $A^{\bullet},\{\bullet\}, B^{\bullet},\{\bullet\}, C^{\bullet},\{\bullet\}$ which occur in the above tables:
$\mathbf{A}^{r}=\sum_{\left\{\boldsymbol{r}^{\prime \prime}\right\}} A^{\boldsymbol{r},\left\{\boldsymbol{r}^{\prime \prime}\right\}} \boldsymbol{a}_{\left\{\boldsymbol{r}^{\prime \prime}\right\}} \quad ; \quad \mathbf{B}^{r}=\sum_{\left\{\boldsymbol{r}^{\prime \prime}\right\}} B^{\boldsymbol{r},\left\{\boldsymbol{r}^{\prime \prime}\right\}} \boldsymbol{b}_{\left\{r^{\prime \prime}\right\}} \quad ; \quad \mathbf{C}^{r}=\sum_{\left\{\boldsymbol{r}^{\prime \prime}\right\}} C^{\boldsymbol{r},\left\{\boldsymbol{r}^{\prime \prime}\right\}} \boldsymbol{c}_{\left\{r^{\prime \prime}\right\}}$
and which encode, each in their way, all the information about the mapping from $G I F F_{\langle x\rangle}$ to $G A R I_{<\mathfrak{s e}>}$. These structure coefficients have many properties, some of which are still imperfectly understood. We mention here but
two of them. Consider the regularised coefficients $B^{\{\bullet\},\{\bullet\}}, A^{\{\bullet\},\{\bullet\}}$ defined by: ${ }^{56}$

$$
\begin{equation*}
A^{\left\{\boldsymbol{r}^{\prime}\right\},\left\{\boldsymbol{r}^{\prime \prime}\right\}}=\sum_{r \in\left\{\boldsymbol{r}^{\prime}\right\}} A^{\boldsymbol{r},\left\{\boldsymbol{r}^{\prime \prime}\right\}} \quad ; \quad B^{\left\{\boldsymbol{r}^{\prime}\right\},\left\{\boldsymbol{r}^{\prime \prime}\right\}}=\sum_{r \in\left\{\boldsymbol{r}^{\prime}\right\}} B^{\boldsymbol{r},\left\{\boldsymbol{r}^{\prime \prime}\right\}} \tag{4.30}
\end{equation*}
$$

We then have the remarkable symmetry properties:

$$
\begin{equation*}
A^{\left\{r^{\prime}\right\},\left\{r^{\prime \prime}\right\}}=A^{\left\{r^{\prime \prime}\right\},\left\{r^{\prime}\right\}} \quad ; \quad B^{\left\{r^{\prime}\right\},\left\{r^{\prime \prime}\right\}}=B^{\left\{r^{\prime \prime}\right\},\left\{r^{\prime}\right\}} \tag{4.31}
\end{equation*}
$$

together with the identity:

$$
\begin{equation*}
B^{\left\{r^{\prime}\right\},\left\{r^{\prime \prime}\right\}}=(-1)^{r} A^{\left\{r^{\prime}\right\},\left\{\boldsymbol{r}^{\prime \prime}\right\}} \quad \text { with } \quad r:=\sum r_{i}^{\prime}=\sum r_{i}^{\prime \prime} \tag{4.32}
\end{equation*}
$$

The following tables give $A^{\left\{\boldsymbol{r}^{\prime}\right\},\left\{\boldsymbol{r}^{\prime \prime}\right\}}$ up to $r=6$. The entries left vacant correspond to zeros.

$\mathbf{2}$	$\mathbf{1}^{\mathbf{2}}$		$\mathbf{3}$	$\mathbf{1 . 2}$	$\mathbf{1}^{\mathbf{3}}$
--	--	--	--	--	--
--					
$\mathbf{2}$	-2	+1	$\mathbf{3}$	+3	-3
$\mathbf{1}^{\mathbf{2}}$	+1		$\mathbf{1 . 2}$	-3	+1
		$\mathbf{1}^{\mathbf{3}}$	+1		

	4	1.3	2^{2}	$1^{2} .2$	$1{ }^{4}$		
--	--	--	-	--	--		
4	-4	+4	+2	-4	+1		
1.3	+4	-1	-2	+1			
2^{2}	+2	-2	+1				
$1^{2} .2$	-4	+1					
$1{ }^{4}$	+1						
	5	1.4	2.3	$1^{2} .3$	$1.2{ }^{2}$	$1^{3} .2$	$1{ }^{5}$
5	+5	--	--	$+5$	-- +5	--	-1
1.4	-5	+1	+5	-1	-3	+1	
2.3	-5	+5	-1	-2	+1		
$1^{2} .3$	+5	-1	-2	+1			
1.2^{2}	+5	-3	+1				
$1^{3} .2$	-5	+1					
1^{5}	+1						

[^28]| | 6 | 1.5 | 2.4 | 3^{2} | $1^{2} .4$ | 1.2.3 | $1^{3} .3$ | 2^{3} | $1^{2} .2^{2}$ | 14.2 | 1^{6} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | -6 | +6 | +6 | +3 | -6 | -12 | +6 | -2 | +9 | -6 | +1 |
| 1.5 | +6 | -1 | -6 | -3 | +1 | +7 | -1 | +2 | -4 | +1 | |
| 2.4 | +6 | -6 | +2 | -3 | +2 | +4 | -2 | -2 | +1 | | |
| 3.3 | +3 | -3 | -3 | +3 | +3 | -3 | 0 | +1 | | | |
| $1^{2} .4$ | -6 | +1 | +2 | +3 | -1 | -3 | +1 | | | | |
| 1.2.3 | -12 | +7 | +4 | -3 | -3 | +1 | | | | | |
| $1^{3} .3$ | +6 | -1 | -2 | 0 | +1 | | | | | | |
| 2^{3} | -2 | +2 | -2 | +1 | | | | | | | |
| $1^{2} .2^{2}$ | +9 | -4 | +1 | | | | | | | | |
| $1^{4} .2$ | -6 | +1 | | | | | | | | | |
| $1{ }^{6}$ | +1 | | | | | | | | | | |

If now, following (4.30), we set $C^{\left\{\boldsymbol{r}^{\prime}\right\},\left\{\boldsymbol{r}^{\prime \prime}\right\}}=\sum_{r \in\left\{\boldsymbol{r}^{\prime}\right\}} C^{\boldsymbol{r},\left\{\boldsymbol{r}^{\prime \prime}\right\}}$, we are saddled with rational numbers, but the symmetry relation becomes even more striking than with $A^{\{\bullet \bullet},\{\bullet\}$ and $B^{\{\bullet\},\{\bullet \bullet}$. Indeed:

$$
\begin{align*}
C^{\left\{\boldsymbol{r}^{\prime}\right\},\left\{\boldsymbol{r}^{\prime \prime}\right\}} & =C^{\left\{\boldsymbol{r}^{\prime \prime}\right\},\left\{\boldsymbol{r}^{\prime}\right\}}=0 \quad \text { if } \quad\left\{\boldsymbol{r}^{\prime}\right\} \neq\left\{\boldsymbol{r}^{\prime \prime}\right\} \tag{4.33}\\
C^{\{\boldsymbol{r}\},\{\boldsymbol{r}\}} & =\frac{c_{r_{1}}^{s_{1}}}{s_{1}!} \frac{c_{r_{2}}^{s_{2}}}{s_{2}!} \ldots \quad \text { if }\{\boldsymbol{r}\}=\left\{r_{1}^{s_{1}, \ldots, r_{1}}, r_{2}^{s_{2}}, \ldots, r_{2}, \ldots\right\} \tag{4.34}
\end{align*}
$$

4.2 The secondary bimoulds $\mathfrak{e 5 s}{ }^{\circ}$ and $\mathfrak{e s z}{ }^{\circ}$.

Dimorphic elements of $G A R I_{<\text {se> }}$.
We are now, at long last, in a position to construct the two main dimorphic bimoulds $\mathfrak{e s s}_{\sigma}^{\bullet}$ and $\mathfrak{e s z}_{\sigma}^{\mathbf{\circ}}$ of $G A R I_{<\mathfrak{s e}>}$, simply by taking the images of two wellchosen elements f_{σ} and g_{σ} of $G I F F_{<x\rangle}$. In the last section, we mentioned the economical way of taking such images, without transiting through the algebras. Here, for the sake of expediency, we plump for the theoretical way, via the infinitesimal generators:

$\mathrm{f}_{\sigma}(x)$	\longrightarrow	$\mathfrak{e s s}_{\sigma}^{\bullet}$	$\\|$	$\mathrm{g}_{\sigma}(x)$	\longrightarrow	$\mathfrak{e s j 3}_{\sigma}^{\bullet}$
$\uparrow \exp$		$\uparrow \operatorname{expari}$	$\\|$	$\uparrow \exp$		$\uparrow \operatorname{expari}$
$\mathrm{f}_{* \sigma}(x)$	\longrightarrow	$\mathfrak{l e s s}_{\sigma}^{\circ}$	$\\|$	$\mathrm{g}_{* \sigma}(x)$	\longrightarrow	$\mathfrak{l e s z}_{\sigma}^{\circ}$

The above diagram immediately translates into the formulas:

$$
\begin{align*}
& \mathfrak{e s s}_{\sigma}^{\bullet}:=\operatorname{expari}\left(\sum_{r \geq 1} \sigma^{r} \epsilon_{r} \mathfrak{r} e_{r}^{\bullet}\right) \longleftrightarrow f_{\sigma}(x):=\frac{1-e^{-\sigma x}}{\sigma} \tag{4.35}\\
& \mathfrak{e s j}_{\sigma}^{\bullet}:=\operatorname{expari}\left(\sum_{r \geq 1} \eta_{\sigma, r} \mathfrak{r} \boldsymbol{c}_{r}^{\bullet}\right) \longleftrightarrow g_{\sigma}(x):=\frac{1-(1-x)^{1-2 \sigma}}{1-2 \sigma} \tag{4.36}
\end{align*}
$$

with rational coefficients ϵ_{r} and $\eta_{\sigma, r}$ determined by:

$$
\begin{align*}
& \left(\exp \left(\left(\sum_{r \geq 1} \sigma^{r} \epsilon_{r} x^{r}\right) \cdot x \cdot \partial_{x}\right)\right) \cdot x=f_{\sigma}(x)=x\left(1+\sum_{r \geq 1} \sigma^{r} c_{r} x^{r}\right)=x-\frac{\sigma}{2} x^{2}+\ldots(\tag{4.37}\\
& \left(\exp \left(\left(\sum_{r \geq 1} \eta_{\sigma, r} x^{r}\right) \cdot x \cdot \partial_{x}\right)\right) \cdot x=g_{\sigma}(x)=x\left(1+\sum_{r \geq 1} d_{\sigma, r} x^{r}\right)=x+\sigma x^{2}+\ldots(\tag{4.38}
\end{align*}
$$

Thus:

$$
\begin{aligned}
& \epsilon_{1}=-\frac{1}{2}, \epsilon_{2}=-\frac{1}{12}, \epsilon_{3}=-\frac{1}{48}, \epsilon_{4}=-\frac{1}{180}, \epsilon_{5}=-\frac{11}{8640}, \epsilon_{6}=-\frac{1}{6720} \ldots \\
& \eta_{\sigma, 1}=s, \eta_{\sigma, 2}=\frac{1}{3} \sigma(1-\sigma), \eta_{\sigma, 3}=\frac{1}{6} \sigma(1-\sigma)^{2}, \eta_{\sigma, 4}=\frac{1}{90} \sigma(1-\sigma)(3-4 \sigma)(3-2 \sigma) \ldots
\end{aligned}
$$

Main property: The bimoulds $\mathfrak{e s s}_{\sigma}^{\circ}$ are bisymmetral (i.e. of type as/as) whilst the bimoulds $\mathfrak{e s z}_{\sigma}^{\bullet}$ are symmetral/ \mathfrak{O}-symmetral (i.e. of type as/os). Here, \mathfrak{O} denotes as usual the flexion unit conjugate to \mathfrak{E}.

Remark 1: This is a survey, dedicated to stating rather than proving. However, the double symmetries of $\mathfrak{e s s}_{\sigma}^{\boldsymbol{\bullet}}$ and $\mathfrak{e s z ^ { \circ }}{ }_{\sigma}^{\circ}$ are so essential that we must pause to justify them. The symmetrality of these two bimoulds is easy enough: it simply results from their being, by construction, elements of $G A R I_{<\text {se> }}$. But what about their swappees? The way the operator gepar is defined (see (4.1)), it is clear that if $\mathfrak{e s s}_{\sigma}^{\circ}$ is to be symmetral, then gepar. $\mathfrak{e s s}_{\sigma}^{\bullet}$ too has to be symmetral. Similarly, if $\left.\mathfrak{e s}\right)_{\sigma}^{\bullet}$ is to be \mathfrak{O}-symmetral, then gepar. $\mathfrak{e s z}_{\sigma}^{\bullet}$ too has to be \mathfrak{O}-symmetral. But in view of (4.10) and (4.37),(4.38), we can see that

$$
\left.\begin{array}{rl}
(\text { gepar.ess } \\
\sigma \tag{4.40}
\end{array}\right)^{w_{1}, \ldots, w_{r}}=\mathcal{S}_{\sigma, r} \mathfrak{D}^{w_{1}} \ldots \mathfrak{D}^{w_{r}} .
$$

with

$$
\begin{align*}
& \mathcal{S}_{\sigma, r}=(r+1) \sigma^{r} c_{r}=\frac{(-\sigma)^{r}}{r!} \tag{4.41}\\
& \mathcal{Z}_{\sigma, r}=(r+1) d_{\sigma, r}=\frac{1}{r!} \prod_{0 \leq j \leq r-1}(2 \sigma+j) \tag{4.42}
\end{align*}
$$

Now, it is an easy matter to check that the above coefficients $\mathcal{S}_{\sigma, r}$ resp. $\mathcal{Z}_{\sigma, r}$ are the only ones that can make the bimoulds defined by the right-hand sides of (4.39) resp. (4.40) symmetral resp. \mathfrak{O}-symmetral. Thus, gepar.ess ${ }_{\sigma}^{\circ}$ and gepar. $\mathfrak{e s j}_{\sigma}^{\circ}$ do possess the right symmetries, and from there it is but a short step to check that their constituent factors, namely swap. $\mathfrak{e s s}_{\sigma}^{\circ}$ and
anti.swap.ess ${ }_{\sigma}^{\circ}$ resp. swap. $\operatorname{esj}_{\sigma}^{\circ}$ and anti.swap.esj ${ }_{\sigma}^{\circ}$, also possess the right symmetries: see $\S 11.9$ and $\S 11.10$.

Remark 2: Whereas the bimoulds $\mathfrak{e s j}_{\sigma}^{\bullet}$ really differ when σ varies, the bimoulds $\mathfrak{e s s}_{\sigma}^{\circ}$ merely undergo dilatation - an elementary transform that commutes with all flexion operations. So all these $\mathfrak{e s s}_{\sigma}^{\boldsymbol{\circ}}$ essentially reduce to their prototype $\mathfrak{e s s} \mathfrak{s}^{\bullet}:=\mathfrak{e s s}_{1}^{\circ}$, which we shall henceforth call the bisymmetral element of Flex (\mathfrak{E}).

Remark 3: By continuity in σ, we see that $g_{1 / 2}(x)=-\log (1-x)$. Thus $f_{1} \circ g_{1 / 2}=i d$ and therefore $\operatorname{gari}\left(\mathfrak{e s s}_{1}^{\bullet}, \mathfrak{e s z}_{1 / 2}^{-}\right)=i d_{G A R I}=1^{\bullet}$, which shows that invgari. $\mathfrak{e s s}_{1}^{\boldsymbol{0}}$ and by implication all invgari.ess ${ }_{\sigma}^{\boldsymbol{\circ}}$ are not bisymmetral.

Remark 4: odd-even factorisations of the bisymmetrals.

The pre-image $f(x):=1-e^{-x}$ of $\mathfrak{e s s}^{\bullet}$ in $G I F F_{<x\rangle}$ factors as $f=f_{\diamond} \circ f_{\diamond \infty}$, with an elementary first factor and a second factor that carries only even-indexed coefficients:

$$
\begin{align*}
f_{\diamond}(x) & :=\frac{x}{1+\frac{1}{2} x}=\left(\exp \left(-\frac{1}{2} x^{2} \partial_{x}\right)\right) \cdot x \tag{4.43}\\
f_{\infty}(x) & :=x\left(1+\sum_{1 \leq n} a_{2 n}^{\infty} x^{2 n}\right) \tag{4.44}
\end{align*}
$$

For $\mathfrak{e s s}^{\bullet}$ this immediately translates into the factorisation (4.45) in $G A R I_{<\mathfrak{s e}>}$. For swap.ess ${ }^{\bullet}=:$ öss $^{\circ}$, it translates, though less immediately, into the factorisation (4.46) in BIMU. Mark the order inversion, though, and note that

$$
\mathfrak{e s s}^{\bullet}=\operatorname{gari}\left(\mathfrak{e s s}_{*}^{\bullet}, \mathfrak{e s s}_{* *}^{*}\right) \quad \text { with } \mathfrak{e s s}_{*}^{\bullet}, \mathfrak{e s s}_{* *}^{\bullet} \text { symmetral (4.45) }
$$

All four factor bimoulds are symmetral. The single-starred ones are elementary:

$$
\begin{align*}
& \mathfrak{e s s}_{*}^{\bullet}:=\operatorname{expari}\left(-\frac{1}{2} \mathfrak{E}^{\bullet}\right) \Rightarrow \mathfrak{e s s}_{*}^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=\frac{(-1)^{r}}{2^{r}} \mathfrak{E}^{\left(v_{1: 2}\right)} \mathfrak{E}^{\left(u_{1}\right)} \mathfrak{v}_{2: 3}^{\left(u_{12}\right)} \ldots \mathfrak{E}^{\left(u_{1, \ldots r} v_{r}\right)} \tag{4.47}
\end{align*}
$$

The double-starred factors, though non-elementary, carry only (non-zero) components of even length:

$$
\begin{align*}
\mathfrak{e s s}_{*}^{\bullet}, \ddot{0} \mathfrak{S s}_{\star}^{\bullet} & \in \text { BIMU }_{\text {neg.pari }}^{\text {as }} \tag{4.49}\\
\mathfrak{e s s}_{* *}^{\bullet}, \ddot{0}_{5 s_{\star \star}^{\bullet}}^{*} & \in \operatorname{BIMU}_{\text {neg }}^{\text {as }} \cap \operatorname{BIMU}_{\text {pari }}^{\text {as }} \tag{4.50}
\end{align*}
$$

As a consequence:

$$
\begin{equation*}
\text { anti. } \mathfrak{o s s}_{\star}^{\circ}=\ddot{0} \mathfrak{o s} \mathfrak{s}_{\star}^{\circ} \quad ; \quad \text { anti. } 055_{\star \star}^{\bullet}=\text { invmu. } 055_{\star}^{\bullet} \tag{4.51}
\end{equation*}
$$

and therefore:

$$
\begin{align*}
& =\operatorname{mu}\left(\mathfrak{O S 5}_{\star}^{*}, \mathfrak{O S 5}_{\star}^{\bullet}\right)=\operatorname{expmu}\left(-\mathfrak{O}^{\bullet}\right) \tag{4.52}
\end{align*}
$$

Remark 5: induction for the calculation of $\mathfrak{e s s}, \mathfrak{e s s}_{* *}$ and $\mathfrak{o s s}, \ddot{o}^{5} \mathfrak{S H}_{木 *}$. The source diffeos for $\mathfrak{e s s}^{\circ}$ and $\mathfrak{e 5 s}_{* *}^{*}$ are f and f, with infinitesimal dilators:

$$
\begin{equation*}
f_{\#}(x)=1+x-e^{x} \quad ; \quad f_{\diamond \diamond \#}(x)=x-\cosh (x) \tag{4.53}
\end{equation*}
$$

to which there answer the following elements of $A R I_{<\mathrm{re}\rangle}$ and $I R A_{<\mathrm{rä}\rangle}$:

$$
\begin{aligned}
& \mathfrak{e f t}^{\bullet}:=-\sum_{1 \leq n} \frac{1}{(n+1)!} \mathfrak{r e} e_{n}^{\bullet} \quad ; \quad \mathfrak{e t t}_{* *}^{\bullet}:=-\sum_{1 \leq n} \frac{1}{(2 n+1)!} \mathfrak{r e}_{2}^{\bullet}{ }_{n} \\
& {\ddot{o} t t^{\bullet}}_{\bullet}=-\sum_{1 \leq n} \frac{1}{(n+1)!} \mathfrak{r} \ddot{o}_{n}^{\bullet} \quad ; \quad \ddot{\mathfrak{o} t t^{\bullet}} \boldsymbol{*}:=-\sum_{1 \leq n} \frac{1}{(2 n+1)!} \mathfrak{r o}_{2 n}^{\bullet}
\end{aligned}
$$

which in turn lead to these linear and highly effective inductive formulas ${ }^{57}$ for the calculation of our four bimoulds:

$$
\begin{align*}
& r(\bullet) \mathfrak{e s s}^{\bullet}=\operatorname{preari}\left(\mathfrak{e s s}^{\bullet}, \mathfrak{e t t}^{\bullet}\right) \tag{4.54}\\
& r(\bullet) \mathfrak{e s s}_{* *}^{\bullet}=\operatorname{preari}\left(\mathfrak{e s s}_{* *}^{\bullet}, \mathfrak{e t t}_{* *}^{\bullet}\right) \tag{4.55}\\
& r(\bullet){\ddot{0} 55^{\bullet}}^{\bullet}=\operatorname{preira}\left(\ddot{0}_{5 s^{\bullet}}, \ddot{\mathrm{ott}}{ }^{\bullet}\right) \tag{4.56}
\end{align*}
$$

with

$$
\ddot{\mathfrak{o} t t_{\star}^{\bullet}}:=\operatorname{coshmu}\left(\mathfrak{O}^{\bullet}\right):=\frac{1}{2}\left(\operatorname{expmu}\left(\mathfrak{O}^{\bullet}\right)+\operatorname{expmu}\left(-\mathfrak{O}^{\bullet}\right)\right)
$$

In (4.54) and (4.55), preari may be replaced by preali or preawi; and in (4.56) and (4.57), preira may be replaced by preila or preiwa, since the involutions h_{1}, h_{2}, h_{3} that define the algebras $A R I, A L I, A W I$ (see $\S 2.1$ towards the end) have the same effects on the basic alternals $\mathfrak{r e}{ }_{n}^{\bullet}$:

$$
\begin{equation*}
h_{1} \mathfrak{r} \mathfrak{e}_{n}^{\bullet} \equiv h_{2} \mathfrak{r e} e_{n}^{\bullet} \equiv h_{3} \mathfrak{r e} e_{n}^{\bullet} \quad ; \quad h_{1}^{*} \mathfrak{r} \mathfrak{o}_{n}^{\bullet} \equiv h_{2}^{*} \mathfrak{r o ̈}_{n}^{\bullet} \equiv h_{3}^{*} \mathfrak{r} \ddot{o}_{n}^{\bullet} \tag{4.58}
\end{equation*}
$$

[^29]Whatever the pre-bracket chosen, the induction algorithm yields the same result, but expressed in very different bases. For the direct bimoulds, the best choice is preari or preali ${ }^{58}$; and for the swappees, it is preiwa ${ }^{59}$ along with the following expression of $\mathfrak{r} \boldsymbol{o}^{\bullet}$:

$$
\begin{equation*}
\mathfrak{r o}{ }^{\binom{u_{1}, \ldots, \ldots, v_{r}}{v_{1}, \ldots}}=\sum_{i}(r+1-i) \mathfrak{D}^{\left(u_{v_{i}, \ldots}\right)} \prod_{j \neq i} \mathfrak{O}^{\binom{u_{j}}{v_{j: i}}} \tag{4.59}
\end{equation*}
$$

Comparing $\operatorname{ess}^{\circ}$ and $\ddot{e x s s}^{\circ}:=$ sap.ess ${ }^{\circ}$:

The bimould $\mathfrak{e s s}^{\circ}$ belongs to the group $G A R I_{<\mathfrak{s c}>}$ whereas its image $\ddot{\mathfrak{e} s s^{\circ}}$ under the involution sap=swap.syap belongs to swap. $G A R I_{<\text {syap.se> }}$ i.e. to swap. GARI $I_{<\text {so> }}$, which is not a group - only the swappee of one. Nevertheless, $\mathfrak{e s s}^{\circ}$ and $\ddot{\mathbf{e s s}}^{\circ}$ have much in common, since they

- belong both to Flex(E) and are both bisymmetral, i.e. in GARI ${ }^{\text {as/as }}$
- are both invariant under pari.neg
- have both the same length-one component: $\mathfrak{e s s}^{w_{1}}=\ddot{\mathfrak{e s s}^{w}}$.

This is enough for them to be exchanged under gari-postcomposition by a bimould $\mathfrak{s e e s}{ }^{\circ}$ that is not only bisymmetral, but also even ${ }^{60}$, i.e. in $G A R I^{\underline{a s} / \underline{a s}}$. It is therefore the exponential of an element $\mathfrak{l e e} \mathfrak{l}^{\bullet}$ of $A R I^{\underline{a l} / a l}$. In other words:

But since both $\mathfrak{s e g e s}^{\circ}$ and $\mathfrak{l e e} \mathfrak{l}^{\bullet}$ are invariant under neg and pari.neg, they are invariant under pari. All their non-vanishing components are therefore of even length; or more precisely of even length $r \geq 4$, since an initial, length-2 component of $\mathfrak{s e e} \mathfrak{s}^{\bullet}$ would have to be a bialternal element of Flex $x_{2}(\mathfrak{E})$, and no such element exists.

Up to length $r=14$, the bialternal subalgebra $F l e x x^{a l / a l}(\mathfrak{E})$ of $A R I^{\underline{a l} / a l}$ is freely generated by the non-vanishing components of $\mathfrak{l e e} \mathfrak{l}^{\bullet}$, i.e.

$$
\begin{equation*}
\mathfrak{l e} \mathfrak{e} 1_{4}^{\bullet}, \mathfrak{l e ̈ e}_{6}^{\bullet}, \mathfrak{l e ̈ e}_{8}^{\bullet}, \mathfrak{l e ̈ e}_{10}^{\bullet}, \mathfrak{e x e}_{12}^{\bullet}, \mathfrak{l e ̈ e}_{14}^{\bullet} \ldots \tag{4.61}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{l e} \mathfrak{l}_{2 r}^{\bullet}:=\operatorname{senk}_{2 r}\left(\operatorname{esss}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet} \quad(r \geq 2) \tag{4.62}
\end{equation*}
$$

but after 14 this no longer holds. As of now, for large values of r, the exact dimension of $F l e x \frac{a l}{2 r} / \underline{a l}(\mathfrak{E})$ is not known.

[^30]If we now repeat the above construction but with \mathfrak{E} replaced by the conjugate unit \mathfrak{O}, identity (4.60) becomes, with self-explanatory notations:

$$
\begin{equation*}
\mathfrak{o s s}^{\bullet}=\operatorname{gari}\left(\ddot{\mathfrak{o s s}^{\bullet}}, \mathfrak{s o 0} \mathfrak{s}^{\bullet}\right)=\operatorname{gari}\left(\ddot{0} \mathfrak{o s s}^{\bullet}, \operatorname{expari}\left(\left[\ddot{0} \mathfrak{o l}^{\bullet}\right)\right)\right. \tag{4.63}
\end{equation*}
$$

So far, so predictable. The remarkable thing, however, is that the components $\mathscr{L e} e^{\bullet}{ }_{2 r}^{*}$ and $\mathfrak{l o ̈ l}_{2 r}^{\bullet}$ of the rightmost bimoulds in (4.60) and (4.63) get exchanged, up to sign, under the involutions swap and syap (see (§3.3)). As a consequence, each one of them is, again up to sign, invariant under the involution sap.

Polar and trigonometric specialisations:

Let us now consider the three polar and the three trigonometric specialisations of \mathfrak{E}^{\bullet}, along with the corresponding bisymmetrals and their swappees:

Flexion units	\mathfrak{E}	$\mathrm{Pa}{ }^{\bullet}$	$\mathrm{Pi}{ }^{\bullet}$	$\mathrm{Pai}_{\alpha, \beta}^{\bullet}$	Qa ${ }_{c}$	$\mathrm{Qi}^{\text {c }}{ }_{c}$	Qai ${ }_{c, \alpha, \beta}^{\bullet}$
bisymmetrals	$\underline{\mathrm{Es5}}{ }^{\circ}$	par*	pil ${ }^{\text {- }}$	pail ${ }_{\alpha, \beta}^{\boldsymbol{\theta}}$		$\mathrm{til}^{\bullet}{ }_{c}$	tai
swappees	015s ${ }^{\circ}$	pir ${ }^{\bullet}$	pal ${ }^{\text {- }}$	pial ${ }_{\alpha, \beta}{ }^{\circ}$		$\mathrm{tal}_{c}{ }^{\text {c }}$	tial $_{c, \alpha, \beta}$
type as/0s	$\mathfrak{e s s}{ }_{\sigma}^{\circ}$	$\mathrm{bar}_{\sigma}^{\circ}$		bail ${ }_{c, \alpha, \beta}^{\text {e }}$			${ }_{\sigma, c, \alpha, \beta}$
swappees	$\ddot{\mathfrak{o b}} \bar{\sigma}^{\circ}$	bir $_{\sigma}^{\bullet}$	$\mathrm{bal}{ }_{\sigma}^{\text {® }}$	$\mathrm{bial}_{\sigma,}^{\bullet}$			$\operatorname{dial}_{\sigma, c}{ }^{\circ}$

All these unit specialisations are exact, except $Q a_{c}^{\bullet}$, which generates no bisymmetral, and $Q i_{c}^{\bullet}$, which does. ${ }^{61}$

Let D^{t} be the dilation operator:

$$
\left(D^{t} \cdot M\right)^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}:=M^{\binom{u_{1} / t, \ldots, u_{r} / t}{v_{1} / t, \ldots, v_{r} / t}}
$$

It clearly respects bialternality and bisymmetrality. Due to the general identities:

$$
\left.\begin{array}{rcc}
A^{\bullet} \boldsymbol{v} \text {-constant } & \text { and } & B^{\bullet} \boldsymbol{u} \text {-constant }
\end{array} \quad \Longrightarrow \quad \text { mu(swap. } B^{\bullet} \text {, swap. } A^{\bullet}\right)
$$

we can form new bisymmetrals:

$$
\begin{aligned}
\operatorname{vipail}_{\alpha, \beta}^{\bullet} & :=\operatorname{mu}\left(D^{\alpha} \cdot \operatorname{pal}^{\bullet}, D^{\beta} \cdot \operatorname{pil}^{\bullet}\right) & \subset \mathrm{GARI}^{\text {as } / a s} \\
\operatorname{vipair}_{\alpha, \beta}^{\bullet} & :=\operatorname{mu}\left(D^{\alpha} \cdot \operatorname{par}^{\bullet}, D^{\beta} \cdot{ }^{\text {pir }}\right) & \subset \mathrm{GARI}^{\text {as/as }} \\
\operatorname{vitail}_{c, \alpha, \beta}^{\bullet} & :=\operatorname{mu}\left(D^{\alpha} \cdot \operatorname{tal}_{c}^{\bullet}, D^{\beta} \cdot \mathrm{til}_{c}^{\bullet}\right) & \subset \mathrm{GARI}^{\text {as/as }}
\end{aligned}
$$

[^31]The next four identities are special cases of (4.60) when \mathfrak{E} specialises respectively to $P a, P i, P a i_{\alpha, \beta}, Q a i_{c, \alpha, \beta}$:

$$
\begin{aligned}
& \operatorname{pail}_{\boldsymbol{\alpha}, \beta}^{\boldsymbol{\bullet}} \quad \equiv \operatorname{gari}\left(\operatorname{pial}_{\boldsymbol{\beta}, \alpha}^{\boldsymbol{\bullet}}, \text { lappil } \boldsymbol{\alpha}_{\alpha, \beta}^{\bullet}\right) \quad \text { with } \quad \text { lappil } \boldsymbol{\alpha}_{\alpha, \beta}^{\boldsymbol{\bullet}} \subset \text { GARI }^{\text {as/as }} \\
& \operatorname{tail}_{c, \alpha, \beta}^{\bullet} \equiv \operatorname{gari}\left(\operatorname{tial}_{c, \beta, \alpha}^{\boldsymbol{\bullet}}, \operatorname{lattil}_{c, \alpha, \beta}^{\bullet}\right) \quad \text { with } \quad \operatorname{lattil}_{c, \alpha, \beta}^{\boldsymbol{\bullet}} \subset \mathrm{GARI}^{\text {as }} \text { /as } \\
& \text { vipail }{ }_{\alpha, \beta}^{\bullet} \equiv \operatorname{gari}\left(\text { pail }_{\alpha, \beta}^{\bullet}, \text { paiv }_{\alpha, \beta}^{\bullet}\right) \quad \text { with } \text { paiv }_{\alpha, \beta}^{\bullet} \subset \text { GARI }^{\text {as/as }} \\
& \text { vitail }_{c, \alpha, \beta}^{\bullet} \equiv \operatorname{gari}\left(\operatorname{tail}_{c, \alpha, \beta}^{\bullet}, \text { taiv }_{c, \alpha, \beta}^{\bullet}\right) \quad \text { with } \operatorname{taiv}_{c, \alpha, \beta}^{\bullet} \quad \subset \text { GARI }^{\text {as/ }} \text {, } \underline{\text { s. }}
\end{aligned}
$$

while the last two identities provide yet other examples of elements of $G A R I^{a s / a s}$ sharing the same first component and related under postcomposition by an element of $G A R I^{\underline{a s} / \underline{a s}}$.

Difference between even and non-even bissymmetrals:

To bring out the sharp difference between even and non-even bisymmetrals, we introduce two distinct copies $\mathfrak{E}_{1}, \mathfrak{E}_{2}$ of the universal unit \mathfrak{E}, and define their blend as follows:

$$
\begin{align*}
& \mathfrak{s s e}_{1,2}^{\bullet}=\operatorname{blend}\left(\mathfrak{E}_{1}^{\bullet}, \mathfrak{E}_{2}^{\bullet}\right) \quad \Longleftrightarrow \tag{4.64}
\end{align*}
$$

The blend $\mathfrak{s s e}_{1,2}^{\boldsymbol{0}}$ is obviously even. It is also easily seen to be symmetral. In fact, since, up to order, blend commutes with swap:

$$
\begin{equation*}
\text { swap.blend }\left(\mathfrak{E}_{1}^{\bullet}, \mathfrak{E}_{2}^{\bullet}\right) \equiv \operatorname{blend}\left(\text { swap. } \mathfrak{E}_{2}^{\bullet} \text {, swap. } \mathfrak{E}_{1}^{\bullet}\right) \tag{4.65}
\end{equation*}
$$

and since the swappee of an exact flexion unit \mathfrak{E} coincides with the conjugate unit \mathfrak{O}, the blend is actually bisymmetral.

Moreover, we have a remarkable (non-elementary) identity for expressing the gari-inverse of the blend of two flexion units: it is itself a blend, but preceded by pari and with the two arguments arguments exchanged. Therefore, under invgari, the two entries of (4.65) become:

$$
\begin{equation*}
\text { pari.blend }\left(\mathfrak{E}_{2}^{\bullet}, \mathfrak{E}_{1}^{\bullet}\right) \stackrel{\text { swap }}{\longleftrightarrow} \text { pari.blend(swap. } \mathfrak{E}_{1}^{\bullet} \text {, swap. } \mathfrak{E}_{2}^{\bullet} \text {) } \tag{4.66}
\end{equation*}
$$

and are still connected by swap.
As a consequence, for the even ${ }^{62}$ bisymmetral $\mathfrak{e s s}_{1,2}{ }^{\circ}$ we have this commu-

[^32]tative diagram, ${ }^{63}$ with self-explanatory notations:

In sharp contrast, with the non-even ${ }^{64}$ bisymmetral $\mathfrak{e s s}^{\bullet}$ constructed in (4.35), the diagram's commutativity breaks down:

(symmetral)	$\mathfrak{E 5 5}{ }^{\circ}$	$\xrightarrow{\text { swap }}$		ÖSs ${ }^{\text {® }}$		(symmetral)
	invgari \uparrow				\invgari	
(symmetral)	$\mathrm{ess}^{\mathbf{*}}$	$\xrightarrow{\text { swap }}$	$\ddot{0}{ }^{\text {s5 }}$ *	\neq	$\ddot{0} \mathfrak{S s}_{* *}{ }^{\text {® }}$	($n o n$ symmetral!)

4.3 The related primary bimoulds $\mathfrak{e s}{ }^{\circ}$ and $\mathfrak{e} \mathfrak{z}^{\circ}$.

After constructing the secondary bimoulds $\mathfrak{e s s}^{\boldsymbol{\circ}}, \mathfrak{e s j}_{\sigma}^{\circ}$ (non-elementary, with a double symmetry), we must now define the much simpler, yet closely related primary bimoulds $\mathfrak{e s}^{\bullet}, \mathfrak{e z}{ }^{\bullet}$ (elementary, with a single symmetry):

$$
\begin{align*}
\mathfrak{e} \mathfrak{s}^{\bullet} & :=\operatorname{expari}\left(\mathfrak{F}^{\bullet}\right) \tag{4.67}\\
\mathfrak{e} \mathfrak{z}^{\bullet} & :=\operatorname{invmu}\left(1^{\bullet}-\mathfrak{E}^{\bullet}\right) \tag{4.68}\\
\mathfrak{e s ^ { \bullet }} & \stackrel{\text { sap }}{\longleftrightarrow} \mathfrak{e z}^{\bullet} \tag{4.69}
\end{align*}
$$

This leads to the more explicit formulas: ${ }^{65}$

$$
\begin{align*}
& \mathfrak{e} \mathfrak{z}^{\left(\begin{array}{l}
u_{1}, \ldots, u_{r} \\
v_{1}, \ldots, \\
v_{r}
\end{array}\right)}:=\mathfrak{E}^{\left(u_{v_{1}}^{u_{1}}\right)} \mathfrak{E}^{\left(u_{v_{2}}\right)} \mathfrak{E}^{\left(u_{u_{3}}^{u_{3}} u_{3}\right.} \ldots \mathfrak{E}^{\binom{u_{r}}{v_{r}}} \quad \text { (EX-symmetral) } \tag{4.70}
\end{align*}
$$

The symmetrality of $\mathfrak{e s}^{\boldsymbol{\bullet}}$ resp. \mathfrak{E}-symmetrality of $\mathfrak{e z} \mathfrak{z}^{\boldsymbol{\bullet}}$ relies entirely on \mathfrak{E} being an exact flexion unit, but the definitions also extend, albeit at the cost of significant complications, to approximate units.

Let us now consider the three polar and the three trigonmetric specialisations of \mathfrak{E}^{\bullet} and the corresponding incarnations of $\mathfrak{e s}{ }^{\bullet}$ and $\mathfrak{e z} \mathfrak{g}^{\bullet}$:

[^33]The definitions of the new bimoulds are straightforward for the exact units, but less so for the approximate units $Q a_{c}$ and $Q i_{c}$. In those two cases, we mention only the elementary part (mod. c^{2}), which conforms entirely to the general formulas (4.70) and (4.71), and refer to $\S 3.9$ for the corrective terms.

$$
\begin{align*}
& \text { paj }^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r} P\left(u_{1}+\ldots+u_{j}\right) \tag{4.72}\\
& \mathrm{pij}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r}^{\text {circ }} P\left(v_{j}-v_{j+1}\right) \tag{4.73}\\
& \operatorname{paij}_{\alpha, \beta}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r}^{\text {circ }}\left(P\left(\frac{u_{1}+\ldots+u_{j}}{\alpha}\right)+P\left(\frac{v_{j}-v_{j+1}}{\beta}\right)\right) \tag{4.74}\\
& \operatorname{taj}_{c}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r} Q_{c}\left(u_{1}+\ldots+u_{j}\right) \quad\left(\text { modulo }^{2}\right) \tag{4.75}\\
& \operatorname{tij}_{c}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r}^{\text {circ }} Q_{c}\left(v_{j}-v_{j+1}\right) \quad\left(\text { modulo }^{2}\right) \tag{4.76}\\
& \operatorname{taij}_{c, \alpha, \beta}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r}^{\text {circ }}\left(Q_{c}\left(\frac{u_{1}+\ldots+u_{j}}{\alpha}\right)+Q_{c}\left(\frac{v_{j}-v_{j+1}}{\beta}\right)\right) \quad(\text { exactly })(\tag{4.77}
\end{align*}
$$

In the above products, circ means that the (non-existing) variable v_{r+1} should be construed as $v_{0}=0$ whenever it occurs. No such precaution is required for the following specialisations of $\mathfrak{e z}{ }^{\bullet}$.

$$
\begin{gather*}
\operatorname{pac}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r} P\left(u_{j}\right) \tag{4.78}\\
\operatorname{pic}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r} P\left(v_{j}\right) \tag{4.79}\\
\operatorname{paic}_{\alpha, \beta}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r}\left(P\left(\frac{u_{j}}{\alpha}\right)+P\left(\frac{v_{j}}{\beta}\right)\right) \tag{4.80}\\
\operatorname{tac}_{c}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r} Q_{c}\left(u_{j}\right) \quad\left(\text { modulo } c^{2}\right) \tag{4.81}\\
\operatorname{tic}_{c}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r} Q_{c}\left(v_{j}\right) \quad\left(\text { modulo }^{2}\right) \tag{4.82}\\
\operatorname{taic}_{c, \alpha, \beta}^{w_{1}, \ldots, w_{r}}:=\prod_{1 \leq j \leq r}\left(Q_{c}\left(\frac{u_{j}}{\alpha}\right)+Q_{c}\left(\frac{v_{j}}{\beta}\right)\right) \quad(\text { exactly }) \tag{4.83}
\end{gather*}
$$

4.4 Some basic bimould identities.

Let us list, first in universal mode, the main relations between the primary bimoulds:

```
\invmu.e\mathfrak{es}
invmu.e\mp@subsup{\mathfrak{s}}{}{\bullet}}=\begin{array}{l}{\mathrm{ pari.anti.es.}}\\{\mathrm{ invgami.es*}}
invmu.e\mp@subsup{\mathfrak{s}}{}{\bullet}}=\begin{array}{l}{\mathrm{ pari.anti.es.}}\\{\mathrm{ invgami.es*}}
\invmu.e\mp@subsup{s}{}{\bullet}}=\mathrm{ =pari.anti.es.
| invmu.ez}\mp@subsup{\mathfrak{Z}}{}{\bullet}=\mp@subsup{1}{}{\bullet}-\mp@subsup{\mathfrak{E}}{}{\bullet
invgami.e\mp@subsup{\mathfrak{z}}{}{\bullet}}=\mathrm{ pari.es}\mp@subsup{}{}{\bullet
invgani.ez* }=\mathrm{ pari.anti.es`
invgari.ez`
```

The relations that really matter, however, are the ones linking primary and secondary bimoulds. To state them, we require a highly non-linear operator slash which measures, in terms of GARI, the un-evennness of a bimould:

$$
\begin{equation*}
\operatorname{slash} . B^{\bullet}:=\operatorname{fragari}\left(\text { neg. } . B^{\bullet}, B^{\bullet}\right)=\operatorname{gari}\left(\text { neg. } B^{\bullet}, \text { invgari. } B^{\bullet}\right) \tag{4.84}
\end{equation*}
$$

We can now write down the two secondary-to-primary identities:

$$
\begin{array}{rlrl}
\text { slash.ess } & =\mathfrak{e s}^{\bullet} & \text { with } \quad \mathfrak{e s s}^{\bullet}:=\mathfrak{e s s}_{1}^{\bullet} \\
\text { sap.essj} & =\mathfrak{e z}^{\bullet} & & \text { with } \tag{4.86}\\
\text { sap }:=\text { syap.swap }=\text { swap.syap }
\end{array}
$$

To conclude this section, let us reproduce some of the above identities in the polar and trigonometric specialisations - for definiteness, and also to show which relations survive and which don't when \mathfrak{E} specialises to the approximate flexion units like $Q a_{c}^{\bullet}$ and $Q i_{c}^{\bullet}$.

$\mathrm{paj}{ }^{\bullet}=\operatorname{expari} . \mathrm{Pa}{ }^{\bullet} \quad, \operatorname{taj}_{c}^{\bullet} \quad=\operatorname{expari} . \mathrm{Qa}_{c}^{\bullet}$
pij ${ }^{\bullet}=$ expari. $\mathrm{Pi}^{\bullet} \quad, \operatorname{tij}_{c}^{\bullet} \neq \operatorname{expari} . \mathrm{Qi}_{c}^{\bullet}$
paij $_{\alpha, \beta}^{\bullet}=$ expari.Pai ${ }_{\alpha, \beta}^{\bullet} \quad, \quad$ taij $_{c, \alpha, \beta}^{\bullet}=$ expari.Qai ${ }_{c, \alpha, \beta}^{\bullet}$
invgami.paj $\stackrel{\text { trivially }}{=}$ invgani.anti.paj ${ }^{\bullet} \equiv$ pari.pac ${ }^{\bullet}$
invgami.pij $\stackrel{\text { trivially }}{=}$ invgani.anti.pij $\quad \equiv$ pari.pic ${ }^{\bullet}$
invgami.paij ${ }_{\alpha, \beta}^{\bullet} \stackrel{\text { trivially }}{=}$ invgani.anti.paij ${ }_{\alpha, \beta}^{\bullet} \equiv$ pari.paic ${ }_{\alpha, \beta}^{\bullet}$
invgami.taj$\stackrel{\text { trivially }}{=}$ invgani.anti.taj ${ }_{c}^{\bullet} \quad \not \equiv$ pari.tac ${ }_{c}^{\bullet}$
invgami.tij ${ }_{c}^{\bullet} \stackrel{\text { trivially }}{=}$ invgani.anti.tij ${ }_{c}^{\bullet} \quad \not \equiv$ pari.tic $_{c}^{\bullet}$
invgami.taij ${ }_{c, \alpha, \beta}^{\bullet} \stackrel{\text { trivially }}{=}$ invgani.anti.taij ${ }_{c, \alpha, \beta}^{\bullet} \equiv$ pari.taic $_{c, \alpha, \beta}^{\bullet}$

4.5 Trigonometric and bitrigonometric bimoulds.

Correspondence between polar and trigonometric.
Polar bimoulds of a given type may have one trigonometric equivalent, or several, or none. The reverse correspondence, however, is always straightforward: when c goes to $0,\left(Q a_{c}, Q i_{c}\right)$ goes to ($P a, P i$) and the various trigonometric bimoulds, whenever they exist, go to their polar namesakes.

Correspondence between trigonometric and bitrigonometric.

The correspondence, here, is always one-to-one. This may come as a surprise, since the bitrigonometric units $Q a a_{c}, Q i i_{c}$ are far more complex than their trigonometric counterparts $Q a_{c}, Q i_{c}$. To turn a trigonomeric bimould of a given type into a bitrigonometric one of the same type, the recipe is:

- to change $Q a_{c}$ resp. $Q i_{c}$ into $Q a a_{c}$ resp. Qiic.
- to change $c^{2 s}$ into $c^{2 s} \delta\left(\operatorname{lin}_{1}^{\boldsymbol{w}}\right) \ldots \delta\left(\operatorname{lin}_{2 s}^{\boldsymbol{w}}\right)$ with discrete diracs δ defined as in $\S 3.2$ (see after (3.33)) and with their arguments $l i n_{j}^{w}$ denoting suitable differences of v_{i} 's or sums of u_{i} 's, as the case may be. There are simple rules for picking, in each instance, the right inputs $\operatorname{lin}_{j}^{\boldsymbol{w}}$, which alone preserve the symmetries. We shall see examples in the last para of the present section, when explicating the passage from trigo to bitrigo for the primary bimoulds.

The secondary bimoulds $t a l_{c}^{\bullet} / t i l_{c}^{{ }_{c}^{\bullet}}$ and taal $l_{c}^{\bullet} / t i i l_{c}^{\bullet}$.
Of all the bimoulds constructed so far, these are the most important, ${ }^{66}$ but also the most difficult to construct and describe. We can do no more here than state the main facts:

- the secondary bimoulds $\mathfrak{e s j}_{\sigma}^{\circ}$ have no trigonometric specialisation, whether under $\mathfrak{E}=Q a_{c}$ or $\mathfrak{E}=Q i_{c}$.
- the secondary bimould $\mathfrak{e s s ^ { \bullet }}$ has no trigonometric specialisation under $\mathfrak{E}=$ $Q a_{c}$, but it has one under $\mathfrak{E}=Q i_{c}$, namely $t i l_{c}^{\bullet}$, with $t a l_{c}^{\bullet}$ as swappee.

In other words, while the polar pair par ${ }^{\bullet} /$ pir $^{\bullet}$ has no trigonometric, and therefore no bitrigonometric, counterpart, the polar pair pal ${ }^{\boldsymbol{\bullet}} /$ pil $^{\bullet}$ does possess exact, though far more complex analogues, namely tal ${ }_{c}^{\bullet} / t i l_{c}^{*}$ and taal ${ }_{c}^{\bullet} /$ tilil $_{c}{ }^{\boldsymbol{c}}$.

For illustration, the pair taal $_{c}^{\bullet} /$ tiil $_{c}^{\bullet}$ has been tabulated in $\S 12.10$ up to length $r=4$. The simpler pair $t a l_{c}^{\bullet} / t i l_{c}^{\bullet}$ can be deduced from it, simply by recalibrating the flexion units and by changing all δ 's into 1's.

Like $p i l^{\bullet}$ in the polar case, the bisymmetral $t i l_{c}^{\bullet}$ and its gari-inverse ritil ${ }_{c}^{\bullet}$ possess the important property of separativity: under the gepar transform ${ }^{67}$ they turn into polynomials of c and the $Q_{c}\left(u_{i}\right)$ (all strict u_{i}-sums vanish!),

[^34]with a particularly simple expression in the case of ritil $_{c}^{\bullet}$:
\[

$$
\begin{align*}
\text { (gepar.til })^{w_{1}, \ldots, w_{r}} & =\text { homog. polynomial in }\left(c, Q_{c}\left(u_{1}\right), \ldots, Q_{c}\left(u_{r}\right)\right) \tag{4.87}\\
(\text { gepar.ritil })^{w_{1}, \ldots, w_{r}} & =\sum_{0 \leq s \leq \frac{r}{2}} \frac{(-1)^{s} c^{2 s}}{2 s+1} \operatorname{sym}_{r-2 s}\left(Q_{c}\left(u_{1}\right), \ldots, Q_{c}\left(u_{r}\right)\right) \tag{4.88}
\end{align*}
$$
\]

with $\operatorname{sym}_{k}\left(x_{1}, \ldots, x_{r}\right)$ denoting the k-th symmetric function of the $x_{i} .{ }^{68}$

The primary bimoulds: trigonometric specialisation.

To explicate the primary bimoulds, we require six series of coefficients that are best defined by their generating series:

$$
\begin{array}{rlrl}
\alpha(t) & =\arctan (t) & & =\sum_{s \geq 0} \alpha_{n} t^{n+1}=t-\frac{1}{3} t^{3}+\frac{1}{5} t^{5}-\frac{1}{7} t^{7} \ldots \\
\beta(t) & =\tan (t) & & =\sum_{s \geq 0} \beta_{n} t^{n+1}=t+\frac{1}{3} t^{3}+\frac{2}{15} t^{5}+\frac{17}{315} t^{7} \ldots \\
\hat{\alpha}(t) & =\frac{t}{\left(1+t^{2}\right)^{1 / 2}}=t\left(\alpha^{\prime}(t)\right)^{\frac{1}{2}} & & =\sum_{s \geq 0} \hat{\alpha}_{n} t^{n+1}=t-\frac{1}{2} t^{3}+\frac{3}{8} t^{5}-\frac{5}{16} t^{7} \ldots \\
\hat{\beta}(t) & =\frac{t}{\cos (t)}=t\left(\beta^{\prime}(t)\right)^{\frac{1}{2}} & & =\sum_{s \geq 0} \hat{\beta}_{n} t^{n+1}=t+\frac{1}{2} t^{3}+\frac{5}{24} t^{5}+\frac{61}{720} t^{7} \ldots \\
\check{\alpha}(t) & =\frac{\arctan (t)}{\left(1+t^{2}\right)^{-1 / 2}}=\alpha(t)\left(\alpha^{\prime}(t)\right)^{-\frac{1}{2}} & =\sum_{s \geq 0} \check{\alpha}_{n} t^{n+1}=t+\frac{1}{6} t^{3}-\frac{11}{120} t^{5}+\frac{103}{1680} t^{7} \ldots \\
\check{\beta}(t) & =\sin (t)=\beta(t)\left(\beta^{\prime}(t)\right)^{-\frac{1}{2}} & =\sum_{s \geq 0} \check{\beta}_{n} t^{n+1}=t-\frac{1}{6} t^{3}+\frac{1}{120} t^{5}-\frac{1}{5040} t^{7} \ldots
\end{array}
$$

As in the polar case, the basic primary bimoulds $t a j_{c}^{\bullet}, t i j_{c}^{\bullet}$ (symmetral) derive from the secondary bimoulds $t a l_{c}^{\bullet}$, $t i l_{c}^{\bullet}$ (bisymmetral) under the slashtranform ${ }^{69}$ and are best expressed via their swappees. To the polar pair pac ${ }^{\bullet} /$ pic $^{\bullet}$, however, there now correspond two trigonometric pairs, namely $t a c_{c}^{\bullet}, t i c_{c}^{\bullet}$ and the "correction" $t a k_{c}^{\bullet}, t i k_{c}^{\bullet}$ which will be needed to reproduce all the exact relations between primary bimoulds that obtained in the polar

[^35]case. Let us begin with the definitions. We have:
\[

$$
\begin{aligned}
& \text { swap.taj }_{c}^{\boldsymbol{w}}=\sum_{s \geq 0} \sum_{\boldsymbol{w}^{\mathbf{0}} w_{n_{1}} \boldsymbol{w}^{1} \ldots w_{n_{s}} \boldsymbol{w}^{s}=\boldsymbol{w}} \mathrm{Ji}_{*}^{\boldsymbol{w}^{\mathbf{0}}} \mathrm{Qi}_{c}^{w_{n_{1}}} \mathrm{Ji}^{\boldsymbol{w}^{1}} \ldots \mathrm{Qi}_{c}^{w_{n_{s}}} \mathrm{Ji}^{\boldsymbol{w}^{\boldsymbol{s}}}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \operatorname{tic}_{c}^{\boldsymbol{w}}=\sum_{s \geq 0} \sum_{\boldsymbol{w}^{\mathbf{0}} w_{n_{1}} \boldsymbol{w}^{1} \ldots w_{n_{s}} \boldsymbol{w}^{s}=\boldsymbol{w}} \mathrm{Ci}^{\boldsymbol{w}^{\mathbf{0}}} \mathrm{Qi}_{c}^{w_{c}} \mathrm{Ci}^{\boldsymbol{w}^{1}} \ldots \mathrm{Qi}_{c}^{w_{n s}} \mathrm{Ci}^{\boldsymbol{w}^{s}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tik}_{c}^{\boldsymbol{w}}=\check{\beta}_{r} c^{r} \quad \text { if } \boldsymbol{w}=\left(w_{1}, \ldots, w_{r}\right)
\end{aligned}
$$

with auxiliary building blocks themselves defined by:

$$
\begin{array}{rlll}
\mathrm{Ja}^{w_{1}, \ldots, w_{r}} & =\mathrm{Ca}^{w_{1}, \ldots, w_{r}} & :=c^{r} & (\forall r \geq 0) \\
\mathrm{Ji}^{w_{1}, \ldots, w_{r}} & =\mathrm{Ci}^{w_{1}, \ldots, w_{r}} & :=c^{r} \beta_{r} & (\forall r \geq 0) \\
\mathrm{Ji}_{*}^{w_{1}, \ldots, w_{r}} & :=c^{r} \hat{\beta}_{r} & & (\forall r \geq 0) \\
\mathrm{Ka}^{w_{1}, \ldots, w_{r}} & :=c^{r} & & (\forall r \geq 0) \\
\mathrm{Ka}_{*}^{w_{1}, \ldots, w_{r}} & :=c^{r} & (\forall r \geq 1) & \text { but } \\
\mathrm{Ka}_{*}^{\emptyset}:=0
\end{array}
$$

Here are some of the main trigonometric identities that are exact transpositions of their polar prototypes:

$$
\begin{align*}
\text { slash.tal }_{c}^{\bullet} & =\text { taj }_{c}^{\bullet} \tag{4.89}\\
\text { slash.til }_{c}^{\bullet} & =\text { tij }_{c}^{\bullet} \tag{4.90}\\
\text { invgani.tac } & =\text { anti.swap.anti.pari.tic } c_{c}^{\bullet} \tag{4.91}\\
\text { invgani.tic } & =\text { anti.swap.anti.pari.tac } \tag{4.92}\\
\text { invgami.taj } j_{c}^{\bullet} & =\text { invgani.anti.taj }{ }_{c}^{\bullet} \tag{4.93}\\
\text { invgami.tij }{ }_{c}^{\bullet} & =\text { invgani.anti.tij } \tag{4.94}
\end{align*}
$$

And here is an example when polar identities:

$$
\begin{align*}
\text { invmu.paj }{ }^{\bullet} \stackrel{\text { trivially }}{=} \text { pari.anti.paj } \boldsymbol{j}^{\bullet} & =\text { invgani.pac } \tag{4.95}\\
\text { invmu.pij }{ }^{\bullet} \stackrel{\text { trivially }}{=} \text { pari.anti.pij } & =\text { invgani.pic } \tag{4.96}
\end{align*}
$$

require a corrective term in the trigonometric transposition:

$$
\begin{align*}
\text { invmu.taj} j_{c}^{\bullet} \stackrel{\text { trivially }}{=} \text { pari.anti.taj } j_{c}^{\bullet} & =\text { fragani }\left(\operatorname{tak}_{c}^{\bullet}, \operatorname{tac}_{c}^{\bullet}\right) \tag{4.97}\\
\text { invmu.tij}{ }_{c} \stackrel{\text { trivially }}{=} \text { pari.anti.tij} & =\text { fragani }\left(\operatorname{tik}_{c}^{\bullet}, \operatorname{tic}_{c}^{\bullet}\right) \tag{4.98}
\end{align*}
$$

The abbreviation fragani denotes of course the gani-fraction:

$$
\operatorname{fragani}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{gani}\left(A^{\bullet}, \operatorname{invgani} . B^{\bullet}\right)
$$

and the relations (4.97), (4.98) basically reflect the functional identities:

$$
\hat{\beta}=\check{\alpha} \circ \alpha \quad ; \quad \hat{\alpha}=\check{\beta} \circ \beta
$$

Here is another example. The important polar identity:

$$
\mathrm{pij}{ }^{\bullet}=\operatorname{expari} . \mathrm{Pi} \mathrm{i}^{\bullet}
$$

doesn't transpose to $\mathrm{tij}_{c}^{\bullet}=$ expari. $\mathrm{Qi}_{c}^{\bullet}$ but to the variant:

$$
{\mathrm{tij} \mathrm{j}_{c}^{\bullet}}_{\boldsymbol{\bullet}}=\operatorname{expari} . \mathrm{Qi}_{c}^{\bullet} \quad\left(\text { anti.swap.tij} \mathbf{j}^{\bullet}=\text { : astajj }\right)
$$

with a bimould $t i j j_{c}^{\bullet}$ best defined via its anti.swap-transform $\operatorname{astajj}_{c}^{\bullet}$, for which the following remarkable expansion holds:

$$
\operatorname{astajj}_{c}^{w_{1}, \ldots, w_{r}}=\sum_{0 \leq t \leq \frac{r}{2}}(-1)^{t} c^{2 t} \sum_{\boldsymbol{w}^{\mathbf{0}} w_{n_{1}} \boldsymbol{w}^{1} \ldots w_{n_{s}} \boldsymbol{w}^{s}=\boldsymbol{w}}^{s=r-2 t} \mathrm{Ta}^{m_{1}, m_{2} \ldots, m_{2 t}} Q a^{w_{n_{1}}} \ldots Q a^{w_{n_{s}}}
$$

with

$$
\left[m_{1}, m_{2}, \ldots, m_{2 t}\right]:=[1,2, \ldots, r] \doteq\left[n_{1}, n_{2}, \ldots, n_{s}\right]
$$

and

$$
\mathrm{Ta}^{m_{1}, m_{2} \ldots, m_{2 t}}:=\frac{m_{1}}{m_{2}} \frac{m_{3}}{m_{4}} \cdots \frac{m_{2 t-1}}{m_{2 t}}
$$

Primary bimoulds: bitrigonometric specialisation.

The bimoulds of the preceding para become:

$$
\begin{aligned}
& \text { swap.taaj } \boldsymbol{j}_{c}^{\boldsymbol{w}}=\sum_{s \geq 0} \sum_{\boldsymbol{w}^{\mathbf{0}} w_{n_{1}} \boldsymbol{w}^{1} \ldots w_{n_{s}} \boldsymbol{w}^{s}=\boldsymbol{w}} \mathrm{Jii}_{*}^{\boldsymbol{w}^{\mathbf{0}}} \mathrm{Qii}_{c}^{\boldsymbol{w}_{n_{1}}} \mathrm{Jii}^{\boldsymbol{w}^{1}} \ldots \mathrm{Qii}_{c}^{w_{n_{s}}} \mathrm{Jii}^{\boldsymbol{w}^{s}} \\
& \text { swap.tiij } \boldsymbol{w}_{c}^{\boldsymbol{w}}=\sum_{s \geq 0} \hat{\alpha}_{r-s} \sum_{\boldsymbol{w}^{\mathbf{0}} w_{w_{1}} \boldsymbol{w}^{1} \ldots w_{n_{s}} \boldsymbol{w}^{s}=\boldsymbol{w}} \mathrm{Jaa}^{\boldsymbol{w}^{\mathbf{0}}} \mathrm{Qaa}_{c}^{w_{n_{1}}} \mathrm{Jaa}^{\boldsymbol{w}^{1}} \ldots \mathrm{Qaa}_{c}^{w_{n_{s}} \mathrm{Jaa}^{\boldsymbol{w}^{\boldsymbol{s}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tiic}_{c}^{\boldsymbol{w}}=\sum_{s \geq 0} \sum_{\boldsymbol{w}^{\mathbf{0}} w_{n_{1}} \boldsymbol{w}^{1} \ldots w_{n_{s}} \boldsymbol{w}^{s}=\boldsymbol{w}} \mathrm{Cii}^{\boldsymbol{w}^{\mathbf{0}}} \mathrm{Qii}_{c}^{w_{n_{1}}} \mathrm{Cii}^{\boldsymbol{w}^{1}} \ldots \mathrm{Qii}_{c}^{w_{n_{s}}} \mathrm{Cii}^{\boldsymbol{w}^{s}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tiik}_{c}^{\boldsymbol{w}}=\check{\beta}_{r} c^{r} \delta\left(u_{1}\right) \ldots \delta\left(u_{r}\right) \quad \text { if } \boldsymbol{w}=\left(w_{1}, \ldots, w_{r}\right)
\end{aligned}
$$

with elementary building blocks defined by:

$$
\begin{array}{llll}
\mathrm{Caa}^{w_{1}, \ldots, w_{r}}=\mathrm{Jaa}^{w_{1}, \ldots, w_{r}} & :=c^{r} \delta\left(v_{1}\right) \ldots \delta\left(v_{r}\right) & (\forall r \geq 0) \\
\mathrm{Cii}^{w_{1}, \ldots, w_{r}}=\mathrm{Jii}^{w_{1}, \ldots, w_{r}} & :=\beta_{r} c^{r} \delta\left(u_{1}\right) \ldots \delta\left(u_{r}\right) & (\forall r \geq 0) \\
\mathrm{Jii}^{\emptyset}:=0 \quad, \quad \mathrm{Jii}_{1}^{w_{1}, \ldots, w_{r}} & :=\hat{\beta}_{r} c^{r} \delta\left(u_{1}\right) \ldots \delta\left(u_{r}\right) & (\forall r \geq 1) \\
\mathrm{Kaa}^{\emptyset}:=1 \quad, \quad \mathrm{Kaa}_{1}^{w_{1}, \ldots, w_{r}} & :=c^{r} \delta\left(v_{1}\right) \ldots \delta\left(v_{r}\right) & (\forall r \geq 1) \\
\mathrm{Kaa}_{*}^{\emptyset}:=0 \quad, \quad \mathrm{Kaa}_{*}^{w_{1}, \ldots, w_{r}} & :=c^{r} \delta\left(v_{1}\right) \ldots \delta\left(v_{r}\right) & (\forall r \geq 1)
\end{array}
$$

Remark 1: though there is one and only one 'proper' way of 'filling in' the trigonometric formulas with δ 's to get the bitrigonometric equivalents, the procedure is non-trivial. Indeed, the arguments inside the δ 's are not always single u_{i} 's or v_{i} 's but often non-trivial sums or differences. ${ }^{70}$
Remark 2: The even-odd factorisations (4.45),(4.46) have their exact counterpart here. Thus, in trigonometric mode:

$$
\begin{align*}
\text { til } & =\operatorname{gari}\left(t i l_{*}^{\bullet}, t i l_{* *}^{\bullet}\right)
\end{aligned} \quad \begin{aligned}
& \text { with } \text { til } l_{*}^{\bullet}, \text { til } l_{* *}^{\bullet} \text { symmetral } \tag{4.99}\\
& \text { tal } \tag{4.100}
\end{align*}=\operatorname{mu}\left(t a l_{\star \star}^{\bullet}, t a l_{\star}^{\bullet}\right) \quad \text { with tal } l_{\star}^{\bullet}, \text { tal } l_{* *}^{\bullet} \text { symmetral }
$$

with elementary factors $t a l_{\star}^{\bullet}, t i l_{*}^{\bullet}$ alongside non-elementary factors $t a l_{* *}^{\bullet}, t i l_{* *}^{\bullet}$ that carry only even-lengthed components.

4.6 Dimorphic isomorphisms in universal mode.

We can now enunciate the main statement of the whole section, namely that there exists a canonical isomorphism between straight dimorphic structures (algebras or groups) and their twisted counterparts. ${ }^{71}$ But before that, we must begin with the less remarkable isomorphisms which connect straight or twisted monomorphic structures ${ }^{72}$ and exchange only one symmetry with another.

All these results are summarised in the following diagrams

- with various groups in the upper lines,
- with various Lie algebras in the lower lines,
- with horizontal arrows that stand for (algebra or group) isomorphisms.
- with vertical arrows representing the natural exponential mapping of each Lie algebra into its group.

[^36]
Basic diagrams of monomorphic transport.

| $\mathrm{MU}^{\text {as }}$ | $\xrightarrow{\text { ganit }\left(\mathbf{e v a}^{\text {® }} \text {) }\right.}$ | $\mathrm{MU}^{\text {es }}$ | \|| | $\mathrm{MU}^{\text {as }}$ | ganit(pari.anti.es*) | $\mathrm{MU}^{\text {es }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \uparrow expmu | | \uparrow expmu | \|| | \uparrow expmu | | \uparrow expmu |
| $\mathrm{LU}^{\text {al }}$ | $\xrightarrow{\text { ganit (eve }}$) | $\mathrm{LU}^{\text {el }}$ | , | $\mathrm{LU}^{\text {al }}$ | ganit(pari.anti.es*) | $\mathrm{LU}^{\text {el }}$ |
| $\mathrm{MU}^{\text {as }}$ | $\xrightarrow{\text { gamit }\left(e_{0}{ }^{\text {a }} \text {) }\right.}$ | $\mathrm{MU}^{\text {es }}$ | \|| | $\mathrm{MU}^{\text {as }}$ | $\underset{\text { gamit(pari.es**) }}{\longleftarrow}$ | $\mathrm{MU}^{\text {es }}$ |
| \uparrow expmu | | \uparrow expmu | \|| | \uparrow expmu | | \uparrow expmu |
| $\mathrm{LU}^{\text {al }}$ | $\xrightarrow{\text { gamit (e }}{ }_{\text {e }}{ }^{\text {a }}$) | $L U U^{\text {el }}$ | | $\mathrm{LU}^{\text {al }}$ | $\underline{\text { gamit(pari.cs* }}$ | $L U U^{\text {el }}$ |

Basic diagram of dimorphic transport.

$$
\begin{aligned}
& \text { logari } \downarrow \uparrow \text { expari logari } \downarrow \uparrow \text { expari }
\end{aligned}
$$

Dimorphic subsymmetries.

The subsymmetries listed below are by no means the only ones ${ }^{73}$ but they are the ones that matter most and also (whether coincidentally or not) the only ones that are properly dimorphic. ${ }^{74}$

```
\(A^{\bullet} \in \mathrm{ARI}^{\text {allal }} \Longrightarrow A^{\bullet}=\) neg. \(A^{\bullet}=\) push. \(A^{\bullet}\)
\(A^{\bullet} \in \mathrm{GARI} \mathrm{Ias}^{\text {as }} \Longrightarrow A^{\bullet}=\) neg. \(A^{\bullet}=\) gush. \(A^{\bullet}\)
\(A^{\bullet} \in \operatorname{ARI}^{\text {ala } / \mathfrak{o l}} \Longrightarrow A^{\bullet}=\mathfrak{O}\)-neg. \(A^{\bullet}=\mathfrak{O}\)-push. \(A^{\bullet}\)
\(A^{\bullet} \in \operatorname{GARI}{ }^{\text {as } / \underline{\mathfrak{o s}}} \Longrightarrow A^{\bullet}=\mathfrak{O}\)-geg. \(\mathrm{A}^{\bullet}=\mathfrak{O}\)-gush. \(A^{\bullet}\)
```

As noted earlier, \mathfrak{O}-neg-invariance is expressible in terms of an elementary primary bimould $\mathfrak{e s ^ { \bullet }}:=$ slash. $\mathfrak{e s s}^{\bullet}$, and \mathfrak{O}-push-invariance also is equivalent to the much simpler senary relation.

4.7 Dimorphic isomorphisms in polar mode.

Diagrams of monomorphic transport.

For the specialisation $\mathfrak{E}=\mathrm{Pa}$, the first universal diagrams of monomorphic

[^37]transport become :

$\mathrm{MU}^{\text {as }}$	$\left.\xrightarrow{\operatorname{ganit}(\mathrm{pac} \bullet}{ }^{\bullet}\right)$	$\mathrm{MU}^{\text {us }}$	$\mathrm{MU}^{\text {as }}$	ganit(pari.anti.paj•)	$\mathrm{MU}^{\text {us }}$
\uparrow expmu		\uparrow expmu	\uparrow expmu		$\uparrow \operatorname{expmu}$
$\mathrm{LU}^{\text {al }}$	$\left.\xrightarrow{\operatorname{ganit}(\mathrm{pac} \bullet}{ }^{\bullet}\right)$	$L U^{u l}$	$L^{\text {al }}$	$\operatorname{ganit}(\text { pari.anti.paj} \bullet) ~$	$L^{\text {ul }}$

For the specialisation $\mathfrak{E}=\mathrm{Pi}$, they become :

$\mathrm{MU}^{\text {as }}$	$\xrightarrow{\text { ganit(pic*) }}$	$M U^{\text {is }}$	$\mathrm{MU}^{\text {as }}$	ganit(pari.anti.pij ${ }^{\bullet}$)	$M U^{\text {is }}$
\uparrow expmu		\uparrow expmu	\uparrow expmu		\uparrow expmu
$\mathrm{LU}^{\text {al }}$	$\xrightarrow{\text { ganit(pic*) }}$	$L^{\text {il }}$	$\mathrm{LU}^{\text {al }}$	ganit(pari.anti.pij*)	$\mathrm{LU}^{\text {il }}$

Diagrams of dimorphic transport.

For the specialisation $(\mathfrak{E}, \mathfrak{O})=(\mathrm{Pa}, \mathrm{Pi})$, the diagram of dimorphic transport becomes:

$$
\begin{aligned}
& \text { logari } \downarrow \uparrow \text { expari logari } \downarrow \uparrow \text { expari }
\end{aligned}
$$

and the dimorphic subsymmetries become:

$$
\begin{array}{ll}
A_{\bullet}^{\bullet} \in \mathrm{ARI}^{\mathrm{al} / \mathrm{il}} & \Longrightarrow A^{\bullet}=\text { negu. } A^{\bullet}
\end{array}=\text { pushu. } A^{\bullet}
$$

For the 'conjugate' specialisation $(\mathfrak{E}, \mathfrak{O})=(\mathrm{Pi}, \mathrm{Pa})$, the diagram becomes:

$$
\begin{aligned}
& \text { GARI } \underline{\text { as } / \text { as }} \xrightarrow{\text { adgari(pil }}{ }^{\bullet} \text {) } \quad \text { GARI } \underline{\text { as } / \underline{\text { ss }}} \\
& \text { logari } \downarrow \uparrow \text { expari logari } \downarrow \uparrow \text { expari }
\end{aligned}
$$

and the dimorphic subsymmetries become:

$$
\begin{array}{ll}
A^{\bullet} \in \mathrm{ARI}^{\text {al}} / \mathrm{ull}^{\text {as }} / A^{\bullet} & \Longrightarrow \operatorname{negi.}^{\bullet}=\text { pushi. } A^{\bullet} \\
A^{\bullet} \in \mathrm{GARI}^{\text {as }} & \Longrightarrow A^{\bullet}=\text { gegi. } A^{\bullet}=\text { gushi. } A^{\bullet}
\end{array}
$$

The matter of 'entireness'.

A few comments are in order here, regarding the preservation, or otherwise,
of the entire character of bimoulds. ${ }^{75}$
(i) The simple symmetries $a l$ and as are compatible with entireness, and so are the double symmetries $\underline{a l} / \underline{a l}$ and $\underline{a s} / \underline{a s}$.
(ii) The twisted symmetries $i l$ and $i s$ are compatible with entireness, but $u l$ and $u s$ are not.
(iii) However, even in second monomorphic diagram, when all four structures contain entire bimoulds and the isomorphism $\operatorname{ganit}\left(\operatorname{pic}^{\bullet}\right)$ might conceivably preserve entireness, it does not. The same holds when $\operatorname{ganit}\left(\right.$ pic $\left.^{\bullet}\right)$ is replaced by $\operatorname{gamit}\left(p i c^{\bullet}\right)$.
(iv) The (important) twisted double symmetries $\underline{a l} / \underline{i l}$ and $\underline{a s} / \underline{i s}$ are compatible with entireness, but the (less important) double symmetries $\underline{a l} / \underline{u l}$ and $\underline{a s} / \underline{u s}$ are not.
(v) However, even in the first dimorphic diagram, where all four structures do contain entire bimoulds and when the isomorphism adari (pal•) might conceivably preserve entireness, it does not.
(vi) The dimorphic subsymmetries induced by $\underline{a l} / \underline{i}$ and $\underline{a s} / \underline{i s}$ (i.e. neguand pushu-invariance, resp. gegu- and gushu-invariance), despite the massive involvement of 'poles', are compatible with entireness, whereas the dimorphic subsymmetries induced by $\underline{a l} / \underline{u l}$ and $\underline{\text { as }} / \underline{u s}$ (i.e. negi- and pushi- or gushi-invariance), are not. For the first dimorphic subsymmetries (of the 'neg' sort), both the compatibility and incompatibility may be checked on the formulas:

$$
\begin{align*}
\text { negu. } B^{\bullet} & =\text { neg.adari }(\text { paj } \bullet) \cdot B^{\bullet}=\operatorname{adari}\left(\text { pari.paj } \boldsymbol{\bullet}^{\bullet}\right) \text { neg. } B^{\bullet} \tag{4.101}\\
\text { negi. } B^{\bullet} & \left.=\text { neg.adari(pij }{ }^{\bullet}\right) \cdot B^{\bullet}=\operatorname{adari}\left(\text { pari.pij }{ }^{\bullet}\right) \text { neg. } B^{\bullet} \tag{4.102}
\end{align*}
$$

For the first dimorphic subsymmetries (of the 'push'sort), the compatibility resp. incompatibility may be checked on the senary relations:

$$
\begin{align*}
\text { teru. } B^{\bullet} & =\text { push.mantar.teru.mantar. } B^{\bullet} \tag{4.103}\\
\text { teri. } B^{\bullet} & =\text { push.mantar.teri.mantar. } B^{\bullet} \tag{4.104}
\end{align*}
$$

which express pushu- resp. pushi-invariance in much simpler form, and involve the elementary, linear operators:

$$
\begin{array}{r}
C^{\bullet}=\operatorname{teru} . B^{\bullet} \Longleftrightarrow C^{w_{1}, \ldots, w_{r}}=B^{w_{1}, \ldots, w_{r}}-B^{w_{1}, \ldots, w_{r-1}} \mathrm{~Pa}^{w_{r}}+B^{\left.w_{1}, \ldots, w_{r-1}\right\rceil} \mathrm{Pa}^{\left\lfloor w_{r}\right.} \\
C^{\bullet}=\operatorname{teri} . B^{\bullet}
\end{array} \Longleftrightarrow C^{w_{1}, \ldots, w_{r}}=B^{w_{1}, \ldots, w_{r}}-B^{w_{1}, \ldots, w_{r-1}} \mathrm{Pi}^{w_{r}}+B^{\left.w_{1}, \ldots, w_{r-1}\right\rceil} \mathrm{Pi}^{\left\lfloor w_{r}\right.} .
$$

[^38]
The six entire structures.

All the above remarks still hold, mutatis mutandis, when we replace the polar symmetries by their trigonometric counterparts (to be precisely defined in $\S 11.4)$. Thus, whereas for the six fundamental structures we have the following commutative diagram, with all horizontal arrows denoting either group or algebra isomorphisms:

$$
\begin{aligned}
& \uparrow \text { expari } \uparrow \text { expari } \uparrow \text { expari } \uparrow \text { expari }
\end{aligned}
$$

the picture changes when we add the requirement of entireness: the straight and twisted structures are no longer isomorphic ${ }^{76}$ and only the middling isomorphisms $\operatorname{adari}\left(Z a g_{I}^{*}\right)$ and $\operatorname{adgari}\left(Z a g_{I}^{*}\right)$ between the twisted structures (polar and trigonometric) survives, as pictured in the following diagram:

$$
\begin{aligned}
& \uparrow \text { expari } \uparrow \text { expari } \uparrow \text { expari } \uparrow \text { expari }
\end{aligned}
$$

The six entire and v-constant structures.

This applies in particular to the six important substructures below, whose bimoulds

- are power series of the upper indices u_{i}
- are constant in the lower indices v_{i}.

Here is the diagram, with self-explanatory notations:

The projector cut:

$$
(\text { cut. } M)^{\binom{u_{1}}{v_{1}, \ldots, u_{r}, v_{r}}}:=M^{\left(\begin{array}{c}
u_{1}, \ldots, u_{r} \tag{4.105}\\
0 \\
0
\end{array}, \ldots, 0\right.} 0
$$

clearly defines epimorphisms of
$A R I^{\underline{\underline{\underline{a l}} / \text { al }}}, G A R I^{\text {as } / \text { as }}, A R I^{\text {all } / \text { il }}, G A R I^{\text {as } / \text { is }}, A R I^{\underline{\underline{\underline{a l}} / \text { iil }}}, G A R I^{\text {as } / \text { is }}$

[^39]respectively onto
ALAL , ASAS , ALIL , ASIS , ALIIL , ASIIS
Now, all the bimoulds associated with colourless multizetas, happen to have lower indices v_{i} that are all $=0$ as elements of \mathbb{Q} / \mathbb{Z}. We shall take advantage of the above property of cut to identify these bimoulds with their cuttees, i.e. to view them as \boldsymbol{v}-constant.

Central corrections.

For structures with a twisted double symmetry, instead of demanding that the exact swappee should display the second symmetry, we often relax the condition and simply demand that the swappee corrected ${ }^{77}$ by a suitable central element should display that symmetry. Thus, under these relaxed conditions:

$$
\begin{aligned}
& A^{\bullet} \in \mathrm{ARI}^{\text {al } / \mathrm{il}} \Leftrightarrow\left\{A^{\bullet} \in \text { alternal } ;\right. \\
&\left.S_{\bullet}^{\bullet} \in \mathrm{GARI}^{\mathrm{al}} / \mathrm{swap}\left(A^{\bullet}+C_{A}^{\bullet}\right) \in \text { alternil }\right\} \\
& \Leftrightarrow\left\{S^{\bullet} \in \text { symmetral } ;\right.\left.\operatorname{swap}\left(\operatorname{gari}\left(A^{\bullet}, C_{S}^{\bullet}\right)\right) \in \text { symmetril }\right\}
\end{aligned}
$$

with $C_{A}^{\bullet} \in \operatorname{Center}(\mathrm{ARI})$ and $C_{S}^{\bullet} \in \operatorname{Center}(\mathrm{GARI})$.
The sets thus defined are still algebras or groups, albeit larger ones. In the case of the \boldsymbol{v}-constant family $A L I L, A S I S, A L I I L, A S I I S$, we shall always assume this relaxed definition for without the central corrections these sets would be empty. ${ }^{78}$ Besides, the bimoulds Zag ${ }^{\bullet}$ associated with the (coloured or uncoloured) multizetas also require a central correction to display their double symmetry.

5 Singulators, singulands, singulates.

At this point, we already have a valuable tool at our disposal, namely the operator adari $\left(\right.$ pal $\left.{ }^{\bullet}\right)$, which acts as an algebra isomorphism and respects double symmetries. What it doesn't do, though, is respect entireness: when applied to entire bimoulds of type $\underline{a l} / \underline{a l}$, it produces bimoulds that have the right type, in this case $\underline{a l} / \underline{i l}$, but with singularities at the origin. To remove these without destroying the double symmetry $\underline{a l} / \underline{i} \underline{l}$, we require a universal machinery capable, roughly speaking, of producing all possible singularities of type $\underline{a l} / \underline{i l}$. Such a machinery is at hand. It consists of singulators, singulands, and singulates. The singulators are quite complex linear operators. The singulands are arbitrary entire bimoulds subject only to simple parity

[^40]constraints. Lastly, when acting on singulands, the singulators turn them into singulates, which are bimoulds of type $\underline{a l} / \underline{i l}$ and with singularities at the origin that are, so to speak, 'made to order', and capable of neutralising, by subtraction, any given, unwanted singularity of type $\underline{a l} / \underline{i l}$.

After some heuristics (destined to divest our construction of its 'contrived' character), we shall examine the singulators, first in universal mode, then in the relevant polar specialisation.

5.1 Some heuristics. Double symmetries and imparity.

Analytical definition of sen.

Let us first introduce a mapping sen : $\left(A^{\bullet}, S^{\bullet}\right) \mapsto B^{\bullet}$ that is:

- linear in $S^{\bullet} \in B I M U_{1}$
- quadrilinear in $A^{\bullet} \in B I M U^{*}$
- which turns group-like properties of A^{\bullet} into algebra-like properties of B^{\bullet}
- whose action strongly depends on the parity properties of A^{\bullet}, S^{\bullet}.

Here goes the definition:

$$
\begin{gather*}
B^{\bullet}=\operatorname{sen}\left(A^{\bullet}\right) . S^{\bullet} \Leftrightarrow 2 B^{\boldsymbol{w}}=\sum_{w_{i} \boldsymbol{w}^{1} \boldsymbol{w}^{2} w_{j} \boldsymbol{w}^{3} \boldsymbol{w}^{4}=} A_{1}^{\boldsymbol{w}^{\mathbf{c}}=} A_{2}^{\left.\boldsymbol{w}^{2}\right\rfloor} S^{\left[w_{j}\right\rceil} A_{3}^{\left[\boldsymbol{w}^{\mathbf{3}}\right.} A_{4}^{\boldsymbol{w}^{4}} \tag{5.1}\\
\text { with } \quad \boldsymbol{w}^{*}=\operatorname{augment}(\boldsymbol{w}) \quad \text { and } \\
A_{1}^{\bullet}=\text { anti. } A^{\bullet}, A_{2}^{\bullet}=A^{\bullet}, A_{3}^{\bullet}=\text { pari.anti. } A^{\bullet}, A_{4}^{\bullet}=\text { pari. } A^{\bullet}
\end{gather*}
$$

with the augment \boldsymbol{w}^{*} defined in the usual way:

$$
\boldsymbol{w}=\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}} \quad \Rightarrow \quad \boldsymbol{w}^{*}=\binom{\left[u_{0}\right], u_{1}, \ldots, u_{r}}{\left[v_{0}\right], v_{1}, \ldots, v_{r}}
$$

with the redundant additional component w_{0} :

$$
u_{0}:=-u_{1}-u_{2} \cdots-u_{r} \quad, \quad v_{0}=0
$$

and with the circular summation rule amounting to the double summation

$$
\begin{equation*}
\sum_{0 \leq i \leq r} \sum_{w_{i} w^{1} w^{2} w_{j} w^{3} w^{4}=w_{i} w_{i+1} \ldots w_{r} w_{0} w_{1} \ldots w_{i-1}} \tag{5.2}
\end{equation*}
$$

Main properties of sen.
Let $B^{\bullet}:=\operatorname{sen}\left(A^{\bullet}\right) . S^{\bullet}$.
$\boldsymbol{P}_{\mathbf{1}}:$ If r is even and $S^{-w_{1}}=S^{w_{1}}$ then $B^{w_{1}, \ldots, w_{r}}=0$.
$\boldsymbol{P}_{\mathbf{2}}:$ If r is odd and $S^{-w_{1}}=-S^{w_{1}}$ then $B^{w_{1}, \ldots, w_{r}}=0$.
$\boldsymbol{P}_{\mathbf{3}}$: If neg. $A^{\bullet}=$ pari. A^{\bullet}, then sen essentially commutes with swap:

$$
\begin{align*}
\operatorname{swap} . \operatorname{sen}\left(A^{\bullet}\right) . S^{\bullet} & \left.=- \text { pari.sen(swap. } A^{\bullet}\right) \cdot \text { swap. } S^{\bullet} \tag{5.3}\\
& =+\operatorname{sen}\left(\text { pari.swap. } A^{\bullet}\right) . \text { swap. } S^{\bullet} \tag{5.4}
\end{align*}
$$

$\boldsymbol{P}_{\mathbf{4}}$: If $A^{\boldsymbol{\bullet}}$ is gantar-invariant, then B^{\bullet} is mantar-invariant. ${ }^{79}$
\boldsymbol{P}_{5} : If A^{\bullet} is symmetral, then B^{\bullet} is alternal.
$\boldsymbol{P}_{\mathbf{6}}:$ If neg. $A^{\bullet}=$ pari. A^{\bullet} and A^{\bullet} is bisymmetral, then B^{\bullet} is bialternal.
Compact definition of sen.
We may note that, for A^{\bullet} symmetral, the analytical definition (5.1) of $\operatorname{sen}\left(A^{\bullet}\right) \cdot S^{\bullet}$ can be rewritten in compact form as:

$$
\begin{equation*}
2 \operatorname{sen}\left(A^{\bullet}\right) \cdot S^{\bullet}=\text { pushinvar.mut }\left(\text { pari. } A^{\bullet}\right) \cdot \operatorname{garit}\left(A^{\bullet}\right) \cdot S^{\bullet} \quad\left(\forall A^{\bullet} \in a s\right) \tag{5.5}
\end{equation*}
$$

- with the linear mapping pushinvar of $\oplus_{r} B I M U_{r}$ onto $\oplus_{r} B I M U_{r}^{\text {push }}$:

$$
\text { pushinvar. } M^{\bullet}:=\sum_{0 \leq k \leq r} \operatorname{push}^{k} . M^{\bullet} \quad \text { if } M^{\bullet} \in \operatorname{BIMU}_{\mathrm{r}}
$$

- with the anti-action $\operatorname{mut}\left(A^{\bullet}\right)$ of $M U$ on BIMU:

$$
\begin{equation*}
\operatorname{mut}\left(A^{\bullet}\right) \cdot M^{\bullet}:=\operatorname{mu}\left(A_{*}^{\bullet}, M^{\bullet}, A^{\bullet}\right) \quad \text { with } \quad A_{*}^{\bullet}=\operatorname{invmu}\left(A^{\bullet}\right) \tag{5.6}
\end{equation*}
$$

- with the anti-action $\operatorname{garit}\left(A^{\bullet}\right)$ of $G A R I$ on BIMU, which is given by 2.37 but simplifies when M^{\bullet} is of length 1 :

$$
\begin{equation*}
\left(\operatorname{garit}\left(A^{\bullet}\right) \cdot M\right)^{\boldsymbol{w}}=\sum_{\boldsymbol{w}^{1} w_{2} \boldsymbol{w}^{3}=\boldsymbol{w}} A^{\left.\boldsymbol{w}^{1}\right\rfloor} M^{\left\lceil w_{2}\right\rceil} A_{*}^{\left\lfloor\boldsymbol{w}^{3}\right.} \quad \text { if } M^{\bullet} \in \mathrm{BIMU}_{1} \tag{5.7}
\end{equation*}
$$

(Pay attention to the position of A_{*}^{\bullet} on the left in the definition of $\operatorname{mut}\left(A^{\bullet}\right)$ and on the right in that of $\operatorname{garit}\left(A^{\bullet}\right)$. Nonetheless, we have anti-actions in both cases.)

5.2 Universal singulators $\operatorname{senk}\left(\right.$ ess $\left.^{\circ}\right)$ and $\operatorname{seng}\left(e 5^{\circ}\right)$.

Let \mathfrak{E} be the universal (exact) flexion unit, and let $\mathfrak{e s}^{\bullet}$ (resp. $\mathfrak{e s s}{ }^{\circ}$) be the primary (resp. secondary) bimould attached to \mathfrak{E}. Further, let us set:

$$
\begin{align*}
\text { neginvar } & :=\mathrm{id}+\text { neg } \tag{5.8}\\
\text { pushinvar } & :=\sum_{0 \leq r}\left(\mathrm{id}+\mathrm{push}+\text { push }^{2}+\ldots \text { push }^{r}\right) \cdot \text { leng }_{r} \tag{5.9}
\end{align*}
$$

[^41](with leng ${ }_{r}$ denoting the projector from BIMU onto $B I M U_{r}$) and let us define mut as in (5.6) above, and ganit, garit, adari ${ }^{80}$ as in $\S 2.2$.

One can then prove that the following two identities define one and the same operator $\operatorname{senk}\left(\mathrm{ess}^{\bullet}\right)$:

$$
\begin{align*}
& \left.\left.2 \operatorname{senk}\left(\mathfrak{e s s}{ }^{\bullet}\right) \cdot S^{\bullet}:=\text { neginvar.(adari(} \operatorname{ess}^{\bullet}\right)\right)^{-1} \cdot \operatorname{mut}\left(\mathfrak{e s}^{\bullet}\right) \cdot S^{\bullet} \tag{5.10}\\
& \left.2 \operatorname{senk}\left(\mathrm{es5}^{\boldsymbol{\bullet}}\right) \cdot S^{\bullet}:=\text { pushinvar.mut(neg.e55}\right) \cdot g a r i t\left(\mathfrak{e s 5}^{\bullet}\right) \cdot S^{\bullet} \tag{5.11}
\end{align*}
$$

and, likewise, that the following two identities define one and the same operator $\operatorname{seng}\left(\right.$ es $\left.^{\circ}\right)$:

$$
\begin{align*}
& 2 \text { seng }\left(\mathfrak{e s}^{\bullet}\right) \cdot S^{\bullet}:=\left(\mathrm{id}+\operatorname{neg} \cdot \operatorname{adari}\left(\mathfrak{e s}^{\bullet}\right)\right) \cdot \operatorname{mut}\left(\mathfrak{e s}^{\bullet}\right) \cdot S^{\bullet} \tag{5.12}\\
& 2 \operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right) \cdot S^{\bullet}:=\operatorname{mut}\left(\mathfrak{e s}^{\bullet}\right) \cdot S^{\bullet}+\operatorname{garit}\left(\mathfrak{e s}^{\bullet}\right) \text { neg. } S^{\bullet} \\
& -\operatorname{arit}\left(\text { garit }\left(\mathfrak{e s}^{\bullet}\right) \cdot \operatorname{neg} \cdot S^{\bullet}\right) \cdot \operatorname{logari}\left(\mathfrak{e s}^{\bullet}\right) \tag{5.13}
\end{align*}
$$

The next identity shows how the two basic singulators $\operatorname{senk}\left(\mathfrak{e s s}^{\bullet}\right)$ and $\operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right)$ are related; and the other two describe their near-commutation with the basic involution swap.

$$
\begin{align*}
\operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right) & \equiv \operatorname{adari}\left(\mathfrak{e s s}^{\bullet}\right) \cdot \operatorname{senk}\left(\mathfrak{e s s}^{\bullet}\right) \tag{5.14}\\
\text { swap.senk }\left(\mathfrak{e s s}^{\bullet}\right) & \equiv \operatorname{senk}(\text { neg.swap.esss}) \cdot \text { swap } \tag{5.15}\\
\text { swap.seng }\left(\mathfrak{e s}^{\bullet}\right) & \left.\equiv \text { ganit(syap.ef } \mathfrak{z}^{\bullet}\right) \cdot \operatorname{seng}\left(\text { syap.es }{ }^{\bullet}\right) \text {.neg.swap } \tag{5.16}
\end{align*}
$$

Thus, basically, under the impact of the involution swap, the inner argument of the singulators also undergoes an involution, namely neg.swap in the case of senk, and syap in the case of seng.

Without going into tedious details, let us point out that most of the properties listed above follow:
(i) from the the properties of sen (see §4.1)
(ii) from the fact that $\operatorname{senk}\left(\underset{\operatorname{es5}}{ }{ }^{\bullet}\right) . S^{\bullet}$, as defined by (5.11), is none other than $\operatorname{sen}\left(\mathrm{ess}^{\bullet}\right) \cdot S^{\bullet}$, as defined by (5.1) or (5.5). ${ }^{81}$
(iii) from the following identity, valid for any push-invariant bimould M^{\bullet} :

$$
\begin{equation*}
\text { swap.adari(} \left.\left.\mathfrak{e s s}^{\bullet}\right) \cdot M^{\bullet} \equiv \operatorname{ganit}\left(\text { syap. } \mathfrak{e z}^{\bullet}\right) \text {.adari(swap.ess }{ }^{\bullet}\right) \text {.swap. } M^{\bullet} \tag{5.17}
\end{equation*}
$$

5.3 Properties of the universal singulators.

The singulators $\operatorname{senk}\left(\mathfrak{e s s}^{\circ}\right)$ and $\operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right)$ do not yield remarkable results when acting on general bimoulds of BIMU, but they turn bimoulds of $B I M U_{1}$

[^42]into dimorphic bimoulds of type $\underline{a l} / \underline{a l}$ and $\underline{a l} / \underline{\mathfrak{o}}$ respectively. Thus:
\[

$$
\begin{align*}
& \operatorname{senk}\left(\operatorname{ess}^{\bullet}\right) \cdot S^{\bullet} \in \operatorname{ARI}^{\text {alal/al }} \quad \forall S^{\bullet} \in \operatorname{BIMU}_{1} \tag{5.18}\\
& \operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right) \cdot S^{\bullet} \in \mathrm{ARI}^{\mathrm{al} / \mathrm{ol}} \quad \forall S^{\bullet} \in \mathrm{BIMU}_{1} \tag{5.19}
\end{align*}
$$
\]

For $\operatorname{senk}\left(\mathrm{ess}^{\bullet}\right)$, this follows from $\operatorname{senk}\left(\mathfrak{e s s}^{\bullet}\right)=\operatorname{sen}\left(\mathrm{ess}^{\bullet}\right)$ (because $\mathfrak{e s s}^{\circ}$ is symmetral, indeed bisymmetral) and then from (5.15). For $\operatorname{seng}\left(\operatorname{es}^{\bullet}\right)$, this follows from (5.14) or (5.16), on choice.

These two operators, however, are in a sense too 'global'. To really generate all possible 'dimorphic derivatives' of bimoulds S • in $B I M U_{1}$, we need to split $\operatorname{senk}\left(\operatorname{ess}^{\bullet}\right)$ and $\operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right)$ into separate components with the help of the projectors leng ${ }_{r}$ of BIMU onto $B I M U_{r}$.

$$
\begin{align*}
\operatorname{senk}\left(\mathfrak{e s s}^{\bullet}\right) & =\sum_{1 \leq r} \operatorname{senk}_{r}\left(\mathfrak{e s s}^{\bullet}\right) \tag{5.20}\\
\operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right) & =\sum_{1 \leq r} \operatorname{seng}_{r}\left(\mathfrak{e s s}^{\bullet}\right) \quad\left(\text { mark }: \text { first } \mathfrak{e s}^{\bullet}, \text { then } \mathfrak{e s s}^{\bullet}!\right) \tag{5.21}
\end{align*}
$$

with

$$
\begin{align*}
\operatorname{senk}_{r}\left(\mathfrak{e s s}^{\bullet}\right): & \left.=\operatorname{leng}_{r} \cdot \operatorname{senk}^{\left(e_{5 s}\right.}{ }^{\bullet}\right) \tag{5.22}\\
\operatorname{seng}_{r}\left(\mathfrak{e s s}^{\bullet}\right) & =\operatorname{adari}\left(\mathfrak{e s s}^{\bullet}\right) \cdot \operatorname{senk}_{r}\left(\mathfrak{e s s}^{\bullet}\right) \tag{5.23}\\
& =\operatorname{adari}\left(\mathfrak{e s s}^{\bullet}\right) \cdot \operatorname{leng}_{r} \cdot \operatorname{adari}\left(\mathfrak{e s s}^{\bullet}\right)^{-1} \cdot \operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right) \tag{5.24}
\end{align*}
$$

Although the decomposition runs on different lines ${ }^{82}$ in both cases, the resulting components share the same dimorphy-inducing properties:

$$
\begin{align*}
& \operatorname{senk}_{r}\left(\operatorname{ess}^{\bullet}\right) . S^{\bullet} \in \mathrm{ARI}^{\text {al } / \underline{\text { al }}} \cap \mathrm{BIMU}_{r} \quad \forall S^{\bullet} \in \mathrm{BIMU}_{1} \tag{5.25}\\
& \operatorname{seng}_{r}\left(\text { ess }^{\bullet}\right) \cdot S^{\bullet} \in \operatorname{ARI}^{\text {al } / o l} \cap \operatorname{BIMU}_{r \leq} \quad \forall S^{\bullet} \in \operatorname{BIMU}_{1} \tag{5.26}
\end{align*}
$$

with

$$
\begin{equation*}
\operatorname{BIMU}_{r \leq}:=\oplus_{r \leq r^{\prime}} \operatorname{BIMU}_{r^{\prime}} \tag{5.27}
\end{equation*}
$$

But beware: the r-indexation is slightly confusing since, as an operator acting on $B I M U_{1}, \operatorname{senk}_{r}\left(\mathfrak{e s s}^{\bullet}\right)$ is $(r-1)$-linear in \mathfrak{E}. Moreover, $\mathfrak{E}^{w_{1}}$ is odd in w_{1}. As a consequence, $\operatorname{senk}_{r}\left(\right.$ ess $\left.^{\bullet}\right) . S^{\bullet}$ and therefore $\operatorname{seng}_{r}\left(\operatorname{ess}^{\bullet}\right) . S^{\bullet}$ automatically vanish in exactly two cases: when $S^{w_{1}}$ and r are both even or both odd. ${ }^{83}$
Dimorphic elements in the monogenous algebra Flex(\mathfrak{E}).
The above results also apply, of course, within Flex (\mathfrak{E}), but since the only

[^43]singuland in Flex $_{1}(\mathfrak{E})$ is, up to scalar multiplication, the unit \mathfrak{E}^{\bullet}, which is odd, we only get bialternal singulates in Flex $_{2 r}(\mathfrak{E})$. Moreover, the singulate in Flex $_{2}(\mathfrak{E})$ vanishes, because it essentially reduces to oddari $\left(\mathfrak{E}^{\bullet}, \mathfrak{E}^{\bullet}\right)$ (see 2.80). To sum up:
\[

$$
\begin{align*}
\operatorname{senk}_{2 r-1}\left(\mathfrak{e s s}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet} & =0 \quad \forall r \quad ; \quad \operatorname{senk}_{2}\left(\mathfrak{e s s}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet}=0 \tag{5.28}\\
\operatorname{senk}_{2 r}\left(\mathfrak{e s s}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet} & \in \operatorname{ARI}^{1 / 2 / \underline{a l}} \cap \operatorname{Flex}_{2 r}(\mathfrak{E}) \text { and } \neq 0 \quad \text { if } r \geq 2 \tag{5.29}
\end{align*}
$$
\]

5.4 Polar singulators: description and properties.

There is little point in considering the unit specialisation $\mathfrak{E} \mapsto P i$, since it leads to the symmetry types $\underline{a l} / \underline{u l}$ and $\underline{a s} / \underline{u s}$ which, as already pointed out, are not compatible with entireness. That leaves the specialisation $\mathfrak{E} \mapsto P a$ and the symmetry types $\underline{a l} / \underline{i l}$ and $\underline{a s} / \underline{i s}$ that go with it. For the bisymmetral bimould, it induces the straightforward specialisation $\mathfrak{e s s}^{\bullet} \mapsto \operatorname{par}^{\bullet}$, but instead of par ${ }^{\bullet}$ we may also consider pal ${ }^{\bullet}$, which in fact turns out to be more convenient. This, however, has no impact on the specialisation sang of $\operatorname{seng}\left(\mathfrak{e s}^{\bullet}\right)=\operatorname{seng}\left(\right.$ slash. $\left.\mathrm{ess}^{\bullet}\right)$ since slash.par ${ }^{\bullet}=$ slash.pal ${ }^{\bullet}=p a j^{\bullet}$. The definitions of $\S 4.2$ become:

$$
\left.\left.\begin{array}{rl}
2 \text { sang } \cdot S^{\bullet}:= & (\text { id }+ \text { neg.adari }(\text { paj } \bullet)) \cdot \operatorname{mut}(\text { paj } \bullet \bullet) \cdot S^{\bullet} \\
= & \operatorname{mut}(\text { paj } \bullet) \cdot S^{\bullet}+\operatorname{garit}(\text { paj }
\end{array}\right) \cdot \operatorname{neg} \cdot S^{\bullet}\right)
$$

and the equivalence between these two definitions is relatively easy to check, based on the fact that the bimoulds vipaj ${ }^{\bullet}$ and vimupaj ${ }^{\bullet}$ thus defined:

$$
\text { vipaj}{ }^{\bullet}:=\operatorname{adari}(p a j \bullet) . p a j \bullet \quad, \quad \text { vimupa } j^{\bullet}:=\operatorname{adari}(p a j \bullet) . m u p a j \bullet
$$

admit the following expressions:

$$
\begin{aligned}
\text { vipaj }^{w_{1}, \ldots, w_{r}} & =(-1)^{r-1} \text { mupaj }^{w_{1}, \ldots, w_{r-1}} P\left(u_{1}+\ldots+u_{r}\right) \\
\text { vimupaj }^{w_{1}, \ldots, w_{r}} & =(-1)^{r} \text { paj }^{w_{2}, \ldots, w_{r}} P\left(u_{1}+\ldots+u_{r}\right)
\end{aligned}
$$

This in turn enables us to recast definition (5.31) in more direct form:

$$
\begin{aligned}
2(\text { sang. } S)^{\boldsymbol{w}}= & +\sum_{a w_{i} \boldsymbol{b}=\boldsymbol{w}} \operatorname{mupaj}^{\boldsymbol{a}} S^{w_{i}} \text { paj }^{\boldsymbol{b}} \\
& +\sum_{\boldsymbol{a} w_{i} \boldsymbol{b}=\boldsymbol{w}} \operatorname{paj}^{\boldsymbol{a}\rfloor}(\text { neg. } S)^{\left\lceil w_{i}\right\rceil} \operatorname{mupaj}^{\lfloor\boldsymbol{b}} \\
& +\sum_{\boldsymbol{a} w_{i} \boldsymbol{b} w_{r}=\boldsymbol{w}} \operatorname{paj}^{a\rfloor}(\text { neg. } S)^{\left\lceil w_{i}\right\rceil} \operatorname{mupaj}^{\lfloor\boldsymbol{b}} P(|\boldsymbol{u}|) \\
& -\sum_{w_{1} \boldsymbol{a} w_{i} \boldsymbol{b}=\boldsymbol{w}} \operatorname{paj}^{\boldsymbol{a}\rfloor}(\text { neg. } S)^{\left\lceil w_{i}\right\rceil} \operatorname{mupaj}^{\lfloor\boldsymbol{b}} P(|\boldsymbol{u}|)
\end{aligned}
$$

For the singulator $\operatorname{senk}\left(\mathbf{e s s}^{\bullet}\right)$, however, we get two distinct specialisations slank and srank, based respectively on pal ${ }^{\bullet}$ and par ${ }^{\bullet}$:

$$
\begin{align*}
& \left.\left.2 \text { slank. } S^{\bullet}:=\text { neginvar.(adari(pal }{ }^{\bullet}\right)\right)^{-1} \cdot \operatorname{mut}\left(\text { pal }{ }^{\bullet}\right) . S^{\bullet} \tag{5.32}\\
& \left.=\text { pushinvar.mut(neg.pal }{ }^{\bullet}\right) \cdot \text { garit }\left(\text { pal }{ }^{\bullet}\right) \cdot S^{\bullet} \tag{5.33}\\
& \left.\left.2 \text { srank. } S^{\bullet}:=\text { neginvar.(adari(par}{ }^{\bullet}\right)\right)^{-1} \cdot \operatorname{mut}\left(\text { par }^{\bullet}\right) \cdot S^{\bullet} \tag{5.34}\\
& \left.=\text { pushinvar.mut(neg.par }{ }^{\bullet}\right) \cdot \operatorname{garit}\left(\text { par }^{\bullet}\right) \cdot S^{\bullet} \tag{5.35}
\end{align*}
$$

Both slank and srank relate to sang under the predictable formulas:

$$
\begin{equation*}
\text { sang }=\operatorname{adari}\left(\text { pal }{ }^{\bullet}\right) \cdot \text { slank }=\operatorname{adari}\left(\text { par }{ }^{\bullet}\right) \cdot \operatorname{srank} \tag{5.36}
\end{equation*}
$$

and both slank and srank (resp. sang) turn arbitrary singulands $S \bullet \in B I M U_{1}$ into dimorphic singulates of type $\underline{a l} / \underline{a l}$ (resp. $\underline{a l} / \underline{i l}$).

5.5 Simple polar singulators.

The polar singulators, like their universal models, have to be broken down into their constituent parts. For slank and srank, the formulas are straightforward:

$$
\begin{align*}
\text { slank }_{r} & :=\text { leng }_{r} \text { slank } \tag{5.37}\\
\operatorname{srank}_{r} & :=\operatorname{leng}_{r} \cdot \text { srank } \tag{5.38}
\end{align*}
$$

For sang, the decomposition is more roundabout, and depends on the choice of either pal ${ }^{\bullet}$ or par ${ }^{\bullet}$:

$$
\begin{align*}
& \text { slang }_{r}:=\operatorname{adari}\left(\text { pal }^{\bullet}\right) \cdot \operatorname{leng}_{r} \cdot\left(\operatorname{adari}\left(\text { pal }^{\bullet}\right)\right)^{-1} \cdot \text { sang } \tag{5.39}\\
& =\operatorname{adari}\left(\text { pal }{ }^{\bullet}\right) \cdot \text { slank }_{r} \neq \text { leng }_{r} \text {.sang } \tag{5.40}\\
& \operatorname{srang}_{r}:=\operatorname{adari}\left(\operatorname{par}^{\bullet}\right) \cdot \operatorname{leng}_{r} \cdot\left(\operatorname{adari}\left(\operatorname{par}^{\bullet}\right)\right)^{-1} \text {.sang } \tag{5.41}\\
& =\operatorname{adari}\left(\text { par }^{\bullet}\right) \cdot \operatorname{srank}_{r} \neq \text { leng }_{r} \text {.sang } \tag{5.42}
\end{align*}
$$

Thus, despite the similar-looking identities

$$
\text { slank }=\sum_{r \geq 1} \operatorname{slank}_{r}, \quad \text { srank }=\sum_{r \geq 1} \operatorname{srank}_{r}, \quad \text { sang }=\sum_{r \geq 1} \operatorname{slang}_{r}=\sum_{r \geq 1} \operatorname{srang}_{r}
$$

there is no way we can avoid secondary bimoulds (in this case, the bisymmetral pal l^{\bullet} or $p a r^{\bullet}$) even in the decomposition of the 'primary-looking' singulator sang.

5.6 Composite polar singulators.

To produce all possible dimorphic singularities, we require not just the singulator components, but also their Lie brackets. For reasons that shall be spelt out in $\S 4.7$, we settle for the choice pal ${ }^{\bullet}$ and the corresponding singulators, and we set, for any arguments $S_{1}^{\bullet}, \ldots, S_{l}^{\bullet}$ in $B I M U_{1}$:

$$
\begin{aligned}
& \operatorname{slank}_{\left[r_{1}, \ldots, r_{l}\right]} \cdot \operatorname{mu}\left(S_{1}^{\bullet}, \ldots, S_{l}^{\bullet}\right):=\operatorname{ari}\left(\operatorname{slank}_{r_{1}} \cdot S_{1}^{\bullet}, \ldots, \operatorname{slank}_{r_{l}} \cdot S_{l}^{\bullet}\right) \in \operatorname{ARI}_{r}^{\mathrm{al} / / \mathrm{al}} \\
& \operatorname{slang}_{\left[r_{1}, \ldots, r_{l}\right]} \cdot \operatorname{mu}\left(S_{1}^{\bullet}, \ldots, S_{l}^{\bullet}\right):=\operatorname{ari}\left(\operatorname{slang}_{r_{1}} \cdot S_{1}^{\bullet}, \ldots, \operatorname{slang}_{r_{l}} \cdot S_{l}^{\bullet}\right) \in \operatorname{ARI}_{r \leq}^{\mathrm{a} / \leq \mathrm{l}}
\end{aligned}
$$

with $r:=r_{1}+\ldots+r_{l}$ and of course :

$$
\mathrm{ARI}_{r}^{\mathrm{al} / \mathrm{al}}:=\mathrm{ARI}^{\mathrm{al} / / \mathrm{al}} \cap \mathrm{BIMU}_{r} \quad ; \quad \mathrm{ARI}_{r \leq}^{\mathrm{al} / \mathrm{il}}:=\mathrm{ARI}^{\mathrm{al} / \mathrm{il}} \cap\left(\oplus_{r \leq r^{\prime}} \mathrm{BIMU}_{r^{\prime}}\right)
$$

and with the multiple ari-braket defined from left to right. By multilinearity, the above actions extend to mappings:

$$
\begin{array}{lll}
\operatorname{slank}_{\left[r_{1}, \ldots, r_{l}\right]}: S^{\bullet} \mapsto \Sigma^{\bullet} \quad ; \quad \operatorname{BIMU}_{l} \rightarrow \mathrm{ARI}_{r}^{\mathrm{al} / \text { al }} \\
\operatorname{slang}_{\left[r_{1}, \ldots, r_{l}\right]}: S^{\bullet} \mapsto \Sigma^{\bullet} \quad ; & \operatorname{BIMU}_{l} \rightarrow \mathrm{ARI}_{r \leq}^{\mathrm{al} / / \mathrm{ll}} \tag{5.44}
\end{array}
$$

It is sometimes convenient, nay indispensable, ${ }^{84}$ to consider also the pre-Lie brackets of the singulator components. The formulas read:

$$
\begin{align*}
& \operatorname{slank}_{r_{1}, \ldots, r_{l}} \cdot \operatorname{mu}\left(S_{1}^{\bullet}, \ldots, S_{l}^{\bullet}\right):=\operatorname{preari}\left(\operatorname{slank}_{r_{1}} \cdot S_{1}^{\bullet}, \ldots, \operatorname{slank}_{r_{l}} \cdot S_{l}^{\bullet}\right) \tag{5.45}\\
& \operatorname{slang}_{r_{1}, \ldots, r_{l}} \cdot \operatorname{mu}\left(S_{1}^{\bullet}, \ldots, S_{l}^{\bullet}\right):=\operatorname{preari}\left(\operatorname{slang}_{r_{1}} \cdot S_{1}^{\bullet}, \ldots, \operatorname{slang}_{r_{l}} \cdot S_{l}^{\bullet}\right) \tag{5.46}
\end{align*}
$$

with the multiple pre-ari-braket defined again from left to right, as in (2.49). By multilinearity, the above actions extend to mappings:

$$
\begin{array}{llll}
\operatorname{slank}_{r_{1}, \ldots, r_{l}}: S^{\bullet} \mapsto \Sigma^{\bullet} & ; & \operatorname{BIMU}_{l} \rightarrow \operatorname{ARI}_{r}^{\mathrm{al}} \\
\operatorname{slang}_{r_{1}, \ldots, r_{l}} & : S^{\bullet} \mapsto \Sigma^{\bullet} & ; & \operatorname{BIMU}_{l} \rightarrow \operatorname{ARI}_{r \leq}^{\text {al }} \tag{5.48}
\end{array}
$$

[^44]Here, the resulting singulates Σ^{\bullet} are of course alternal, but their swappees exhibit no distinctive symmetry. In practical applications, however, these multiple singulators based on preari always occur in sums $\sum Q^{\bullet}$ slank. or $\sum Q^{\bullet}$ slang., with scalar moulds Q^{\bullet} that are alternal (resp. symmetral), and these new composite operators do produce dimorphy: they turn arbitrary singulands S^{\bullet} into singulates $\Sigma^{\bullet \bullet}$ of type $\underline{a l} / \underline{a l}$ or $\underline{a l} / \underline{i l}$ (resp. $\underline{a s} / \underline{a s}$ or $\underline{a s} / \underline{i s}$).

5.7 From $\underline{a l} / \underline{a l}$ to $\underline{a l} / \underline{i l}$. Nature of the singularities.

The reason for preferring the singulator slank (built from pal ${ }^{\bullet}$) to the singulator srank (built from par ${ }^{\bullet}$) is that it leads to simpler denominators. Indeed, for a singuland $S^{w_{1}}$ regular at the origin and 'random', although the bialternal singulates slank $r_{r} \cdot S^{\boldsymbol{w}}$ and $\operatorname{srank}_{r} . S^{\boldsymbol{w}}$, as functions of $\boldsymbol{w}=\left(w_{1}, \ldots, w_{r}\right)$, have both multipoles of order $r-1$ at the origin, the total number of factors differs sharply. After common denominator reduction, slank $k_{r} . S^{\boldsymbol{w}}$ has only $r+1$ factors on its denominator, whereas $\operatorname{srank}_{r} . S^{\boldsymbol{w}}$ has $r(r+1) / 2$. More precisely:

$$
\begin{aligned}
\operatorname{denom}\left(\operatorname{slank}_{r} \cdot S^{\boldsymbol{w}}\right) & =u_{0} u_{1} \ldots u_{r-1} u_{r} \text { with } u_{0}:=-\left(u_{1}+\cdots+u_{r}\right) \\
\operatorname{denom}\left(\operatorname{srank}_{r} \cdot S^{\boldsymbol{w}}\right) & =\prod_{1 \leq i \leq j \leq r} \sum_{i \leq k \leq j} u_{k}
\end{aligned}
$$

The results are slightly more complex for the singulates of type $\underline{a l} / \underline{i l}$, namely slang $_{r} . S^{\bullet}$ and srang $_{r} . S^{\bullet}$, since these, as a rule, possess non-vanishing components of any length $r^{\prime} \geq r$, but here again the first choice leads to simpler denominators.

Another reason for preferring the pal ${ }^{\bullet}$-based choice to the par ${ }^{\bullet}$-based one is that pal ${ }^{\bullet}$ possesses a trigonometric counterpart $t a l_{c}^{\bullet}$ whereas par ${ }^{\bullet}$ doesn't.

6 A natural basis for $A L I L \subset A R I^{\underline{a l} / i l}$.

6.1 Singulation-desingulation: the general scheme.

This section is devoted to the construction of bimoulds $l \varnothing m a^{\bullet}$ in $A L I L$. In other words:

- løma ${ }^{\boldsymbol{w}}$ should be \boldsymbol{u}-entire, i.e. in $\mathbb{C}\left[\left[u_{1}, \ldots, u_{r}\right]\right]$.
- løma ${ }^{\boldsymbol{w}}$ should be \boldsymbol{v}-constant.
- løma• should be alternal.
- lømi` $:=$ swap.løma^ • should be alternil modulo Center(ALIL)

But we also add two key conditions:
(i) $l \varnothing m a^{\boldsymbol{w}}$ should be in $\mathbb{Q}\left[\left[u_{1}, \ldots, u_{r}\right]\right]$, i.e. carry rational Taylor coefficients. (ii) the first component should be of the form:

$$
\begin{equation*}
l \varnothing m a^{w_{1}}=u_{1}^{2}\left(1-u_{1}^{2}\right)^{-1}=u_{1}^{2}+u_{1}^{4}+u_{1}^{6}+u_{1}^{8}+\ldots \tag{6.1}
\end{equation*}
$$

Condition (ii) is there to ensure that in the iso-weight decomposition:
the part $l \varnothing m a_{s}^{\bullet}$ of weight s be non-zero ${ }^{85}$ and start with $l \varnothing m a_{s}^{w_{1}}=u_{1}^{s-1}$, with the ultimate objective of getting a basis $\left\{l \varnothing m a_{s}^{\bullet} ; s\right.$ odd $\left.\geq 3\right\}$ of $A L I L$.

The 'central correction' formula reads:

$$
\begin{equation*}
\operatorname{lomi}_{s}^{\bullet}=\operatorname{swap}\left(\operatorname{loma}_{s}^{\bullet}+\mathrm{Ca}_{s}^{\bullet}\right) \quad ; \quad \mathrm{Ca}_{s}^{\bullet} \in \operatorname{Center}(\mathrm{ALIL}) \tag{6.3}
\end{equation*}
$$

with a central bimould $C a_{s}^{\bullet}$ which, due to condition (6.1), can be shown to be of the form:

$$
\begin{equation*}
\mathrm{Ca}_{s}^{w_{1}, \ldots, w_{s}}=\frac{1}{s} \quad\left(\forall w_{i}\right) \quad ; \quad \mathrm{Ca}_{s}^{w_{1}, \ldots, w_{r}}=0 \quad \text { if } \quad r \neq s \quad\left(\forall w_{i}\right) \tag{6.4}
\end{equation*}
$$

Expanding løma* into series of singulates.

Before decomposing $l \varnothing m a_{s}^{\bullet}$ weight-by-weight, we must construct it as a series of singulates. There are actually two variants:

$$
\begin{align*}
& \text { løma } \cdot=\overbrace{\sum_{[1]}^{\bullet}}^{r \leq 2}+\overbrace{\sum_{[1,2]}}^{r \leq 4}+\overbrace{\sum_{[1,4]}^{\bullet}+\sum_{[2,3]}^{\bullet}+\sum_{[1,1,3]}^{\bullet}+\Sigma_{[2,1,2]}^{\bullet}+\Sigma_{[1,1,1,2]}^{\bullet}}^{r \leq 6}+. \\
& \operatorname{løma}^{\bullet}=\overbrace{\Sigma_{1}^{\bullet}}^{r \leq 2}+\overbrace{\Sigma_{1,2}^{\bullet}+\Sigma_{2,1}^{\bullet}}^{r \leq 4}+\overbrace{\Sigma_{1,4}^{\bullet}+\Sigma_{4,1}^{\bullet}+\Sigma_{2,3}^{\bullet}+\Sigma_{3,2}^{\bullet}}^{r \leq 6} \\
& +\overbrace{\Sigma_{1,1,3}^{\bullet}+\Sigma_{1,3,1}^{\bullet}+\Sigma_{3,1,1}^{\bullet}+\Sigma_{2,2,1}^{\bullet}+\Sigma_{2,1,2}^{\bullet}+\Sigma_{1,2,2}^{\bullet}}^{r \leq 6} \\
& +\overbrace{\Sigma_{1,1,1,2}^{\bullet}+\Sigma_{1,1,2,1}^{\bullet}+\Sigma_{1,2,1,1}^{\bullet}+\Sigma_{2,1,1,1}^{\bullet}}^{r \leq 6}+\ldots \tag{6.6}
\end{align*}
$$

with

$$
\begin{align*}
\Sigma_{\left[r_{1}, \ldots, r_{l}\right]} & :=\operatorname{slang}_{\left[r_{1}, \ldots, r_{l}\right]} \cdot S_{\left[r_{1}, \ldots, r_{l}\right]}^{\bullet} \tag{6.7}\\
\Sigma_{r_{1}, \ldots, r_{l}}^{\bullet} & :=\operatorname{slang}_{r_{1}, \ldots, r_{l}} \cdot S_{r_{1}, \ldots, r_{l}}^{\bullet} \tag{6.8}
\end{align*}
$$

[^45]The singulates $\Sigma_{\left[r_{1}, \ldots, r_{l}\right]}^{\bullet}$ are going to be in $\operatorname{ARI}_{r \leq}^{\text {al } / i l}$ but the singulates $\Sigma_{r_{1}, \ldots, r_{l}}^{\bullet}$ only in $\mathrm{ARI}_{r \leq}^{\text {al }}$. As for the singulands $S_{\left[r_{1}, \ldots, r_{l}\right]}^{\bullet}$ and $S_{r_{1}, \ldots, r_{l}}^{\bullet}$, they are merely in BIMU_{l}, but with a definite parity in each x_{i}, which is exactly opposite to the parity of r_{i}. Moreover, we can without loss of generality assume that they vanish as soon as one of the x_{i} 's vanishes. Then again, they may be sought either in the form of power series or of meromorphic functions of a quite specific type:

$$
\begin{align*}
& S_{\left[r_{1}, \ldots, r_{l}\right]}^{x_{1}, \ldots, x_{l}} \quad \in x_{1}^{\nu_{1}} \ldots x_{l}^{\nu_{l}} \mathbb{C}\left[\left[x_{1}^{2}, \ldots, x_{l}^{2}\right]\right] \tag{6.9}\\
& S_{\left[r_{1}, \ldots, r_{l}\right]}^{x_{1}}=\sum_{n_{i} \in \mathbb{Z}^{*}} R_{\left[r_{1}, \ldots, r_{l}\right]}^{n_{1}, \ldots, r_{l}} P\left(n_{1}+x_{1}\right) \ldots P\left(n_{l}+x_{l}\right)
\end{align*}
$$

(power series)
(merom. funct. (6.10)
with $\nu_{i}=1$ (resp. 2) if r_{i} is even (resp. odd).
Both expansions (6.5) and (6.6) lead to the same results. The first expansion (6.5) relies on ari-brackets and has the advantage of involving fewer summands. The downside is that it forces us to choose a basis in the Lie algebra generated by the simple singulates $\Sigma_{r_{i}}^{\bullet}$ and that there exist no clear canonical choices for such bases. This arbitrariness, though, manifests only during the construction and doesn't show in the final result.

The second expansion (6.6) relies on pre-ari-brackets, and here the position is exactly the reverse: we have unicity and canonicity at every construction step, but more numerous summands.

Altogether, the ari-expansion is to be preferred in calculations, whereas the pre-ari-expansion is theoretically more appealing. In perinomal algebra, its use will even become mandatory (see $\S 9$). In any case, the conversion rules for changing from the one to the other are simple enough. Thus, up to length $r=5$, we find:

$$
\begin{aligned}
& S_{1,2}^{x_{1}, x_{2}}=+S_{[1,2]}^{x_{1}, x_{2}} \quad ; \quad S_{2,1}^{x_{1}, x_{2}}=-S_{[1,2]}^{x_{2}, x_{1}} \\
& S_{1,4}^{x_{1}, x_{2}}=+S_{[1,4]}^{x_{1}, x_{2}} \quad ; \quad S_{4,1}^{x_{1}, x_{2}}=-S_{[1,4]}^{x_{2}, x_{1}} \\
& S_{2,3}^{x_{1}, x_{2}}=+S_{[2,3]}^{x_{1}, x_{2}} \quad ; \quad S_{3,2}^{x_{1}, x_{2}}=-S_{[3,2]}^{x_{2}, x_{1}} \\
& S_{1,1,3}^{x_{1}, x_{2}, x_{3}}=+S_{[1,1,3]}^{x_{1}, x_{2}, x_{3}} \quad ; \quad S_{1,3,1}^{x_{1}, x_{2}, x_{3}}=-S_{[1,1,3]}^{x_{1}, x_{3}, x_{2}}-S_{[1,1,3]}^{x_{3}, x_{1}, x_{2}} \quad ; \quad S_{3,1,1}^{x_{1}, x_{2}, x_{3}}=+S_{[1,1,3]}^{x_{3}, x_{2}, x_{1}} \\
& S_{2,2,1}^{x_{1}, x_{2}, x_{3}}=-S_{[2,1,2]}^{x_{1}, x_{3}, x_{2}} \quad ; \quad S_{2,1,2}^{x_{1}, x_{2}, x_{3}}=+S_{[2,1,2]}^{x_{1}, x_{2}, x_{3}}+S_{[2,1,2]}^{x_{3}, x_{2}, x_{1}} \quad ; \quad S_{1,2,2}^{x_{1}, x_{2}, x_{3}}=-S_{[2,1,2]}^{x_{3}, x_{1}, x_{2}} \\
& S_{1,1,1,2}^{x_{1}, x_{2}, x_{3}, x_{4}}=+S_{[1,1,1,2]}^{x_{1}, x_{2}, x_{3}, x_{1}} \\
& S_{1,1,2,1}^{x_{1}, x_{2}, x_{3}, x_{4}}=-S_{[1,1,1,2]}^{x_{1}, x_{2}, x_{4}, x_{3}}-S_{[1,1,1,2]}^{x_{1}, x_{4}, x_{2}, x_{3}}-S_{[1,1,1,2]}^{x_{4}, x_{1}, x_{2}, x_{3}} \\
& S_{1,2,1,1}^{x_{1}, x_{2}, x_{3}, x_{4}}=+S_{[11,1,2]}^{x_{1}, x_{4}, x_{3}, x_{2}}+S_{[1,1,1,2]}^{x_{4}, x_{1}, x_{3}, x_{2}}+S_{[1,1,1,2]}^{x_{4}, x_{3}, x_{1}, x_{2}} \\
& S_{2,1,1,1}^{x_{1}, x_{2}, x_{3}, x_{4}}=-S_{[1,1,1,2]}^{x_{4}, x_{3}, x_{2}, x_{1}}
\end{aligned}
$$

In the above table, as indeed throughout the sequel, we write down only the upper indices of the singulands (since, in the colourless case with which
we are concerned here, the lower indices don't matter). Moreover, we write these upper indices of the singulands as " x_{i} " rather than " u_{i} ", the better to bring out their independence from the u_{i} 's that serve as upper indices for the singulates. Indeed, when expressing the entireness condition for the sums of singulates (see $\S 6.3, \S 6.4$ below), we may work either with $\Theta_{r_{*}}^{\bullet}$ itself or $\operatorname{swap} . \Theta_{r_{*}}^{\bullet}$, and the distinct but equivalent constraints on the singulands which both approaches yield look much the same - all of which suggests that the singulands that go into the making of $l \varnothing m a^{\bullet}$ stand, in a sense, halfway between that bimould and its swappee $l \varnothing m i{ }^{\bullet}$.

Singulation-desingulation. ${ }^{86}$

In keeping with the above remarks, we may (and shall), without loss of generality, limit ourselves to singulands $S_{\left[r_{1}, \ldots, r_{l}\right]}^{x_{1}, \ldots, x_{l}}$ and $S_{r_{1}, \ldots, r_{l}}^{x_{1}, \ldots, x_{l}}$ that are even (resp. odd) in each x_{i} if the corresponding index r_{i} is odd (resp. even). We may also (and shall), again without loss of generality, impose divisibility by $x_{1} \ldots x_{l} .{ }^{87}$

The construction of $l \varnothing m a^{\boldsymbol{w}}$ is by induction, and goes like this.
Fix any odd integer r_{*} and assume we have already found singulates $\Sigma_{[r]}^{\bullet}$ or $\Sigma_{\boldsymbol{r}}^{\boldsymbol{\bullet}}$ of total index $|\boldsymbol{r}|:=\sum r_{i}$ odd and $\leq r_{*}$, such that the truncated expansion:

$$
\begin{equation*}
\Theta_{r_{*}}^{\bullet}:=\sum_{|r| \leq r_{*}} \Sigma_{[r]}^{\bullet}=\sum_{|r| \leq r_{*}} \Sigma_{r}^{\bullet} \tag{6.11}
\end{equation*}
$$

has only entire components for all lengths $r \leq r_{*}$. One can then show the following:
(i) the component of $\Theta_{r_{*}}^{\bullet}$ of (even) length $1+r_{*}$ is automatically entire.
(ii) the component of $\Theta_{r_{*}}^{\bullet}$ of (odd) length $2+r_{*}$ is not entire, but possesses mulipoles of order r_{*} at the origin.
(iii) it is always possible to pick singulands $S_{[r]}^{\bullet}$ or S_{r}^{\bullet} of total index $|\boldsymbol{r}|=2+r_{*}$ and such that the corresponding singulates $\Sigma_{[r]}^{\bullet}$ or $\Sigma_{\boldsymbol{r}}^{\bullet}$ exactly compensate the multipoles mentioned in (ii), so that the truncated sum $\Theta_{2+\boldsymbol{r}}^{\bullet}$ will coincide with Θ_{r}^{\bullet} for all its components of length $r \leq 1+r_{*}$ but will have a singularityfree component of length $r=2+r_{*}$.
(iv) the constraints on the newly added singulates are found by writing down, successively, the conditions for multipoles of order $r_{*}, r_{*}-1, r_{*}-2$ etc to be absent from the component $\Theta_{2+r_{*}}^{w_{1}, \ldots, w_{2+r_{*}}}$.
(v) these constraints do not exactly determine the new singulates, but very

[^46]nearly $s o^{88}$, and in any case there exist two (closely related) privileged choices, leading to two closely related, canonical choices lama ${ }^{\boldsymbol{\bullet}}, \operatorname{loma}{ }^{\boldsymbol{\bullet}}$ for $l \varnothing m a^{\boldsymbol{w}}$. (vi) there is also a third choice, luma ${ }^{\bullet}$, whose components aren't sought in the ring of power series in \boldsymbol{u} but rather in the space of meromorphic functions of \boldsymbol{u}, with multipoles located at the multiintegers \boldsymbol{n}, and with essentially bounded behaviour at infinity: ${ }^{89}$
\[

$$
\begin{align*}
& S_{\left[r_{1}, \ldots, r_{l}\right]}^{x_{1}, \ldots, x_{l}} \stackrel{\text { ess lly }}{=} \sum_{n_{i} \in \mathbb{Z}^{*}} R_{\left[r_{1}, \ldots, r_{l}\right]}^{n_{1}, \ldots, n_{l}} P\left(x_{1}+n_{1}\right) \ldots P\left(x_{l}+n_{l}\right) \tag{6.12}\\
& S_{r_{1}, \ldots, r_{l}}^{x_{1}, \ldots, x_{l}} \stackrel{\text { ess }}{\stackrel{\text { lly }}{=}} \sum_{n_{i} \in \mathbb{Z}^{*}} R_{r_{1}, \ldots, r_{l}}^{n_{1}, \ldots, n_{l}} P\left(x_{1}+n_{1}\right) \ldots P\left(x_{l}+n_{l}\right) \tag{6.13}
\end{align*}
$$
\]

Here, the solution luma ${ }^{\bullet}$ turns out to be unique, its search essentially reducing to that of the multiresidues $R_{[r]}^{n}$ or R_{r}^{n} carried by the multipoles of the singulands. ${ }^{90}$ These multiresidues are uniquely determined rational numbers, and perinomal functions ${ }^{91}$ of their argument \boldsymbol{n}. So the difficulty here is not the search for a canonical solution, but the elucidation of the arithmetical nature of the Taylor coefficients at the origin of the various components luma ${ }^{\boldsymbol{w}}$, at least for lengths $r(\boldsymbol{w}) \geq 5$, since for lesser lengths the answer is elementary.

6.2 Singulation-desingulation up to length 2.

As usual, we set $1 / t=: P(t)=: P^{t}$ throughout, and favour the third variant inside mould equations, for greater visual coherence. At lengths $r \leq 2$, one singuland only contributes to $l \varnothing m a^{\bullet}$. At length 1 , both singuland and singulate coincide. At length 2, the formula for the singulate involves poles of order 1 , but these cancel out, duly yielding an entire $l \varnothing m a^{w_{1}, w_{2}}$.

$$
\begin{aligned}
& l ø \mathrm{ma}^{w_{1}}=l ø \mathrm{ma}_{1}^{w_{1}}=\Sigma_{[1]}^{w_{1}}=S_{[1]}^{u_{1}}=u_{1}^{2}+u_{1}^{4}+u_{1}^{6}+u_{1}^{8}+\ldots \\
& l ø \mathrm{ma}^{w_{1}, w_{2}}=1 \varnothing \mathrm{ma}{ }_{1}^{w_{1}, w_{2}}=\Sigma_{[1]}^{w_{1}, w_{2}}= \\
& \frac{1}{2} P^{u_{1}}\left(S_{[1]}^{u_{12}}-S_{[1]}^{u_{2}}\right)+\frac{1}{2} P^{u_{2}}\left(S_{[1]}^{u_{1}}-S_{[1]}^{u_{12}}\right)+\frac{1}{2} P^{u_{12}}\left(S_{[1]}^{u_{2}}-S_{[1]}^{u_{1}}\right)
\end{aligned}
$$

[^47]
6.3 Singulation-desingulation up to length 4.

The condition expressing that $l \varnothing m a^{w_{1}, w_{2}, w_{3}}$ has no poles of order 1 at the origin involves only the singulands and singulates of indices [1] and $[1,2]$. For power series singulands, it reads:

$$
\begin{align*}
0= & +\frac{1}{12}\left(P^{x_{2}} S_{[1]}^{x_{12}}-P^{x_{12}} S_{[1]}^{x_{2}}-P^{x_{2}} S_{[1]}^{x_{1}}+P^{x_{12}} S_{[1]}^{x_{1}}\right) \\
& +S_{[1,2]}^{x_{1}, x_{2}}+S_{[1,2]}^{x_{2}, x_{12}}-S_{[1,2]}^{x_{1}, x_{12}}-S_{[1,2]}^{x_{12}, x_{2}} \tag{6.14}
\end{align*}
$$

For meromorphic singulands (of type (6.12)), it translates into a condition on the multiresidues $R_{[\bullet]}^{\bullet}$, which reads:

$$
\begin{align*}
& 0=1 / 12\left(\delta^{n_{12}} R_{[1]}^{n_{1}}-\delta^{n_{2}} R_{[1]}^{n_{1}}\right)+R_{[1,2]}^{n_{1}, n_{2}}-R_{[1,2]}^{n_{1}, n_{12}} \tag{6.15}\\
& 0=1 / 12\left(\delta^{n_{2}} R_{[1]}^{n_{12}}-\delta^{n_{2}} R_{[1]}^{n_{1}}-\delta^{n_{12}} R_{[1]}^{n_{2} 2}\right)+R_{[1,2]}^{n_{1}, n_{2}}+R_{[1,2]}^{n_{2}, n_{12}}-R_{[1,2]}^{n_{12}, n_{2}} \tag{6.16}
\end{align*}
$$

When fulfilled, the above conditions ensure the entireness not just of $l \varnothing m a^{w_{1}, \ldots, w_{3}}$ but also of $l \varnothing m a^{w_{1}, \ldots, w_{4}}$.

6.4 Singulation-desingulation up to length 6.

At this stage of the construction, we are dealing with a component $l \varnothing m a^{w_{1}, \ldots, w_{5}}$ that may have multipoles of order $3,2,1$ at the origin. Expressing that there are no such multipoles of order 3 leads to a single equation:

$$
\begin{equation*}
\mathcal{S}_{[1]}+\mathcal{S}_{[1,4]}+\mathcal{S}_{[1,4]}=0 \tag{6.17}
\end{equation*}
$$

with contributions:

$$
\begin{aligned}
\mathcal{S}_{[1]} & :=+\frac{1}{120}\left(P^{x_{2}} S_{[1]}^{x_{12}}-P^{x_{2}} S_{[1]}^{x_{1}}\right) \\
\mathcal{S}_{[1,4]} & :=-S_{[1,4]}^{x_{1}}+S_{[1,4]}^{x_{12}, x_{2}} \\
\mathcal{S}_{[2,3]} & :=+2 S_{[2,3]}^{x_{1}, x_{2}}+S_{[2,3]}^{x_{1}, x_{2}}-S_{[2,3]}^{x_{1}, x_{12}}-S_{[2,3]}^{x_{2}, x_{12}}
\end{aligned}
$$

We may note that the singulate $S_{[1,2]}$ remains, somewhat surprisingly, uninvolved at this stage.

Next, we must write down the condition for $l \varnothing m a^{w_{1}, \ldots, w_{5}}$ to have no multipoles of order 2 at the origin. This again leads to a single equation ${ }^{92}$ that involves all singulands save the last one (i.e. $S_{[1,1,1,2]}$):

$$
\begin{equation*}
\mathcal{S}_{[1]}^{*}+\mathcal{S}_{[1,2]}^{*}+\mathcal{S}_{[1,4]}^{*}+\mathcal{S}_{[2,3]}^{*}+\mathcal{S}_{[1,1,3]}^{*}+\mathcal{S}_{[2,1,2]}^{*}=0 \tag{6.18}
\end{equation*}
$$

[^48]with contributions:
\[

$$
\begin{aligned}
720 \mathcal{S}_{[1]}^{*}:= & -P^{x_{2}} P^{x_{3}} S_{[1]}^{x_{12}}-P^{x_{1}} P^{x_{23}} S_{[1]}^{x_{2}}+P^{x_{1}} P^{x_{23}} S_{[1]}^{x_{3}} \\
& +4 P^{x_{2}} P^{x_{23}} S_{[1]}^{x_{12}}-4 P^{x_{2}} P^{x_{23}} S_{[1]}^{x_{1}}-4 P^{x_{1}} P^{x_{123}} S_{[1]}^{x_{3}} \\
& +11 P^{x_{12}} P^{x_{12}} S_{[1]}^{x_{2}}-11 P^{x_{12}} P^{x_{123}} S_{[1]}^{x_{1}}-11 P^{x_{1}} P^{x_{123}} S_{[1]}^{x_{2}} \\
& +14 P^{x_{12}} P^{x_{3}} S_{[1]}^{x_{1}}-14 P^{x_{2}} P^{x_{3}} S_{[1]}^{x_{1}}-14 P^{x_{3}} P^{x_{12}} S_{[1]}^{x_{2}} \\
& -15 P^{x_{1}} P^{x_{3}} S_{[1]}^{x_{23}}-15 P^{x_{2}} P^{x_{123}} S_{[1]}^{x_{12}}+15 P^{x_{2}} P^{x_{123}} S_{[1]}^{x_{3}} \\
& +15 P^{x_{1}} P^{x_{3}} S_{[1]}^{x_{2}}-15 P^{x_{1}} P^{x_{3}} S_{[1]}^{x_{1}}+15 P^{x_{2}} P^{x_{123}} S_{[1]}^{x_{1}} \\
& +15 P^{x_{1}} P^{x_{123}} S_{[1]}^{x_{12}}+15 P^{x_{1}} P^{x_{3}} S_{[1]}^{x_{123}}+15 P^{x_{2}} P^{x_{3}} S_{[1]}^{x_{12}} \\
& -15 P^{x_{2}} P^{x_{123}} S_{[1]}^{x_{23}}+25 P^{x_{3}} P^{x_{123}} S_{[1]}^{x_{23}}-25 P^{x_{3}} P^{x_{23}} S_{[1]}^{x_{123}} \\
& -25 P^{x_{3}} P^{x_{123}} S_{[1]}^{x_{1}}+25 P^{x_{3}} P^{x_{23}} S_{[1]}
\end{aligned}
$$
\]

$$
\begin{aligned}
& 12 \mathcal{S}_{[1,2]}^{*}:=+2 P^{x_{123}} S_{[1,2]}^{x_{3}, x_{2}}-2 P^{x_{123}} S_{[1,2]}^{x_{23}, x_{3}}+2 P^{x_{123}} S_{[1,2]}^{x_{2}, x_{3}}-2 P^{x_{123}} S_{[1,2]}^{x_{2}, x_{23}} \\
& -2 P^{x_{3}} S_{[1,2]}^{x_{23}, x_{123}}+2 P^{x_{3}} S_{[1,2]}^{x_{123}, x_{23}}+2 P^{x_{3}} S_{[1,2]}^{x_{1}, x_{123}}-2 P^{x_{3}} S_{[1,2]}^{x_{1}, x_{23}} \\
& -3 P^{x_{1}} S_{[1,2]}^{x_{2}, x_{3}}+3 P^{x_{1}} S_{[1,2]}^{x_{23}, x_{3}}+3 P^{x_{1}} S_{[1,2]}^{x_{2}, x_{23}}-3 P^{x_{1}} S_{[1,2]}^{x_{3}, x_{23}} \\
& +3 P^{x_{1}} S_{[1,2]}^{x_{3}, x_{123}}-3 P^{x_{1}} S_{[1,2]}^{x_{123}, x_{3}}-3 P^{x_{1}} S_{[1,2]}^{x_{12}, x_{123}}+3 P^{x_{1}} S_{[1,2]}^{x_{12}, x_{3}} \\
& +3 P^{x_{2}} S_{[1,2]}^{x_{1}, x_{23}}+3 P^{x_{2}} S_{[1,2]}^{x_{12}, x_{3}}+3 P^{x_{2}} S_{[1,2]}^{x_{23}, x_{123}}-3 P^{x_{2}} S_{[1,2]}^{x_{1}, x_{123}} \\
& -3 P^{x_{2}} S_{[1,2]}^{x_{12}, x_{3}}-3 P^{x_{2}} S_{[1,2]}^{x_{3}, x_{123}}+3 P^{x_{2}} S_{[1,2]}^{x_{12}, x_{123}}-3 P^{x_{2}} S_{[1,2]}^{x_{123}, x_{23}}
\end{aligned}
$$

$$
\begin{aligned}
& 12 \mathcal{S}_{[1,4]}^{*}:=-2 P^{x_{123}} S_{[1,4]}^{x_{3}, x_{23}}+2 P^{x_{123}} S_{[1,4]}^{x_{1}, x_{3}}-2 P^{x_{123}} S_{[1,4]}^{x_{2}, x_{3}}+2 P^{x_{123}} S_{[1,4]}^{x_{2}, x_{23}} \\
& -2 P^{x_{23}} S_{[1,4]}^{x_{1}, x_{3}}-2 P^{x_{23}} S_{[1,4]}^{x_{2}, x_{123}}+2 P^{x_{23}} S_{[1,4]}^{x_{3}, x_{123}}+2 P^{x_{23}} S_{[1,4]}^{x_{123}, x 3} \\
& +2 P^{x_{3}} S_{[1,4]}^{x_{1}, x_{23}}-2 P^{x_{3}} S_{[1,4]}^{x_{1}, x_{123}}+2 P^{x_{3}} S_{[1,4]}^{x_{2}, x_{123}}-2 P^{x_{3}} S_{[1,4]}^{x_{123}, x_{23}} \\
& +3 P^{x_{12}} S_{[1,4]}^{x_{1}, x_{3}}-3 P^{x_{12}} S_{[1,4]}^{x_{2}, x_{3}}+3 P^{x_{12}} S_{[1,4]}^{x_{1}, x_{123}}-3 P^{x_{12}} S_{[1,4]}^{x_{2}, x_{123}} \\
& -3 P^{x_{1}} S_{[1,4]}^{x_{3}, x_{23}}+3 P^{x_{1}} S_{[1,4]}^{x_{2}, x_{23}}-3 P^{x_{1}} S_{[1,4]}^{x_{3}, x_{123}}+3 P^{x_{1}} S_{[1,4]}^{x_{2}, x_{123}} \\
& -3 P^{x_{2}} S_{[1,4]}^{x_{1}, x_{3}}-3 P^{x_{2}} S_{[1,4]}^{x_{1}, x_{23}}+3 P^{x_{2}} S_{[1,4]}^{x_{123}, x_{3}}+3 P^{x_{2}} S_{[1,4]}^{x_{123}, x_{23}}
\end{aligned}
$$

$$
\begin{aligned}
& 12 \mathcal{S}_{[2,3]}^{*}:=-P^{x_{123}} S_{[2,3]}^{x_{3}, x_{1}}+P^{x_{23}} S_{[2,3]}^{x_{3}, x_{1}}+P^{x_{23}} S_{[2,3]}^{x_{123}, x_{2}}-P^{x_{3}} S_{[2,3]}^{x_{123}, x_{2}} \\
& +2 P^{x_{23}} S_{[2,3]}^{x_{3}, x_{123}}+2 P^{x_{23}} S_{[2,3]}^{x_{12}, x_{3}}-3 P^{x_{123}} S_{[2,3]}^{x_{1}, x_{3}}+3 P^{x_{123}} S_{[2,3]}^{x_{23}, x_{3}} \\
& +3 P^{x_{12}} S_{[2,3]}^{x_{1}, x_{3}}-3 P^{x_{12}} S_{[2,3]}^{x_{2}, x_{3}}+3 P^{x_{12}} S_{[2,3]}^{x_{2}, x_{123}}-3 P^{x_{12}} S_{[2,3]}^{x_{1}, x_{123}} \\
& -3 P^{x_{1}} S_{[2,3]}^{x_{2}, x_{3}}-3 P^{x_{1}} S_{[2,3]}^{x_{12}, x_{3}}+3 P^{x_{1}} S_{[2,3]}^{x_{12}, x_{123}}+3 P^{x_{1}} S_{[2,3]}^{x_{2}, x_{123}} \\
& +3 P^{x_{1}} S_{[2,3]}^{x_{123}, x_{3}}+3 P^{x_{1}} S_{[2,3]}^{x_{23}, x_{3}}+3 P^{x_{2}} S_{[2,3]}^{x_{1}, x_{3}}-3 P^{x_{2}} S_{[2,3]}^{x_{1}, x_{123}} \\
& -3 P^{x_{2}} S_{[2,3]}^{x_{3}, x_{123}}-3 P^{x_{2}} S_{[2,3]}^{x_{12}, x_{123}}+3 P^{x_{2}} S_{[2,3]}^{x_{12}, x_{3}}-3 P^{x_{2}} S_{[2,3]}^{x_{23}, x_{123}} \\
& +3 P^{x_{3}} S_{[2,3]}^{x_{2}, x_{123}}+3 P^{x_{3}} S_{[2,3]}^{x_{23}, x_{123}}+3 P^{x_{23}} S_{[2,3]}^{x_{2}, x_{123}}-3 P^{x_{23}} S_{[2,3]}^{x_{1}, x_{3}} \\
& -5 P^{x_{123}} S_{[2,3]}^{x_{3}, x_{23}}-5 P^{x_{3}} S_{[2,3]}^{x_{123}, x_{23}}-6 P^{x_{1}} S_{[2,3]}^{x_{3}, x_{23}}-6 P^{x_{1}} S_{[2,3]}^{x_{3}, x_{123}} \\
& +6 P^{x_{2}} S_{[2,3]}^{x_{123}, x_{3}}+6 P^{x_{2}} S_{[2,3]}^{x_{123}, x_{23}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{S}_{[2,1,2]}^{*}:=+S_{[2,1,2]}^{x_{3}, x_{1}, x_{23}}-S_{[2,1,2]}^{x_{123}, x_{2}, x_{3}}-S_{[2,1,2]}^{x_{3}, x_{1}, x_{123}}+S_{[2,1,2]}^{x_{123}, x_{2}, x_{23}}+S_{[2,1,2]}^{x_{123}, x_{23}, x_{3}} \\
& -S_{[2,1,2]}^{x_{123}, x_{3}, x_{23}}-S_{[2,1,2]}^{x_{3}, x_{123}, x_{23}}+S_{[2,1,2]}^{x_{3}, x_{23}, x_{123}}
\end{aligned}
$$

Lastly, we must write down the condition for $l \varnothing m a^{w_{1}, \ldots, w_{5}}$ to have no poles of order 1 at the origin. This once again leads to a single equation, but one that now involves all seven relevant singulands:

$$
\begin{equation*}
\mathcal{S}_{[1]}^{* *}+\mathcal{S}_{[1,2]}^{* *}+\mathcal{S}_{[1,4]}^{* *}+\mathcal{S}_{[2,3]}^{* *}+\mathcal{S}_{[1,1,3]}^{* *}+\mathcal{S}_{[2,1,2]}^{* *}+\mathcal{S}_{[1,1,1,2]}^{* *}=0 \tag{6.19}
\end{equation*}
$$

Though easy to compute, the various contributions $\mathcal{S}_{[r]}^{* *}$ are too unwieldy for us to write down. So we simply mention their number $\#\left(\mathcal{S}_{[r]}^{* *}\right)$ of summands. Here is the list:

$$
\begin{array}{lll}
\#\left(\mathcal{S}_{[1]}^{* *}\right)=126 & , \#\left(\mathcal{S}_{[1,2]}^{* *}\right)=299 \quad, \#\left(\mathcal{S}_{[1,4]}^{* *}\right)=176 \quad, \#\left(\mathcal{S}_{[2,3]}^{* *}\right)=314 \\
\#\left(\mathcal{S}_{[1,1,3]}^{* *}\right)=288 & , \#\left(\mathcal{S}_{[2,1,2]}^{* *}\right)=324, & \#\left(\mathcal{S}_{[1,1,1,2]}^{* *}\right)=192
\end{array}
$$

If we now look for meromorphic singulands of type (6.12), the absence of
multipoles of order 3 at the origin is equivalent to a system of two independent identities of the form $\mathcal{R}_{[1]}+\mathcal{R}_{[1,4]}+\mathcal{R}_{[2,3]}=0$, namely:

$$
\begin{align*}
& 0=-\frac{1}{120} \delta^{n_{2}} R_{[1]}^{n_{1}}-R_{[1,4]}^{n_{1}, n_{2}}+R_{[2,3]}^{n_{1}, n_{2}}-R_{[2,3]}^{n_{1}, n_{12}} \tag{6.20}\\
& 0=\frac{1}{120}\left(\delta^{n_{2}} R_{[1]}^{n_{12}}-\delta^{n_{2}} R_{[1]}^{n_{1}}\right)-R_{[1,4]}^{n_{1}, n_{2}}+R_{[1,4]}^{n_{12}, n_{2}}+R_{[2,3]}^{n_{1}, n_{2}}-R_{[2,3]}^{n_{2}, n_{12}}+2 R_{[2,3]}^{n_{12}, n_{2}}
\end{align*}
$$

The absence of multipoles of order 2 at the origin is also equivalent to a system of two independent identities, with effective involvement of all singulands except the last one:

$$
\begin{align*}
& \mathcal{R}_{[1]}^{*}+\mathcal{R}_{[1,2]}^{*}+\mathcal{R}_{[1,4]}^{*}+\mathcal{R}_{[2,3]}^{*}+\mathcal{R}_{[1,1,3]}^{*}+\mathcal{R}_{[2,1,2]}^{*}=0 \tag{6.21}\\
& \mathcal{R}_{[1]}^{\dagger}+\mathcal{R}_{[1,2]}^{\dagger}+\mathcal{R}_{[1,4]}^{\dagger}+\mathcal{R}_{[2,3]}^{\dagger}+\mathcal{R}_{[1,1,3]}^{\dagger}+\mathcal{R}_{[2,1,2]}^{\dagger}=0 \tag{6.22}
\end{align*}
$$

$$
\begin{aligned}
360 \mathcal{R}_{[1]}^{*}= & -\delta^{n_{1}} \delta^{n_{23}} R_{[1]}^{n_{2}}-4 \delta^{n_{2}} \delta^{n_{23}} R_{[1]}^{n_{1}}-11 \delta^{n_{1}} \delta^{n_{123}} R_{[1]}^{n_{2}}-11 \delta^{n_{12}} \delta^{n_{123}} R_{[1]}^{n_{1}} \\
& +14 \delta^{n_{12}} \delta^{n_{3}} R_{[1]}^{n_{1}}-14 \delta^{n_{2}} \delta^{n_{3}} R_{[1]}^{n_{1}}+15 \delta^{n_{1}} \delta^{n_{3}} R_{[1]}^{n_{2}}+15 \delta^{n_{2}} \delta^{n_{123}} R_{[1]}^{n_{1}} \\
& -15 \delta^{n_{1}} \delta^{n_{3}} R_{[1]}^{n_{12}}+15 \delta^{n_{1}} \delta^{n_{123}} R_{[1]}^{n_{12}} \\
360 \mathcal{R}_{[1]}^{\dagger}= & +\delta^{n_{1}} \delta^{n_{23}} R_{[1]}^{n_{3}}-\delta^{n_{2}} \delta^{n_{3}} R_{[1]}^{n_{123}}-14 \delta^{n_{2}} \delta^{n_{3}} R_{[1]}^{n_{1}}-14 \delta^{n_{12}} \delta^{n_{3}} R_{[1]}^{n_{2}} \\
& +15 \delta^{n_{1}} \delta^{n_{3}} R_{[1]}^{n_{2}}+15 \delta^{n_{2}} \delta^{n_{3}} R_{[1]}^{n_{12}}-15 \delta^{n_{1}} \delta^{n_{3}} R_{[1]}^{n_{23}}+15 \delta^{n_{2}} \delta^{n_{123}} R_{[1]}^{n_{3}} \\
& +25 \delta^{n_{23}} \delta^{n_{3}} R_{[1]}^{n_{1}}+25 \delta^{n_{3}} \delta^{n_{123}} R_{[1]}^{n_{23}}-25 \delta^{n_{23}} \delta^{\left[n_{3}\right.} R_{[1]}^{n_{123}} \\
2 \mathcal{R}_{[1,2]}^{*}= & +\delta^{n_{1}} R_{[11,2]}^{n_{2}, n_{3}}-\delta^{n_{1}} R_{[1,2]}^{n_{2}, n_{23}}-\delta^{n_{2}} R_{[1,2]}^{n_{1}, n_{23}}+\delta^{n_{2}} R_{[1,2]}^{n_{1}, n_{123}} \\
& -\delta^{n_{1}} R_{[1,2]}^{n_{12}, n_{3}}+\delta^{n_{1}} R_{[1,2]}^{n_{12}, n_{123}} \\
6 \mathcal{R}_{[1,2]}^{\dagger}= & +2 \delta^{n_{3}} R_{[1,2]}^{n_{1}, n_{23}}-2 \delta^{n_{123}} R_{[[1,2]}^{n_{2}, n_{3}}-2 \delta^{n_{123}} R_{[1,2]}^{n_{3}, n_{23}}+2 \delta^{n_{123}} R_{[1,2]}^{n_{23}, n_{3}} \\
& -2 \delta^{n_{3}} R_{[1,2]}^{n_{123}, n_{23}}+2 \delta^{n_{3}} R_{[1,2]}^{n_{23}, n_{123}}+3 \delta^{n_{1}} R_{[1,2]}^{n_{2}, n_{3}}+3 \delta^{n_{2}} R_{[1,2]}^{n_{12}, n_{3}} \\
& -3 \delta_{[1,2]}^{n_{1}} R_{[123}^{n_{3}}+3 \delta^{n_{1}} R_{[1,2]}^{n_{3}, n_{23}}+3 \delta^{n_{2}} R_{[1,2]}^{n_{3}, n_{123}}-3 \delta^{n_{2}} R_{[1,2]}^{n_{123}, n_{3}}
\end{aligned}
$$

$$
\begin{aligned}
2 \mathcal{R}_{[1,4]}^{*}= & \delta^{n_{12}} R_{[1,4]}^{n_{1}, n_{3}}-\delta^{n_{2}} R_{[1,4]}^{n_{1}, n_{3}}-\delta^{n_{2}} R_{[1,4]}^{n_{1}, n_{23}}+\delta^{n_{1}} R_{[1,4]}^{n_{2}, n_{23}} \\
& +\delta^{n_{12}} R_{[1,4]}^{n_{1}, n_{123}}+\delta^{n_{1}} R_{[1,4]}^{n_{2}, n_{123}} \\
6 \mathcal{R}_{[1,4]}^{\dagger}= & 2 \delta^{n_{3}} R_{[1,4]}^{n_{2}, n_{123}}-2 \delta^{n_{23}} R_{[1,4]}^{n_{1}, n_{3}}+2 \delta^{n_{3}} R_{[1,4]}^{n_{1}, n_{23}}-2 \delta^{n_{123}} R_{[1,4]}^{n_{2}, n_{3}} \\
& +2 \delta^{n_{23}} R_{[1,4]}^{n_{3}, n_{123}}+2 \delta^{n_{23}} R_{[1,4]}^{n_{123}, n_{3}}-2 \delta^{n_{123}} R_{[1,4]}^{n_{3}, n_{23}}-2 \delta^{n_{3}} R_{[1,4]}^{n_{123}, n_{23}} \\
& -3 \delta^{n_{2}} R_{[1,4]}^{n_{1}, n_{3}}-3 \delta^{n_{12}} R_{[1,4]}^{n_{2}, n_{3}}-3 \delta^{n_{1}} R_{[1,4]}^{n_{3}, n_{23}}+3 \delta^{n_{2}} R_{[1,4]}^{n_{123}, n_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathcal{R}_{[2,3]}^{*}=\delta^{n_{2}} R_{[2,3]}^{n_{1}, n_{3}}-\delta^{n_{1}} R_{[2,3]}^{n_{2}, n_{3}}+\delta^{n_{12}} R_{[2,3]}^{n_{1}, n_{3}}-\delta^{n_{2}} R_{[2,3]}^{n_{1}, n_{123}} \\
& +\delta^{n_{1}} R_{[2,3]}^{n_{2}, n_{123}}-\delta^{n_{1}} R_{[2,3]}^{n_{12}, n_{3}}-\delta^{n_{12}} R_{[2,3]}^{n_{1}, n_{123}}+\delta^{n_{1}} R_{[2,3]}^{n_{12}, n_{123}} \\
& 6 \mathcal{R}_{[2,3]}^{\dagger}=\delta^{n_{23}} R_{[2,3]}^{n_{3}, n_{1}}-\delta^{n_{3}} R_{[2,3]}^{n_{123}, n_{2}}+2 \delta^{n_{23}} R_{[2,3]}^{n_{123}, n_{3}}+2 \delta^{n_{23}} R_{[2,3]}^{n_{3}, n_{123}} \\
& +3 \delta^{n_{2}} R_{[2,3]}^{n_{1}, n_{3}}-3 \delta^{n_{23}} R_{[2,3]}^{n_{1}, n_{3}}-3 \delta^{n_{1}} R_{[2,3]}^{n_{2}, n_{3}}-3 \delta^{n_{12}} R_{[2,3]}^{n_{2}, n_{3}} \\
& +3 \delta^{n_{2}} R_{[2,3]}^{n_{12}, n_{3}}+3 \delta^{n_{1}} R_{[2,3]}^{n_{23}, n_{3}}+3 \delta^{n_{3}} R_{[2,3]}^{n_{2}, n_{123}}-3 \delta^{n_{2}} R_{[2,3]}^{n_{3}, n_{123}} \\
& +3 \delta^{n_{3}} R_{[2,3]}^{n_{23}, n_{123}}+3 \delta^{n_{123}} R_{[2,3]}^{n_{23}, n_{3}}-5 \delta^{n_{123}} R_{[2,3]}^{n_{3}, n_{2}} \\
& -5 \delta^{n_{3}} R_{[2,3]}^{n_{123}, n_{23}}-6 \delta^{n_{1}} R_{[2,3]}^{n_{3}, n_{23}}+6 \delta^{n_{2}} R_{[2,3]}^{n_{123}, n_{3}} \\
& \mathcal{R}_{[1,1,3]}^{*}=R_{[1,1,3]}^{n_{1}, n_{2}, n_{3}}-R_{[1,1,3]}^{n_{1}, n_{2}, n_{23}}+R_{[1,1,3]}^{n_{1}, n_{12}, n_{123}}-R_{[1,1,3]}^{n_{1}, n_{12}, n 3}+R_{[1,1,3]}^{n_{2}, n_{1}, n_{123}}-R_{[1,1,3]}^{n_{2}, n_{1}, n_{23}} \\
& \mathcal{R}_{[1,1,3]}^{\dagger}=R_{[1,1,3]}^{n_{1}, n_{2}, n_{3}}+R_{[1,1,3]}^{n_{2}, n_{12}, n_{3}}-R_{[1,1,3]}^{n_{1}, n_{23}, n_{3}}+R_{[1,1,3]}^{n_{3}, n_{1}, n_{23}}+R_{[1,1,3]}^{n_{1}, n_{3}, n_{23}} \\
& -R_{[1,1,3]}^{n_{123}, n_{2}, n_{3}}-R_{[1,1,3]}^{n_{2}, n_{123}, n_{3}}+R_{[1,1,3]}^{n_{2}, n_{3}, n_{123}}-R_{[11,3]}^{n_{123}, n_{3}, n_{23}} \\
& -R_{[1,1,3]}^{n_{3}, n_{12}, n_{23}}+R_{[1,1,3]}^{n_{123}, n_{23}, n_{3}}+R_{[1,1,3]}^{n_{3}, n_{23}, n_{123}} \\
& \mathcal{R}_{[2,1,2]}^{*}=0 \\
& \mathcal{R}_{[2,1,2]}^{\dagger}=2\left(R_{[2,1,2]}^{n_{3}, n_{1}, n_{23}}-R_{[2,1,2]}^{n_{123}, n_{2}, n_{3}}+R_{[2,1,2]}^{n_{3}, n_{23}, n_{123}}-R_{[2,1,2]}^{n_{123}, n_{3}, n_{23}}-R_{[2,1,2]}^{n_{3}, n_{123}, n_{23}}+R_{[2,1,2]}^{n_{123}, n_{23}, n_{3}}\right)
\end{aligned}
$$

Lastly, the condition for $l \phi m a^{w_{1}, \ldots, w_{5}}$ to have no poles of order 1 at the origin can be expressed by a single equation, that involves all seven relevant singulands :

$$
\begin{equation*}
\mathcal{R}_{[1]}^{* *}+\mathcal{R}_{[1,2]}^{* *}+\mathcal{R}_{[1,4]}^{* *}+\mathcal{R}_{[2,3]}^{* *}+\mathcal{R}_{[1,1,3]}^{* *}+\mathcal{R}_{[2,1,2]}^{* *}+\mathcal{R}_{[1,1,1,2]}^{* *}=0 \tag{6.23}
\end{equation*}
$$

Once again the $\mathcal{R}_{[r]}^{* *}$ are too unwieldy for us to write down, and we merely mention their number $\#\left(\mathcal{R}_{[r]}^{* *}\right)$ of summands:

$$
\begin{array}{ll}
\#\left(\mathcal{R}_{[1]}^{* *}\right)=34 \quad, & \#\left(\mathcal{R}_{[1,2]}^{* *}\right)=58 \quad, \#\left(\mathcal{R}_{[1,4]}^{* *}\right)=40 \quad, \#\left(\mathcal{R}_{[2,3]}^{* *}\right)=74 \\
\#\left(\mathcal{R}_{[1,1,3]}^{* *}\right)=48 & , \#\left(\mathcal{R}_{[2,1,2]}^{* *}\right)=64 \quad, \#\left(\mathcal{R}_{[1,1,1,2]}^{* *}\right)=24
\end{array}
$$

6.5 The basis lama ${ }^{\bullet} /$ lami $^{\bullet}$.

As already pointed out, the desingulation conditions listed above admit multiple solutions when the singulands are sought in the space of power series, even after imposing the proper parity in each variable. To ensure uniqueness, many additional constraints are theoretically possible, but two stand
out as clearly privileged, in the sense that they, and they alone, guarantee coefficients with arithmetically simple denominators.

We mention here the first constraint, leading to the bimould lama ${ }^{\bullet}$, for the first non-trivial singulands $S_{[1,2]}^{\bullet}=S_{1,2}^{\bullet}$. For the coefficients of weight s, the equation (6.14) admits exactly one solution of the form:

$$
\begin{equation*}
\mathrm{Sa}_{1,2}^{x_{1}, x_{2}}=\sum_{1 \leq \delta \leq \operatorname{ent}\left(\frac{s-1}{2}\right)-\operatorname{ent}\left(\frac{s+1}{6}\right)} a_{2 \delta} x_{1}^{2 \delta} x_{2}^{s-2-2 \delta} \tag{6.24}
\end{equation*}
$$

This is, moreover, the choice for which the prime factors in the denominator admit the best universal bound $p \leq C s t s$. In fact, for this choice, the bound is $p \leq \frac{s}{3}$.

6.6 The basis loma ${ }^{\bullet} /$ lomi $^{\bullet}$.

Now, let us move on to the second type of constraints, leading to the bimould loma ${ }^{\bullet}$, again for the first non-trivial singulands $S_{[1,2]}^{\bullet}=S_{1,2}^{\bullet}$. For the coefficients of weight s, the equation (6.14) admits exactly one solution of the form:

$$
\begin{equation*}
\mathrm{So}_{1,2}^{x_{1}, x_{2}}=x_{1}^{2} x_{2} \sum_{0 \leq \delta \leq \operatorname{ent}\left(\frac{s-3}{6}\right)} a_{2 \delta}\left(x_{1}^{2 \delta} x_{2}^{s-5-2 \delta}+x_{1}^{s-5-2 \delta} x_{2}^{2 \delta}\right) \tag{6.25}
\end{equation*}
$$

which entails far fewer coefficients. This is basically the only other choice ${ }^{93}$ for which the prime factors in the denominator admit a universal bound $p \leq C s t s$. In this case the bound is $p \leq \frac{2 s-5}{3}$.

6.7 The basis luma ${ }^{\bullet} /{ }^{\prime}$ lumi ${ }^{\bullet}$.

Here, we may deal at once with all length-2 singulands:

$$
\begin{equation*}
S_{\left[r_{1}, r_{2}\right]}^{x_{1}, x_{2}}=S_{r_{1}, r_{2}}^{x_{1}, x_{2}} \stackrel{\text { esss }}{ } \stackrel{l^{\text {l }}}{=} \sum_{n_{i} \in \mathbb{Z}^{*}} R_{r_{1}, r_{2}}^{n_{1}, n_{2}} P\left(x_{1}+n_{1}\right) P\left(x_{2}+n_{2}\right) \tag{6.26}
\end{equation*}
$$

The multiresidues are simple enough: ${ }^{94}$

$$
\begin{equation*}
R_{\left[r_{1}, r_{2}\right]}^{n_{1}, n_{2}}=R_{r_{1}, r_{2}}^{n_{1}, n_{2}}=\gamma_{r_{1}, r_{2}} \mu\left(n_{1}, n_{2}\right) n_{1}^{n_{2}-1} n_{2}^{n_{1}-1} \tag{6.27}
\end{equation*}
$$

[^49]with $\gamma_{r_{1}, r_{2}}$ a simple rational constant, and with $\mu\left(n_{1}, n_{2}\right)$ being 1 (resp. 0) if n_{1}, n_{2} are co-prime (resp. otherwise). The Taylor coefficients of the singulates, however, are less simple: they carry Bernoulli numbers in their denominators, and sometimes very large prime factors, that can exceed any given bound of the form Cst s:
\[

$$
\begin{equation*}
\mathrm{Su}_{r_{1}, r_{2}}^{x_{1}, x_{2}}(s)=(-1)^{r_{1}} \frac{B_{r_{1}+r_{2}-1}}{r_{1}+r_{2}-1} \sum_{\substack{\delta_{1} \geq r_{1} \\ \delta_{2} \geq r_{2}}}^{\delta_{1}+\delta_{2}=s+2} \frac{B_{\delta_{1}-r_{1}}^{*} B_{\delta_{2}-r_{2}}^{*}}{B_{\delta_{1}+\delta_{2}-r_{1}-r_{2}}^{*}} u_{1}^{\delta_{2}-2} u_{2}^{\delta_{1}-2} \tag{6.28}
\end{equation*}
$$

\]

with $B_{n}^{*}=\frac{B_{n}}{n!}, B_{2 n}:=$ Bernoulli number, $B_{n}:=0$ for n odd or <0.
Pay attention to the exponents: it is $\delta_{2}-2$ on top of u_{1} and $\delta_{1}-2$ on top of u_{2}. In fact, since both s and $r_{1}+r_{2}$ are always odd, the summation rule produces only positive powers of u_{1}, u_{2} (one even, the other odd), except for the pairs $\left(r_{1}, r_{2}\right)=(1,2)$ resp. $(2,1)$ where constant monomials in u_{1} resp. u_{2} do appear - but these may be neglected, since they contribute nothing to the singulate. Of course, the usual identity $S u_{r_{1}, r_{2}}^{x_{1}, x_{2}}+S u_{r_{2}, r_{1}}^{x_{2}, x_{1}}=0$ holds.

6.8 Arithmetical vs analytic smoothness.

To show how the three choices compare, arithmetically speaking, we list the weight-s component $S_{1,2}(s)$ of the first non-trivial singuland in all three variants $S a_{1,2}^{\bullet}(s), S o_{1,2}^{\bullet}(s), S u_{1,2}^{\bullet}(s)$, up to the weight $s=17$:

$$
\begin{aligned}
\mathrm{Sa}_{1,2}^{x_{1}, x_{2}}(5) & =\mathrm{So}_{1,2}^{x_{1}, x_{2}}(5)=\mathrm{Su}_{1,2}^{x_{1}, x_{2}}(5)=-\frac{5}{12} x_{1}^{2} x_{2} \\
\mathrm{Sa}_{1,2}^{x_{1}, x_{2}}(7) & =\mathrm{So}_{1,2}^{x_{1}, x_{2}}(7)=\mathrm{Su}_{1,2}^{x_{1}, x_{2}}(7)=-\frac{7}{24} x_{1}^{2} x_{2}^{3}-\frac{7}{24} x_{1}^{4} x_{2} \\
\mathrm{Sa}_{1,2}^{x_{1}, x_{2}}(9) & =\mathrm{So}_{1,2}^{x_{1}, x_{2}}(9)=\mathrm{Su}_{1,2}^{x_{1}, x_{2}}(9)=-\frac{5}{18} x_{1}^{2} x_{2}^{5}-\frac{7}{36} x_{1}^{4} x_{2}^{3}-\frac{5}{18} x_{1}^{6} x_{2} \\
\mathrm{Sa}_{1,2}^{x_{1}, x_{2}}(11) & =-\frac{11}{8} x_{1}^{2} x_{2}^{7}+\frac{55}{24} x_{1}^{4} x_{2}^{5}-\frac{11}{6} x_{1}^{6} x_{2}^{3} \\
\mathrm{So}_{1,2}^{x_{1}, x_{2}}(11) & =-\frac{11}{40} x_{1}^{2} x_{2}^{7}-\frac{11}{60} x_{1}^{4} x_{2}^{5}-\frac{11}{60} x_{1}^{6} x_{2}^{3}-\frac{11}{40} x_{1}^{8} x_{2} \\
\mathrm{Su}_{1,2}^{x_{1}, x_{2}}(11) & =\mathrm{So}_{1,2}^{x_{1}, x_{2}}(11) \\
\mathrm{Sa}_{1,2}^{x_{1}, x_{2}}(13) & =-\frac{91}{48} x_{1}^{4} x_{2}^{7}+\frac{65}{24} x_{1}^{6} x_{2}^{5}-\frac{91}{48} x_{1}^{8} x_{2}^{3}, \\
\mathrm{So}_{1,2}^{x_{1}, x_{2}}(13) & =-\frac{65}{252} x_{1}^{2} x_{2}^{9}-\frac{143}{504} x_{1}^{4} x_{2}^{7}-\frac{143}{504} x_{1}^{8} x_{2}^{3}-\frac{65}{252} x_{1}^{10} x_{2} \\
\mathrm{Su}_{1,2}^{x_{1}, x_{2}}(13) & =-\frac{2275}{8292} x_{1}^{2} x_{2}^{9}-\frac{1001}{5528} x_{1}^{4} x_{2}^{7}-\frac{715}{4146} x_{1}^{6} x_{2}^{5}-\frac{1001}{5528} x_{1}^{8} x_{2}^{3}-\frac{2275}{8292} x_{1}^{10} x_{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Sa}_{1,2}^{x_{1}, x_{2}}(15)= & -\frac{691}{360} x_{1}^{2} x_{2}^{11}+\frac{665}{144} x_{1}^{4} x_{2}^{9}-\frac{2233}{360} x_{1}^{6} x_{2}^{7}+\frac{209}{48} x_{1}^{8} x_{2}^{5}-\frac{21}{10} x_{1}^{10} x_{2}^{3} \\
\mathrm{So}_{1,2}^{x_{1}, x_{2}}(15)= & -\frac{691}{2520} x_{1}^{2} x_{2}^{11}-\frac{13}{72} x_{1}^{4} x_{2}^{9}-\frac{143}{840} x_{1}^{6} x_{2}^{7}-\frac{143}{840} x_{1}^{8} x_{2}^{5}-\frac{13}{72} x_{1}^{10} x_{2}^{3} \\
& -\frac{691}{2520} x_{1}^{12} x_{2} \\
\mathrm{Su}_{1,2}^{x_{1}, x_{2}}(15)= & \mathrm{So}_{1,2}^{x_{1}, x_{2}}(15) \\
\mathrm{Sa}_{1,2}^{x_{1}, x_{2}}(17)= & -\frac{442}{15} x_{1}^{2} x_{2}^{13}+\frac{1105}{12} x_{1}^{4} x_{2}^{11}-\frac{1666}{15} x_{1}^{6} x_{2}^{9}+\frac{187}{3} x_{1}^{8} x_{2}^{7}-\frac{153}{10} x_{1}^{10} x_{2}^{5} \\
\mathrm{So}_{1,2}^{x_{1}, x_{2}}(17)= & -\frac{17}{60} x_{1}^{2} x_{2}^{13}-\frac{17}{144} x_{1}^{4} x_{2}^{11}-\frac{221}{720} x_{1}^{6} x_{2}^{9}-\frac{221}{720} x_{1}^{10} x_{2}^{5}-\frac{17}{144} x_{1}^{12} x_{2}^{3} \\
& -\frac{17}{60} x_{1}^{14} x_{2} \\
& -\frac{5525}{32553} x_{1}^{10} x_{2}^{5}-\frac{11747}{65106} x_{1}^{12} x_{2}^{3}-\frac{2975}{10851} x_{1}^{14} x_{2}
\end{aligned}
$$

6.9 Singulator kernels and "wandering" bialternals.

Let $B I M U_{l}^{s}$ be the space of all bimoulds M^{\bullet} whose only non-vanishing component $M^{w_{1}, \ldots, w_{l}}$ is constant in the v_{i}-variables, and homogeneous polynomial of total degree $d=s-l$ in the u_{i}-variables. ${ }^{95}$

Likewise, let $B I M U_{r_{1}, \ldots, r_{l}}^{s}$ be the subspace of $B I M U_{l}^{s}$ consisting of all bimoulds M^{\bullet} whose only non-vanishing component $M^{w_{1}, \ldots, w_{l}}$:

- is divisible by each u_{i}
- is even in u_{i} if r_{i} is odd, and vice versa.

For each pair r and s large enough $\left(s \geq s_{r}\right)$, there always exist non-trivial collections of special singulands S_{r}^{\bullet} :

$$
\begin{equation*}
\left\{S_{r_{1}, \ldots, r_{l}}^{\bullet} \in \operatorname{BIMU}_{r_{1}, \ldots, r_{l}}^{s} ; 1<l<r, r_{1}+\cdots+r_{l}=r\right\} \tag{6.29}
\end{equation*}
$$

such that the corresponding bialternal singulates Σ_{r}^{\bullet} combine to form a Θ_{r}^{\bullet} that is singularity-free, i.e. polynomial, with the predictable total degree $s-r$ and an unchanged 'weight' s :

$$
\begin{equation*}
\Theta_{r}^{\bullet}:=\sum_{1<l<r} \sum_{r_{1}+\ldots+r_{l}=r} \operatorname{slank}_{r_{1}, \ldots, r_{l}} \cdot S_{r_{1}, \ldots, r_{l}}^{\bullet} \in \operatorname{ALAL} \cap \operatorname{BIMU}_{r}^{s} \tag{6.30}
\end{equation*}
$$

[^50]instead of presenting at the origin multipoles of order τ :
\[

$$
\begin{equation*}
\tau:=r-l_{\min } \quad \text { with } \quad 2 \leq l_{\min }:=\inf (l) \text { for } \quad S_{r_{1}, \ldots, r_{l}}^{\bullet} \neq 0^{\bullet} \tag{6.31}
\end{equation*}
$$

\]

as would be the case for randomly chosen singulands S_{r}^{\bullet}. The result holds even if we impose that there be a least one nonzero singuland $S_{r_{1}, r_{2}}^{\bullet}$ of minimal length $l=2$.

These paradoxical non-singular singulates Θ_{r}^{\bullet} are known as wandering bialternals. They span a subspace of BIMU which is in fact a (small) subalgebra $A L A L_{\text {wander }}$ of $A L A L \subset A R I^{\text {al/al }}$. On top of the natural gradation by r (the length), $A L A L_{\text {wander }}$ admits a natural filtration by τ (the 'avoided polar order').

The presence of these wandering bialternals is responsible for the very slight indeterminacy that exists in the construction by singulation-desingulation of a basis of $A L I L \subset A R I^{\text {all } / \mathrm{il}}$. As we saw, to remove that indeterminacy, additional criteria (arithmetical or functional) are called for, leading to the three (distinct yet closely related) bases of $\S 6.5, \S 6.6, \S 6.7$.

7 A conjectural basis for $A L A L \subset A R I^{\text {al/al }}$. The three series of bialternals.

7.1 Basic bialternals: the enumeration problem.

We shall have to handle three series of bialternals, each with a single non-zero component, of length $1,2,4$ respectively. Here they are, with their names and natural indexation:

$$
\begin{array}{rll}
\mathrm{ekma}_{\boldsymbol{d}}^{\bullet} / \mathrm{ekmi}_{d}^{\bullet} & \in \mathrm{BIMU}_{1} \quad, \quad & d \text { even } \geq 2 \\
\operatorname{doma}_{d, b}^{\bullet} / \text { domi }_{d, b}^{\bullet} & \in \mathrm{BIMU}_{2}, & d \text { even } \geq 6,1 \leq b \leq \beta(d) \\
\operatorname{carma} \dot{d}_{d, c}^{\bullet} / \text { carmi }_{d, c}^{\bullet} & \in \mathrm{BIMU}_{4}, & d \text { even } \geq 8,1 \leq c \leq \gamma(d)
\end{array}
$$

As usual, the vocalic alternation $a \leftrightarrow i$ is indicative of the basic involution swap. The integers $\alpha(d), \beta(d), \gamma(d)$ are given by the generating functions:

$$
\begin{align*}
& \sum \alpha(d) t^{d}:=t^{6}\left(1-t^{2}\right)^{-1}\left(1-t^{4}\right)^{-1}=t^{6}+t^{8}+2 t^{10}+2 t^{12}+3 t^{14} \ldots \tag{7.1}\\
& \sum \beta(d) t^{d}:=t^{6}\left(1-t^{2}\right)^{-1}\left(1-t^{6}\right)^{-1}=t^{6}+t^{8}+t^{10}+2 t^{12}+2 t^{14} \ldots \tag{7.2}\\
& \sum \gamma(d) t^{d}:=t^{8}\left(1-t^{4}\right)^{-1}\left(1-t^{6}\right)^{-1}=t^{8}+t^{12}+t^{14}+t^{16}+t^{18}+2 t^{20} . . \tag{7.3}
\end{align*}
$$

and clearly verify $\alpha(d) \equiv \beta(d)+\gamma(d-2)$. Mark the absence of t^{10} in (7.3).

7.2 The regular bialternals : ekma, doma.

The ekma bialternals are utterly elementary

$$
\begin{equation*}
\operatorname{ekma}_{d}^{w_{1}}:=u_{1}^{d} ; \operatorname{ekmi}_{d}^{w_{1}}:=v_{1}^{d} \tag{7.4}
\end{equation*}
$$

since, for length 1, bialternality reduces to neg-invariance. If the ekmas freely generated a subalgebra $E K M A$ of $A L A L$, the dimension of $E K M A_{2, d}$ (length 2 , degree d) would be exactly $\alpha(d)$. This, however, is not the case. Indeed, since the bialternality constraints for length 2 are finitary ${ }^{96}$, Hilbert's invariant theory applies, and it is a simple matter to verify that $A L A L_{2}$
(i) is spanned by ekma brackets,
(ii) admits the following domas as a canonical (in the sense of 'simplest') basis:

$$
\begin{align*}
\operatorname{doma}_{d, b}^{w_{1}, w_{2}} & :=\mathrm{fa}\left(u_{1}, u_{2}\right)\left(\mathrm{ga}\left(u_{1}, u_{2}\right)\right)^{b-1}\left(\mathrm{ha}\left(u_{1}, u_{2}\right)\right)^{d / 2-3 b} \tag{7.5}\\
\operatorname{domi}_{d, b}^{w_{1}, w_{2}} & :=\mathrm{fi}\left(v_{1}, v_{2}\right)\left(\operatorname{gi}\left(v_{1}, v_{2}\right)\right)^{b-1}\left(\operatorname{hi}\left(v_{1}, v_{2}\right)\right)^{d / 2-3 b} \tag{7.6}
\end{align*}
$$

with

$$
\begin{align*}
\mathrm{fa}\left(u_{1}, u_{2}\right) & :=u_{1} u_{2}\left(u_{1}-u_{2}\right)\left(u_{1}+u_{2}\right)\left(2 u_{1}+u_{2}\right)\left(2 u_{2}+u_{1}\right) \tag{7.7}\\
\operatorname{ga}\left(u_{1}, u_{2}\right) & :=\left(u_{1}+u_{2}\right)^{2} u_{1}^{2} u_{2}^{2} ; \operatorname{ha}\left(u_{1}, u_{2}\right):=u_{1}^{2}+u_{1} u_{2}+u_{2}^{2} \tag{7.8}\\
\mathrm{f}\left(v_{1}, v_{2}\right) & :=v_{1} v_{2}\left(v_{1}-v_{2}\right)\left(v_{1}+v_{2}\right)\left(2 v_{1}-v_{2}\right)\left(2 v_{2}-v_{1}\right) \tag{7.9}\\
\operatorname{gi}\left(v_{1}, v_{2}\right) & :=\left(v_{1}-v_{2}\right)^{2} v_{1}^{2} v_{2}^{2} \quad ; \quad \operatorname{hi}\left(v_{1}, v_{2}\right):=v_{1}^{2}-v_{1} v_{2}+v_{2}^{2} \tag{7.10}
\end{align*}
$$

Therefore $\operatorname{dim}\left(E K M A_{2, d}\right)=\operatorname{dim}\left(A L A L_{2, d}\right)=\beta(d) \leq \alpha(d)$ and, for each even degree $d+2$, the ekma-brackets verify exactly $\gamma(d)$ independent relations of the form:

$$
\begin{equation*}
\sum_{d_{1}+d_{2}=d+2} Q_{c}^{d_{1}, d_{2}} \operatorname{ari}\left(\mathrm{ekma}_{d_{1}}^{\bullet}, \operatorname{ekma}_{d_{2}}^{\bullet}\right)=0^{\bullet} \quad\left(1 \leq c \leq \gamma(d), Q_{c}^{d_{1}, d_{2}} \in \mathbb{Q}\right) \tag{7.11}
\end{equation*}
$$

easily derivable from the decompositions:

$$
\begin{equation*}
\operatorname{ari}\left(\mathrm{ekma}_{d_{1}}^{\bullet}, \mathrm{ekma}_{d_{2}}^{\bullet}\right)=\sum_{1 \leq b \leq \beta\left(d_{1}+d_{2}\right)} K_{d_{1}, d_{2}}^{b} \operatorname{doma}_{d_{1}+d_{2}, b}^{\bullet} \quad\left(K_{d_{1}, d_{2}}^{b} \in \mathbb{Q}\right) \tag{7.12}
\end{equation*}
$$

7.3 The irregular bialternals : carma.

Not all bialternals of length $r=4$ may be obtained as superpositions of ekma brackets. Thus, there exists (up to scalar multiplication) exactly one

[^51]bialternal of length $r=4$ and degree $d=8$, which clearly cannot be generated by ekmas, since the first ekma has degree 2 , and self-bracketting it four times yields nothing.

One of our conjectures (for which there is compelling theoretical and numerical evidence ${ }^{97}$) is that the number of these independent exceptional or irregular bialternals - we call them carma bialternals - is exactly $\gamma(d)$ as given by (7.3), and that these bialternals $\operatorname{carma}_{d, c}(1 \leq c \leq \gamma(d))$ are in one-to-one, constructive correspondence (see §7.7) with the elements (7.11) of length 2 and degree $d+2$ in the ekma ideal, under a transparent and quite universal restoration mechanism (see §7.9).

7.4 Main differences between regular and irregular bialternals.

For one thing, the algebra $E K M A \subset A L A L$ generated by the ekmas is intrinsical, while the algebra $C A R M A \subset A L A L$ generated by the carmas depends, as we shall see in $\S 8.5$, on the choice of a basis for $A L I L$. (That said, there exist clearly canonical bases of $A L I L$, and therefore canonical choices for CARMA as well.)

Then, the definition of the $e k m a_{d}^{\bullet}$ is as elementary as the construction of the carma ${ }_{d, c}^{\bullet}$ is complex. Unsurprisingly, this difference finds its reflection in the arithmetical properties (divisibility etc) and above all in the sheer size of their coefficients. ${ }^{98}$ For instance, if we consider the first 'cells' $A L A L_{r, d}$ where elements of EKMA and DOMA coexist with unique elements of CARMA, namely the 'cells' $r=4$ and $d \leq 18$, and then compare typical elements of $E K M A_{r, d}$ and $D O M A_{r, d}$ with those of $C A R M A_{r, d}$, we find that the latter are strikingly more complex.

For illustration, here is, with self-explanatory labels, a list of representatives chosen in the three algebras, with red signalling that our polynomials are taken in their simplest form, i.e. with coprime coefficients:

```
\(\operatorname{cara}_{d}:=\operatorname{red}\left(\right.\) carma \(\left._{d, 1}\right) \quad(d=8,12,14,16,18)\)
    \(\operatorname{eka}_{d}:=\operatorname{red}\left(\operatorname{ari}^{\left.\left(\text {ekma }_{d-6}, \text { ekma }_{2}, \text { ekma }_{2}, \text { ekma }_{2}\right)\right) \quad(d=10,12,14,16,18)}\right.\)
doa \(_{14}:=\operatorname{red}\left(\operatorname{ari}^{\left(\text {doma }_{6,1}\right.}\right.\), doma \(\left.\left._{8,1}\right)\right)\)
doa \(_{16}:=\operatorname{red}\left(\operatorname{ari}\left(\right.\right.\) doma \(_{6,1}\), doma \(\left.\left._{10,1}\right)\right)\)
\(\operatorname{doa}_{18}:=\operatorname{red}\left(\operatorname{ari}\left(\right.\right.\) doma \(_{6,1}\), doma \(\left.\left._{12,2}\right)\right)\)
```

The first table (below) mentions the exact number of monomials effectively present in each polynomial. That number is always larger in the \boldsymbol{u}-variables

[^52](vowel a) than in the \boldsymbol{v}-variables (vowel i), and the figures in boldface represent the difference. For comparison, the first column FULL mentions the maximum number of monomials in general homogeneous polynomials of the corresponding degree.

d	FULL	CARMA CARMI			EKMA EKMI				DOMA DOMI			
8	165	142	118	$\mathbf{2 4}$								
10	286				254	254	$\mathbf{0}$					
12	455	434	420	$\mathbf{1 4}$	422	408	$\mathbf{1 4}$					
14	680	658	640	$\mathbf{1 8}$	650	586	$\mathbf{6 4}$	498	420			
16	969	946	924	$\mathbf{2 2}$	940	752	$\mathbf{1 8 8}$	778	616			
$\mathbf{1 6 2}$												
18	1330	1306	1280	$\mathbf{2 6}$	1300	922	$\mathbf{3 7 8}$	930	798			
$\mathbf{1 3 2}$												

The next table (below) mentions the approximate norms of our (reduced!) polynomials, i.e. the sum of the absolute values of all their co-prime coefficients. Here again, the norms are much larger for the \boldsymbol{u} - than for the \boldsymbol{v}-variables, and the numbers in boldface represent the approximate ratios of the two.

d	CARMA	CARMI			EKMA	EKMI		DOMA	DOMI
8	8.610^{6}	2.610^{6}	$\mathbf{3}$						
10				1.910^{4}	1.410^{4}	$\mathbf{1 . 3}$			
12	1.210^{11}	6.010^{9}	$\mathbf{1 9}$	1.810^{5}	3.310^{4}	$\mathbf{5}$			
14	6.810^{12}	7.910^{10}	$\mathbf{8 7}$	2.010^{6}	8.510^{4}	$\mathbf{2 3}$	3.610^{5}	2.510^{4}	$\mathbf{1 4}$
16	7.610^{13}	3.810^{11}	$\mathbf{2 0 0}$	9.510^{7}	1.010^{6}	$\mathbf{9 5}$	5.210^{6}	8.810^{4}	$\mathbf{5 9}$
18	1.310^{17}	1.610^{14}	$\mathbf{8 4 5}$	1.510^{9}	3.910^{6}	$\mathbf{3 7 9}$	4.910^{6}	2.310^{5}	$\mathbf{2 1}$

Thus, while the polynomials in CARMA are only marginally fuller (i.e. less lacunary) than those in $D O M A$ and $E K M A$, the main difference lies in their dramatically larger coefficients. Arithmetically, too, their coefficients are more complex, as borne out by their various reductions $\bmod p$.

7.5 The pre-doma potentials.

Rectifying $\sigma_{1,1}$ to $\sigma_{1,1}^{*}$.
The mapping $\left(A^{\bullet}, B^{\bullet}\right) \in \mathrm{BIMU}_{1} \times \mathrm{BIMU}_{1} \mapsto C^{\bullet}:=\operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right) \in \mathrm{BIMU}_{2}$ induces by bilinearity a mapping $\sigma_{1,1}: S^{\bullet} \in \mathrm{BIMU}_{2} \mapsto \Sigma^{\bullet} \in \mathrm{BIMU}_{2}$ with:

$$
\begin{aligned}
& \sum^{\binom{u_{1}, u_{2}}{v_{1}, v_{2}}}=+S^{\binom{u_{1}, u_{2}}{v_{1}, v_{2}}}+S^{\binom{u_{2}, u_{12}}{v_{2}, 1, v_{1}}}+S^{\left(\begin{array}{c}
u_{12}, u_{1} \\
v_{2}, \\
v_{1}: 2
\end{array}\right)} \\
& -S^{\left(\begin{array}{l}
\binom{u_{2}, u_{1}}{v_{2}, v_{1}}
\end{array} S^{\binom{u_{12}, u_{2}}{v_{1}, v_{2: 1}}}-S^{\left(\begin{array}{c}
u_{1}, u_{12} \\
v_{12}, \\
v_{2}
\end{array}\right)}\right.}
\end{aligned}
$$

For arguments $S^{w_{1}, w_{2}}$ that are even in both w_{1} and $w_{2}, \sigma_{1,1}$ coincides with the simpler mapping $\sigma_{1,1}^{*}: S^{\bullet} \in \mathrm{BIMU}_{2} \mapsto \Sigma_{*}^{\bullet} \in \mathrm{BIMU}_{2}$ with:

$$
\begin{aligned}
& \Sigma_{*}^{\binom{u_{1}, u_{2}}{v_{1}, v_{2}}}=+S^{\left(\begin{array}{l}
\binom{u_{1}, u_{2}}{v_{1}, v_{2}}
\end{array} S^{\left(\begin{array}{c}
\left(\begin{array}{l}
u_{2},-u_{12} \\
v_{2}: 1
\end{array},-v_{1}\right.
\end{array}\right)}+S^{\left(\begin{array}{c}
-u_{12}, u_{1} \\
-v_{2}, \\
v_{1}: 2
\end{array}\right)}\right.} \\
& -S^{\binom{u_{2}, u_{1}}{v_{2}, v_{1}}}-S^{\binom{-u_{12}, u_{2}}{-v_{1}, v_{2: 1}}}-S^{\left(\begin{array}{c}
u_{1}, \\
v_{12}, \\
v_{1}, u_{2} \\
v_{2}
\end{array}\right)} \\
& =+S^{\left(\begin{array}{c}
u_{1}, \\
v_{1: 0}, \\
u_{2}
\end{array}\right)}+S^{\left(\begin{array}{c}
u_{2}, \\
v_{21}, v_{0} \\
v_{0}
\end{array}\right)}+S^{\left(\begin{array}{c}
u_{0}, \\
v_{0}: 2 \\
v_{1}, \\
v_{1: 2}
\end{array}\right)}
\end{aligned}
$$

which in the "long notation" (i.e. under adjunction of $u_{0}:=-u_{1,2}$ and $v_{0}:=$ free) takes on the pleasant form:

$$
\begin{aligned}
\Sigma_{*}^{\left[w_{0}\right], w_{1}, w_{2}}= & +S^{\left[w_{0}\right], w_{1}, w_{2}}+S^{\left[w_{1}\right], w_{2}, w_{0}}+S^{\left[w_{2}\right], w_{0}, w_{1}} \\
& -S^{\left[w_{0}\right], w_{2}, w_{1}}-S^{\left[w_{1}\right], w_{0}, w_{2}}-S^{\left[w_{2}\right], w_{1}, w_{0}}
\end{aligned}
$$

In this form, the 'finitariness' of $\sigma_{1,1}^{*}$ is conspicuous, since the right-hand side involves exactly all six permutations of the sequence $\left(w_{0}, w_{1}, w_{2}\right)$. But $\sigma_{1,1}^{*}$ has another merit: it turns not just all bi-even, but also all bi-odd alternals $S^{w_{1}, w_{2}}$ into bialternals $\sum_{*}^{w_{1}, w_{2}}$ (whereas $\sigma_{1,1}$ only turns bi-even alternals into bialternals). When acting on bi-even (resp. bi-odd) alternals, $\sigma_{1,1}^{*}$ bilinearly extends the action of ari (resp. that of oddari: see (2.80)). The mappings $\sigma_{1,1}$ and $\sigma_{1,1}^{*}$ are of course reminiscent of the mappings from singulands S^{\bullet} to singulates Σ^{\bullet} which we studied at length in $\S 5$, except that now neither Σ^{\bullet} nor Σ_{*}^{\bullet} carries poles.

The bi-even pre-doma potentials.

Before turning to our proper object - the kernel of $\sigma_{1,1}^{*}$ - let us look for pre-doma-potentials, i.e. for (alternal, bi-even) pre-images of the $d o m a_{d, b}^{\bullet}$ under $\sigma_{1,1}^{*}$. If we impose the a priori form:
predoma ${ }_{d, b}^{x_{1}, x_{2}}=\sum_{1 \leq \delta \operatorname{ent}\left(\frac{d}{6}\right)} c_{d, b ; \delta}\left(x_{1}^{2 \delta} x_{2}^{d-2 \delta}-x_{2}^{2 \delta} x_{1}^{d-2 \delta}\right) \quad\left(d\right.$ even, $\left.1 \leq b \leq \operatorname{ent}\left(\frac{d}{6}\right)\right)$
the solution is unique, and this is essentially the only choice that yields arithmetical smoothness, i.e. that ensures for the prime factors p in the denominators of the coefficients $c_{d, b ; \delta}$ universal bounds of type $p \leq C d$. In fact, the bound here is $p \leq d-3$.
The bi-odd pre-doma potentials.
Here again, there is only one (alternal, bi-odd) a priori form (analogous to the above) that ensures arithmetical smoothness.

Arithmetical smoothness.

So, even in the case of the atypical, singularity-free singulator $\sigma_{1,1}^{*}$ we encounter anew the phenomenon which, in the preceding section, led us to the privileged bases $\operatorname{lam} a_{s}^{\bullet}$ and $\operatorname{lom} a_{s}^{\bullet}$, namely the existence of very specific conditions on the singulates that ensure unicity and simple 'factorial' bounds for the coefficients' denominators.

7.6 The pre-carma potentials.

Natural basis for $\operatorname{ker}\left(\sigma_{1,1}^{*}\right)$.
On the space of alternal bimoulds that are independent of (v_{1}, v_{2}) and polynomial in $\left(u_{1}, u_{2}\right)$ of even (total) degree d, the dimension of $\operatorname{ker}\left(\sigma_{1,1}^{*}\right)$ is $s_{d}:=\operatorname{ent}\left(\frac{d-1}{3}\right)$. Let us look for a convenient basis. Reverting to the (x_{1}, x_{2}) variables favoured for singulands, we see that the alternal bimoulds

$$
\begin{equation*}
H_{d, s}^{\binom{x_{1}, x_{2}}{0}}:=\left(x_{1}+x_{2}\right)^{s}\left(x_{1}^{s} x_{2}^{d-2 s}-x_{2}^{s} x_{1}^{d-2 s}\right) \tag{7.13}
\end{equation*}
$$

clearly belong to $\operatorname{ker}\left(\sigma_{1,1}^{*}\right)$. Consider now the sequences:

$$
\begin{equation*}
\mathcal{H}_{d ; s_{1}, s_{2}}=\left\{H_{d, s_{1}}^{\bullet}, H_{d, s_{1}+1}^{\bullet}, \ldots, H_{d, s_{2}-1}^{\bullet}, H_{d, s_{2}}^{\bullet}\right\} \tag{7.14}
\end{equation*}
$$

The main facts here are these:
(i) The elements of $\mathcal{H}_{d ; 1, s_{d}}$ constitute a basis of $\operatorname{ker}\left(\sigma_{1,1}^{*}\right)$.
(ii) The same holds for the shifted sets $\mathcal{H}_{d ; 1+k, s_{d}+k}$.
(iii) But it is only the first basis $\mathcal{H}_{d ; 1, s_{d}}$ that leads to arithmetically smooth expansions.

Natural basis for the pre-carma space.
The pre-carmas (so-called because they are the raw material from which the carmas shall be built) are the elements of $\operatorname{ker}\left(\sigma_{1,1}^{*}\right)$ which are bi-even (i.e. even separately in x_{1} and x_{2}) and divisible by $x_{1}^{2} x_{2}^{2} .{ }^{99}$ The main result here ${ }^{100}$ is that there exists a complete system of arithmetically smooth pre-carmas of the form:

$$
\begin{equation*}
\operatorname{precarma}_{d, k}^{x_{1}, x_{2}}=Q_{\tau(d)}\left(x_{1}, x_{2}\right) R_{8}\left(x_{1}, x_{2}\right)^{k} S_{4}\left(x_{1}, x_{2}\right)^{\kappa(d)-k} T_{d, k}\left(x_{1}, x_{2}\right) \tag{7.15}
\end{equation*}
$$

with $1 \leq k \leq \kappa(d)=\gamma(d-2)$ and γ as in (7.3) or, equivalently:

$$
\begin{array}{llll}
\kappa(d)=\operatorname{ent}\left(\frac{d-2}{12}\right) & \text { if } d \neq 10 & \bmod 12 & \quad \text { (ent }=\text { entire part) } \\
\kappa(d)=\operatorname{ent}\left(\frac{d-2}{12}\right)+1 & \text { if } d=10 & \bmod 12 &
\end{array}
$$

[^53]The first factor depends on $\tau(d):=\operatorname{gcd}(d, 12)$. It is of degree $\tau^{*}(d):=\tau(d)$ except when $12 \mid d$, in which case $\tau^{*}(d):=8$. It is given for the four possible values of $\tau(d)$ by:

$$
Q_{2}:=x_{1}^{2}-x_{2}^{2}, \quad Q_{4}:=x_{1}^{4}-x_{2}^{4}, \quad Q_{6}:=x_{1}^{6}-x_{2}^{6}, \quad Q_{12}:=\frac{Q_{4} Q_{6}}{Q_{2}}
$$

The second factor, of degree 8 , is given by:

$$
R_{8}:=x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}-x_{2}^{2}\right)^{2}
$$

and the reason for its spontaneous occurrence is that the six following polynomials are divisible by $x_{1}^{2} x_{2}^{2}\left(x_{1}+x_{2}\right)^{2}$:

$$
R_{8}\left(x_{i}, x_{j}\right) \quad, \quad R_{8}\left(x_{i}, x_{i}+x_{j}\right) \quad, \quad R_{8}\left(x_{i}+x_{j}, x_{j}\right) \quad \text { with } i, j \subset\{1,2\}
$$

The third factor, of degree 4, can be chosen arbitrarily, provided it is symmetric in $\left(x_{1}, x_{2}\right)$, even in each variable, and co-prime with R_{8}. The following choices:

$$
S_{4}:=\frac{Q_{4}^{2}}{Q_{2}^{2}}=\left(x_{1}^{2}+x_{2}^{2}\right)^{2} \quad ; \quad S_{4}:=\frac{Q_{6}}{Q_{2}}=x_{1}^{4}+x_{1}^{2} x_{2}^{2}+x_{2}^{4}
$$

are natural candidates to the extent that they introduce no new factors, but there seems to exist no really privileged choice, i.e. no choice that would render the last factor $T_{d, k}$ indisputably simplest.

That last factor, symmetric in x_{1}, x_{2} and with the right degree $\delta(d, k),{ }^{101}$ is then fully determined by the condition $\sigma_{1,1}^{*}$. precarma $_{d, k}=0$. It is thus simplest for k maximal, i.e. $k=\kappa$. The corresponding precarma $a_{d, \kappa}$ is also the only fully canonical precarma $a_{d, k}$, since it does not depend on the choice of S_{4}.

7.7 Construction of the carma bialternals.

The idea behind the construction.

Fix a polynomial basis $\left\{l \varnothing m a_{s}^{\bullet}, s=3,5,7 \ldots\right\}$ of $A L I L \subset A R I^{\text {all/il } 102}$ and consider a pre-carma polynomial precar of total degree $d+2$ (recall that d has to be even and either $=8$ or ≥ 12) with alternal coefficients $c_{2 \delta_{1}, 2 \delta_{2}}$:

$$
\begin{equation*}
\operatorname{precar}^{x_{1}, x_{2}}=\sum_{2\left(\delta_{1}+\delta_{2}\right)=d+2}^{\delta_{i} \geq 1} c_{2 \delta_{1}, 2 \delta_{2}} x_{1}^{2 \delta_{1}} x_{2}^{2 \delta_{2}} \tag{7.16}
\end{equation*}
$$

[^54]Next, form the bimould $c ø r^{\bullet}$ by bracketting the $l \varnothing m a_{s}^{\bullet}$ with the coefficients $c_{2 \delta_{1}, 2 \delta_{2}}$ as weights:

$$
\begin{align*}
\mathrm{c} \varnothing \mathrm{r}^{\bullet} & :=\sum_{2\left(\delta_{1}+\delta_{2}\right)=d+2}^{\delta_{i} \geq 1} c_{2 \delta_{1}, 2 \delta_{2}} \operatorname{preari}\left(l ø m a_{1+2 \delta_{1}}^{\bullet}, l ø m a_{1+2 \delta_{2}}^{\bullet}\right) \in \operatorname{ALIL}(7.17) \\
& =\sum_{2\left(\delta_{1}+\delta_{2}\right)=d+2}^{\delta_{i} \geq 1} c_{2 \delta_{1}, 2 \delta_{2}} \frac{1}{2} \operatorname{ari}\left(l ø m a_{1+2 \delta_{1}}^{\bullet}, l ø m a_{1+2 \delta_{2}}^{\bullet}\right) \in \operatorname{ALIL} \tag{7.18}
\end{align*}
$$

and consider the projection $c ø r m a^{\bullet}$ of $c ø r r^{\bullet}$ on $B I M U_{4}$. By construction, $c ø r^{\bullet}$ is of type al/il and its first non-vanishing component is therefore, on its own, of type al/al, i.e. bialternal. That first component cannot have length $r=2$, because precar is a pre-carma. It cannot have length $r=3$ either, because the component of length 3 is a polynomial of odd degree $1+d$ and for that reason cannot possibly be bialternal. This implies, therefore, that cørma•, i.e. the component of length 4 , is either $\equiv 0$ or a non-trivial bialternal of degree d. Based on extensive computational and theoretical evidence, we conjecture that the latter is always the case, and more precisely, that when precar runs through a basis of the precarma space, the corresponding cørma ${ }^{\bullet}$ span a space $C Ø R M A_{4}$ such that

$$
\begin{equation*}
\mathrm{C}_{\mathrm{DRMA}}^{4}-\left(\mathrm{EKMA}_{4}=\mathrm{ALAL}_{4} \subset \mathrm{ARI}_{4}^{\mathrm{al} / \mathrm{al}}\right. \tag{7.19}
\end{equation*}
$$

In simpler words: the cørma• provide all the missing bialternals of length $r=4$ and put them in one-to-one correspondance with the precarma${ }^{\bullet}$, i.e. with the "unproductive" brackets of ekma".

The construction works for any basis $\left\{l \varnothing m a_{s}^{\bullet}\right\}$ of ALIL. Specialising it to the three canonical bases $\left\{l a m a_{s}^{\bullet}\right\},\left\{l o m a_{s}^{\bullet}\right\},\left\{l u m a_{s}^{\bullet}\right\}$, we get three series of 'exceptional' bialternals $\left\{\right.$ carma $\left._{s}^{\bullet}\right\}$, $\left\{\right.$ corma $\left._{s}^{\bullet}\right\},\left\{\right.$ curma $\left.a_{s}^{\bullet}\right\}$, spanning spaces $\mathrm{CARMA}_{4}, \mathrm{CORMA}_{4}, C U R M A_{4}$ which, though distinct, each verify the complementarity relation (7.19).

7.8 Alternative approach.

In the expansion (6.5) for $\left\{l ø m a_{s}^{\bullet}\right\}$, let us retain only the first two singulates (those namely that contribute to the components of length $r \leq 4$) and then let us restrict everything to the homogeneous parts of weight s. We get:

$$
\begin{equation*}
l \varnothing m a_{s}^{\bullet}=\Sigma_{[1], s}^{\bullet}+\Sigma_{[1,2], s}^{\bullet} \quad\left(\bmod \operatorname{BIMU}_{5 \leq}\right) \tag{7.20}
\end{equation*}
$$

If we now plug this into (7.17) for pairs $\left(s_{1}, s_{2}\right)=\left(1+2 \delta_{1}, 1+2 \delta_{2}\right)$, we get four contributions $\mathcal{P}_{\left[\boldsymbol{r}^{1}\right],\left[\boldsymbol{r}^{\mathbf{2}}\right]}$, consisting of the terms linear in $\Sigma_{\left[\boldsymbol{r}^{1}\right], 1+2 \delta_{1}}^{\bullet}$ and
$\Sigma_{\left[\boldsymbol{r}^{2}\right], 1+2 \delta_{2}}^{\bullet}$. The contribution $\mathcal{P}_{[1,2],[1,2]}$ begins with a non-zero component of length 6 and therefore vanishes modulo $B I M U_{5 \leq}$. The contribution $\mathcal{P}_{[1],[1]}$ vanishes exactly, for the reason that, adari (pal ${ }^{\bullet}$) being an algebra isomorphism, $\mathcal{P}_{[1],[1]}$ is necessarily of the form adari $\left(\right.$ pal $\left.{ }^{\bullet}\right)$.leng ${ }_{4} \cdot \mathcal{P}_{[1],[1]}$, with leng $_{r}$ denoting as usual the projector of BIMU onto $B I M U_{r}$. But leng $_{4} \cdot \mathcal{P}_{[1],[1]} \equiv 0$ since we have assumed precar ${ }^{\bullet}$ of (7.16) to be a pre-carma. Thus $\mathcal{P}_{[1],[1]} \equiv 0$. That leaves only the two contributions $\mathcal{P}_{[1],[1,2]}+\mathcal{P}_{[1,2],[1]}$, whose component of length 4 is clearly a singulate of type $\Sigma \Sigma_{[1,1,2]}^{\bullet}:=\operatorname{slank}_{[1,1,2]} \cdot S_{[1,1,2]}^{\bullet}$. It can in fact be shown to be of the form:

$$
\begin{align*}
\Sigma \Sigma_{[1,1,2]}^{w_{1}, w_{2}, w_{3}, w_{4}}= & \left(\operatorname{slank}_{[1,1,2]} \cdot S_{[1,1,2]}\right)^{w_{1}, w_{2}, w_{3}, w_{4}} \tag{7.21}\\
= & +X^{u_{1}, u_{2}, u_{3}, u_{4}} P\left(u_{0}\right)+Y^{u_{1}, u_{2}, u_{3}, u_{4}} P\left(u_{2}+u_{3}\right) \\
& +X^{u_{2}, u_{3}, u_{4}, u_{0}} P\left(u_{1}\right)+Y^{u_{2}, u_{3}, u_{4}, u_{0}} P\left(u_{3}+u_{4}\right) \\
& +X^{u_{3}, u_{4}, u_{0}, u_{1}} P\left(u_{2}\right)+Y^{u_{3}, u_{4}, u_{0}, u_{1}} P\left(u_{4}+u_{0}\right) \\
& +X^{u_{4}, u_{0}, u_{1}, u_{2}} P\left(u_{3}\right)+Y^{u_{4}, u_{0}, u_{1}, u_{2}} P\left(u_{0}+u_{1}\right) \\
& +X^{u_{0}, u_{1}, u_{2}, u_{3}} P\left(u_{4}\right)+Y^{u_{0}, u_{1}, u_{2}, u_{3}} P\left(u_{1}+u_{2}\right)
\end{align*}
$$

with polynomials X^{\bullet} and Y^{\bullet} given by:

$$
\begin{aligned}
& 2 X^{u_{1}, u_{2}, u_{3}, u_{4}}=S_{[1,1,2]}^{u_{3}, u_{2}, u_{1}}+S_{[1,1,2]}^{u_{1}, u_{3}, u_{4}}+S_{[1,1,2]}^{u_{3}, u_{4}, u_{1}}+S_{[1,1,2]}^{u_{3}, u_{1}, u_{4}}-S_{[1,1,2]}^{u_{2}, u_{1}, u_{4}}-S_{[1,1,2]}^{u_{2}, u_{3}, u_{4}} \\
& -S_{[1,1,2]}^{u_{2}, u_{4}, u_{1}}-S_{[1,1,2]}^{u_{4}, u_{2}, u_{1}}+S_{[1,1,2]}^{u_{3}, u_{1}, u_{12}}+S_{[1,1,2]}^{u_{4}, u_{2}, u_{12}}+S_{[1,1,2]}^{u_{2}, u_{4}, u_{12}}+S_{[1,1,2]}^{u_{1}, u_{3}, u_{12}}+S_{[1,1,2]}^{u_{2}, u_{3}, u_{34}} \\
& +S_{[1,1,2]}^{u_{4}, u_{1}, u_{34}}+S_{[1,1,2]}^{u_{1}, u_{4}, u_{34}}+S_{[1,1,2]}^{u_{3}, u_{2}, u_{34}}+S_{[1,1,2]}^{u_{2}, u_{12}, u_{4}}+S_{[1,1,2]}^{u_{2}, u_{23}, u_{4}}+S_{[1,1,2]}^{u_{2}, u_{23}, u_{1}}+S_{[1,1,2]}^{u_{4}, u_{34}, u_{1}} \\
& -S_{[1,1,2]}^{u_{2}, u_{3}, u_{12}}-S_{[1,1,2]}^{u_{3}, u_{2}, u_{12}}-S_{[1,1,2]}^{u_{4}, u_{1}, u_{12}}-S_{[1,1,2]}^{u_{1}, u_{4}, u_{12}}-S_{[1,1,2]}^{u_{1}, u_{3}, u_{34}}-S_{[1,1,2]}^{u_{4}, u_{2}, u_{34}}-S_{[1,1,2]}^{u_{3}, u_{1}, u_{34}} \\
& -S_{[1,1,2]}^{u_{2}, u_{4}, u_{34}}-S_{[1,1,2]}^{u_{1}, u_{12}, u_{4}}-S_{[1,1,2]}^{u_{3}, u_{23}, u_{4}}-S_{[1,1,2]}^{u_{3}, u_{23}, u_{1}}-S_{[1,1,2]}^{u_{3}, u_{34}, u_{1}}+S_{[1,1,2]}^{u_{2}, u_{3}, u_{123}}+S_{[1,1,2]}^{u_{2}, u_{1}, u_{123}} \\
& +S_{[1,1,2]}^{u_{2}, u_{4}, u_{234}}+S_{[1,1,2]}^{u_{4}, u_{2}, u_{234}}-S_{[1,1,2]}^{u_{1}, u_{3}, u_{123}}-S_{[1,1,2]}^{u_{3}, u_{1}, u_{123}}-S_{[1,1,2]}^{u_{3}, u_{4}, u_{234}}-S_{[1,1,2]}^{u_{3}, u_{2}, u_{234}} \\
& +S_{[1,1,2]}^{u_{1}, u_{12}, u_{123}}+S_{[1,1,2]}^{u_{3}, u_{23}, u_{123}}+S_{[1,1,2]}^{u_{3}, u_{23}, u_{234}}+S_{[1,1,2]}^{u_{3}, u_{34}, u_{234}}-S_{[1,1,2]}^{u_{2}, u_{23}, u_{123}} \\
& -S_{\left[1, u_{12}, u_{123}\right.}^{u_{2}, S^{u_{2}, u_{23}, u_{234}}-S_{[1,12]}^{u_{4}, u_{34}, u_{234}}} \\
& -S_{[1,1,2]}^{u_{2}, u_{12}, u_{123}}-S_{[1,1,2]}^{2_{2}, u_{23}, u_{234}}-S_{[1,1,2]}^{u_{4}, u_{34}} \\
& 2 Y^{u_{1}, u_{2}, u_{3}, u_{4}}=S_{[1,1,2]}^{u_{4}, u_{3}, u_{1}}+S_{[1,1,2]}^{u_{1}, u_{4}, u_{2}}+S_{[1,1,2]}^{u_{4}, u_{1}, u_{2}}+S_{[1,1,2]}^{u_{1}, u_{3}, u_{4}}+S_{[1,1,2]}^{u_{3}, u_{4}, u_{1}}+S_{[1,1,2]}^{u_{3}, u_{1}, u_{4}} \\
& -S_{[1,1,2]}^{u_{2}, u_{1}, u_{4}}-S_{[1,1,2]}^{u_{1}, u_{4}, u_{3}}-S_{[1,1,2]}^{u_{4}, u_{2}, u_{1}}-S_{[1,1,2]}^{u_{1}, u_{2}, u_{4}}-S_{[1,1,2]}^{u_{2}, u_{4}, u_{1}}-S_{[1,1,2]}^{u_{4}, u_{1}, u_{3}}+S_{[1,1,2]}^{u_{3}, u_{4}, u_{123}} \\
& +S_{[1,1,2]}^{u_{4}, u_{3}, u_{123}}+S_{[1,1,2]}^{u_{1}, u_{3}, u_{234}}+S_{[1,1,2]}^{u_{3}, u_{1}, u_{234}}+S_{[1,1,2]}^{u_{4}, u_{123}, u_{3}}+S_{[1,1,2]}^{u_{1}, u_{23}, u_{3}}-S_{[1,1,2]}^{u_{4}, u_{2}, u_{123}} \\
& -S_{[1,1,2]}^{u_{2}, u_{4}, u_{123}}-S_{[1,1,2]}^{u_{2}, u_{1}, u_{234}}-S_{[1,1,2]}^{u_{1}, u_{2}, u_{234}}-S_{[1,1,2]}^{u_{4}, u_{123}, u_{2}}-S_{[1,1,2]}^{u_{1}, u_{234}, u_{2}}+S_{[1,1,2]}^{u_{2}, u_{1234}, u_{4}} \\
& +S_{[1,1,2]}^{u_{2}, u_{1234}, u_{1}}+S_{[1,1,2]}^{u_{1234}, u_{4}, u_{3}}+S_{[1,1,2]}^{u_{1234}, u_{2}, u_{4}}+S_{[1,1,2]}^{u_{1234}, u_{2}, u_{1}}+S_{[1,1,2]}^{u_{1234}, u_{1}, u_{3}}-S_{[1,1,2]}^{u_{3}, u_{1234}, u_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& +S_{[1,1,2]}^{u_{2}, u_{123}, u_{234}}+S_{[1,1,2}^{u_{123}, u_{2}, u_{123}}+S_{[1,1,2]}^{u_{12}, u_{2}, u_{234}}+S_{[1,1,]}^{u_{123}, u_{123}, u_{2}}+S_{[1,1,2]}^{u_{123}, u_{234}, u_{2}} \\
& -S_{[1,1,2]}^{u_{3}, u_{123}, u_{123}}-S_{[1,1,2]}^{u_{3}, u_{123}, u_{234}}-S_{[1,1,2]}^{u_{1234}, u_{3}, u_{123}}-S_{[1,1,2]}^{u_{123}, u_{3}, u_{234}}-S_{[1,1,2]}^{u_{123}, u_{123}, u_{3}}-S_{[1,1,2]}^{u_{123}, u_{234}, u_{3}}
\end{aligned}
$$

and with a singuland $S_{[1,1,2]}^{\bullet}$ that has to be a homogeneous polynomial of total degree $1+d$ subject to three types of constraints.

First, it must be even in x_{1}, x_{2}, odd in x_{3}, and divisible by $x_{1} x_{2} x_{3}$.
Second, it must verify the identity:
$0=-S_{[1,1,2]}^{x_{1}, x_{2}, x_{3}}+S_{[1,1,2]}^{x_{1}, x_{2}, x_{23}}+S_{[1,1,2]}^{x_{2}, x_{1}, x_{23}}+S_{[1,1,2]}^{x_{1}, x_{23}, x_{3}}+S_{[1,1,2]}^{x_{1}, x_{12}, x_{3}}-S_{[1,1,2]}^{x_{1}, x_{3}, x_{2}}$
$-S_{[1,1,2]}^{x_{3}, x_{1}, x_{23}}-S_{[1,1,2]}^{x_{2}, x_{12}, x_{3}}+S_{[1,1,2]}^{x_{1}, x_{3}, x_{123}}+S_{[1,1,2]}^{x_{3}, x_{1}, x_{123}}+S_{[1,1,2]}^{x_{2}, x_{12}, x_{3}}+S_{[1,1,2]}^{x_{12}, x_{2}, x_{3}}$
$-S_{[1,1,2]}^{x_{2}, x_{1}, x_{123}}-S_{[1,1,2]}^{x_{2}, x_{3}, x_{123}}-S_{[1,1,2]}^{x_{1}, x_{12}, x_{3}}+S_{[1,1,2]}^{x_{2}, x_{23}, x_{123}}+S_{[1,1,2]}^{x_{2}, x_{12}, x_{123}}+S_{[1,1,2]}^{x_{3}, x_{123}, x_{23}}$
$+S_{[1,1,2]}^{x_{123}, x_{3}, x_{23}}-S_{[1,1,2]}^{x_{1}, x_{12}, x_{123}}-S_{[1,1,2]}^{x_{3}, x_{23}, x_{123}}-S_{[1,1,2]}^{x_{2}, x_{123}, x_{23}}-S_{[1,1,2]}^{x_{123}, x_{2}, x_{23}}-S_{[1,1,2]}^{x_{123}, x_{23}, x_{3}}$
which ensures the absence of poles at the origin and therefore, in the terminology of $\S 5.9$, makes $\Sigma \Sigma_{[1,1,2]}^{\bullet}$ into a wandering bialternal.

Lastly, it must verify a third, similar-looking identity, which reflects the fact that precar ${ }^{\bullet}$ is a pre-carma and, by so doing, guarantees that the bialternal $\Sigma \Sigma_{[1,1,2]}^{\bullet}$ won't be in $E K M A$.

Caveat: for each d, there is exactly one carma bialternal that is not captured by the above formula (7.21) but by a slight modification of the same. ${ }^{103}$ This, however, is a minor technicality.

7.9 The global bialternal ideal and the universal 'restoration' mechanism.

Suppose that, contrary to all evidence (see $\S 8.5$) the ideal IDEKMA is not generated by $I D E K M A_{2}$, i.e. by the sole pre-carmas. There would then exist at least one $r>2$ and one identity of the form:

$$
\begin{equation*}
\sum_{2\left(\delta_{1}+\ldots+\delta_{r}\right)=2 \delta}^{\delta_{i} \geq 1} c_{2 \delta_{1}, \ldots, 2 \delta_{r}} x_{1}^{2 \delta_{1}} \ldots x_{r}^{2 \delta_{r}} \operatorname{ari}\left(\mathrm{ekma}_{2 \delta_{1}}^{\bullet}, \ldots, \mathrm{ekma}_{2 \delta_{r}}^{\bullet}\right) \equiv 0 \tag{7.22}
\end{equation*}
$$

corresponding to a 'prime' (i.e. non-derivative) element of $I D E K M A_{r}$. We might then form the polynomial prehar:

$$
\begin{equation*}
\text { prehar }^{x_{1}, \ldots, x_{r}}=\sum_{2\left(\delta_{1}+\ldots+\delta_{r}\right)=2 \delta}^{\delta_{i} \geq 1} c_{2 \delta_{1}, \ldots, 2 \delta_{r}} x_{1}^{2 \delta_{1}} \ldots x_{r}^{2 \delta_{r}} \tag{7.23}
\end{equation*}
$$

[^55]as an analogue of precar (see §7.7) and then use the alternal coefficients of prehar to construct a bimould $h \not \subset r^{\bullet}$:
\[

$$
\begin{align*}
\mathrm{h} \not \mathbf{r}^{\bullet} & :=\sum_{2\left(\delta_{1}+\ldots+\delta_{r}\right)=2 \delta}^{\delta_{i} \geq 1} c_{2 \delta_{1}, \ldots, 2 \delta_{r}} \operatorname{preari}\left(l ø m a_{1+2 \delta_{1}}^{\bullet}, \ldots, l ø m a_{1+2 \delta_{r}}^{\bullet}\right) \in A L I L \tag{7.24}\\
& =\sum_{2\left(\delta_{1}+\ldots+\delta_{r}\right)=2 \delta}^{\delta_{i} \geq 1} c_{2 \delta_{1}, \ldots, 2 \delta_{r}} \frac{1}{r} \operatorname{ari}\left(l ø m a_{1+2 \delta_{1}}^{\bullet}, \ldots, l ø m a_{1+2 \delta_{r}}^{\bullet}\right) \in A L I L \tag{7.25}
\end{align*}
$$
\]

exactly analogous to $c \varnothing r^{\bullet}$. By arguing on the same lines as in $\S 7.7$, we would see that the first non-vanishing component $h \varnothing r m a^{\bullet}$ of $h \varnothing r^{\bullet}$, necessarily of even degree $2 \delta-2 k$ and therefore of length $r+2 k$ with $k \geq 1$, would automatically provide an 'exceptional' bialternal that would 'make up' for the missing element of EKMA corresponding to (7.22). Although, in keeping with our general conjectures, the existence of prime relations (7.22) is most unlikely, it is reasonable to speculate that, if perchance they exist, the corresponding $h ø r m a^{\bullet}$ must then have length $r+2$ and degree $2 \delta-2$, although they might conceivably have length $r+2 k$ and degree $2 \delta-2 k$ for some $k \geq 2$. In any case, we have here a transparent stop-gap mechanism which automatically associates one exceptional bialternal to any 'missing' regular bialternal.

8 The enumeration of bialternals. Conjectures and computational evidence.

8.1 Primary, sesquary, secondary algebras.

Before addressing the enumeration of bialternals, let us return to the main subalgebras \mathcal{A} of $A R I$ listed in $\S 2.5$, but in the special case of bimoulds that are polynomial in \boldsymbol{u} and constant in \boldsymbol{v}. For each such subalgebra \mathcal{A}, we tabulate the dimension $\operatorname{dim}\left(\mathcal{A}_{r, d}\right)$ of the cells of length $r \geq 3$ and of total \boldsymbol{u}-degree d. The reason for neglecting the length $r=1$ resp. 2 is that the results there are trivial resp. elementary. ${ }^{104}$ As in $\S 2.5$, we reserve bold-face for the secondary subalgebras.

[^56]

Let us now tabulate the corresponding generating functions. These are always rational. For brevity, we set $X_{m}^{n}:=\left(1-x^{m}\right)^{-n}$.

$r=3$	generating function $\quad \sum \operatorname{dim}(d) x^{d}$
$\mathrm{ARI}^{\text {al } / *}$	$x X_{1}^{2} X_{3}^{1}$
ARI ${ }^{\text {mantar } / *}$	$x\left(2-2 x^{2}+x^{3}\right) X_{1}^{2} X_{2}^{1}$
ARI ${ }^{\text {pusnu/* }}$	$2 x X_{1}^{2} X_{3}^{1}$
ARI mantar $_{\text {musul/ }}$	$x X_{1}^{2} X_{3}^{1}$
$\mathrm{ARI}^{\text {ala } / \text { al }}$	$x^{8}\left(1+x^{2}-x^{4}\right) X_{2}^{1} X_{4}^{1} X_{6}^{1}$
$\mathrm{ARI}^{\text {al/push }}$	$x^{2} X_{2}^{2} X_{3}^{1}$
ARI ${ }^{\text {push }}$	$x^{2}\left(2+x^{2}-x^{3}-x^{4}+x^{5}\right) X_{1}^{1} X_{2}^{1} X_{4}^{1}$
ARI $_{\text {mantar } / *}^{\text {pusnu } / \text { pusnu }}$	$x\left(1+x^{7}+x^{9}+x^{10}-x^{11}\right) X_{2}^{1} X_{4}^{1} X_{6}^{1}$
ARI ${ }^{\text {pusnu} / p \text { pusnu }}$	$x\left(1-x+x^{2}\right)\left(1+x-x^{2}\right) X_{1}^{2} X_{3}^{1}$

$r=4$	$\\|$ generating function $\sum \operatorname{dim}(d) x^{d}$
ARI ${ }^{\text {al/ } /}$	$\\|$ 込 $x X_{1}^{2} X_{2}^{2}$
ARI ${ }^{\text {mantar } / *}$	
ARI ${ }^{\text {pusnu/* }}$	$\\| \quad x\left(3+x+x^{2}+x^{3}\right) X_{1}^{2} X_{2}^{1} X_{4}^{1}$
ARI $_{\text {mantar } / *}^{\text {pusu }}$	$\\| \quad x\left(2+x^{2}\right) X_{1}^{2} X_{2}^{1} X_{4}^{1}$
ARI ${ }^{\text {al/al }}$	$\\| \quad x^{8}\left(1+2 x^{4}+x^{6}+x^{8}+2 x^{10}+x^{14}-x^{16}\right) X_{2}^{1} X_{6}^{1} X_{8}^{1} X_{12}^{1}$
ARI ${ }^{\text {al/push }}$	$\\| \quad x^{3} X_{1}^{1} X_{2}^{2} X_{5}^{1}$
ARI ${ }^{\text {push }}$	$\\| x\left(1+x-4 x^{2}+3 x^{3}+2 x^{4}-5 x^{5}+4 x^{6}+x^{7}-2 x^{8}-x^{9}+x^{10}\right) X_{1}^{3} X_{5}^{1}$
ARI $\mathrm{I}_{\text {mantar } / *}^{\text {pusnu }}$ / $\overline{\text { pusnu }}$	$\\| \quad x\left(1+x+x^{5}-x^{6}\right) X_{1}^{1} X_{2}^{2} X_{4}^{1}$
ARI ${ }^{\text {pusnu} / \overline{p u s n u ~}}$	$\\| \quad x\left(2+2 x^{2}-x^{3}+2 x^{4}-2 x^{6}+x^{7}\right) X_{1}^{2} X_{2}^{1} X_{4}^{1}$

$r=5$	generating function $\sum \operatorname{dim}(d) x^{d}$
ARI $^{\text {al/* }}$	$x\left(1+x^{3}\right) X_{1}^{3} X_{2}^{1} X_{5}^{1}$
ARI ${ }^{\text {mantar } / *}$	$x\left(3-5 x^{2}+5 x^{3}+x^{4}-3 x^{5}+x^{6}\right) X_{1}^{3} X_{2}^{2}$
ARI ${ }^{\text {pusnu/* }}$	$4 x\left(1+x^{3}\right) X_{1}^{3} X_{2}^{1} X_{5}^{1}$
ARI $_{\text {mantar } / *}^{\text {pusun }}$	$2 x\left(1+x^{3}\right) X_{1}^{3} X_{2}^{1} X_{5}^{1}$
ARI ${ }^{\text {al/ }}$ /al	$x^{10}\left(1+2 x^{2}+3 x^{4}+3 x^{6}+2 x^{8}\right) X_{4}^{2} X_{6}^{2} X_{10}^{1}$
ARI ${ }^{\text {al/push }}$	$x^{2}\left(1+x+x^{2}+3 x^{4}+2 x^{5}+x^{6}+x^{7}+2 x^{8}\right) X_{2}^{2} X_{3}^{1} X_{5}^{1} X_{6}^{1}$
ARI ${ }^{\text {push }}$???
ARI ${ }_{\text {mantar } / *}^{\text {pusnu }}$ / $\overline{\text { usnu }}$???
ARI ${ }^{\text {pusnu} / ~} / \overline{\text { pusnu }}$	$2 x\left(1+x^{3}\right) X_{1}^{3} X_{2}^{1} X_{5}^{1}$

8.2 The 'factor' algebra $E K M A$ and its subalgebra DOMA.

Of these two subalgebras of $A L A L$, generated respectively by the ekmas and domas, the first is obviously far from free (though all relations between the ekmas are conjectured to be generated by the sole bilinear relations) but the second is conjectured to be free, with the $d o m a_{d, b}^{\bullet}$, of length 2 , as canonical generators.

The main unresolved point, even at the conjectural level, is this: how much of $E K M A$ must one 'add' to $D O M A$ to recover (ideally, with unique decomposition) the whole of EKMA? While the inclusion
$\mathrm{EKMA}_{1} \oplus$ DOMA $\oplus \operatorname{ari}\left(\mathrm{DOMA}, \mathrm{EKMA}_{1}\right) \subset$ EKMA
is strict, the (rather small) gap between the two spaces would seem to be bridgeable, but exactly how is unclear at the moment.

8.3 The 'factor' algebra CARMA.

Like DOMA, CARMA is conjectured to be free (the theoretical case as well as the computational evidence here are even more overwhelming) but, unlike $D O M A$, it is not intrinsically defined: it exists in various isomorphic realisations (some canonical), all of which are conjectured to verify:

$$
\mathrm{EKMA} \widehat{\otimes} \mathrm{CARMA}=\mathrm{ALAL}
$$

with the notation $E \widehat{\otimes} C=A$ (not a tensor product!) signalling that A is freely generated by E and C, i.e. without constraints other than those internal to E and C : see $\S 8.5, \boldsymbol{C}_{\mathbf{1}}$ infra.

8.4 The total algebra of bialternals $A L A L$ and the original BK-conjecture.

How many multizeta irreducibles of weight s and length r must one retain to freely generate the \mathbb{Q}-ring \mathbb{Z} eta of formal (uncoloured) multizetas? How many independent bialternals of weight s and length r are there in $A L A L$? It is easy to show that the answer to both questions is the same number $\mathcal{D}_{s, r}$, but harder to find these numbers. Based on their numerical investigation of genuine rather that formal multizetas, and on the assumptions that both rings are actually "the same", Broadhurst and Kreimer conjectured in [B] that the $\mathcal{D}_{s, r}$ are deducible, after Möbius inversion, from the formula:

$$
\begin{equation*}
\prod_{2 \leq d, 1 \leq r}\left(1-z^{s} y^{r}\right)^{\mathcal{D}_{s, r}}=1-\frac{z^{3} y}{1-z^{2}}+\frac{z^{12} y^{2}\left(1-y^{2}\right)}{\left(1-z^{4}\right)\left(1-z^{6}\right)} \tag{8.1}
\end{equation*}
$$

8.5 The factor algebras and our sharper conjectures.

$\boldsymbol{C}_{\mathbf{1}}$: Under the ari-bracket, the factor algebras EKMA and CARMA freely generate the total algebra $A L A L$ of all polynomial bialternals. Freely means: without other relations than those internal to each factor algebra.
$\boldsymbol{C}_{\mathbf{2}}$: Only the factor EKMA has internal relations, and all of these are generated by the bilinear relations between the $\left\{e k m a_{d}^{\bullet} ; d=2,4,6 \ldots\right\}$. We recall ${ }^{105}$ that for each even degree d there are exactly $\left[\left[\frac{d-2}{4}\right]\right]-\left[\left[\frac{d}{6}\right]\right]$ such re-

[^57]lations. ${ }^{106}$
$\boldsymbol{C}_{\mathbf{3}}$: The $\left\{d o m a_{d, \delta}^{\bullet} ; d=6,8 \ldots, \delta \leq\left[\left[\frac{d}{6}\right]\right]\right\}$ freely generate $D O M A$.
\boldsymbol{C}_{4} : The $\left\{\operatorname{carma}_{d, \delta}^{\bullet} ; d=8,12,14 \ldots, \delta \leq\left[\left[\frac{d}{4}\right]\right]-\left[\left[\frac{d+2}{6}\right]\right]\right\}$ freely generate CARMA.

If we now denote $D_{d, r}, D_{d, r}^{e k}, D_{d, r}^{d o}, D_{d, r}^{c a r}$ the dimensions of the cells of $A L A L$, EKMA, DOMA, CARMA of degree d and length r, the above conjectures translate into the following formulas:

$$
\begin{align*}
& C_{1}^{*}: \quad \prod_{2 \leq d, 1 \leq r}\left(1-x^{d} y^{r}\right)^{D_{d, r}}=1-\frac{x^{2} y}{1-x^{2}}+\frac{x^{8} y^{2}\left(x^{2}-y^{2}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)} \tag{8.2}\\
& C_{2}^{*}: \quad \prod_{2 \leq d, 1 \leq r}\left(1-x^{d} y^{r}\right)^{D_{d, r}^{e k}}=1-\frac{x^{2} y}{1-x^{2}}+\frac{x^{10} y^{2}}{\left(1-x^{4}\right)\left(1-x^{6}\right)} \tag{8.3}\\
& \boldsymbol{C}_{\mathbf{3}}^{*}: \quad \prod_{6 \leq d, 1 \leq r}\left(1-x^{d} y^{r}\right)^{D_{d, r}^{d o}}=1-\frac{x^{6} y^{2}}{\left(1-x^{2}\right)\left(1-x^{6}\right)} \tag{8.4}\\
& \boldsymbol{C}_{4}^{*}: \quad \prod_{8 \leq d, 1 \leq r}\left(1-x^{d} y^{r}\right)^{D_{d, r}^{d a r}}=1-\frac{x^{8} y^{4}}{\left(1-x^{4}\right)\left(1-x^{6}\right)} \tag{8.5}
\end{align*}
$$

Formula C_{1}^{*} merely restates the classical BK-conjecture in the (d, r)-parameters, but $\boldsymbol{C}_{2}^{*}, \boldsymbol{C}_{3}^{*}, \boldsymbol{C}_{4}^{*}$ are sharp improvements. Above all, these formulas, together with the compellingly natural restoration mechanism ${ }^{107}$ that underpins them, provide a convincing explanation for the complicated y^{4}-term in $\boldsymbol{C}_{\mathbf{1}}^{*}$ and completely divest it of its mysterious character.

For explicitness, we shall now list the partial generating functions $D_{r}^{*}(x)=$ $\sum D_{d, r}^{*} x^{d}$ for each algebra and the first lengths r.

[^58]
8.6 Cell dimensions for $A L A L$.

$$
\begin{aligned}
D_{1}= & \frac{x^{2}}{\left(1-x^{2}\right)} \\
D_{2}= & \frac{x^{6}}{\left(1-x^{2}\right)\left(1-x^{6}\right)} \\
D_{3}= & \frac{x^{8}\left(1+x^{2}-x^{4}\right)}{\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{6}\right)} \\
D_{4}= & \frac{x^{8}\left(1+2 x^{4}+x^{6}+x^{8}+2 x^{10}+x^{14}-x^{16}\right)}{\left(1-x^{2}\right)\left(1-x^{6}\right)\left(1-x^{8}\right)\left(1-x^{12}\right)} \\
D_{5}= & \frac{x^{10}\left(1+2 x^{2}+3 x^{4}+3 x^{6}+2 x^{8}\right)}{\left(1-x^{4}\right)^{2}\left(1-x^{6}\right)^{2}\left(1-x^{10}\right)} \\
D_{6}= & x^{12}\left(1+x^{8}-2 x^{10}+x^{14}-4 x^{16}+4 x^{18}-2 x^{20}-x^{22}+2 x^{24}-2 x^{26}\right. \\
& \left.+2 x^{28}-x^{32}+3 x^{34}-3 x^{36}+x^{38}\right)\left(1-x^{2}\right)^{-3}\left(1-x^{4}\right)^{-1} \times \\
& \left(1-x^{6}\right)^{-1}\left(1-x^{8}\right)^{-1}\left(1-x^{12}\right)^{-1}\left(1-x^{18}\right)^{-1} \\
D_{7}= & x^{14}\left(1+4 x^{2}+8 x^{4}+8 x^{6}+6 x^{8}+4 x^{10}+5 x^{12}+6 x^{14}+3 x^{16}-2 x^{18}\right. \\
& \left.-3 x^{20}-x^{22}+x^{24}+x^{26}\right)\left(1-x^{4}\right)^{-3}\left(1-x^{6}\right)^{-3}\left(1-x^{14}\right)^{-1} \\
D_{8}= & x^{16}\left(1+3 x^{2}+7 x^{4}+8 x^{6}+13 x^{8}+14 x^{10}+15 x^{12}+16 x^{14}+8 x^{16}\right. \\
& \left.+10 x^{18}+4 x^{22}-3 x^{24}+x^{26}-2 x^{28}+x^{30}+x^{34}\right) \times \\
& \left(1-x^{2}\right)^{-2}\left(1-x^{6}\right)^{-2}\left(1-x^{8}\right)^{-2}\left(1-x^{12}\right)^{-2}
\end{aligned}
$$

8.7 Cell dimensions for $E K M A$.

$$
\begin{aligned}
D_{1}^{e k}= & \frac{x^{2}}{\left(1-x^{2}\right)} \\
D_{2}^{e k}= & \frac{x^{6}}{\left(1-x^{2}\right)\left(1-x^{6}\right)} \\
D_{3}^{e k}= & \frac{x^{8}\left(1+x^{2}-x^{4}\right)}{\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{6}\right)} \\
D_{4}^{e k}= & \frac{x^{10}\left(1+x^{2}+2 x^{4}+x^{6}+2 x^{8}+x^{10}-x^{16}\right)}{\left(1-x^{2}\right)\left(1-x^{6}\right)\left(1-x^{8}\right)\left(1-x^{12}\right)} \\
D_{5}^{e k}= & \frac{x^{12}\left(1+3 x^{2}+4 x^{4}+3 x^{6}+x^{8}+x^{10}-x^{14}-x^{16}\right)}{\left(1-x^{4}\right)^{2}\left(1-x^{6}\right)^{2}\left(1-x^{10}\right)} \\
D_{6}^{e k}= & x^{14}\left(1+x^{4}-x^{6}+x^{8}-2 x^{10}-x^{14}+x^{16}-x^{18}-x^{20}+x^{22}\right. \\
& \left.-x^{26}+2 x^{28}+x^{34}-x^{36}\right)\left(1-x^{2}\right)^{-3}\left(1-x^{4}\right)^{-1}\left(1-x^{8}\right)^{-1} \times \\
& \left(1-x^{6}\right)^{-1}\left(1-x^{12}\right)^{-1}\left(1-x^{18}\right)^{-1} \\
D_{7}^{e k}= & x^{16}\left(1+4 x^{2}+8 x^{4}+10 x^{6}+8 x^{8}+6 x^{10}+6 x^{12}+6 x^{14}+2 x^{16}\right. \\
& \left.-3 x^{18}-5 x^{20}-3 x^{22}+x^{26}\right)\left(1-x^{4}\right)^{-3}\left(1-x^{6}\right)^{-3}\left(1-x^{14}\right)^{-1} \\
D_{8}^{e k}= & x^{18}\left(1+2 x^{2}+7 x^{4}+8 x^{6}+17 x^{8}+14 x^{10}+23 x^{12}+13 x^{14}+17 x^{16}\right. \\
& \left.+6 x^{18}+3 x^{20}-x^{22}-5 x^{24}-2 x^{26}-5 x^{28}-x^{30}-x^{32}+x^{36}\right) \times \\
& \left(1-x^{2}\right)^{-2}\left(1-x^{6}\right)^{-2}\left(1-x^{8}\right)^{-2}\left(1-x^{12}\right)^{-2}
\end{aligned}
$$

8.8 Cell dimensions for $D O M A$.

$$
\begin{aligned}
& D_{1}^{d o}=D_{3}^{d o}=D_{5}^{d o} \ldots=0 \\
& D_{2}^{d o}=\frac{x^{6}}{\left(1-x^{2}\right)\left(1-x^{6}\right)} \\
& D_{4}^{d o}=\frac{x^{14}\left(1+x^{4}\right)}{\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{12}\right)} \\
& D_{6}^{d o}=\frac{x^{20}\left(1+x^{10}\right)}{\left(1-x^{2}\right)^{2}\left(1-x^{4}\right)\left(1-x^{6}\right)^{2}\left(1-x^{18}\right)} \\
& D_{8}^{d o}=\frac{x^{26}\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)}{\left(1-x^{2}\right)\left(1-x^{4}\right)^{3}\left(1-x^{6}\right)^{2}\left(1-x^{12}\right)^{2}} \\
& D_{10}^{d o}=\frac{x^{32}\left(1+x^{4}+2 x^{8}+2 x^{10}+x^{12}+x^{14}+4 x^{18}+x^{22}+x^{24}+2 x^{26}+2 x^{28}+x^{32}+x^{36}\right)}{\left(1-x^{2}\right)^{3}\left(1-x^{4}\right)\left(1-x^{6}\right)^{3}\left(1-x^{10}\right)\left(1-x^{12}\right)\left(1-x^{30}\right)}
\end{aligned}
$$

8.9 Cell dimensions for $C A R M A$.

$$
\begin{aligned}
D_{1}^{c a r} & =D_{2}^{c a r}=D_{3}^{c a r}=0 \\
D_{4}^{c a r} & =\frac{x^{8}}{\left(1-x^{4}\right)\left(1-x^{6}\right)} \\
D_{5}^{c a r} & =D_{6}^{c a r}=D_{7}^{c a r}=0 \\
D_{8}^{c a r} & =\frac{x^{20}}{\left(1-x^{2}\right)\left(1-x^{6}\right)\left(1-x^{8}\right)\left(1-x^{12}\right)} \\
D_{9}^{c a r} & =D_{10}^{c a r}=D_{11}^{c a r}=0 \\
D_{12}^{c a r} & =\frac{x^{28}\left(1+x^{12}\right)}{\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{8}\right)\left(1-x^{12}\right)\left(1-x^{18}\right)}
\end{aligned}
$$

Predictably, for the two free subalgebras of $A L A L$, i.e. $D O M A$ and $C A R M A$, the generating functions verify self-symmetry relations:

$$
\begin{align*}
& (x)^{-2 n} D_{2 n}^{d o}(x)=\left(\frac{1}{x}\right)^{-2 n} D_{2 n}^{d o}\left(\frac{1}{x}\right) \tag{8.6}\\
& (x)^{-3 n} D_{4 n}^{c a r}(x)=\left(\frac{1}{x}\right)^{-3 n} D_{4 n}^{c a r}\left(\frac{1}{x}\right) \tag{8.7}
\end{align*}
$$

8.10 Computational checks (Sarah Carr).

We checked conjecture \boldsymbol{C}_{3}^{*} (which of course is not independent of \boldsymbol{C}_{2}^{*}) for $r \leq 8$ and $d \leq 100$, by using the following, highly efficient method:
(i) form the domi-generating functions (see notations $f i, h i, g i$ in $\S 7.2$):

$$
\begin{equation*}
\operatorname{gedomi}_{t ; a, b}^{w_{1}, w_{2}}:=\frac{t^{6} f\left(v_{1}, v_{2}\right)}{\left(1-t^{2} a h i\left(v_{1}, v_{2}\right)\right)\left(1-t^{6} b g i\left(v_{1}, v_{2}\right)\right)} \tag{8.8}
\end{equation*}
$$

(ii) form the ari-brackets of several copies of $\operatorname{gedomi} i_{t ; a_{i}, b_{i}}^{\boldsymbol{w}}$; keep the variables v_{1}, v_{2} and parameters a_{i}, b_{i} provisionally unassigned; and studiously refrain from simplifying the rational functions obtained in the process;
(iii) assign random entire values to the v_{1}, v_{2} and a_{i}, b_{i} and reduce everything modulo some moderately large prime number p (8 or 9 digits);
(iv) expand everything into power series of t and, for each d, study the dimensions of the spaces generated by the coefficient in front of t^{d}.

We then requested Sarah Carr, during her 2010 stay at Orsay, to computationally check the other conjectures $\boldsymbol{C}_{\mathbf{1}}^{\boldsymbol{*}}, \boldsymbol{C}_{\mathbf{2}}^{\boldsymbol{*}}, \boldsymbol{C}_{\mathbf{4}}^{\boldsymbol{*}}$ for lengths r up to 8 and degrees d up to 100. To that end, we supplied her with a complete system of independent carma/carmi-polynomials ${ }^{108}$ of degree $d \leq 40$ (there are exactly 44 such polynomials). Here is her own account of the method she used and the scope of her verifications.

Checking the conjectures C_{2}^{*} about $E K M A$.

Checking $\boldsymbol{C}_{\mathbf{2}}^{*}$ is equivalent to checking conjecture $\boldsymbol{C}_{\mathbf{2}}^{* *}$, according to which all ari-relations between the ekmad are generated by the sole bilinear relations (whose exact number is known from the theory). To test $\boldsymbol{C}_{2}^{* *}$, I created the generators in the lengths and degrees given in Table A infra. To slightly reduce the complexity of the calculations, I opted for working with the ekmid ${ }_{d}^{\bullet}$ rather than the ekma ${ }_{d}^{\bullet}$, so as to deal with pair-wise differences of v_{i} 's rather than multiple sums of u_{i} 's.

For each length r and degree d, I calculated and stored all elements of the form $\operatorname{ari}\left(\mathrm{f}_{\mathrm{d}^{\prime}, \mathrm{r}^{\prime}}, \mathrm{f}_{\mathrm{d}-\mathrm{d}^{\prime}, \mathrm{r}-\mathrm{r}^{\prime}}\right)$ where $1 \leq \mathrm{r}^{\prime} \leq[\mathrm{r} / 2]$ and $2 r^{\prime}+2 \leq d^{\prime} \leq d$, and where $\mathrm{f}_{\mathrm{d}^{\prime}, \mathrm{r}^{\prime}}$ (resp. $\mathrm{f}_{\mathrm{d}-\mathrm{d}^{\prime}, \mathrm{r}-\mathrm{r}^{\prime}}$) is a basis element of the length r^{\prime} (resp. $\mathrm{r}-\mathrm{r}^{\prime}$) degree $d^{\prime}\left(\right.$ resp. $\left.\mathrm{d}-\mathrm{d}^{\prime}\right)$ graded part of the Lie algebra. Let the number of such generators be denoted by $\mathrm{G}_{\mathrm{d}, \mathrm{r}}^{\mathrm{ek}}$ and let the elements in the set of generators be denoted by $\left(\mathrm{g}^{\mathrm{ek}}\right)_{\mathrm{d}, \mathrm{r}}^{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{G}_{\mathrm{d}, \mathrm{r}}^{\mathrm{ek}}$.

[^59]Since we know that the integers $\mathrm{D}_{\mathrm{d}, \mathrm{r}}^{\mathrm{ek}}$ are upper bounds for the dimensions, we need to verify that we have at least $\mathrm{D}_{\mathrm{d}, \mathrm{r}}^{\mathrm{e}}$ linearly independent elements. To check this, I created the generating series $\sum_{1 \leq i \leq G_{d, r}^{\mathrm{ed}}} \alpha_{i}\left(g^{e k}\right)_{d, r}^{i}$. The polynomials have many terms with large coefficients. I first zeroed out some of the terms in this series by setting a number of variables (between none and 5, depending on the length and degree) equal to zero. Then I defined $\mathrm{G}_{\mathrm{d}, \mathrm{r}}^{\mathrm{ek}}$ randomly generated vectors from the series, by substituting a randomly chosen number (using the Linear Algebra [Random Vector] Maple function) between 1 and 20 for each of the variables, and repeating the process $\mathrm{G}_{\mathrm{d}, \mathrm{r}}^{\mathrm{ek}}$ times. Lastly, I reduced these vectors modulo either 101 or 100003. Now, given the linear system defined by these matrices, there are a number of options for solving it. Since we expect this system to have some relations coming from the universal Jacobi identity and from the bilinear relations special to our problem, I tested the efficiency of the Maple commands linalg[rank],linalg[ker] and solve. The solve command proved to be the most efficient. I then used the solution of the linear system to find a basis for the length r , degree d part.

The tests confirmed the conjecture $\boldsymbol{C}_{2}^{* *}$ to lengths and degrees given in Table A. More precisely, the dimensions of all degrees between $2+2 \times$ length and the highest degree entered in the table were verified.

Table A.

Length	Highest degree generators	Dimension highest degree
1	100	100
2	100	100
3	100	100
4	100	58
5	50	40
6	38	32
7	32	28
8	26	24

Checking the conjectures \boldsymbol{C}_{4}^{*} about $C A R M A$.

The calculations were done with the same method as for EKMA. The scope of the verification is indicated in the following Table.

Table B.

| Length | $\\|$ | Highest degree generators | Range of degrees verifying \boldsymbol{C}_{4}^{*} | | |
|---|---|---|---|---|---|---|
| 4 | $\\|$ | 46 | $\\|$ | $8--46$ |
| 8 | $\\|$ | 54 | $\\|$ | $20--54$ |
| 12 | $\\|$ | 58 | $\\|$ | $28--58$ |

Checking the conjectures C_{1}^{*} about $E K M A \widehat{\otimes} C A R M A .{ }^{109}$

Here again I used the same method as for the two previous conjectures. The results are consigned in the following Table.

Table C.

Length	$\\|$	Highest degree generators	$\\|$	Range of degrees verifying $\boldsymbol{C}_{\mathbf{1}}^{*}$
4	$\\|$	46	$8--46$	
8	$\\|$	54	$\\|$	$20--54$
12	$\\|$	58	$\\|$	$28--58$

Acknowledgments. My computations were done on the calculation servers at the Max Planck Institut für Math. in Bonn, the Medicis servers at the Ecole Polytechnique and the calculation servers at the Math. Dept. of Orsay University. I would like to thank these institutions for their permission and trust, and warmly thank the system administrators for their indispensable and patient guidance. (Sarah Carr).

9 Canonical irreducibles and perinomal algebra.

9.1 The general scheme.

The trifactorisation of $Z a g^{\bullet}$.

Let $Z a g^{\bullet}$ denote the generating functions of the (uncoloured) multizetas, defined as in (1.9), but with all $\epsilon_{i}=0$ and all $e_{i}=1$. This generating function $Z a g^{\bullet}$ admits a remarkable trifactorisation in GARI, with a first factor $\mathrm{Zag}_{\mathrm{I}}^{\bullet}$ which in turn splits into three subfactors:

$$
\begin{align*}
& \mathrm{Zag}^{\bullet}:=\operatorname{gari}\left(\mathrm{Zag}_{\mathrm{I}}^{\bullet}, \mathrm{Zag}_{\mathrm{II}}^{\bullet}, \mathrm{Zag}_{\mathrm{III}}^{\bullet}\right) \tag{9.1}\\
& \mathrm{Zag}_{\mathrm{I}}^{\bullet}:=\operatorname{gari}\left(\mathrm{tal}^{\bullet}, \text { invgari.pal }{ }^{\bullet}, \text { Røma }{ }^{\bullet}\right) \tag{9.2}\\
& \mathrm{Zag}_{\mathrm{I}}^{\bullet}:=\operatorname{gari}\left(\mathrm{ta} \mathbf{}^{\bullet} \text {, invgari.pal }{ }^{\bullet} \text {, expari.røma }{ }^{\bullet}\right) \tag{9.3}
\end{align*}
$$

[^60]Here is where the three factors or sub-factors belong:

$$
\begin{align*}
& \mathrm{tal}^{\bullet}, \mathrm{pal}^{\bullet} \in \mathrm{GARI}^{\text {as } / \text { as }} \tag{9.4}\\
& \text { invgari.pal }{ }^{\bullet}, \mathrm{Zag}^{\bullet}, \mathrm{Zag}_{\mathrm{I}}^{\bullet} \in \mathrm{GARI}^{\text {as } / \text { is }} \tag{9.5}\\
& \text { Røma }{ }^{\bullet}, \mathrm{Zag}_{\mathrm{II}}^{\bullet}, \mathrm{Zag}_{\mathrm{III}}^{\bullet} \in \mathrm{GARI}^{\text {as } / \text { is }} \tag{9.6}\\
& \text { røma }{ }^{\bullet} \text {, logari.Zag }{ }_{\text {II }}^{\bullet}, \operatorname{logari.Zag~}_{\text {III }}^{\bullet} \in \text { ARI }^{\text {al } / \text { il }^{\text {il }}} \tag{9.7}
\end{align*}
$$

and here is their real meaning in terms of multizeta irreducibles:
(i The factor $\mathrm{Zag}_{\mathrm{I}}^{\bullet}$ carries only powers of the special irreducibe $\zeta(2)=\pi^{2} / 6$, of weight 2 .
(ii) The factor $\mathrm{Zag}_{\mathrm{II}}^{\bullet}$ carries only irreducibles of even weight $s \geq 4$ and their products.
(iii) The factor $\mathrm{Zag}_{\text {III }}^{\bullet}$ carries only irreducibles of odd weight $s \geq 3$ and their products.

Now, since weight, length, and degree are related by $s=r+d$, it is obvious that under the involution neg.pari:
(j) elements of $A R I$ or GARI that carry only even weights remain unchanged
(jj) elements of $A R I$ that carry only odd weights change sign, and their exponentials in GARI change into their gari-inverses.

With respect to our three factors, this yields:

$$
\begin{align*}
\text { neg.pari. } \mathrm{Zag}_{\mathrm{I}}^{\bullet} & =\mathrm{Zag}_{\mathrm{I}}^{\bullet} \tag{9.8}\\
\text { neg.pari. } \mathrm{Zag}_{\mathrm{II}}^{\bullet} & =\mathrm{Zag}_{\mathrm{II}}^{\bullet} \tag{9.9}\\
\text { neg.pari. } \mathrm{Zag}_{\mathrm{III}}^{\bullet} & =\text { invgari. } \mathrm{Zag}_{\mathrm{III}}^{\bullet} \tag{9.10}\\
\text { gari }\left(\mathrm{Zag}_{\mathrm{III}}^{\bullet}, \mathrm{Zag}_{\mathrm{III}}^{\bullet}\right) & \left.=\text { gari(neg.pari.invgari.Zag } \mathrm{Za}^{\bullet}, \mathrm{Zag}^{\bullet}\right) \tag{9.11}
\end{align*}
$$

Since all elements of GARI have one well-defined square-root, ${ }^{110}$ the last identity (9.11) readily yields $Z a g_{\mathrm{III}}^{\bullet}$. Separating the last factor from the first two is thus an easy matter (assuming the flexion machinery). But separating $Z a g_{\mathrm{I}}^{\bullet \bullet}$ from $Z a g_{\mathrm{II}}^{\bullet}$ is much trickier, and requires the construction of a bimould $r \varnothing m a^{\bullet}$ rather analogous to $l \varnothing m a^{\bullet}$ but not quite. More precisely, the soughtafter $r ø m a{ }^{\bullet}$

- must (like løma•) be of type $\underline{a l} / \underline{i l}$
- must (unlike $l \varnothing m a^{\bullet}$) carry multipoles at the origin that are so chosen as to cancel those of tal ${ }^{\bullet}$ and pal ${ }^{\bullet}$ in the trifactorisation (9.3).
The auxiliary bimoulds $l ø m a^{\bullet}, r ø m a^{\bullet}$.
The building blocks are the elementary singulands $s a_{s_{1}}^{\bullet} \in B I M U_{1}$ and the corresponding elementary singulates $s a_{\substack{\left.s_{1}^{s}\right) \\ r_{1}}} \in A R I \underline{a l / i l}$:

$$
\begin{equation*}
\mathrm{sa}_{s_{1}}^{w_{1}}:=u_{1}^{s_{1}-1} \quad ; \quad \mathrm{sa}_{\substack{s_{1} \\ r_{1}}}^{\boldsymbol{s}}:=\operatorname{slang}_{r_{1}} \cdot \mathrm{sa}_{s_{1}}^{\bullet} \tag{9.12}
\end{equation*}
$$

${ }^{110}$ Apply expari. $\frac{1}{2} . \log$ ari.

The singulates $s a\binom{s_{1}}{r_{1}}$ are $\neq 0$ iff $s_{1}+r_{1}$ is even and $s_{1} \geq 2$.
We then define $l \varnothing m a^{\bullet}$ and $r \varnothing m a^{\bullet}$ as sums of their homogeneous components of weight s :

$$
\begin{equation*}
l ø m a^{\bullet}:=\sum_{s \text { odd } \geq 3} l ø m a_{s}^{\bullet} \quad ; \quad r ø m a^{\bullet}:=\sum_{s \text { odd } \geq 2} r ø m a_{s}^{\bullet} \tag{9.13}
\end{equation*}
$$

and proceed to construct these homogeneous components by bracketting the singulates, in PREARI rather than ARI (- because that is by far the theoretically cleaner way -), with the multibrackets always defined from left to right, as in (2.49).

As for $R \varnothing m a^{\bullet}$, it may be sought either in the form expari.røma• or, equivalently but more directly, in the form:

Of course, in the above expansions, all summands must be true singulates, ${ }^{111}$ with a least a pole of order 1 at the origin, so that at least one of their indices r_{i} must be ≥ 2.

Due to the condition $\sum s_{i}=s$, the right-hand sides of (9.14) and (9.15) carry only finitely many summands. Each summand that goes into the making of $l \varnothing m a_{s}^{\bullet}$ or $r \varnothing m a_{s}^{\bullet}$ is of type $\underline{a l} / \underline{i l}$ and its shortest component is of even degree $d=\sum\left(s_{i}-r_{i}\right)$, which is compatible with its being of type al/al .

The moulds $l \phi m^{\bullet}$ or $r ø m^{\bullet}$ (resp. $R \varnothing m^{\bullet}$) must be alternal (resp. symme-
 ward mould exponential.

At this stage (i.e. provisionally setting aside all considerations of canonicity) the only additional constraints on the alternal moulds $l \varnothing m^{\bullet}, r \varnothing m^{\bullet}$, and

[^61]the symmetral mould $R \varnothing m^{\bullet}$ are these:
(k) $l \varnothing m^{\bullet}$ must make $l \varnothing m a_{s}^{\bullet}$ singularity-free;
$(k k) r \varnothing m^{\bullet}$ (or $R \varnothing m^{\bullet}$) must, within the gari-product:
\[

$$
\begin{align*}
\mathrm{Zag}_{\mathrm{I}}^{\bullet} & :=\operatorname{gari}\left(\mathrm{tal}^{\bullet}, \text { invgari.pal }{ }^{\bullet}, \text { Roma }{ }^{\bullet}\right) \tag{9.16}\\
& :=\operatorname{gari}\left(\mathrm{tal}^{\bullet}, \text { invgari.pal }{ }^{\bullet}, \text { expari. } \sum_{s} \text { roma }_{\mathrm{s}}^{\bullet}\right) \tag{9.17}
\end{align*}
$$
\]

eliminate all the singularities present in gari(tal ${ }^{\bullet}$, invgari.pal $\left.{ }^{\bullet}\right)$;
($k k k$) the moulds $l \varnothing m^{\bullet}$ or $r \varnothing m^{\bullet}$ must be rational-valued.

Explicit decomposition of multizetas into irreducibles.

Anticipating on the construction of $l \varnothing m a^{\bullet}$ and its iso-weight parts $l \varnothing m a_{s}^{\bullet}$, the preari-product gives us an extremely elegant and explicit representation of the multizetas in terms of irreducibles:

The irreducible carriers $\operatorname{Irr} \dot{\emptyset}_{\mathrm{III}}^{\bullet}, \operatorname{Irr} \varnothing_{\mathrm{III}}^{\bullet}$ (resp. $\operatorname{irr} \emptyset_{\mathrm{II}}^{\bullet}, \operatorname{irr} \emptyset_{\mathrm{II}}^{\bullet}$) are scalar moulds of symmetral (resp. alternal) type. They are related under ordinary mould exponentiation:

$$
\begin{align*}
\operatorname{Irr} \emptyset_{\mathrm{II}}^{\bullet} & =\text { expmu.irr } \emptyset_{\mathrm{II}}^{\bullet} \tag{9.22}\\
\operatorname{Irr} \emptyset_{\mathrm{III}}^{\bullet} & =\text { expmu.irr} \emptyset_{\mathrm{III}}^{\bullet} \tag{9.23}
\end{align*}
$$

The pair $\operatorname{irr} \emptyset_{\mathrm{II}}^{\bullet}, \operatorname{Irr} \emptyset_{\mathrm{II}}^{\bullet}$ has only (non-vanishing) components of even length. In the pair $\operatorname{irr} \emptyset_{\mathrm{III}}^{\bullet}$, $\operatorname{Irr} \emptyset_{\mathrm{III}}^{\bullet}$, however, $\operatorname{irr} \emptyset_{\mathrm{III}}^{\bullet}$ has only (non-vanishing) components of odd length, but $\operatorname{Irr} \varnothing_{\mathrm{II}}^{\bullet}$ has of course components of any length, even or odd.

There are two ways of looking at the expansions (9.18)-(9.21).
If we are dealing with formal multizetas, then our four moulds (9.22)(9.23) are subject to no other constraints than the above, i.e. symmetrality
or alternality, and a definite length parity. They subsume all multizeta irreducibles other than π^{2} in the theoretically most satisfactory manner, i.e. without introducing any artificial dissymmetry. ${ }^{112}$

In practice, to decompose formal multizetas into irreducibles, one may:

- calculate $Z a g_{\mathrm{I}}^{\bullet}$ according to (9.2) or (9.3);
- calculate $Z a g_{\text {II }}^{\bullet}$ and $Z a g_{\text {III }}^{\bullet}$ according to (9.18) and (9.19);
- calculate $Z a g^{\bullet}$ according to the trifactorisation (9.1);
- calculate the swappee Zig^{\bullet} of Zag^{\bullet};
- harvest the Taylor coefficients of $Z i g^{\bullet}$.

Since any given multizeta appears once and only once as Taylor coefficient of Zig^{\bullet}, it can thus be expressed in purely algorithmic manner, via the flexion machinery, in terms of $\operatorname{irr} \emptyset_{\mathrm{II}}^{\bullet}$ and $\operatorname{irr} \varnothing_{\mathrm{III}}^{\bullet}$, or $\operatorname{Irr} \emptyset_{\mathrm{II}}^{\bullet}$ and $\operatorname{Irr} \varnothing_{\mathrm{III}}^{\bullet}$.

When dealing with the genuine multizetas, on the other hand, the irreducibles are well-defined numbers and the five-step procedure works in both directions: it also enables one to express $\operatorname{irr} \varnothing_{\mathrm{II}}^{\bullet}, \operatorname{irr} \varnothing_{\mathrm{III}}^{\bullet}$ and $\operatorname{Irr} \varnothing_{\mathrm{II}}^{\bullet}, \operatorname{Irr} \emptyset_{\mathrm{III}}^{\bullet}$ in terms of the multizetas. This 'reverse expression', however, is not unique. To get a unique, privileged expression of the irreducibles - not in terms of multizetas, but of perinomal numbers - there is no (known) alternative to the approach sketched in $\S 9.4$ infra.

Explicit decomposition of multizetas into canonical irreducibles.

To qualify as canonical, the irreducible carriers $\operatorname{irr} \varnothing_{I I}{ }^{\bullet}$, $\operatorname{irr} \varnothing_{I I I}{ }^{\bullet}$ or $\operatorname{Irr} \phi_{I I}{ }^{\bullet}$, Irrø $\varnothing_{\text {III }}{ }^{\bullet}$ just defined must correspond to a compellingly natural solution $\left(l ø m a_{s}^{\bullet}, r ø m a_{s}^{\bullet}\right)$. The constraints $(k),(k k),(k k k)$, however, do not quite suffice to uniquely determine the solution - due to the existence of wandering bialternals, which was pointed out in $\S 6.9$.

One cannot stress enough that this residual indeterminacy, compared with the huge a priori indeterminacy inherent in all other approaches, is quite negligible, and that too in a precise and measurable sense. Indeed, let $\mathcal{I} r r(r, s)$ be the space of prime irreducibles of length r and total weight s. Next, let $\operatorname{Wander}(r, s)$ be the indeterminacy (i.e. number of free parameters) in the definition of the irreducibles in $\operatorname{Irr}(r, s)$ that comes from the existence of wandering bialternals. Lastly, let $\operatorname{Naive}(r, s)$ be the indeterminacy that we would be stuck with in the naive approach, i.e. if we had no criteria for

[^62]privileging any given irreducible $\rho_{r, s}$ in $\operatorname{Irr}(r, s)$ over all its variants of the form:
\[

$$
\begin{equation*}
\rho_{r, s}+\sum_{s_{1}+\ldots+s_{l}=s}^{l \geq 2} c_{s_{1}, \ldots, s_{l}}^{r_{1}, \ldots, r_{l}} \prod_{1 \leq i \leq l} \rho_{r_{i}, s_{i}} \text { with } \quad c_{s_{1}, \ldots, s_{l}}^{r_{1}, \ldots, r_{l}} \in \mathbb{Q} ; \rho_{r_{i}, s_{i}} \in \operatorname{Irr}\left(r_{i}, s_{i}\right) \tag{9.24}
\end{equation*}
$$

\]

One shows that, for each r fixed and $s \rightarrow \infty$, we have:

$$
\begin{equation*}
\text { Wander }(r, s) / \operatorname{Naive}(r, s)=\mathcal{O}\left(s^{-1}\right) \tag{9.25}
\end{equation*}
$$

So this small residual indeterminacy due to the wandering bialternals is something we could live with. We can remove it, however, and ensure both unicity and canonicity, by imposing additional conditions - of arithmetical or function-theoretical nature. As we shall see, there are three basic choices (two arithmetical options and a function-theoretical one) but we go with relative ease from the one to the others, so that we are still justified in speaking, in the singular, of the canonical choice.

9.2 Arithmetical criteria.

One way of lifting the residual indeterminacy in the construction of the pair $\left(l ø m a_{s}^{\bullet}, r ø m a_{s}^{\bullet}\right)$ is to impose additional linear constraints on the Taylor coefficients of the singulates $S_{\boldsymbol{r}}^{\bullet}$ being used in the successive ${ }^{113}$ inductive steps. As it happens, there are two natural systems of linear constraints that do the trick. We mentioned them in $\S 6.5$ and $\S 6.6$ in the case of $l \varnothing m a_{s}^{\bullet}$ and only at the first occurence (i.e. for $r=3$) but they extend to all lengths, and have their exact counterparts for $r ø m a_{s}^{\bullet}$. They lead to two distinct pairs $\left(\operatorname{lama} a_{s}^{\bullet}, r a m a_{s}^{\bullet}\right)$ and $\left(\operatorname{loma} a_{s}^{\bullet}, r o m a_{s}^{\bullet}\right)$, which stand out on account of their arithmetical properties. Very roughly speaking: with the first pair, both singulators and singulates possess "more" independent Taylor coefficients but these have "smaller" denominators, whereas with the second pair the position is exactly reversed. In both cases, however, the denominators of the Taylor coefficients are always divisors of simple factorials that depend only on length and degree. That changes completely with the third pair $\left(\right.$ luma $\left.a_{s}^{\bullet}, r u m a_{s}^{\bullet}\right)$, which we shall examine next and which is characterised by its functional properties.

9.3 Functional criteria.

To transport entire multipoles, we require dilation operators δ^{n} :
(i) that define a group action: $\delta^{n_{1}} \delta^{n_{2}} \equiv \delta^{n_{1} n_{2}}, \forall n_{i} \in \mathbb{Q}^{+}$;

[^63](ii) that act as flexion automorphisms;
(iii) that commute with the singulators (simple or composite);
(iv) that conserve multiresidues.

This imposes the definition:

$$
\begin{equation*}
\left(\delta^{n} \cdot A\right)^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}:=n^{-r} A^{\binom{u_{1} / n, \ldots, u_{r}, n}{v_{1}, n, \ldots, v_{r}, n}} \quad(\forall n \in \mathbb{Z}) \tag{9.26}
\end{equation*}
$$

which ensures the required properties:

$$
\begin{align*}
\delta^{n}: & A R I \xrightarrow{\text { aal} / \underline{\text { al }} \text { isom. }} A R I^{\text {all} / \text { al }}, A R I \xrightarrow{\text { al/ } / \mathrm{il}} \xrightarrow{\text { isom. }} A R I^{\text {all} / \text { il }} \tag{9.27}\\
& \delta^{n} \operatorname{slank}_{r_{1}, \ldots, r_{l}} S^{\bullet} \equiv \operatorname{slank}_{r_{1}, \ldots, r_{l}} \delta^{n} S^{\bullet} \tag{9.28}\\
& \delta^{n} \operatorname{slang}_{r_{1}, \ldots, r_{l}} S^{\bullet} \equiv \operatorname{slang}_{r_{1}, \ldots, r_{l}} \delta^{n} S^{\bullet} \tag{9.29}
\end{align*}
$$

Next, to reflect the change from power series to meromorphic functions, we must replace

- the monomial singulands $s a_{s_{1}}^{\bullet} \in B I M U_{1}$ of singulates $s a_{\left(c_{c_{1}}^{\bullet}\right.}^{r_{1}} \in A R I$ al $/$ il
- by monopolar singulands $t a_{n_{1}}^{\bullet} \in B I M U_{1}$ of singulates $t a_{\left(\begin{array}{l}n_{1} \\ r_{1}\end{array}\right.}^{\boldsymbol{n}_{1}} \in A R I$ al

Concretely, we set:

$$
\begin{align*}
& \operatorname{ta}^{w_{1}}:=\left(1-u_{1}\right)^{-1}, \quad \operatorname{ta}^{w_{1}, \ldots, w_{r}}:=0 \quad \text { if } \quad r \neq 1 \tag{9.30}\\
& \operatorname{ta}_{n_{1}}^{\bullet}:=\delta^{n_{1}} \cdot \operatorname{ta}^{\bullet}, \quad \operatorname{ta}_{\binom{n_{1}}{r_{1}}}^{n_{2}}:=\operatorname{slang}_{r_{1}} \cdot \delta^{n_{1}} \cdot \operatorname{ta}^{\bullet}=\delta^{n_{1}} \cdot \operatorname{slang}_{r_{1}} \cdot \operatorname{ta}^{\bullet} \tag{9.31}
\end{align*}
$$

We may now look for bimoulds luma ${ }^{\bullet}$ and $r u m a^{\bullet}$ given by expansions of the form:

$$
\begin{align*}
& \operatorname{luma}{ }^{\bullet}=\sum_{1 \leq l} \sum_{1 \leq n_{i}, 1 \leq r_{i}}^{\substack{n_{i} \text { coprime } \\
r_{1}+\ldots+r_{l} \text { odd }}} \operatorname{lum}^{\substack{n_{1}, \ldots, n_{l} \\
r_{1}, \ldots, r_{l}}} \operatorname{preari}\left(\operatorname{ta}_{\binom{n_{1}}{r_{1}}}^{\bullet}, \ldots, \operatorname{ta}_{\binom{n_{l}}{r_{l}}}^{\bullet}\right) \tag{9.32}\\
& \text { ruma }=\sum_{1 \leq l} \sum_{1 \leq n_{i}, 1 \leq r_{i}}^{\left\{\begin{array}{c}
n_{i} \text { anything } \\
r_{1}+\ldots+r_{l} \text { even }
\end{array}\right.} \operatorname{rum}^{\binom{n_{1}, \ldots, n_{l}}{r_{1}, \ldots, r l}} \operatorname{preari}\left(\operatorname{ta}_{\binom{n_{1}}{r_{1}}}^{\bullet}, \ldots, \operatorname{ta}_{\binom{n_{l} l}{r_{l}}}^{\bullet}\right) \tag{9.33}
\end{align*}
$$

that run exactly parallel to (9.14) and (9.15), and may also be rewritten as:

$$
\begin{align*}
& \text { ruma }{ }^{\bullet}=\sum_{1 \leq l}^{\substack{\left\{\begin{array}{l}
n_{i}, \text { anything } \\
r_{1}+\ldots+r_{1} \text { even }
\end{array}\right.}} \sum_{1 \leq n_{i}, 1 \leq r_{i}}^{\substack{n_{1}, \ldots, n_{l} \\
r_{1}, \ldots, r_{l}}} \operatorname{rum}^{\left(\operatorname{slang}_{r_{1}, \ldots, r_{l}}\right.} \operatorname{mu}^{(}\left(\delta^{n_{1}} \operatorname{ta}^{\bullet}, \ldots, \delta^{n_{l}} \operatorname{ta} \cdot\right) \tag{9.34}
\end{align*}
$$

The remarkable fact is that if we impose: ${ }^{114}$

$$
\operatorname{lum}^{\binom{1}{1}}=1, \operatorname{lum}^{\binom{n_{1}}{1}}=0 \quad \forall n_{1} \geq 2
$$

and

$$
\left.\begin{array}{rll}
\operatorname{lum}^{\binom{n_{1}, \ldots, n_{l}}{1, \ldots, 1}}=0 & \forall l \geq 2, \forall n_{i} \\
\operatorname{rum}^{\left(n_{1}, \ldots, n_{l}\right.} 1, \ldots, 1 \tag{9.37}
\end{array}\right)=0 \quad \forall l \geq 2, \forall n_{i} .
$$

then there is only one mould lum $^{\bullet}$ (resp. rum ${ }^{\bullet}$) such that luma ${ }^{\bullet}$ be free of singularities at the origin (resp that ruma ${ }^{\bullet}$ carry exactly the right singularities ${ }^{115}$ there). So the problem now is no longer that of determining a canonical solution, but of ascertaining the arithmetical nature of the Taylor coefficients at the origin of the unique luma ${ }^{\bullet}$ and the unique ruma• . With luma ${ }^{\bullet}$ the problem arises only for lengths $r \geq 5$, and with ruma ${ }^{\bullet}$ only for lengths $r \geq 4$. This, however, is not a matter for this Survey.

But even without addressing this question, we may note that the pair luma ${ }^{\bullet}$, ruma ${ }^{\bullet}$ leads to a trifactorisation (9.1) of $Z a g^{\bullet}$ exactly as the pair $l \varnothing m a^{\bullet}, r ø m a^{\bullet}$ did at the end of $\S 9.1$. Explicitly:

$$
\begin{align*}
& \mathrm{Zag}_{\mathrm{I}}^{\bullet}:=\operatorname{gari}\left(\operatorname{tal}^{\bullet}, \operatorname{invgari}\left(\operatorname{pal}^{\bullet}\right), \operatorname{expari}\left(\sum_{1 \leq n} \delta^{n} \mathrm{ruma}^{\bullet}\right)\right) \tag{9.38}\\
& \operatorname{Zag}_{\text {II }}^{\bullet}:=1^{\bullet}+\sum_{1 \leq r} \sum_{1 \leq n_{i}} \operatorname{Urr}_{\text {II }}^{n_{1}, \ldots, n_{l}} \operatorname{preari}\left(\delta^{n_{1}} \operatorname{luma}^{\bullet}, \ldots, \delta^{n_{l}} \operatorname{luma}^{\bullet}\right) \tag{9.39}\\
& \mathrm{Zag}_{\mathrm{III}}^{\bullet}=1^{\bullet}+\sum_{1 \leq r} \sum_{1 \leq n_{i}} \mathrm{Urr}_{\mathrm{III}}^{n_{1}, \ldots, n_{l}} \operatorname{preari}\left(\delta^{n_{1}} \operatorname{luma}{ }^{\bullet}, \ldots, \delta^{n_{l}} \text { luma }{ }^{\bullet}\right) \tag{9.40}\\
& \operatorname{logari.} \mathrm{Zag}_{\mathrm{II}}^{\bullet}=\sum_{1 \leq r} \sum_{1 \leq n_{i}} \operatorname{urr}_{\text {II }}^{n_{1}, \ldots, n_{l}} \operatorname{preari}\left(\delta^{n_{1}} \operatorname{luma}{ }^{\bullet}, \ldots, \delta^{n_{l}} \operatorname{luma}{ }^{\bullet}\right) \tag{9.41}\\
& \operatorname{logari.Zag} \mathrm{IIII}^{\bullet}:=\sum_{1 \leq r} \sum_{1 \leq n_{i}} \operatorname{urr}_{\text {III }}^{n_{1}, \ldots, n_{l}} \operatorname{preari}\left(\delta^{n_{1}} \operatorname{luma}{ }^{\bullet}, \ldots, \delta^{n_{l}} \text { luma• }\right) \tag{9.42}
\end{align*}
$$

Instead of the symmetral pair of irreducible carriers $\operatorname{Irr} \varnothing_{I I}^{\bullet}, \operatorname{Irr} \varnothing_{I I I}^{\bullet}$ and the alternal pair $\operatorname{irr}_{I I}^{\bullet}, \operatorname{irr} \varnothing_{I I I}^{\bullet}$, we now have the symmetral pair $\operatorname{Irr} u_{I I}^{\bullet}, \operatorname{Irr} u_{I I I}^{\bullet}$ and the alternal pair $i r r u_{I I}^{\bullet}, i r r u_{I I I}^{\bullet}$, with indices no longer running through $\{3,5,7 \ldots\}$ but through \mathbb{N}^{*}. Moreover, when dealing with the genuine (rather than formal) multizetas, these four new moulds are well-determined, rationalvalued, and, for any given length r, perinomal functions of their indices n_{i}. So it is about time to explain what perinomal functions are, and what they can accomplish.

[^64]
9.4 Notions of perinomal algebra.

A function $\rho \in \mathcal{C}\left(\mathbb{Z}^{r}, \mathbb{C}\right)$ is said to be perinomal (of arity r and rank r^{*}) iff:
(i) there exist $S_{1}, \ldots, S_{r^{*}} \in S l_{r}(\mathbb{Z})$ such that the functions $\rho \circ S_{1}, \ldots, \rho \circ S_{r^{*}}$ be linearly independent
(ii) for any $r^{* *}>r^{*}$ and any $S_{1}, \ldots, S_{r^{* *}} \in S l_{r}(\mathbb{Z})$, the $\rho \circ S_{1}, \ldots, \rho \circ S_{r^{* *}}$ are linearly dependent.
We set $S \rho:=\rho \circ S$, which defines an anti-action of $S l_{r}(\mathbb{Z})$ on $\mathbb{C}\left(\mathbb{Z}^{r}, \mathbb{C}\right)$.
If $T \in S l_{r}(\mathbb{Z}), \boldsymbol{S}:=\left[S_{1}, \ldots, S_{r^{*}}\right] \in\left(S l_{r}(\mathbb{Z})\right)^{r^{*}}$ and $\boldsymbol{n} \in \mathbb{Z}^{r}$, we also set:

$$
\begin{array}{rll}
\boldsymbol{S} \rho & :=\left[S_{1} \rho, \ldots, S_{r^{*}} \rho\right] \\
T \boldsymbol{S} \rho & :=\left[T S_{1} \rho, \ldots, T S_{d \rho} \rho\right] & =\left[\rho \circ S_{1}, \ldots, \rho \circ S_{r^{*}}\right] \\
T \boldsymbol{S} \rho(\boldsymbol{n}) & :=\left[T S_{1} \rho(\boldsymbol{n}), \ldots, T S_{r^{*}} \rho(\boldsymbol{n})\right] & =\left[\left(\rho \circ S_{1} \circ T, \ldots, \rho \circ S_{r^{*}} \circ T\right]\right. \\
& =\left[\left(\rho \circ S_{1} \circ T\right)(\boldsymbol{n}), \ldots,\left(\rho \circ S_{r^{*}} \circ T\right)(\boldsymbol{n})\right]
\end{array}
$$

If the S_{i} are now chosen so as to make $S_{1} \rho, \ldots, S_{r^{*}} \rho$ linearly independent, for each T there must exist scalars $M_{i}^{j}(\boldsymbol{S} \rho ; T)$ such that

$$
\begin{align*}
T S_{i} \rho(\boldsymbol{n}) & \equiv \sum_{1 \leq j \leq d} S_{j} \rho(\boldsymbol{n}) M_{i}^{j}(\boldsymbol{S} \rho ; T) \quad(\forall i, \forall \boldsymbol{n}) \quad \text { i.e. in matrix notation: } \\
T \boldsymbol{S} \rho(\boldsymbol{n}) & \equiv(\boldsymbol{S} \rho(\boldsymbol{n})) \cdot M(\boldsymbol{S} . \rho ; T) \tag{9.43}
\end{align*}
$$

But changing \boldsymbol{S} into another choice \boldsymbol{S}^{\prime} would simply subject M to some T-independent matrix conjugation $M \rightarrow M^{\prime}$:

$$
\begin{equation*}
M^{\prime}\left(\boldsymbol{S}^{\prime} \rho ; T\right)=C\left(\boldsymbol{S}^{\prime} \rho ; \boldsymbol{S} \rho\right) M(\boldsymbol{S} \rho ; T) C\left(\boldsymbol{S} \rho ; \boldsymbol{S}^{\prime} \rho\right) \tag{9.44}
\end{equation*}
$$

Moreover, we clearly have:

$$
\begin{equation*}
M\left(\boldsymbol{S} \rho ; T_{1} T_{2}\right) \equiv M\left(\boldsymbol{S} \rho ; T_{1}\right) M\left(\boldsymbol{S} \rho ; T_{2}\right) \tag{9.45}
\end{equation*}
$$

The upshot is that the identity (9.43) defines a linear representation of $S l_{r}(\mathbb{Z})$ into $G l_{r^{*}}(\mathbb{Z})$ or rather $S l_{r^{*}}(\mathbb{Z})$:

$$
\begin{align*}
\mathrm{Sl}_{r}(\mathbb{Z}) & \rightarrow \mathrm{Sl}_{r^{*}}(\mathbb{Z}) \tag{9.46}\\
T & \mapsto M(\boldsymbol{S} \rho ; T) \sim M_{\rho}(T) \tag{9.47}
\end{align*}
$$

This representation M_{ρ} in turn splits into irreducible factor representations $M_{\rho, r_{i}^{*}}:$

$$
\begin{equation*}
M_{\rho}=M_{\rho, r_{1}^{*}} \otimes \cdots \otimes M_{\rho, r_{s}^{*}} \quad \text { with } \quad r_{1}^{*}+\ldots r_{s}^{*}=r^{*} \tag{9.48}
\end{equation*}
$$

Analogy with polynomials and action of $s l_{r}(\mathbb{Z})$.

Let ρ be perinomal of type $\left(r, r^{*}\right)$. For $T \in S l_{r}(\mathbb{Z})$ of the form $i d+$ nilpotent and with $\operatorname{logarithm} t=\log (T) \in s l_{r}(\mathbb{Z})$, the image $M_{\rho}(T)$ of T in $T S l_{r^{*}}(\mathbb{Z})$ is also of the form id + nilpotent. For any \boldsymbol{n} fixed in \mathbb{Z}^{r} the sequence $\left\{T^{k} \rho(\boldsymbol{n}), k=\mathbb{Z}\right\}$ is therefore polynomial in k and it makes sense to set:

$$
\begin{equation*}
t \rho(\boldsymbol{n}):=\left[\partial_{k} T^{k} \rho(\boldsymbol{n})\right]_{k=0} \quad(\forall \boldsymbol{n}, T=\exp (t)) \tag{9.49}
\end{equation*}
$$

as if k were a continuous variable. This defines a coherent anti-action on Peri $_{r}$ (the ring of perinomal functions of arity r), first of the nilpotent part of $s l_{r}(\mathbb{Z})$, and then, by composition, of $s l_{r}(\mathbb{Z})$ in its entirety. This applies in particular for the elementary operators:

$$
\begin{array}{rll}
e_{i, j} \in \operatorname{sl}_{r}(\mathbb{Z}) & \text { "=" } \quad n_{j} \partial_{n_{i}} \\
E_{i, j} \in \operatorname{Sl}_{r}(\mathbb{Z}) & E_{i, j} & : \boldsymbol{n} \mapsto \boldsymbol{n}^{\prime} \text { with } n_{i}^{\prime}:=n_{i}+n_{j} \text { and } n_{k}^{\prime}=n_{k} \text { if } k \neq i
\end{array}
$$

But despite this analogy with polynomial functions, perinomal functions as a rule do not admit sensible extensions beyond \mathbb{Z}^{r} : they are essentially discrete creatures.

Perinomal continuation.

Even for functions ρ defined only on a "full-measure" cone of \mathbb{Z}^{r}, e.g. on \mathbb{N}^{r}, the above definitions of perinomalness still applies, but under restriction to the sub-semigroup of $\Gamma \subset S l_{r}(\mathbb{Z})$ that sends that cone into itself. When these conditions of "partial perinomalness" are fulfilled, on can then pick in Γ elements of the form $i d+$ nilpotent and take advantage of the polynomial dependence of $T^{k} \rho(\boldsymbol{n})$ in k for $k \in \mathbb{N}$ to extend, in unique and coherent manner, the function ρ to the whole of \mathbb{Z}^{r}, and then define, on this extended function, the anti-action not just of Γ but of the whole of $S l_{r}(\mathbb{Z}) \supset \Gamma$.

Stability properties of perinomal functions.

Perinomal functions are stable under most common operations, such as:
(i) ordinary addition and multiplication (assuming a common arity r);
(ii) concatenation or, what amounts to the same, mould mutiplication;
(iii) the whole range of flexion operations, and notably ari/gari.

The latter means that bimoulds $A^{\boldsymbol{w}}$ whose indices $w_{i}=\binom{u_{i}}{v_{i}}$ assume only entire values and whose dependence on the sequences \boldsymbol{u} and/or \boldsymbol{v} is perinomal, are stable under ari, gari etc.

Basic transforms $\rho \leftrightarrow \rho^{*} \leftrightarrow \rho^{\#}$.
The definitions read:

$$
\begin{align*}
\rho^{*}\left(s_{1}, \ldots, s_{r}\right) & :=\sum_{n_{i} \in \mathbb{N}^{*}} \rho\left(n_{1}, \ldots, n_{r}\right) n_{1}^{-s_{1}} \ldots n_{r}^{-s_{r}} \quad\left(s_{i} \in \mathbb{C} \text { or } \mathbb{N}\right)(9.50) \\
\rho^{\#}\left(x_{1}, \ldots, x_{r}\right) & \stackrel{\text { dom. }}{=} \sum_{n_{i} \in \mathbb{N}^{*}} \frac{\rho\left(n_{1}, \ldots, n_{r}\right)}{\left(n_{1}-x_{1}\right) \ldots\left(n_{r}-x_{r}\right)} \quad\left(x_{i} \in \mathbb{C}\right) \quad(9.51) \tag{9.51}
\end{align*}
$$

For $s_{i} \in \mathbb{C}$ and $\Re\left(s_{i}\right)>C_{i}$ with C_{i} large enough, the sum (9.50) converges to an analytic function ρ^{*} which may or may not possess a meromorphic continuation to the whole of \mathbb{C}^{r}. But one usually considers entire arguments s_{i}. The corresponding perinomal numbers $\rho^{*}(\boldsymbol{s})$ constitute a remarkable \mathbb{Q} ring that not only extends the \mathbb{Q}-ring of multizetas, but is also the proper framework for studying the"impartial" multizeta irreducibles.

As for the sum (9.51), it usually converges only if we subtract from the generic summand suitable corrective monomials (of bounded degrees) in the x_{i}. Hence the caveat "dom." i.e. "dominant" over the sign $=$. The resulting meromorphic function $\rho^{\#}(\boldsymbol{x})$ is known as a perinomal carrier. Its Taylor coefficients are clearly related to the perinomal numbers $\rho^{*}(\boldsymbol{s})$ and its multiresidues $\rho(\boldsymbol{n})$ are perinomal functions of \boldsymbol{n}.

9.5 The all-encoding perinomal mould peri${ }^{\bullet}$.

Definition of peri ${ }^{\bullet}$.
For any $l \geq 1$ and any integers $n_{i}, r_{i} \geq 1$ we set:

$$
\begin{aligned}
& \text { peri }{ }^{\binom{n_{1}, \ldots, n_{1}}{r_{1}, \ldots, r_{l}}}:=\operatorname{urr}_{\text {II }}^{n_{1}}, \ldots, n_{l} \quad \text { if } r_{i} \equiv 1 \forall i \quad \text { and } \sum r_{i}=l \text { is odd } \\
& :=\operatorname{urr}_{\mathrm{II}}^{n_{1} \ldots, n_{l}} \text { if } r_{i} \equiv 1 \forall i \quad \text { and } \sum r_{i}=l \text { is even } \\
& :=\operatorname{lum}\left(\begin{array}{l}
\binom{n_{1}, \ldots, n_{l}}{r_{1}, \ldots, r_{l}}
\end{array} \text { if } \max _{i}\left(r_{i}\right)>1 \text { and } \sum r_{i}\right. \text { is odd } \\
& :=\operatorname{rum}^{\binom{n_{1}, \ldots, n_{l}}{r_{1}, \ldots, r_{l}}} \text { if } \max _{i}\left(r_{i}\right)>1 \text { and } \sum r_{i} \text { is even }
\end{aligned}
$$

The following table recalls the origin and role of the four parts of peri${ }^{\bullet}$, depending on l and \boldsymbol{r} :

```
peri` | \sum ri odd | \sum ri even
ri=1 \foralli || constructs ZagiII from luma` || constructs Zag`| from luma`
max (r r ) > 1 || constructs luma` from ta` || constructs ruma` from ta`
```

In view of its definition, this holds-all mould peri• may seem a hopelessly heterogeneous and ramshackle construct. However, upon closer examination, its four parts turn out to be so closely interrelated that they cannot be described or understood in isolation. This amply justifies our welding them together into a unique mould peri${ }^{\bullet}$ which, far from being composite, is almost "seamless".

Properties of peri•

(i) As a mould ${ }^{116}$ with indices $\binom{n_{i}}{r_{i}}$, per ${ }^{\bullet}$ is alternal. ${ }^{117}$

[^65](ii) For any fixed sequence $\left(r_{1}, \ldots, r_{l}\right)$, peri ${ }^{\left(\begin{array}{l}n_{1}, \ldots, n_{l}\end{array}\right)}$, $\left.r_{l}\right)$ is a perinomal function of $\left(n_{1}, \ldots, n_{l}\right)$.
(iii) Although the above formulas define peri $\binom{n}{r}$ only for an upper sequence \boldsymbol{n} in \mathbb{N}^{l}, perinomal continuation ensures a unique extension to \mathbb{Z}^{l}.
(iv) There is another natural way of extending per \bullet^{\bullet} for $\boldsymbol{n} \in \mathbb{Z}^{l}$, namely by parity continuation, according to the formula:

$$
\begin{equation*}
\left.\operatorname{peri}^{\binom{n_{1}, \ldots, n_{l}}{r_{1}, \ldots, r_{l}}}:=\left(\operatorname{sign}\left(n_{1}\right)\right)^{r_{1}} \ldots\left(\operatorname{sign}\left(n_{l}\right)\right)^{r_{l}} \operatorname{peri}^{\left(\left|n_{1}\right|, \ldots,\left|n_{r_{1}}\right|\right.} r_{1}, \ldots, r_{l}\right) \tag{9.52}
\end{equation*}
$$

(v) Whether the perinomal and parity continuations coincide - wholly, partially, or not at all - depends on the sequence \boldsymbol{r} via simple criteria.
(vi) The perinomal numbers associated with $u r r_{I I}^{\bullet}$ and $u r r_{I I}^{\bullet}$ generate a \mathbb{Q} ring that contains the \mathbb{Q}-ring of multizetas.
(vii) The perinomal numbers associated with lum ${ }^{\bullet}$ resp. rum "tend" to be in \mathbb{Q} resp. $\mathbb{Q}\left[\pi^{2}\right]$ (they are definitely there for very small sequence lengths l) but it is still a moot point whether this holds true for all l.

9.6 A glimpse of perinomal splendour.

As an illustration, we shall mention the remarkable perinomal equations involving the elementary transformations $E_{i, j}$ and $e_{i, j}$ relative to neighbouring indices i, j. So let us set:

$$
\begin{array}{ll}
E_{i}^{+}:=E_{i, i+1} \in \mathrm{Sl}_{1}(\mathbb{Z}) \quad ; \quad e_{i}^{+} ":=" n_{i+1} \partial_{n_{i}} \in \operatorname{sl}_{1}(\mathbb{Z}) \\
E_{i}^{-}:=E_{i, i-1} \in \mathrm{Sl}_{1}(\mathbb{Z}) & ; e_{i}^{-} ":=" n_{i-1} \partial_{n_{i}} \in \operatorname{sl}_{1}(\mathbb{Z})
\end{array}
$$

E_{i}^{+}and E_{i}^{-}clearly commute, and so do e_{i}^{+}and e_{i}^{-}.
Given a sequence $\boldsymbol{r}=\left(r_{1}, \ldots, r_{l}\right)$ and $1 \leq i \leq l$, we set

$$
\begin{gather*}
r_{i}^{+}:=\sum_{i<j \leq l} r_{j} \quad ; \quad r_{i}^{-}:=\sum_{1 \leq j<i} r_{j} \tag{9.53}\\
\left(E_{i}^{+}-i d\right)^{1+r_{i}^{+}}\left(E_{i}^{-}-i d\right)^{r_{i}^{-}} \operatorname{peri}^{\binom{n_{1}, \ldots, n_{l}}{r_{1}, \ldots, r_{l}}} \equiv 0 \quad(\forall \boldsymbol{r}, \forall i) \tag{9.54}\\
\left(E_{i}^{+}-i d\right)^{r_{i}^{+}}\left(E_{i}^{-}-i d\right)^{1+r_{i}^{-}} \operatorname{peri}^{\left(\begin{array}{c}
n_{1} \\
r_{1}, \ldots, n_{l} \\
r_{l}
\end{array}\right)} \equiv 0 \tag{9.55}\\
\equiv 0 \boldsymbol{(} \boldsymbol{r}, \forall i)
\end{gather*}
$$

In particular, for extreme values of i :

$$
\begin{align*}
&\left(E_{1}^{+}-i d\right)^{1+r_{2}+\ldots+r_{l}} \operatorname{peri}^{\left(\begin{array}{c}
n_{1}, \ldots, n_{1} \\
\left.r_{1}, \ldots, r_{l}\right)
\end{array}\right.} \equiv 0 \quad \equiv(\forall \boldsymbol{r}) \tag{9.56}\\
&\left(E_{l}^{-}-i d\right)^{1+r_{1}+\ldots+r_{l-1}} \operatorname{peri}^{\left({ }^{\left(n_{1}, \ldots, r_{1}, r_{l}\right.}\right)} \equiv 0 \quad(\forall \boldsymbol{r}) \tag{9.57}
\end{align*}
$$

peri $\binom{\left(n_{1}, \ldots, n_{1}\right.}{r_{1}, \ldots, r_{l}}$, e.g. those with $r_{1}=\min \left(r_{i}\right)$, to know them all.

In the above identities, the discrete difference operators $E_{i}^{ \pm}-i d$ may of course be replaced by the derivations $e_{i}^{ \pm}$. But the most interesting identities are these:

$$
\begin{align*}
& \left(E_{1}^{+}-i d\right)^{r_{2}+\ldots+r_{l}} \operatorname{peri}^{\left(\begin{array}{c}
n_{1}, \ldots, n_{1} \\
r_{1}, \ldots, \\
r_{l}
\end{array}\right)} \equiv \operatorname{peri}_{L}^{\binom{n_{2}, \ldots, n_{l}}{r_{2}}}(\forall \boldsymbol{r}) \tag{9.58}
\end{align*}
$$

$$
\begin{align*}
& \left.\left(e_{l}^{-}\right)^{r_{1}+\ldots+r_{l-1}} \operatorname{peri}^{\left(\begin{array}{c}
n_{1}, \ldots, n_{l} \\
r_{1}
\end{array}, \ldots, r_{l}\right.}\right) \equiv \operatorname{peri}_{R *}^{\binom{n_{1}, \ldots, n_{l-1}}{r_{1}}, \ldots, r_{l-1}}(\forall \boldsymbol{r}) \tag{9.60}
\end{align*}
$$

because they yield new, simpler perinomal fonctions $\operatorname{per}_{i_{L}^{\bullet}}^{\boldsymbol{\bullet}}, \operatorname{per} i_{R}^{\boldsymbol{\bullet}}$ (or their infinitesimal variants $\operatorname{per} i_{L *}^{\bullet}$, per $i_{R *}^{\bullet}$) that are themselves closely related to the jump functions that measure the differences between the 2^{l} perinomal
 tant':

$$
\begin{equation*}
\mathcal{O}^{\epsilon_{1}, \ldots, \epsilon_{l}}:=\left\{\left(n_{1}, \ldots, n_{l}\right) \in \mathbb{Z}^{l} \quad \text { with } \quad \epsilon_{i} n_{i} \in \mathbb{N}^{*}, \quad \epsilon_{i} \in\{+,-\}\right\} \tag{9.62}
\end{equation*}
$$

They are also related to the shorter components of peri${ }^{\bullet}$.
It is probably no exaggeration to say that this wondrous, double-layered mould peri• is some sort of algebraic Mandelbrot set - its equal in terms of complexity and richness of sub-structure at all scales, but much tidier, because here the structure is algebraic in nature, consisting as it does of:

- the infinite series of perinomal fonctions encoded in peri ${ }^{\bullet}$;
- their seemingly inexhaustible properties and relations;
- the degrees of the induced representations of $S l_{l}(\mathbb{Z})$ for all l;
- the irreducible factor representations of these induced representations;
- the arithmetic properties of the corresponding perinomal numbers; etc etc...

10 Provisional conclusion.

10.1 Arithmetical and functional dimorphy.

The word 'dimorphy' points to the parallel existence of two distinct multiplication rules, but the interpretation differs for functions and for numbers. For functions, the two multiplication rules define distinct and independent products. For numbers, they are merely distinct and independent expressions of one and the same product.

- Dimorphy for functions rings.

A function space \mathbb{F} is said to be dimorphic if it is endowed with, and stable under, two distinct (bilinear) products - usually, pointwise multiplication and some form or other of convolution. One often adds the requirement that both products should have the same unit - usually, the constant function 1. Moreover, dimorphic function rings often possess two sets of exotic derivations, i.e. linear operators irreducible to ordinary differentiation but acting as abstract derivations respective to the first or second product. (It would be tempting to attach to these dimorphic function rings the label "bialgebra", had it not long ago acquired a different connotation - namely, stability under a product and a coproduct.)

- Dimorphy for numbers rings.

A countable \mathbb{Q}-ring $\mathbb{D} \subset \mathbb{C}$ is dimorphic if it has two countable prebases ${ }^{118}$ $\left\{\alpha_{m}\right\}$ and $\left\{\beta_{n}\right\}$, with a simple conversion rule linking the two, and a multiplication rule ${ }^{119}$ attached to each prebasis:

$$
\begin{array}{lllr}
\alpha_{m}=\sum^{*} H_{m}^{n} \beta_{n} & , & \beta_{n}=\sum^{*} K_{n}^{m} \alpha_{m} & \left(H_{m}^{n}, K_{n}^{m} \in \mathbb{Q}\right) \\
\alpha_{m_{1}} \alpha_{m_{2}}=\sum^{*} A_{m_{1}, m_{2}}^{m_{3}} \alpha_{m_{3}} & , & \beta_{n_{1}} \beta_{n_{2}}=\sum^{*} B_{n_{1}, n_{2}}^{n_{3}} \beta_{n_{3}} & \left(A_{n_{1}, n_{2}}^{n_{3}}, B_{n_{1}, n_{2}}^{n_{3}} \in \mathbb{Q}\right)
\end{array}
$$

All sums Σ^{*} have to be finite. Moreover, the two multiplication rules must be "independent", in the precise sense that neither should follow algebraically from the other under the conversion rule. This in turn implies that neither $\left\{\alpha_{m}\right\}$ nor $\left\{\beta_{n}\right\}$ can be a \mathbb{Q}-basis of \mathbb{D} : there have to be non-trivial, linear \mathbb{Q} relations between the α_{m}, and others between the β_{n}. The main challenges, when studying a dimorphic \mathbb{Q}-ring $\mathbb{D} \subset \mathbb{C}$, are therefore:
(i) ascertaining whether \mathbb{D} is a polynomial algebra (generated by a countable set of irreducibles) or the quotient of a polynomial algebra by some ideal;
(ii) pruning each prebasis $\left\{\alpha_{m}\right\}$ and $\left\{\beta_{n}\right\}$ of redundant elements, so as to turn them into true bases;
(iii) whenever possible, constructing an impartial or 'non-aligned' basis $\left\{\gamma_{p}\right\}$, positioned 'halfway' between $\left\{\alpha_{m}\right\}$ and $\left\{\beta_{n}\right\}$.
(iv) whenever possible, finding for the impartial γ_{p} 's a direct expression that is itself impartial and leans neither towards the α_{m} 's nor the β_{n} 's.

- Kinship and difference between the two types of dimorphy: functional and numerical.
The two notions have much in common: indeed, most dimorphic number rings are derived from dimorphic function rings either via function evaluation at some special points, or via function integration, or again via the application of exotic derivations to the functions and the harvesting of the

[^66]constants produced in the process. And yet there is this striking difference: whereas the notion of dimorphic ring is entirely objective (- the two products are just there -), that of numerical dimorphy is embarrassingly subjective: on any countable \mathbb{Q}-ring $\mathbb{D} \subset \mathbb{C}$, one may always construct two prebases $\left\{\alpha_{m}\right\}$ and $\left\{\beta_{n}\right\}$ with the required properties. So what makes a \mathbb{Q}-ring \mathbb{D} truly dimorphic is the existence of genuinely natural prebases, and the - often considerable difficulty - of solving the four problems (i), (ii), (iii), (iv) listed above. The irony, withal, is that the notion of numerical dimorphy, despite its conceptual shakiness, is much more interesting and basic than that of functional dimorphy, and throws up much harder problems.

- Hyperlogarithmic functions: the dimorphic ring $\mathcal{H H}$.

An interesting dimorphic space is the space $\mathcal{H H}$ of hyperlogarithmic functions, which is spanned by the $\overline{\mathcal{H}}^{\alpha}$ thus defined: ${ }^{120}$

$$
\begin{equation*}
\overline{\mathcal{H}}^{\alpha_{1}, \ldots, \alpha_{r}}(\zeta)=\int_{0}^{\zeta} \overline{\mathcal{H}}^{\alpha_{1}, \ldots, \alpha_{r-1}}\left(\zeta_{r}\right) \frac{d \zeta_{r}}{\zeta_{r}-\alpha_{r}} \quad \text { with } \quad \mathcal{H}^{\emptyset}(\zeta) \equiv 1 \tag{10.1}
\end{equation*}
$$

$\mathscr{H} \notin$ is stable under pointwise multiplication and under the unit-preserving convolution \star :

$$
\begin{equation*}
\left(\underline{\mathcal{H}}_{1} \star \underline{\mathcal{H}}_{2}\right)(\zeta)=\int_{0}^{\zeta} d \underline{\mathcal{H}}_{1}\left(\zeta_{1}\right) \underline{\mathcal{H}}_{2}\left(\zeta-\zeta_{1}\right)=\int_{0}^{\zeta} \underline{\mathcal{H}}_{1}\left(\zeta-\zeta_{2}\right) d \underline{\mathcal{H}}_{2}\left(\zeta_{2}\right) \tag{10.2}
\end{equation*}
$$

Side by side with the $\boldsymbol{\alpha}$-encoding, it is convenient to consider an $\boldsymbol{\omega}$-encoding via the correspondence:

$$
\begin{equation*}
\underline{\mathcal{H}}^{\omega_{1}, \ldots, \omega_{r}}:=\overline{\mathcal{H}}^{\omega_{1}, \omega_{1}+\omega_{2}, \ldots, \omega_{1}+\ldots+\omega_{r}} \tag{10.3}
\end{equation*}
$$

if all $\alpha_{i}:=\omega_{1}+\ldots+\omega_{i}$ are $\neq 0$, and by a slightly modified formula otherwise.
For this function ring \mathcal{H}, the basic dimorphic stability follows from the fact that the moulds $\overline{\mathcal{H}}^{\bullet}$ and $\underline{\mathcal{H}}^{\bullet}$ are both symmetral, the former under pointwise multiplication, the latter under convolution. Moreover, there exist on $\mathscr{H} \notin$ two rich arrays of exotic derivations: the foreign derivations $\nabla_{\alpha_{0}}$ and the alien derivations $\Delta_{\omega_{0}}$. These are linear operators that basically 'analyse' the singularities 'over ${ }^{\text {'121 }}$ the points α_{0} or ω_{0}, but in such a way as to make the $\nabla_{\alpha_{0}}$ and $\Delta_{\omega_{0}}$ act as derivations on \mathcal{H} relative to, respectively, multiplication and convolution.

- Hyperlogarithmic numbers: the dimorphic ring \mathbb{H}.

If we now restrict ourselves to rational-complex sequences $\boldsymbol{\alpha}$ or $\boldsymbol{\omega}$ (i.e. with

[^67]all indices α_{i} or ω_{i} in $\left.\mathbb{Q}+i \mathbb{Q}\right)$ and evaluate the corresponding $\overline{\mathcal{H}}^{\alpha}$ or $\underline{\mathcal{H}}^{\omega}$ at or over rational-complex points ζ, the space \mathbb{Q}-spanned by these numbers is actually a \mathbb{Q}-ring: the \mathbb{Q}-ring \mathbb{H} of so-called hyperlogarithmic numbers, which is in fact dimorphic, since it possesses two natural prebases $\left\{\bar{H}^{\alpha}\right\}$ and $\left\{\underline{H}^{\omega}\right\}$, each with its own, independent multiplication rule. ${ }^{122}$

Clearly, $\mathcal{H H}$ contains the space of polylogarithms with singularities over the unit roots. Likewise, \mathbb{H} contains the dimorphic \mathbb{Q}-ring of all (colourless or coloured) multizetas, but it also contains much more: in fact, the structure of \mathbb{H} is still farther from a complete elucidation than that of the ring of multizetas.

10.2 Moulds and bimoulds. The flexion structure.

- Moulds have their origin in alien calculus.

Alien calculus deals with the totally non-commutative derivations Δ_{ω} and with the Hopf algebra Δ freely generated by them. Let \mathbb{A} be any commutative algebra. Multiplying several elements $B_{i} \in \mathbb{A} \otimes \mathbb{\Delta}$:

$$
\begin{equation*}
B_{i}=\sum_{\bullet} A_{i}^{\bullet} \Delta_{\bullet}=\sum_{r \geq 0} \sum_{\omega_{i}} A_{i}^{\omega_{1}, \ldots, \omega_{r}} \Delta_{\omega_{1}} \ldots \Delta_{\omega_{r}} \tag{10.4}
\end{equation*}
$$

reduces to multiplying the corresponding moulds $A_{i}^{\boldsymbol{\bullet}}$, which in many contexts (e.g. in formal computation) is much more convenient.

Alien calculus led straightaway to the four hyperlogarithmic moulds:

$$
\begin{equation*}
\mathcal{U}^{\bullet}(z), \mathcal{V}^{\bullet}(z) \text { (resurgent-valued) } ; \quad U^{\bullet}, V^{\bullet}(\text { scalar-valued }) \tag{10.5}
\end{equation*}
$$

with their many properties and symmetries, and this is what really got the whole subject of mould calculus started.

One way of looking at moulds is to think of them as permitting the handling of non-commutative objects by means of commutative operations.

Another is to view them as permitting the explicit calculation of objects (like the Taylor coefficients of the power series expansions of the solutions of very complex, non-linear equations) that would otherwise resist explicitation.

- Moulds have found their second largest application in local differential geometry.
Expansions of type (10.4) but with scalar- or function-valued moulds $A_{i}^{\boldsymbol{\bullet}}$

[^68]and with homogeneous (ordinary) differential operators in place of the Δ_{ω}, are very useful in local differential geometry (especially when all data are analytic) for expressing and investigating normal forms, normalising transformations, fractional iterates etc. Here again, moulds make it possible to render explicit the seemingly inexplicitable - with all the benefits that accrue from transparency.

- Mould operations and mould symmetries.

Moulds of natural origin usually come with a definite symmetry type - symmetral or symmetrel, alternal or alternel - and most mould operations either preserve these symmetries or transmute them in a predictable manner.

- Moulds and arborification.

When natural mould-comould expansions such as (10.4) display normal divergence and yet "ought to converge" (because they stand for really existing function germs or 'local' geometric objects), a general and very effective remedy is at hand: the transform known as arborification-coarborification nearly always suffices to restore normal convergence. Roughly speaking, the transform in question replaces, dually in A^{\bullet} and $\Delta_{\text {• }}$, the totally ordered sequences $\boldsymbol{\omega}$ by sequences carrying a weaker, arborescent order, and it does so in such a way as to leave the global series formally unchanged, while effecting the proper internal reordering that restores convergence.

- Bimoulds.

There is much more to being a bimould than just carrying double-layered indices $w_{i}:=\binom{u_{i}}{v_{i}}$. On top of being subject to the usual mould operations, like $m u$ and $l u$, and being eligible for the four basic mould symmetries (see above), bimoulds can also display new symmetries sui generis, and can be subjected to numerous (unary or binary) operations without 'classical' equivalents. These are the so-called flexion operations, under which the u_{i} get added bunch-wise, and the v_{i} subtracted pair-wise, in such a way as to preserve $\sum u_{i} v_{i}$ and $\sum d u_{i} \wedge d v_{i}$.

- The flexion structure.

A non-pedantic, if slightly cavalier, way of defining the flexion structure is to characterise it as the collection of all interesting objects (unary or binary operations, symmetry types, algebras, groups etc) that may be constructed on bimoulds from the sole flexions. It turns out that, up to isomorphy, the flexion structure consists of exactly:
(i) seven algebras, notably $A R I$ and $A L I$.
(ii) seven groups, notably $G A R I$ and $G A L I$.
(iii) five super-algebras, notably $S U A R I$ and $S U A L I$.

- Recovering most classical moulds from bimoulds.

Many classical moulds (especially when, as is often the case, their analytical expression involves partial sums or pairwise differences of their indices ω_{i}) can be recovered, and their properties better understood, when viewed as special bimoulds with one vanishing row of indices (either $\boldsymbol{v}=\mathbf{0}$ or $\boldsymbol{u}=\mathbf{0}$)

- Monogenous substructures.

These are the spaces Flex $(\mathfrak{E})=\oplus_{0 \leq r}$ Flex $_{r}(\mathfrak{E})$ generated by a single lengthone bimould $\mathfrak{E \bullet}$ under all flexion operations. The most natural monogenous structures correspond to the case when $\mathfrak{E}^{w_{1}}$ is totally 'random' (i.e. when there are no unexpected relations in its flexion offspring) or possesses a given parity in u_{1} and v_{1} (four possibilities).

- Flexion units and their offspring.

In terms of applications the most important monogenous structures Flex (E) correspond to special generators $\mathfrak{E} \bullet_{\bullet \bullet}$ that verify the so-called tripartite identity (3.9). These $\mathfrak{E} \bullet_{\bullet}$ are known as flexion units and admit various realisations as concrete functions of w_{1} : polar, trigonometric, elliptic, 'flat' etc.

- Algebraisation of the substructures.

Each type of abstract generator \mathfrak{E}^{\bullet} subject to a given set of constraints ${ }^{123}$ may admit several realisations (as a function or distribution etc), or just one, or none at all. But in all cases the flexion structure Flex $(\mathfrak{E})=\oplus_{0 \leq r}$ Flex ${ }_{r}(\mathfrak{E})$ generated by $\mathfrak{E} \bullet_{\bullet \bullet}$ is a well-defined algebraic object, with an integer sequence $d_{r}=\operatorname{dim}\left(F l e x_{r}(\mathfrak{E})\right)$ that reflects the strength of the constraints on \mathfrak{E}^{\bullet}. Moreover, in most cases, the length-r component Flex (\mathfrak{E}) of Flex (\mathfrak{E}) possesses one (or several) natural bases $\left\{\mathfrak{e}_{t}^{\bullet}\right\}=\left\{\mathfrak{e}_{t}^{w_{1}, \ldots, w_{r}}\right\}$, with basis elements naturally indexed by r-node trees \boldsymbol{t} of a well-defined sort - like for instance binary trees if \mathfrak{E}^{\bullet} is a flexion unit or ternary trees if \mathfrak{E}^{\bullet} is 'random'. ${ }^{124}$ This automatically endows the abstract space spanned by those trees with the full flexion structure and all its wealth of operations, opening the way for fascinating (and as yet largely unexplored) developments in combinatorics. ${ }^{125}$

- Origins of the flexion structure.

The flexion structure arose in the early 1990s in an analysis context, as a tool for describing a very specific type of resurgence, variously known as quantum

[^69]
resurgence ${ }^{126}$ or parametric resurgence ${ }^{127}$ or co-equational resurgence. ${ }^{128}$

- Present and future of the flexion structure.

In the early 2000s, the flexion structure began to be used, to great effect, in the investigation of multizeta arithmetics and numerical dimorphy, and this is likely to remain the theory's main area of application for quite some time to come. However, the algebraisation of monogenous (resp. polygenous) structures like Flex (\mathfrak{E}) (resp. Flex $\left(\mathfrak{E}_{1}, \ldots, \mathfrak{E}_{\mathfrak{n}}\right)$) also suggests promising applications in algebra and combinatorics. We can even discern the outlines of a future 'flexion Galois theory' that would concern itself with the way in which a given type of constraints on \mathfrak{E}^{\bullet} or on the $\mathfrak{E}_{i}^{\bullet}$ impacts the structure, dimensions, etc, of such objects as Flex (\mathfrak{E}) or $\operatorname{Flex}_{r}\left(\mathfrak{E}_{1}, \ldots, \mathfrak{E}_{\mathfrak{n}}\right)$.

10.3 ARI/GARI and the handling of double symmetries.

- Simple symmetries or subsymmetries at home in $L U / M U$.

The uninflected mould bracket $l u$ preserves alternality and its two subsymmetries: mantar-invariance and pus-neutrality. ${ }^{129}$ Similarly, the uninflected mould product $m u$ preserves symmetrality and its two subsymmetries: gantarinvariance and gus-neutrality. ${ }^{130}$ And that's about all. Even when $l u$ or $m u$ are made to act on bimoulds, they preserve none of the double symmetries ${ }^{131}$ and none of their induced subsymmetries ${ }^{132}$ - not even the so crucial pushor gush-invariance.

- Double symmetries or subsymmetries at home in ARI/GARI.

Things change when we go over to the inflected operations, or rather to the right ones, since of all seven pairs consisting of a flexion Lie algebra and its group, only $A R I / / G A R I$ and $A L I / / G A L I$ are capable of preserving double symmetries and subsymmetries. In the case of $A R I$ (resp. GARI) the full picture has been summarised on the table of $\S 2.5$ (resp. $\S 2.6$). Things differ slightly with $A L I$ (resp. GALI), but we need not bother with these differ-

[^70]ences since, when restricted to bimoulds of type $\underline{a l} / \underline{a l}$ (resp. $\underline{a s} / \underline{a s}$), the Lie brackets ari and ali (resp. the group laws gari and gali) exactly coincide.

All the above, it should be noted, applies to straight (i.e. uninflected) double symmetries, but similar results hold for the twisted ${ }^{133}$ double symmetries that really matter, beginning with $\underline{a l} / \underline{i l}$ and $\underline{a s} / \underline{i s}$.

- Ubiquity of poles at the origin: associator.

In the canonical trifactorisation of $Z a g^{\bullet}$, the leftmost factor $Z a g_{I}^{\bullet}$ which, we recall, encodes all the information about the canonical-rational associator, admits in its turn a trifactorisation of the form

$$
\begin{equation*}
\mathrm{Zag}_{\mathrm{I}}^{\bullet}=\operatorname{gari}\left(\text { tal }^{\bullet}, \text { invgari.pal }{ }^{\bullet}, \text { Roma }^{\bullet}\right) \tag{10.6}
\end{equation*}
$$

and the strange thing is that, although $Z a g_{I}^{\bullet}$, as a function of the u_{i} variables, is of course free of poles at the origin, all three factors are replete with them. (i) The (polar) mid-factor pal ${ }^{\bullet}$ contains nothing but multipoles at the origin, and so does its gari-inverse.
(ii) The (trigonometric) first factor $t a l^{\bullet}$, which is a periodised variant of pal ${ }^{\bullet}$, carries multipoles at and off the origin, and those at the origin are roughly the same as those of pal ${ }^{\bullet}$.
(iii) Since the multipoles of pal ${ }^{\bullet}$ and tal $\boldsymbol{\bullet}^{\bullet}$ very nearly, but not exactly, cancel out at the origin, a (highly transcendental) third factor $R o m a{ }^{\bullet}$ is called for to remove the remaining singularities, and the construction of that third factor involves at every step special operators, the so-called singulators, whose function it is to introduce, in a systematic and controlled manner, all the required corrective singularities at the origin.

- Ubiquity of poles at the origin: singulators and generation of $A L I L \subset A R I^{\text {al }} / \underline{i l}$.
To construct any of the three alternative bases $\left\{\operatorname{lum} a_{s}^{\bullet}\right\},\left\{\operatorname{loma} a_{s}^{\bullet}\right\},\left\{\operatorname{lama} a_{s}^{\bullet}\right\}$ of ALIL, we start from the arch-elementary bimoulds ekmas, purely of length1 and trivially of type $\underline{a l} / \underline{a l}$, and then apply $\operatorname{adari}\left(p a l^{\bullet}\right)$ to produce new bimoulds, this time of the right type $\underline{a l} / \underline{i l}$ but ridden with unwanted singularities at the origin. To remove these without losing the property $\underline{a l} / \underline{i l}$, we must then engage in a double process of singularity destruction and singularity re-introduction (at higher lengths), which is painstakingly described in $\S 6$. The operators behind the construction, the so-called singulators, are themselves built from the purely singular, polar bimould pal⿻ . Poles, therefore, completely dominate the process - first as obstacles, then as remedies.

[^71]- Ubiquity of poles at the origin: singulators and generation of $A L A L \subset A R I^{a l / a l}$. The exceptional bialternals.
That the construction of pole-free bases for ALIL should involve poles at all intermediary steps, is surprising enough, but still halfway understandable, since the very definition of alternility involves (mutually cancelling) polar terms. But the really weird thing is that poles should also be required to construct bases of $A L A L$, since the double symmetry here is completely straight. Nevertheless, such is the case: to the elementary ekma bialternals, one must adjoin the exceptional and very complex carma bialternals, whose construction cannot bypass the introduction of poles, since it requires the prior knowledge of an $A L I L$-basis up to length $r=3$ (but, thankfully, no farther), as shown in $\S 7$.
- Ubiquity of poles away from the origin: perinomal analysis.

Perinomal analysis deals with meromorphic functions that possess multipoles all over the place: their location admits a natural indexation over \mathbb{Z}^{r}, their multiresidues are also defined on \mathbb{Z}^{r} and are of perinomal nature. So, here again, multipoles have a way of inviting themselves into all calculations.

- $A R I$ and the Ihara algebra.

The fact that the Ihara algebra is isomorphic to a twee tiny little subalgebra of $A R I^{134}$ - namely, the subalgebra of bimoulds of type $\underline{a l} / \underline{i l}$, polynomial in \boldsymbol{u} and constant in \boldsymbol{v} - is no reason for 'equating' the two structures, or even their Lie bracket. But since there still reigns much confusion around this fraught issue, a short clarification is in order.
(i) To begin with, none of the dozens of pole-carrying bimoulds such as pal ${ }^{\bullet}$ or $t a l^{\bullet}$ or $r ø m a^{\bullet}$, which are key to the understanding of $Z a g^{\bullet}$, possess any counterpart in the Ihara algebra. As a consequence, neither can the carma bialternals be constructed in that framework, nor can the reason behind their presence be understood, nor can anything even remotely resembling $l \varnothing m a^{\bullet}$ be constructed.
(ii) Second, unlike the Ihara algebra, the $A R I$ approach puts both symmetries - alternal and alternil - on exactly the same footing and does full justice to the duality that underpins multizeta (and general arithmetical) dimorphy. Indeed, with its involution swap, its built-in duality between upper and lower indices, and all the main bimoulds like pal $\boldsymbol{l}^{\boldsymbol{\bullet}} / \mathrm{pil}^{\boldsymbol{\bullet}}$, tal $\boldsymbol{\bullet}^{\boldsymbol{\bullet}} /$ til $^{\boldsymbol{\bullet}}$ etc that always occur in pairs, $A R I$ is itself 'dimorphic' to the marrow.
(iii) Third, the whole subject of perinomal algebra and of canonical irreducibles is beyond not just the computational reach of the Ihara algebra, but

[^72]even its means of conception.
(iv) Fourth, unlike the Ihara algebra, $A R I$, with its double row of indices, lends itself effortlessly to the passage from uncoloured to coloured multizetas. (v) Lastly, $A R I$ arose independently of the Ihara algebra, in direct answer to a problem of analysis and resurgence. In fact, unlike the Ihara algebra, ARI is serviceable in analysis no less than in algebra.

10.4 What has already been achieved.

Finding the proper setting was the first and arguably main step. The rest followed rather naturally.

- Correction formula.

Moving from the scalar multizetas $W a^{\bullet} / Z e^{\bullet}$ to the generating functions $Z a g^{\bullet} / Z i g^{\bullet}$ makes it much easier to understand the reason for the corrective terms Mana ${ }^{\bullet} / \mathrm{Mini} \bullet^{\bullet}$ in (1.27), (1.28). As meromorphic functions, $Z a g^{\bullet}$ and Zig • are both given by semi-convergent series of multipoles. Formally, the involution swap exchanges both series exactly, but alters their summation order, leading to simple corrective terms constructed from monozetas.

- Meromorphic continuation of multizetas and arithmetical nature at negative points.
When taken in the $Z e$ encoding, the scalar multizetas $Z e^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{s_{1}, \ldots, s_{r}}}$ possess a meromorphic extension to the whole of \mathbb{C}^{r}, with all their multipoles on \mathbb{Z}^{r}.
(i) the density of multipoles decreases with the 'coloration' of the multizetas, i.e. with the number of non-vanishing ϵ_{i} 's.
(ii) the values (resp. residues) found at the regular (resp. irregular) places $s \in \mathbb{Z}^{r}-\mathbb{N}^{r}$ are themselves rational combinations of simpler multizetas. ${ }^{135}$
(iii) the symmetrelity relations verified by $Z e^{\bullet}$, which hold for positive s_{i} 's, extend by meromorphic continuation to the whole of \mathbb{C}^{r}, including to the points of \mathbb{Z}^{r} where, in view of (ii), they might - but in fact do not - generate new multizeta relations. ${ }^{136}$

- Unit-cleansing.

Any 'uncoloured' multizeta $Z e^{\left(\begin{array}{c}0, \ldots, s_{1} \\ \left.s_{1}, \ldots, s_{r}\right)\end{array}\right.}$ with $s_{i} \in\left(\mathbb{N}^{*}\right)^{r}$ can in fact be expressed (in non-unique manner) as a rational-linear combinations of analogous but unit-free multizetas (i.e. with $s_{i} \geq 2$). The proof rests on a reformulation of the problem in terms of bialternals, and then on the socalled redistribution identities (of rich combinatorial content) which make it

[^73]possible to recover any bialternal polynomial $M i^{\left(\begin{array}{c}0, \ldots, v_{1} \\ v_{1}, \ldots, \\ v_{r}\end{array}\right)}$ from its essential part, i.e. from the collection of its constituant monomials that are divisible by $v_{1} \ldots v_{r}$.

- Parity reduction.

Any 'uncoloured' multizeta $Z e^{\binom{0, \ldots,}{s_{1}, \ldots, s_{r}}}$ with $s_{i} \in\left(\mathbb{N}^{*}\right)^{r}$ can in fact be expressed as a rational-linear combinations of analogous multizetas of even degree. ${ }^{137}$ While this follows from the general result on the decomposition of multizetas into irreducibles (these correspond here to uncoloured bialternal polynomials, which are necessarily of even degree d), there exists a more elementary derivation, based on the properties of the symmetrel bimould $\operatorname{Tig}{ }^{\bullet}(z)$, or "multitangent bimould", thus defined: ${ }^{138}$

$$
\begin{align*}
T i g g^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{v_{1}, \ldots, v_{r}}}(z) & :=\sum_{s_{i} \geq 1} T e^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{s_{1}, \ldots, s_{r}}}(z) v_{1}^{s_{1}-1} \ldots v_{r}^{s_{r}-1} \tag{10.7}\\
T e^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{s_{1}, \ldots, s_{r}}}(z) & :=\sum_{+\infty>n_{1}>\ldots>n_{r}>-\infty} e_{1}^{-n_{1}} \ldots e_{r}^{-n_{r}}\left(n_{1}+z\right)^{-s_{1}} \ldots\left(n_{r}+z\right)^{-} \tag{阝10.8}
\end{align*}
$$

and on the two different ways of expressing each uncoloured multitangent $\operatorname{Tig}^{\left({ }_{s}^{0}\right)}(z)$ as sums of uncoloured monotangents $\operatorname{Tig}^{\left({ }_{s_{1}}^{0}\right)}(z)$ with uncoloured multizeta coefficients. See §11.7.

- The senary relation and palindromy formula.

The senary relations on bimoulds of type $\underline{a l} / i \underline{i l}$ are the only double subsymmetries of finite arity - they involve exactly six terms. In polar (resp. universal) mode, they assume the form (3.64) (resp. (3.58)). They result from the double symmetry $\underline{a l} / \underline{i l}$ of a bimould M^{\bullet}, more precisely from the mantarinvariance of M^{\bullet} (consequence of its alternality) and the mantir-invariance of swap. M^{\bullet} (consequence of its alternility).

The palindromy relations, on the other hand, apply to homogeneous elements $C \in \operatorname{IHARA} \subset \mathbb{Q}\left[x_{0}, x_{1}\right]$ of the Ihara algebra (x_{0} and x_{1} don't commute), or more precisely to their left or right decompositions:

$$
\begin{equation*}
C=A_{0} x_{0}+A_{1} x_{1}=x_{0} B_{0}+x_{1} B_{1} \quad\left(A_{i}, B_{i} \in \mathbb{Q}\left[x_{0}, x_{1}\right]\right) \tag{10.9}
\end{equation*}
$$

and state that the sums $A_{0}+A_{1}$ and $B_{0}+B_{1}$ are invariant under the palindromic involution:

$$
\begin{equation*}
x_{\epsilon_{1}} x_{\epsilon_{2}} \ldots x_{\epsilon_{s}} \mapsto(-1)^{s} x_{\epsilon_{s}} \ldots x_{\epsilon_{2}} x_{\epsilon_{1}} \tag{10.10}
\end{equation*}
$$

[^74]The palindromy relations ${ }^{139}$, which according to the above involve four clusters of terms, can easily be shown to be equivalent to a special case of the senary relations ${ }^{140}$, which involve six.

- Coloured multizetas. Bicolours and tricolours.

The statement about the eliminability of unit weights ${ }^{141}$ in uncoloured multizetas still applies in the coloured case, but here another, almost opposite results holds: every bicoloured or tricoloured multizeta ${ }^{142}$ with arbitrary weights can be (in non-unique manner) expressed as a rational-linear combination of multizetas with unit-weights only.

- Canonical-rational associator and explicit decomposition into canonical irreducibles.
We would rate this as the second-most encouraging result obtained so far with the flexion apparatus. The existence of a truly canonical decomposition ${ }^{143}$ was by no means a foregone conclusion - in fact, it had gone completely unsuspected. Moreover, since everything rests on the construction of an explicit basis of $A L I L \subset A R I^{a l / i l}$, which in turn requires the repeated introduction and elimination of singularities at the origin, ${ }^{144}$ the construction cannot be duplicated in any other framework than the flexion structure.
- The impartial expression of irreducibles as perinomal numbers.

We would, in all humility, regard this as the crowning achievement of the flexion method so far. The two circumstances which made it possible are: the exact adequation of $A R I / / G A R I$ to dimorphy; and the 'vastness' of the structure, which accommodates not just polynomials in the \boldsymbol{u} or \boldsymbol{v} variables, but also meromorphic functions (and much else).

- The first forays into perinomal territory.

Though we only stand at the beginning of what looks like an open-ended exploration, we can already rely on two firm facts to guide the search: one is the perinomal nature of the multiresidues 'hidden' in the constituent parts of $Z a g^{\bullet} / Z i g^{\bullet}$; the other is the existence, attached to each integer sequence $\boldsymbol{r}:=\left(r_{1}, \ldots, r_{l}\right)$, of a specific linear representation of $S_{l}(\mathbb{Z})$.

[^75]
10.5 Looking ahead: what is within reach and what beckons from afar.

- Arithmetical and analytic properties of $\operatorname{lama} a^{\bullet} / l a m i \bullet$.

Of all three 'co-canonical' pairs, this is the simplest, arithmetically speaking. As power series of \boldsymbol{u} or \boldsymbol{v}, these bimoulds carry Taylor coefficients that have, globally, the smallest possible denominators. But the series themselves are divergent-resurgent - with a resurgence pattern that is still poorly understood. ${ }^{145}$

- Arithmetical and analytic properties of loma•/lomi ${ }^{\bullet}$.

Arithmetically, this second pair is less simple (the Taylor coefficients have slightly larger denominators) but the associated power series are convergent, with a finite multiradius of convergence. At the moment, however, it is unclear whether the corresponding functions admit endless analytic continuation and, if so, what the exact nature of their isolated singularities might be.

- Arithmetical and analytic properties of luma•/lumi ${ }^{\bullet}$.

This last pair, being defined by semi-convergent series of multipoles, has a completely transparent meromorphic structure. The difficulty, here, is with the arithmetics of the Taylor coefficients: up to length $r=4$, they are all rational, but (for $3 \leq r \leq 4$) with very irregular denominators. ${ }^{146}$ Beyond that (for $5 \geq r$), it is not even known whether the coefficients are rational. ${ }^{147}$

Needless to say, analogous questions arise for the three parallel pairs rama ${ }^{\bullet} /$ rami $^{\bullet}$, roma ${ }^{\bullet} /$ rom $^{\bullet}$, and ruma ${ }^{\bullet} /$ rumi $^{\bullet}$.

- Perinomal algebra. Ranks of $S l_{r}(\mathbb{Z})$ representations.

As repeatedly noted, to each integer sequence $\boldsymbol{r}:=\left(r_{1}, \ldots, r_{l}\right)$, our approach to multizeta algebra attaches a perinomal function $\boldsymbol{n} \mapsto \operatorname{peri}^{\left({ }_{r}^{n}\right)}$, which in turn induces a linear representation \mathcal{R}_{r} of $S l_{l}(\mathbb{Z})$. The (clearly fast increasing) ranks of these \mathcal{R}_{r} are unknown except in a few special cases, and their structure (e.g. their decomposition into irreducible representations) is equally unknown.

- Links between the four series of perinomal functions.

To each perinomal function carried by peri${ }^{\bullet}$, identities such as (9.58) or (9.59) attach simpler but related perinomal functions, but a clear overall picture is probably still a long way off. For aught we know, the two-layered mould

[^76]per ${ }^{\bullet}$ may turn out to be as complex (though more tidy) than the Mandelbrot set, with algebraic (rather than fractal-geometric) detail "as far as the sight reaches".

- Arithmetical nature of all perinomal numbers.

The \mathbb{Q}-ring PERI of all perinomal numbers (see $\S 8.4$) exceeds the \mathbb{Q}-ring \mathbb{Z} eta of multizetas (even if we allow colour) but the range and structure of the difference remains unexplored.

- The quest for numerical derivations.

Does there exist on $P E R I$ an algebra $D E R I$ of direct numerical derivations, that is to say, of linear operators D verifying:

$$
\begin{array}{rlrl}
D(x . y) & \equiv D x . y+x . D y \quad(\forall x, y \in \operatorname{PERI}, \quad \forall D \in \operatorname{DERI})(10.11) \\
D . \mathbb{Q} & =\{0\}, \quad\{0\} \neq D . \operatorname{PERI} \subset \text { PERI } & & (\forall D \in \operatorname{DERI}(10.12)
\end{array}
$$

The emphasis here is on direct, meaning that the action of D on any $x \in$ PERI ought to be defined in universal terms, i.e. based on a universal expansion (decimal, continued fraction, etc) of x, and not on its mode of construction. This at the moment is little more than a dream, but if it came true, it would give us a key - possibly, the only workable key - to unlock the exact, as opposed to formal, arithmetics ${ }^{148}$ of $P E R I$ and its subring \mathbb{Z} eta. But this is purest terra incognita and, as it said on ancient maps where unchartered territory began, ibi sunt leones...

11 Complements.

11.1 Origin of the flexion structure.

The flexion structure has its origin (ca 1990) in the investigation of parametric resurgence - typically, the sort of resurgence associated with formal expansions in series of a singular perturbation parameter ϵ. ${ }^{149}$ Set $x=\epsilon^{-1}$ (x large, ϵ small) and consider the standard system:

$$
\left(\left(u_{1}+\ldots+u_{r}\right) x+\partial_{z}\right) \mathcal{W}^{\left(\begin{array}{l}
u_{1}, \ldots, u_{r} \tag{11.1}\\
\left.v_{1}, \ldots, v_{r}\right)
\end{array}\right.}(z, x)=\mathcal{W}^{\left(\begin{array}{l}
\left.u_{1}, \ldots, u_{r}, \ldots, u_{r-1}\right) \\
v_{1},
\end{array}\right.}(z, x) \frac{1}{z-v_{r}}
$$

with $\left.\mathcal{W}^{\left({ }_{\theta}\right.}\right)(z, x):=1$ to start the induction.

[^77]We may fix x and expand the solutions as formal power series of z^{-1}. These turn out to be divergent, Borel-summable, and resurgent, with a simple resurgence locus ${ }^{150}$ consisting of the sums of u_{i} indices.

We may also fix z and expand the solutions as formal power series of x^{-1}. These are again divergent, Borel-summable, and resurgent, but with a much more intricate resurgence locus generated (bi-linearly) by the two sets of indices, the u_{i} and v_{i}, under 'flexion operations'.

As functions of z, the $\mathcal{W}^{\left({ }_{v}^{u}\right)}(z, x)$ do not differ significantly ${ }^{151}$ from the standard resurgence monomials $\mathcal{V}^{\boldsymbol{\omega}}(z):=\mathcal{W}^{\left({ }_{0}^{\omega}\right)}(z, 1)$ defined by the induction:

$$
\begin{equation*}
\left(\omega_{1}+\ldots+\omega_{r}+\partial_{z}\right) \mathcal{V}^{\omega_{1}, \ldots, \omega_{r}}(z)=\mathcal{V}^{\omega_{1}, \ldots, \omega_{r-1}}(z) \frac{1}{z} \quad \text { with } \quad \mathcal{V}^{\emptyset}(z):=1 \tag{11.2}
\end{equation*}
$$

As functions of x, on the other hand, the $\mathcal{W}^{\left({ }_{v}^{u}\right)}(z, x)$ can be expressed as linear combinations ${ }^{152}$ of standard resurgence monomials $\mathcal{V}^{\boldsymbol{\omega}}(x)=\mathcal{V}^{\omega_{1}, \ldots, \omega_{r}}(x)$, with indices ω_{j} that depend bilinearly on the indices u_{i} and v_{i} (to which one must add z itself). Formally, the u_{j} 's and v_{j} 's contribute in much the same fashion to the ω_{j} 's, although the natural way of expressing the ω_{j} 's is via sums of (several consecutive) u_{j} 's and differences of (two non-necessarily consecutive) v_{j} 's or of v_{j} 's and z.

As to their origin, however, the u_{j} 's and v_{j} 's could not differ more. In all natural problems, the u_{j} 's depend only on the principal part of the differential equation or system and tend to be generated by a finite number of scalars (such as the system's multipliers, i.e. the eigenvalues of its linear part). There is thus considerable rigidity about the u_{j} 's. With the v_{j} 's, on the other hand, we have complete flexibility: they reflect pre-existing singularities in the (multiplicative) z-plane and can be anything.

11.2 From simple to double symmetries. The scramble transform.

Originally, the scramble transform arose during the search for a systematic expression of the complex \mathcal{W}^{\bullet} of (11.1) in terms of the simpler \mathcal{V}^{\bullet} of (11.2). Our reason for mentioning it here is because the transform in question led:
(i) to the first systematic use of flexions;
(ii) to the first systematic production of double symmetries.

[^78]The scramble is a linear transform on BIMU:

$$
\begin{equation*}
M^{\bullet} \rightarrow S^{\bullet}=\operatorname{scram} . M^{\bullet} \quad \text { with } \quad S^{\boldsymbol{w}}:=\sum_{\boldsymbol{w}^{*}} \epsilon\left(\boldsymbol{w}, \boldsymbol{w}^{*}\right) M^{\boldsymbol{w}^{*}} \tag{11.3}
\end{equation*}
$$

which not only preserves simple symmetries (alternal or symmetral) but, in the case of all-even bimoulds ${ }^{153} M^{\bullet}$, turns simple into double symmetries (alternal into bialternal and symmetral into bisymmetral).

$$
\begin{aligned}
& \text { scramble : } M^{\bullet} \mapsto S^{\bullet} \\
& \text { scramble: } \mathrm{LU}^{\text {al }} \rightarrow \text { ARI }^{\text {al }} \| \mathrm{LU}_{\text {all-even }}^{\text {al }} \rightarrow \mathrm{ARI}^{\text {al/al }} \\
& \text { scramble: MU }{ }^{\text {as }} \rightarrow \text { GARI }^{\text {as }} \| M_{\text {all-even }}^{\text {as }} \rightarrow \text { GARI }{ }^{\text {as }} \text { /as }
\end{aligned}
$$

To define the sums $S^{\boldsymbol{w}}$ in (11.3) we have the choice between a forward and backward induction, quite dissimilar in outward form but equivalent nonetheless. They involve respectively the 'mutilation' operators cut and drop:

$$
\begin{array}{rlll}
\left(\operatorname{cut}_{w_{0}} M\right)^{w_{1}, \ldots, w_{r}} & :=M^{w_{2}, \ldots, w_{r}} & \text { if } w_{0}=w_{1} \\
& :=0 & \text { if } w_{0} \neq w_{1} \\
\left(\operatorname{drop}_{w_{0}} M\right)^{w_{1}, \ldots, w_{r}} & :=M^{w_{1}, \ldots, w_{r-1}} & \text { if } w_{0}=w_{r} \\
& :=0 & \text { if } w_{0} \neq w_{r}
\end{array}
$$

We get each induction started by setting $S^{w_{1}}:=M^{w_{1}}$ and then apply the following rules.

Forward induction rule:

We set $\left(\operatorname{cut}_{w_{0}} . S\right)^{\mathbf{w}}:=0$ unless w_{0} be of the form $\left\lceil w_{i}\right\rceil$ with respect to some sequence factorisation $\mathbf{w}=\mathbf{a} w_{i} \mathbf{b c}$, in which case we set:

$$
\begin{equation*}
\left(\operatorname{cut}_{\left[w_{i}\right\rceil} S\right)^{\mathbf{w}}:=(-1)^{r(\mathbf{b})} \sum_{\mathbf{w}^{\prime} \in \operatorname{sha}(\mathbf{a}\rfloor,\lfloor\tilde{\mathbf{b}}, \mathbf{c})} S^{\mathbf{w}^{\prime}} \quad\left(\text { if } \mathbf{w}=\mathbf{a} w_{i} \mathbf{b c}\right) \tag{11.4}
\end{equation*}
$$

with $\tilde{\boldsymbol{b}}$ denoting the sequence \boldsymbol{b} in reverse order. If M^{\bullet} is symmetral, so is S^{\bullet} (see below). In that important case the forward induction rules assumes the much simpler form :

$$
\begin{equation*}
\left(\operatorname{cut}_{\left[w_{i}\right\rceil} S\right)^{\mathbf{w}}:=S^{\mathbf{a}}(\text { invmu. } S)^{\mathbf{b}} S^{\mathbf{c}} \quad\left(\text { if } \mathbf{w}=\mathbf{a} w_{i} \mathbf{b c}\right) \tag{11.5}
\end{equation*}
$$

Backward induction rule:

[^79]We set $\left(\operatorname{cut}_{w_{0}} . S\right)^{\mathbf{w}}:=0$ unless w_{0} be of the form $\left\lfloor w_{i}\right.$ or $\left.w_{i}\right\rfloor$ with respect to some sequence factorisation $\mathbf{w}=\mathbf{a} w_{i} \mathbf{b}$, in which case we set:

$$
\begin{array}{rlr}
\left(\operatorname{drop}_{\left\lfloor w_{i}\right.} S\right)^{\mathbf{w}}:=-S^{\mathbf{a}\rceil \mathbf{b}} & \left(\text { if } \mathbf{w}=\mathbf{a} w_{i} \mathbf{b}\right) \\
\left(\operatorname{drop}_{\left.w_{i}\right\rfloor} S\right)^{\mathbf{w}} & :=+S^{\mathbf{a}\lceil\mathbf{b}} & \left(\text { if } \mathbf{w}=\mathbf{a} w_{i} \mathbf{b}\right) \tag{11.7}
\end{array}
$$

Remark 1: $m u$ is bilinear whereas gari is heavily non-linear in its second argument. So how can the scramble inject $\mathrm{MU}^{\text {as }}$ into GARI ${ }^{\text {as }}$? The answer is that under the above algebra morphism, the non-linearity of gari gets "absorbed" by the bimoulds' symmetrality. This is easy to check up to length 3 , on the formulas:

$$
\begin{aligned}
& S^{\binom{u 1}{u 1}}=+M^{\binom{u 1}{v 1}} \\
& S^{\left(\begin{array}{l}
\left(u_{1}, u_{2}\right. \\
\left.v_{1}, v_{2}\right)
\end{array}\right.}=+M^{\binom{\left(u_{1}, u_{2}\right.}{v_{1}, v_{2}}}+M^{\binom{\left(u_{12}, u_{1}\right.}{v_{2}, v_{12}}}-M^{\binom{u_{12}, u_{2}}{v_{1}, u_{2}}} \\
& S^{\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}}}=+M^{\left(\begin{array}{c}
u_{1}, u_{2}, u_{3} \\
v_{1}, \\
v_{2}, v_{3}
\end{array}\right)}+M^{\left(\begin{array}{c}
\left(u_{1}, u_{23}, u_{2}\right. \\
v_{1}, v_{3}, \\
v_{2}
\end{array}\right)}-M^{\left(\begin{array}{c}
u_{1}, u_{23}, u_{3} \\
v_{1}, v_{2}, \\
v_{3}: 2
\end{array}\right)} \\
& +M^{\left(\begin{array}{l}
\left(\begin{array}{l}
u_{12} \\
v_{2},
\end{array}, \begin{array}{c}
u_{1}, 2 \\
v_{12}, u_{3} \\
v_{3}
\end{array}\right)
\end{array} M^{\left(\begin{array}{c}
u_{12}, u_{2}, u_{3} \\
v_{1},
\end{array}, v_{2: 1}, v_{3}\right.}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +M^{\left(\begin{array}{c}
u_{123}, u_{23}, u_{3} \\
v_{1}, \\
v_{2: 1}, v_{3: 2}
\end{array}\right)}-M^{\left(\begin{array}{c}
\left(\begin{array}{c}
u_{123}, u_{23}, \\
v_{1} \\
v_{1} \\
v_{3: 1}, u_{2} \\
v_{2}
\end{array}\right)
\end{array} M^{\left(\begin{array}{c}
u_{123}, u_{3}, u_{2} \\
v_{1}, \\
v_{3: 1},
\end{array}\right)} v_{v_{2: 1}}\right)}
\end{aligned}
$$

The number of summands $M^{w^{*}}$ in the expression of $S^{w_{1}, \ldots, w_{r}}$ is exactly $r!!:=1.3 .5 \ldots(2 r-1)$.
Remark 2: Extending the scramble to ordinary moulds.
We must often let the scramble act on moulds M^{\bullet} by first 'lifting' these into bimoulds \underline{M}^{\bullet} according to the rule: $\underline{M}^{\binom{u_{1}, \ldots, \ldots, u_{r}}{v_{1}}}=M^{u_{1} v_{1}+\ldots+u_{r} v_{r}}$. Of course, the scramble of a mould is a bimould - not a mould. Thus, the bimould \mathcal{W}^{\bullet} of (11.1) is essentially the scramble of the mould \mathcal{V}^{\bullet} of (11.2).

11.3 The bialternal tesselation bimould.

Let V^{\bullet} be the classical scalar mould produced under alien derivation from the equally classical resurgent mould $\mathcal{V}^{\bullet}(z)$:

$$
\begin{equation*}
\Delta_{\omega_{0}} \mathcal{V}^{\omega}(z)=\sum_{\omega=\omega^{\prime} \omega^{\prime \prime}}^{\left\|\omega^{\prime}\right\|=\omega_{0}} V^{\omega^{\prime}} \mathcal{V}^{\omega^{\prime \prime}}(z) \tag{11.8}
\end{equation*}
$$

$\mathcal{V}^{\bullet}(z)$ is symmetral; V^{\bullet} is alternal.

If we now apply the scramble transform to the alternal mould $V^{\boldsymbol{\bullet}}$ (see Remark 2 supra about the lift $V^{\bullet} \mapsto \underline{V}^{\bullet}$), we get a bialternal bimould tes•: 154

$$
\begin{equation*}
\operatorname{tes}=\operatorname{scram} . V^{\bullet} \quad \text { with } \quad \operatorname{tes}^{\boldsymbol{w}}:=\sum_{\boldsymbol{w}^{*}} \epsilon\left(\boldsymbol{w}, \boldsymbol{w}^{*}\right) \underline{V}^{\boldsymbol{w}^{*}} \tag{11.9}
\end{equation*}
$$

which (surprisingly) turns out to be piecewise constant in each u_{i} and v_{i}, despite being a sum of hyperlogarithmic summands $\underline{V}^{\boldsymbol{w}^{*}}$. This begs for an alternative, simpler expression of tes ${ }^{\bullet}$. The following induction formula provides such an elementary alternative:

$$
\begin{equation*}
\operatorname{tes}^{\mathbf{w}}=\sum_{0 \leq n \leq r(\mathbf{w})} \operatorname{push}^{n} \sum_{\mathbf{w}^{\prime} \mathbf{w}^{\prime \prime}=\mathbf{w}} \operatorname{sig}^{\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}} \operatorname{tes}^{\mathbf{w}^{*}} \operatorname{tes}^{\mathbf{w}^{* *}} \tag{11.10}
\end{equation*}
$$

The notations are as follows.
We fix $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$ and set $\Re_{\theta}: z \in \mathbb{C} \mapsto \Re\left(e^{i \theta} z\right) \in \mathbb{R}$. Then we define:

$$
\begin{align*}
& f_{\mathbf{w}}^{\mathbf{w}^{\prime}}:=<\mathbf{u}^{\prime}, \mathbf{v}^{\prime}><\mathbf{u}, \mathbf{v}>^{-1} \quad, \quad g_{\mathbf{w}}^{\mathbf{w}^{\prime}}:=<\mathbf{u}^{\prime}, \Re_{\theta} \mathbf{v}^{\prime}><\mathbf{u}, \Re_{\theta} \mathbf{v}>^{-1} \tag{11.11}\\
& f_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}}:=<\mathbf{u}^{\prime \prime}, \mathbf{v}^{\prime \prime}><\mathbf{u}, \mathbf{v}>^{-1} \quad, \quad g_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}}:=\ll \mathbf{u}^{\prime \prime}, \Re_{\theta} \mathbf{v}^{\prime \prime}><\mathbf{u}, \Re_{\theta} \mathbf{v}>^{-1} \tag{11.12}
\end{align*}
$$

From these scalars we construct the crucial sign factor sig which takes its values in $\{-1,0,1\}$. Here, the abbreviation si(.) stands for $\operatorname{sign}(\Im()$.$) .$

$$
\begin{align*}
\operatorname{sig}^{\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}}=\operatorname{sig}_{\theta}^{\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}}:=\frac{1}{8} & \left(\operatorname{si}\left(f_{\mathbf{w}}^{\mathbf{w}^{\prime}}-f_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}}\right)-\operatorname{si}\left(g_{\mathbf{w}}^{\mathbf{w}^{\prime}}-g_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}}\right)\right) \times \\
& \left(1+\operatorname{si}\left(f_{\mathbf{w}}^{\mathbf{w}^{\prime}} / g_{\mathbf{w}}^{\mathbf{w}^{\prime}}\right) \operatorname{si}\left(f_{\mathbf{w}}^{\mathbf{w}^{\prime}}-g_{\mathbf{w}}^{\mathbf{w}^{\prime}}\right)\right) \times \\
& \left(1+\operatorname{si}\left(f_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}} / g_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}}\right) \operatorname{si}\left(f_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}}-g_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}}\right)\right) \tag{11.13}
\end{align*}
$$

Lastly, the pair $\left(\mathbf{w}^{*}, \mathbf{w}^{* *}\right)$ is constructed from the pair ($\left.\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)$ according to:

$$
\begin{aligned}
& \mathbf{u}^{*}\left.:=\mathbf{u}^{\prime} \quad, \quad \mathbf{v}^{*}:=\mathbf{v}^{\prime}<\mathbf{u}, \mathbf{v}>^{-1} \Im g_{\mathbf{w}}^{\mathbf{w}^{\prime}}-\Re_{\theta} \mathbf{v}^{\prime}<\mathbf{u}, \Re_{\theta} \mathbf{v}>^{-1} \Im g_{\mathbf{w}}^{\mathbf{w}^{\prime} \prime} 11.14\right) \\
&\left.\mathbf{u}^{* *}:=\mathbf{u}^{\prime \prime} \quad, \quad \mathbf{v}^{* *}:=\mathbf{v}^{\prime \prime}<\mathbf{u}, \mathbf{v}>^{-1} \Im g_{\mathbf{w}}^{\mathbf{w}^{\prime \prime}}-\Re_{\theta} \mathbf{v}^{\prime \prime}<\mathbf{u}, \Re_{\theta} \mathbf{v}>^{-1} \Im g_{\mathbf{w}}^{\mathbf{w}^{\prime \prime} 1} 1.15\right)
\end{aligned}
$$

Remark 1: The above induction for tes ${ }^{\bullet}$ is elementary in the sense of being non-transcendental: it depends only on the sign function. But on the face of it, it looks non-intrinsical. Indeed, the partial sum:

$$
\begin{equation*}
\operatorname{urtes}_{\theta}^{\mathbf{w}}:=\sum_{\mathbf{w}^{\prime} \mathbf{w}^{\prime \prime}=\mathbf{w}} \operatorname{sig}^{\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}} \operatorname{tes}^{\mathbf{w}^{*}} \operatorname{tes}^{\mathbf{w}^{* *}}=\sum_{\mathbf{w}^{\prime} \mathbf{w}^{\prime \prime}=\mathbf{w}} \operatorname{sig}_{\theta}^{\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}} \operatorname{tes}^{\mathbf{w}_{\theta}^{*}} \operatorname{tes}^{\mathbf{w}_{\theta}^{* *}} \tag{11.16}
\end{equation*}
$$

[^80]is polarised, i.e. θ-dependent. However, its push-invariant offshoot:
\[

$$
\begin{equation*}
\text { tes }:=\sum_{0 \leq n \leq r(\mathbf{w})} \text { push }^{n} \operatorname{urtes}_{\theta}^{\bullet} \tag{11.17}
\end{equation*}
$$

\]

is duly unpolarised. We might of course remove the polarisation in urtes ${ }_{\theta}^{\bullet}$ itself by replacing it by this isotropic variant:

$$
\begin{equation*}
\operatorname{urtes}_{\text {iso }}^{\bullet}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{urtes}_{\theta}^{\bullet} d \theta \tag{11.18}
\end{equation*}
$$

but at the cost of rendering it less elementary, since urtes ${ }_{\text {iso }}$ would assume its value in \mathbb{R} rather than $\{-1,0,1\}$. It would also depend hyperlogarithmically on its indices, and thus take us back to something rather like formula (11.9), which we wanted to get away from. So the alternative for tes ${ }^{\bullet}$ is: either an intrinsical but heavily transcendental expression or an elementary but heavily polarised one!
Remark 2: In the induction (11.10) we might exchange everywhere the role of \boldsymbol{u} and \boldsymbol{v} and still get the correct answer tes ${ }^{\bullet}$, but via a different polarised intermediary urtes $_{\boldsymbol{\theta}}^{\bullet}$. The natural setting for studying tes ${ }^{\bullet}$ is the biprojective space $\mathbb{P}^{r, r}$ equal to $\mathbb{C}^{2 r}$ quotiented by the relation $\left\{\boldsymbol{w}^{1} \sim \boldsymbol{w}^{2}\right\} \Leftrightarrow\left\{\boldsymbol{u}^{1}=\right.$ $\left.\lambda \boldsymbol{u}^{2}, \boldsymbol{v}^{1}=\mu \boldsymbol{v}^{2}\left(\lambda, \mu \in \mathbb{C}^{*}\right)\right\}$. But rather than using biprojectivity to get rid of two coordinates $\left(u_{i}, v_{i}\right)$, it is often useful, on the contrary, to resort to the augmented or long notation, by adding two redundant coordinates $\left(u_{0}, v_{0}\right)$. The long coordinates $\left(u_{i}^{*}, v_{i}^{*}\right)$ relate to the short ones $\left(u_{i}, v_{i}\right)$ under the rules:

$$
\begin{equation*}
u_{i}=u_{i}^{*} \quad, \quad v_{i}=v_{i}^{*}-v_{0}^{*} \quad(1 \leq i \leq r) \tag{11.19}
\end{equation*}
$$

The long u_{i}^{*} are constrained by $u_{0}^{*}+\cdots+u_{r}^{*}=0$ while the long v_{i}^{*} are, dually, regarded as defined up to a common additive constant. Thus we have $\left\langle u^{*}, v^{*}\right\rangle=\langle u, v\rangle$. The indices i of the long coordinates are viewed as elements of $\mathbb{Z}_{r+1}=\mathbb{Z} /(r+1) \mathbb{Z}$ with the natural circular ordering on triplets $\operatorname{circ}\left(i_{1}<\right.$ $i_{2}<i_{3}$) that goes with it. Lastly, we require $r^{2}-1$ basic "homographies" $H_{i, j}$ on $\mathbb{P}^{r, r}$, defined by:

$$
\begin{align*}
H_{i, j}(\mathbf{w}) & :=Q_{i, j}(\mathbf{w}) / Q_{i, j}^{*}(\mathbf{w}) \quad\left(i-j \neq 0 ; i, j \in \mathbb{Z}_{r+1}\right) \tag{11.20}\\
Q_{i, j}(\mathbf{w}) & :=\sum_{\operatorname{circ}(j \leq q<i)} u_{q}^{*}\left(v_{q}^{*}-v_{j}^{*}\right) \tag{11.21}\\
Q_{i, j}^{*}(\mathbf{w}) & :=\sum_{\operatorname{circ}(i \leq q<j)} u_{q}^{*}\left(v_{q}^{*}-v_{j}^{*}\right) \neq Q_{j, i}(\mathbf{w}) \tag{11.22}
\end{align*}
$$

Main properties of tes ${ }^{\bullet}$.
$\boldsymbol{P}_{\mathbf{1}}$: the bimould tes ${ }^{\bullet}$ is bialternal, i.e. alternal and of alternal swappee.
$\boldsymbol{P}_{\mathbf{2}}$: in fact swap tes ${ }^{\bullet}=$ tes ${ }^{\bullet}$.
$\boldsymbol{P}_{\mathbf{3}}$: tes ${ }^{\bullet}$ is push-invariant.
$\boldsymbol{P}_{\mathbf{4}}$: tes ${ }^{\bullet}$ is pus-variant, i.e. of zero pus-average.
\boldsymbol{P}_{5} : tes ${ }^{\bullet}$ assumes the sole values $-1,0,1$.
$\boldsymbol{P}_{\mathbf{6}}$: for r fixed but large, the sets $S_{ \pm} \subset \mathbb{P}^{r, r}$ where tes ${ }^{\mathbf{w}}$ is ± 1, have positive but incredibly small Lebesgue measure.
$\boldsymbol{P}_{\boldsymbol{7}}$: for r fixed, all three sets S_{-}, S_{0}, S_{+}are path-connected.
$\boldsymbol{P}_{\mathbf{8}}$: for r fixed, the hypersurfaces $\Im\left(H_{i, j}(\mathbf{w})\right)=0$ limit ${ }^{155}$ but do not separate ${ }^{156}$ the sets S_{-}, S_{0}, S_{+}.
$\boldsymbol{P}_{\mathbf{9}}: t e s{ }^{\mathbf{w}}=0$ whenever \mathbf{w} is semi-real, i.e. whenever one of its two components \mathbf{u} or \mathbf{v} is real. ${ }^{157}$

11.4 Polar, trigonometric, bitrigonometric symmetries.

The trigonometric symmetries $i i l$ and uul coincide modulo c with the polar symmetries $i l$ and ul, but their exact expression is much more complex. So let us first restate the polar symmetries in terms that lend themselves to the extension to the trigonometric case.

Polar symmetries: symmetril/alternil.

A bimould M^{\bullet} is symmetril (resp. alternil) iff for all pairs $\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime} \neq \emptyset$ the identity holds:

$$
\begin{equation*}
\sum_{\mathbf{w} \in \operatorname{shi}\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)} M^{\mathbf{w}} \prod_{1 \leq k \leq r(\mathbf{w})} \mathrm{li}^{w_{k}} \equiv M^{\mathbf{w}^{\prime}} M^{\mathrm{w}^{\prime \prime}} \quad(\text { resp. } \equiv 0) \tag{11.23}
\end{equation*}
$$

with a sum ranging over all sequences \mathbf{w} that are order-compatible with $\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)$ and whose indices w_{k} are of the form:
(i) either w_{i}^{\prime} or $w_{j}^{\prime \prime}$, in which case $\mathrm{li}^{w_{k}}:=1$
(ii) or $\binom{u_{i}^{\prime}+u_{j}^{\prime \prime}}{v_{i}^{\prime}}$, in which case $\mathrm{li}^{w_{k}}:=-P\left(v_{j}^{\prime \prime}-v_{i}^{\prime}\right)$
(iii) or $\binom{u_{i}^{\prime}+u_{j}^{\prime \prime}}{v_{j}^{\prime \prime}}$, in which case $\mathrm{li}^{w_{k}}:=-P\left(v_{i}^{\prime}-v_{j}^{\prime \prime}\right)$

Polar symmetries: symmetrul/alternul.
A bimould M^{\bullet} is symmetrul (resp. alternul) iff for all pairs $\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime} \neq \emptyset$ the

[^81]identity holds:
\[

$$
\begin{equation*}
\sum_{\mathbf{w} \in \operatorname{shu}\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)} M^{\mathbf{w}} \prod_{1 \leq k \leq r(\mathbf{w})} l^{w_{k}} \equiv M^{\mathbf{w}^{\prime}} M^{\mathbf{w}^{\prime \prime}} \quad(r e s p . \equiv 0) \tag{11.24}
\end{equation*}
$$

\]

with a sum ranging over all sequences \mathbf{w} that are order-compatible with $\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)$ and whose indices w_{k} are of the form
(i) either w_{i}^{\prime} or $w_{j}^{\prime \prime}$, in which case $\mathrm{lu}^{w_{k}}:=1$
(ii) or $\binom{u_{i}^{\prime}+u_{j}^{\prime \prime}}{v_{i}^{\prime}}$, in which case $\mathrm{lu}^{w_{k}}:=-P\left(u_{j}^{\prime \prime}\right)$
(iii) or $\binom{u_{i}^{\prime}+u_{j}^{\prime \prime}}{v_{j}^{\prime \prime}}$, in which case $l u^{w_{k}}:=-P\left(u_{i}^{\prime}\right)$

Trigonometric symmetries: auxiliary functions.

To handle the trigonometric case, we require four series of rational coefficients:
$\left.{ }^{*}\right)^{*} x i_{p, q}, z i i_{p, q}, x u u_{p, q}, z u u_{p, q}$
which are best defined as Taylor coefficients of the following functions:
${ }^{(* *)} \operatorname{Xii}(x, y), \operatorname{Zii}(x, y), X u u(x, y), Z u u(x, y)$.
Here are the definitions:

$$
\begin{gather*}
Q(t):=\frac{1}{\tan (t)} \| \quad R(t):=\frac{1}{\arctan (t)} \tag{11.25}\\
\mathrm{Xii}(x, y):=\frac{x^{-1}+y^{-1}}{Q(x)+Q(y)} \| \operatorname{Xuu}(x, y):=\frac{x^{-1}+y^{-1}}{R(x)+R(y)} \tag{11.26}\\
\operatorname{Zii}(x, y):=\frac{x^{-1} Q(x)-y^{-1} Q(y)}{Q(x)+Q(y)} \| \operatorname{Zuu}(x, y):=\frac{x^{-1} R(x)-y^{-1} R(y)}{R(x)+R(y)}
\end{gather*}
$$

Thus:

$$
\begin{aligned}
\operatorname{Xii}(x, y)= & 1+\frac{1}{3} x y+\frac{1}{45} y^{3}+\frac{4}{45} x^{2} y^{2}+\frac{1}{45} x^{3} y \\
& +\frac{2}{945} x y^{5}+\frac{4}{315} x^{2} y^{4}+\frac{23}{945} x^{3} y^{3}+\frac{4}{315} x^{4} y^{2}+\frac{2}{945} x^{5} y+\ldots \\
\operatorname{Xuu}(x, y)= & 1-\frac{1}{3} x y+\frac{4}{45} x y^{3}+\frac{1}{45} x^{2} y^{2}+\frac{4}{45} x^{3} y \\
& -\frac{44}{945} x y^{5}-\frac{4}{315} x^{2} y^{4}-\frac{23}{945} x^{3} y^{3}-\frac{4}{315} x^{4} y^{2}-\frac{44}{945} x^{5} y+\ldots
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Zii}(x, y)= & x^{-1}-y^{-1}-\frac{1}{3} x+\frac{1}{3} y-\frac{1}{45} x^{3}-\frac{4}{45} x^{2} y+\frac{4}{45} x y^{2}+\frac{1}{45} y^{3} \\
& -\frac{2}{945} x^{5}-\frac{4}{315} x^{4} y-\frac{16}{945} x^{3} y^{2}+\frac{16}{945} x^{2} y^{3}+\frac{4}{315} x y^{4}+\frac{2}{945} y^{5}+\ldots \\
\operatorname{Zuu}(x, y)= & x^{-1}-y^{-1}+\frac{1}{3} x-\frac{1}{3} y-\frac{4}{45} x^{3}-\frac{1}{45} x^{2} y+\frac{1}{45} x y^{2}+\frac{4}{45} y^{3} \\
& +\frac{44}{945} x^{5}+\frac{4}{315} x^{4} y-\frac{1}{189} x^{3} y^{2}+\frac{1}{189} x^{2} y^{3}-\frac{4}{315} x y^{4}-\frac{44}{945} y^{5}+\ldots
\end{aligned}
$$

Trigonometric symmetries: symmetriil/alterniil.

A bimould M^{\bullet} is symmetriil (resp. alterniil) iff for all pairs $\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime} \neq \emptyset$ the identity holds:

$$
\begin{equation*}
\sum_{\mathbf{w} \in \operatorname{shii}\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)} M^{\mathbf{w}} \prod_{1 \leq k \leq r(\mathbf{w})} \operatorname{lii}^{w_{k}} \equiv M^{\mathbf{w}^{\prime}} M^{\mathbf{w}^{\prime \prime}} \quad(\text { resp } . \equiv 0) \tag{11.28}
\end{equation*}
$$

with a sum ranging over all sequences \mathbf{w} that are order-compatible with $\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)$ and whose indices w_{k} are of the form
(i) either w_{i}^{\prime} or $w_{j}^{\prime \prime}$, in which case $\operatorname{lii}^{w_{k}}:=1$
(ii) or $\left(u_{i}^{\prime}+\ldots u_{i+p}^{\prime}+u_{j}^{\prime \prime}+\ldots u_{j+q}^{\prime \prime}\right)$ with $p, q \geq 0$, in which case

$$
\begin{equation*}
\operatorname{lii}^{w_{k}}:=-c^{p+q} \operatorname{xii}_{p, q} Q_{c}\left(v_{j}^{\prime \prime}-v_{i}^{\prime}\right)-c^{p+q+1} \mathrm{zii}_{p, q} \tag{11.29}
\end{equation*}
$$

(iii) or ($\left.\begin{array}{c}u_{i}^{\prime}+\ldots u_{i+p}^{\prime}+u_{j}^{\prime \prime}+\ldots u_{j+q}^{\prime \prime}\end{array}\right)$ with $p, q \geq 0$, in which case

$$
\begin{equation*}
\operatorname{lii}^{w_{k}}:=+c^{p+q} \operatorname{xii}_{p, q} Q_{c}\left(v_{i}^{\prime}-v_{j}^{\prime \prime}\right)+c^{p+q+1} \mathrm{zii}_{p, q} \tag{11.30}
\end{equation*}
$$

Trigonometric symmetries: symmetruul/alternuul.

A bimould M^{\bullet} is symmetruul (resp. alternuul) iff for all pairs $\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime} \neq \emptyset$ the identity holds:

$$
\begin{equation*}
\sum_{\mathbf{w} \in \operatorname{shuu}\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)} M^{\mathbf{w}} \prod_{1 \leq k \leq r(\mathbf{w})} \operatorname{luu}^{w_{k}} \equiv M^{\mathbf{w}^{\prime}} M^{\mathbf{w}^{\prime \prime}} \quad(\text { resp } . \equiv 0) \tag{11.31}
\end{equation*}
$$

with a sum ranging over all sequences \mathbf{w} that are order-compatible with $\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)$ and whose indices w_{k} are of the form
(i) either w_{i}^{\prime} or $w_{j}^{\prime \prime}$, in which case $\quad \operatorname{luu}^{w_{k}}:=1$
(ii) or $\binom{u_{i}^{\prime}+u_{j}^{\prime \prime}}{v_{i}^{\prime}}$, in which case luu ${ }^{w_{k}}:=-Q_{c}\left(u_{j}^{\prime \prime}\right)$
(iii) or $\binom{u_{i}^{\prime}+u_{j}^{\prime \prime}}{v_{j}^{\prime \prime}}$, in which case luu ${ }^{w_{k}}:=-Q_{c}\left(u_{i}^{\prime}\right)$
(iv) or ($\binom{u_{i}^{\prime}+\ldots u_{i+p}^{\prime}+u_{j}^{\prime \prime}+\ldots u_{j+q}^{\prime \prime}}{v_{i}^{\prime}}$ with $p, q \geq 0$ and $p+q \geq 1$, in which case

$$
\operatorname{luu}^{w_{k}}:=-\sum_{\substack{0 \leq p_{1} \leq p \\ 0 \leq q_{1} \leq q}} c^{p+q+1} \operatorname{zuu}_{p_{1}, q_{1}} \operatorname{Sym}_{p-p_{1}}\left(\bigcup_{i<s<i+p} Q_{c}\left(u_{s}^{\prime}\right)\right) \operatorname{Sym}_{q-q_{1}}\left(\bigcup_{j<s<j+q} Q_{c}\left(u_{s}^{\prime \prime}\right)\right)
$$

(v) or $\binom{u_{i}^{\prime}+\ldots u_{i+p}^{\prime}+u_{j}^{\prime \prime}+\ldots u_{j+q}^{\prime \prime}}{v_{j}^{\prime \prime}}$ with $p, q \geq 0$ and $p+q \geq 1$, in which case

$$
\operatorname{luu}^{w_{k}}:=+\sum_{\substack{0 \leq p_{1} \leq p \\ 0 \leq q_{1} \leq q}} c^{p+q+1} \operatorname{zuu}_{p_{1}, q_{1}} \operatorname{Sym}_{p-p_{1}}\left(\bigcup_{i<s<i+p} Q_{c}\left(u_{s}^{\prime}\right)\right) \operatorname{Sym}_{q-q_{1}}\left(\bigcup_{j<s<j+q} Q_{c}\left(u_{s}^{\prime \prime}\right)\right)
$$

with $\operatorname{Sym}_{s}\left(x_{1}, \ldots, x_{r}\right)$ standing for the s-th symmetric function of the x_{i} :

$$
\begin{equation*}
\operatorname{Sym}_{s}\left(x_{1}, \ldots, x_{r}\right):=\sum_{1 \leq i_{1}<\cdots<i_{s} \leq r} x_{i_{1}} \ldots x_{i_{s}} \tag{11.32}
\end{equation*}
$$

However, to get the formula for $l u u^{w_{k}}$ right, we must observe the following convention:

$$
\begin{array}{lc}
\operatorname{Sym}_{0}\left(x_{1}, \ldots, x_{r}\right):=1 & (\text { even if } r=0) \\
\operatorname{Sym}_{s}\left(x_{1}, \ldots, x_{r}\right) & :=0 \text { if } 1 \leq r<s
\end{array} \quad\left(\text { but } \operatorname{Sym}_{0}(\emptyset):=1\right) ~ l
$$

We may also note the complete absence, from the expression of $l u u^{w_{k}}$, of the four extreme terms $Q_{c}\left(u_{i}^{\prime}\right), Q_{c}\left(u_{i+p}^{\prime}\right), Q_{c}\left(u_{j}^{\prime \prime}\right), Q_{c}\left(u_{j+q}^{\prime \prime}\right)$.

Dimorphic transport.

As in the polar case, the adjoint action of the bisymmetrals $t a l_{c}^{\bullet}$ and $t i l_{c}^{\bullet}$ exchanges double symmetries, but without respecting entireness.

GARI ${ }^{\text {as/ } / \text { as }}$	$\xrightarrow{\text { adgari (tala }}{ }_{\text {c }}$)	GARI ${ }^{\text {as/ } / \text { is }}$
logari $\downarrow \uparrow$ expari		logari $\downarrow \uparrow$ expari
ARI ${ }^{\text {al/al }}$	$\xrightarrow{\text { adari }\left(\text { tal }^{*}\right)}$	ARI ${ }^{\text {al/ } / \text { iil }}$
GARI ${ }^{\text {as/ } / \text { as }}$	$\xrightarrow{\text { adgari (tile }}{ }^{\text {c }}$)	GARI ${ }^{\text {as/uus }}$
logari $\downarrow \uparrow$ expari		logari $\downarrow \uparrow$ expari
ARI ${ }^{\text {al/al }}$	$\xrightarrow{\text { adari(tili }}{ }_{\text {c }}$)	ARI $\underline{I}^{\text {al/uul }}$

Bitrigonometric symmetries.

As usual, the trigonometric case fully determines the bitrigonmetric extension.

Symmetries associated with other approximate units \mathfrak{E}^{\bullet}.

\mathfrak{E}^{\bullet} of course replaces Q_{c} in the expressions of $l i i^{w_{k}}$ and $l u u^{w_{k}}$ but the structure coefficients $x i i_{p, q}, z i i_{p, q}, x u u_{p, q}, z u u_{p, q}$ do not change, and must still be calculated from Q and the related R (see (11.25)) even in the case of the flat approximate units $S a^{\bullet}$ or $S i^{\bullet}$ of (3.25).
Remark 1. While bimoulds polynomial or entire in the u_{i} and v_{i} variables may be alternil or symmetril or alterniil or symmetriil, they can never be alternul nor symmetrul nor alternuul nor symmetruul.

Remark 2. Of course, just as with the straight symmetries (see §2.4), when expressing the new, twisted symmetries, one should take care to allow only sequences \mathbf{w} that are order-compatible with \mathbf{w}^{\prime} and $\mathbf{w}^{\prime \prime}$, i.e. that never carry pairs $u_{i}^{\prime}, v_{i}^{\prime}$ or $u_{j}^{\prime \prime}, v_{j}^{\prime \prime}$ (whether in isolation or within sums or differences) in an order that clashes with their relative position within the parent sequences w^{\prime} or $\mathrm{w}^{\prime \prime}$.

11.5 The separative algebras $\operatorname{Inter}\left(Q i_{c}\right)$ and $\operatorname{Exter}\left(Q i_{c}\right)$.

Introduction.

The subalgebra Exter $\left(Q i_{c}\right)$ of Flex $\left(Q i_{c}\right)$ is the trigonometric equivalent of the polar subalgebra $A R I_{<p i>}$ of Flex(Pi) which itself is but the specialisation, for $\mathfrak{E}=P i$, of the subalgebra $A R I_{<\mathfrak{r}>}$ of $F l e x(\mathfrak{E})$ which was investigated in $\S 3.6$. Both $\operatorname{Exter}\left(Q i_{c}\right)$ and $A R I_{<p i>}$ consist of \boldsymbol{u}-constant, \boldsymbol{v}-dependent, alternal bimoulds, and both are indispensable to an in-depth understanding of the fundamental bialternals $p i l^{\bullet}$ and $t i l_{c}^{\bullet}$ since they house their ari-logarithms logari.pil ${ }^{\boldsymbol{\bullet}}$ and logari.til $\boldsymbol{c}_{c}^{\bullet}$ as well as the corresponding infinitesimal dilators.

However, due to $P i^{\bullet}$ being an exact flexion unit, the algebra $A R I_{<p i>}$ has a very simple structure: it is spanned by the bimoulds $p i_{r}^{\bullet}(1 \leq r)$, which self-reproduce under the ari-bracket: $\operatorname{ari}\left(p \dot{\bullet}_{r_{1}}^{\bullet}, p i_{r_{2}}^{\bullet}\right) \equiv\left(r_{1}-r_{2}\right) p i_{r_{1}+r_{2}}^{\bullet}$.

Its trigonometric counterpart $\operatorname{Exter}\left(Q i_{c}\right)$, on the other hand, is vaster and much more complex: it does indeed contain a series of bimoulds $q i_{r}^{\bullet}$ defined in the same way as the $p i_{r}^{\boldsymbol{\bullet}}$ or the $\mathfrak{r e}{ }_{r}^{\boldsymbol{\bullet}}$ of (4.5), but these $q i_{r}^{\boldsymbol{\bullet}}$ no longer self-reproduce under the ari-bracket: they do so only modulo c^{2}.

Nonetheless, the structure of $\operatorname{Exter}\left(Q i_{c}\right)$ is highly interesting, and can be exhaustively described by decomposing $\operatorname{Exter}\left(Q i_{c}\right)$ into a direct sum of subspaces \mathfrak{g}^{n}.Inter $\left(Q i_{c}\right)(0 \leq n)$ which are all derived from a subalgebra $\operatorname{Inter}\left(Q i_{c}\right) \subset \operatorname{Exter}\left(Q i_{c}\right)$ consisting of all alternals in Flex $\left(Q i_{c}\right)$ that depend only on the differences $v_{i}-v_{j} .{ }^{158}$ The algebra $\operatorname{Inter}\left(Q i_{c}\right)$ and its elements shall be called internal, whereas elements of $\operatorname{Exter}\left(Q i_{c}\right)-\operatorname{Inter}\left(Q i_{c}\right)$ shall be called external. The internal algebra is quite elementary: on it, most flexion

[^82]operations reduce to non-inflected operations. Thus, the ari-bracket of two internals coincides (up to a sign change) with their lu-bracket.

The external and internal algebras are also called separative, since under the action of the operator separ, which is to $A R I$ what the operator gepar of §4.1. was to GARI:

$$
\begin{align*}
& \text { separ. } M^{\bullet}:=\operatorname{anti} . \text { swap. } M^{\bullet}+\text { swap. } M^{\bullet} \tag{11.33}\\
& \text { gepar. } M^{\bullet}:=\operatorname{mu}\left(\text { anti.swap. } M^{\bullet} \text {, swap. } M^{\bullet}\right) \tag{11.34}
\end{align*}
$$

their bimoulds experience a separation of their variables ${ }^{159}$ and assume the elementary form:

$$
\left\{M^{\bullet} \in \operatorname{Exter}\left(\mathrm{Qi}_{\mathrm{c}}\right)\right\} \Rightarrow\left\{(\text { separ. } M)^{w_{1}, \ldots, w_{r}} \in \mathbb{C}\left[c^{2}, Q_{c}\left(u_{1}\right), \ldots, Q_{c}\left(u_{r}\right)\right]\right\}
$$

Remark: strictly speaking, elements of Flex $\left(Q i_{c}\right)$ can involve only even powers of c, but it is convenient to enlarge $\operatorname{Exter}\left(Q i_{c}\right)$ and $\operatorname{Inter}\left(Q i_{c}\right)$ with odd powers of c, so as to make room for the bimoulds $q i n_{r}^{\bullet}$ and the operators \mathfrak{h}_{n} (defined infra). Ultimately, however, we shall end up with structure formulas where these $q i n_{r}^{\bullet}$ and \mathfrak{h}_{n} appear only in pairs, thus ensuring that there is no violation of c-parity.

The external $q i_{r}^{\bullet}$ and the internal $q i n_{r}^{\bullet}$.

They are the first ingredients of the 'separative' structure. These alternal bimoulds of $B I M U_{r}$ are defined by the induction:

$$
\begin{array}{llll}
\mathrm{qi}_{1}^{w_{1}}:=\mathrm{Qi}_{c}^{w_{1}}=Q_{c}\left(v_{1}\right)=\frac{c}{\tan (c v 1)} & \| & \mathrm{qi}_{r}^{\bullet} & :=\operatorname{arit}\left(\mathrm{qi}_{\mathrm{r}-1}^{\bullet}\right) . \mathrm{qi}_{1}^{\bullet} \\
\mathrm{qin}_{1}^{\boldsymbol{w}_{1}}:=c & \| \mathrm{qin}_{r}^{\bullet}:=\operatorname{ari}\left(\mathrm{qin}_{1}^{\mathbf{0}}, \mathrm{qi}_{\mathrm{r}-1}^{\bullet}\right) & \forall(r \geq 2) \\
\end{array}
$$

The auxiliary mould $h a r^{\bullet}$.

Our second ingredient is a scalar mould whose only non-vanishing components have odd length. Here again, the definition is by induction:

$$
\begin{array}{rlrl}
\operatorname{har}^{n_{1}, \ldots, n_{r}} & :=0 & \forall r \text { even } \geq \text { Q11.35) } \\
\operatorname{har}^{n_{1}} & :=\frac{1}{n_{1}} \\
\operatorname{har}^{n_{1}, \ldots, n_{r}} & :=\frac{1}{n_{1}+\ldots+n_{r}} \sum_{1<i<r} \operatorname{har}^{n_{1}, \ldots, n_{i-1}} \operatorname{har}^{n_{i+1}, \ldots, n_{r}} & \forall r \text { odd } \geq 3(11.37)
\end{array}
$$

Thus:

$$
\begin{align*}
\operatorname{har}^{n_{1}, n_{2}, n_{3}} & =\frac{1}{n_{1} n_{3} n_{123}} \tag{11.38}\\
\operatorname{har}^{n_{1}, n_{2}, n_{3}, n_{4}, n_{5}} & =\frac{1}{n_{1} n_{3} n_{5} n_{12345}}\left(\frac{1}{n_{123}}+\frac{1}{n_{345}}\right) \tag{11.39}
\end{align*}
$$

[^83]The operators $\mathfrak{g}^{n}, \mathfrak{h}_{n}$.
These linear operators of $B I M U_{r}$ into $B I M U_{r+n}$ are our third ingredient. The first are mere powers of a single operator \mathfrak{g} defined by:

$$
\begin{equation*}
\mathfrak{g}: \mathcal{A}^{\bullet} \rightarrow \mathcal{B}^{\bullet}:=\operatorname{arit}\left(\mathcal{A}^{\bullet}\right) \mathrm{qi} \mathbf{i}_{i}=\operatorname{arit}\left(\mathcal{A}^{\bullet}\right) \mathrm{Qi}_{\mathrm{c}}^{\mathbf{i}^{\bullet}} \tag{11.40}
\end{equation*}
$$

which, since $Q i_{c}^{\bullet} \in B I M U_{1}$, may be rewritten as:

$$
\begin{equation*}
\left.\mathcal{B}^{\left(u_{1}, \ldots, u_{r}\right)} v_{v_{1}}, \ldots, v_{r}\right)=\mathcal{A}^{\left(u_{1: r}, \ldots, v_{r-1: r}, u_{r-1}\right)} Q_{c}\left(v_{r}\right)-\mathcal{A}^{\left(u_{2}, \ldots, u_{2}, \ldots, v_{r: 1}\right)} Q_{c}\left(v_{1}\right) \tag{11.41}
\end{equation*}
$$

The operators \mathfrak{h}_{n}, on the other hand, must be defined singly:

$$
\begin{equation*}
\mathfrak{h}_{n} A^{\bullet}:=\sum_{1 \leq s} \sum_{\substack{1 \leq n_{i} \\ n_{1}+\ldots n_{s}=n}} \operatorname{har}^{n_{1}, \ldots, n_{r}}\left[\operatorname{qin}_{n_{1}}^{\bullet}\left[\operatorname{qin}_{n_{2}}^{\bullet} \ldots\left[\operatorname{qin}_{n_{s}}^{\bullet}, A\right] . . .\right]\right]_{\mathrm{lu}} \tag{11.42}
\end{equation*}
$$

Due to the imparity of har ${ }^{\bullet}$, the \mathfrak{h}_{n} too are strictly odd in c.

The operators of \mathfrak{G} and \mathfrak{H}.

If we set:

$$
\begin{equation*}
\mathfrak{G}:=\mathrm{id}+\sum_{1 \leq n} \mathfrak{g}^{n} \quad ; \quad \mathfrak{H}:=+\sum_{1 \leq n} \mathfrak{h}_{n} \tag{11.43}
\end{equation*}
$$

the operators of \mathfrak{G} and \mathfrak{H} so defined verify the identities:

$$
\begin{aligned}
\mathfrak{G} \operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) & \equiv \operatorname{mu}\left(\mathfrak{G} A^{\bullet}, \mathfrak{G} B^{\bullet}\right)+\mathfrak{G} \operatorname{mu}\left(\mathfrak{H} A^{\bullet}, \mathfrak{H} B^{\bullet}\right) \\
\mathfrak{H} \operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) & \equiv \operatorname{mu}\left(\mathfrak{H} A^{\bullet}, B^{\bullet}\right)+\operatorname{mu}\left(A^{\bullet}, \mathfrak{H} B^{\bullet}\right)+\mathfrak{H} \operatorname{mu}\left(\mathfrak{H} A^{\bullet}, \mathfrak{H} B^{\bullet}(11.44)\right.
\end{aligned}
$$

and of course analogous identities with $l u$ in place of $m u$. The only restriction is that in (11.44) the inputs A^{\bullet}, B^{\bullet} must be internal.

If we now 'iterate' these identites so as to rid their right-hand sides of all terms $\mathfrak{G} \cdot m u(\ldots, \ldots)$ and $\mathfrak{H} \cdot m u(\ldots, \ldots)$, we find that \mathfrak{G} and \mathfrak{H} verify the co-products:

$$
\begin{align*}
\mathfrak{G} & \rightarrow \mathfrak{G} \otimes \mathfrak{G}+\sum_{1 \leq s} \mathfrak{G} \mathfrak{H}^{s} \otimes \mathfrak{G} \mathfrak{H}^{s} \tag{11.46}\\
\mathfrak{H} & \rightarrow \mathfrak{H} \otimes 1+1 \otimes \mathfrak{H}+\sum_{1 \leq s}\left(\mathfrak{H}^{s+1} \otimes \mathfrak{H}^{s}+\mathfrak{H}^{s} \otimes \mathfrak{H}^{s+1}\right) \tag{11.47}
\end{align*}
$$

Again, the coproducts (11.45),(11.47) for \mathfrak{H} hold on the full algebra of bimoulds, whereas the coproducts (11.44),(11.46) for \mathfrak{G} hold only on the algebra of internals.

The rectified operators \mathfrak{G}_{*} and \mathfrak{H}_{*}.
As the above coproducts show, \mathfrak{H} is an 'approximate' derivation and \mathfrak{G} an 'approximate' automorphism. However, if we set:

$$
\begin{align*}
\mathfrak{H}_{*} & :=\arctan (\mathfrak{H})=\mathfrak{H}-\frac{1}{3} \mathfrak{H}^{3}+\frac{1}{5} \mathfrak{H}^{5} \ldots \tag{11.48}\\
\mathfrak{G}_{*} & :=\mathfrak{G}(\operatorname{id}+\mathfrak{H})^{-\frac{1}{2}}=\mathfrak{G}-\frac{1}{2} \mathfrak{G} \mathfrak{H}^{2}+\frac{3}{8} \mathfrak{G} \mathfrak{H}^{4} \ldots \tag{11.49}\\
& =\mathfrak{G} \cos \left(\mathfrak{H}_{*}\right)=\mathfrak{G}-\frac{1}{2} \mathfrak{G} \mathfrak{H}_{*}^{2}+\frac{1}{24} \mathfrak{G} \mathfrak{H}_{*}^{4} \ldots \tag{11.50}
\end{align*}
$$

we get an operator \mathfrak{H}_{*} that is an exact derivation and an operator \mathfrak{G}_{*} that is an exact automorphism.
The chain $\operatorname{Inter}\left(Q i_{c}\right) \subset \operatorname{Exter}\left(Q i_{c}\right) \subset F l e x\left(Q i_{c}\right)$.
The space $\operatorname{Inter}\left(Q i_{c}\right)$ is separative, and so is the space $\operatorname{Exter}\left(Q i_{c}\right)$ defined as the (direct) sum of all the \mathfrak{g}-translates of $\operatorname{Inter}\left(Q i_{c}\right)$.

$$
\begin{equation*}
\operatorname{Exter}\left(\mathrm{Qi} \mathrm{i}_{\mathrm{c}}^{\bullet}\right):=\bigoplus_{0 \leq n} \mathfrak{g}^{n} \cdot \operatorname{Inter}\left(\mathrm{Q} \mathrm{i}_{\mathrm{c}}^{\bullet}\right) \tag{11.51}
\end{equation*}
$$

In fact, both spaces are stable under the ari-bracket, and we shall now give a complete description of their structure with the help of our two series of operators \mathfrak{g}^{n} and \mathfrak{h}_{n}.

Full structure of the ari-algebra $\operatorname{Inter}\left(Q i_{c}\right)$.
The space $\operatorname{Inter}\left(Q i_{c}^{\bullet}\right)$ is obviously stable under the lu-bracket, and also under the ari-bracket, due to the elementary identities:

$$
\begin{array}{rlrl}
\operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right) & =-\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right) & \forall A^{\bullet}, B^{\bullet} \in \operatorname{Inter}\left(\mathrm{Qi}_{\mathrm{c}}\right) \\
\operatorname{arit}\left(A^{\bullet}\right) . B^{\bullet} & =+\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right) & & \forall A^{\bullet}, B^{\bullet} \in \operatorname{Inter}\left(\mathrm{Qi}_{\mathrm{c}}\right) \tag{11.53}
\end{array}
$$

Full structure of the ari-algebra Exter $\left(Q i_{c}\right)$.
The space Exter $\left(Q i_{c}\right)$, though not closed under the $l u$-bracket, is stable under the ari-bracket and the arit-operation. Its full structure is given by the three
following identities, where $A^{\boldsymbol{\bullet}}, B^{\bullet}$ stand for arbitrary elements of $\operatorname{Inter}\left(Q i_{c}\right)$:

$$
\begin{align*}
\operatorname{ari}\left(\mathfrak{g}^{p} A^{\bullet}, \mathfrak{g}^{q} B^{\bullet}\right) \equiv & -\mathfrak{g}^{q} \operatorname{arit}\left(\mathfrak{g}^{p} A^{\bullet}\right) B^{\bullet}+\mathfrak{g}^{p} \operatorname{arit}\left(\mathfrak{g}^{q} B^{\bullet}\right) A^{\bullet} \\
& +\mathfrak{g}^{p+q} \operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right) \\
& -\sum_{\substack{1 \leq p_{1} \leq p \\
1 \leq q_{1} \leq q}} \mathfrak{g}^{p+q-p_{1}-q_{1}} \operatorname{lu}\left(\mathfrak{h}_{p_{1}} A^{\bullet}, \mathfrak{h}_{q_{1}} B^{\bullet}\right) \tag{11.54}\\
\operatorname{arit}\left(\mathfrak{g}^{p} A^{\bullet}\right) \mathfrak{g}^{q} B^{\bullet} \equiv & +\mathfrak{g}^{q} \operatorname{arit}\left(\mathfrak{g}^{p} A^{\bullet}\right) B^{\bullet} \\
& -\sum_{0 \leq q_{1} \leq q-1} \operatorname{lu}\left(\mathfrak{g}^{p+q-q_{1}} A^{\bullet}, \mathfrak{g}^{q_{1}} B^{\bullet}\right) \\
& -\sum_{\substack{1 \leq q_{1} \leq q-1 \\
p+1 \leq p_{1} \leq p+q-q_{1}}} \mathfrak{g}^{p+q-p_{1}-q_{1}} \operatorname{lu}\left(\mathfrak{h}_{p_{1}} A^{\bullet}, \mathfrak{h}_{q_{1}} B^{\bullet}\right)
\end{align*}
$$

$$
\begin{equation*}
\operatorname{arit}\left(\mathfrak{g}^{p} A^{\bullet}\right) \operatorname{tin}_{q}^{\bullet} \equiv \mathfrak{h}_{p, q} A^{\bullet} \tag{11.56}
\end{equation*}
$$

Since the above identities are linear in each internal argument A^{\bullet} or B^{\bullet} and since any external bimould M^{\bullet} uniquely decomposes into a sum $\sum \mathfrak{g}^{n} . M_{(n)}^{\bullet}$ of \mathfrak{g}-tanslates of internal $M_{(n)}^{\bullet}$, one readily sees that the above identities do indeed encapsulate the whole structure of $\operatorname{Exter}\left(Q i_{c}\right)$, provided one adds to $\operatorname{Inter}\left(Q i_{c}\right)$ a symbolic bimould $\square^{\bullet} \in B I M U_{0}$ subject to the following rules: ${ }^{160}$

$$
\begin{align*}
\mathrm{qi}_{n}^{\bullet} & :=+\mathfrak{g}^{n} \square^{\bullet} \tag{11.57}\\
\operatorname{qin}_{n}^{\bullet} & :=-\mathfrak{h}_{n} \square^{\bullet} \tag{11.58}\\
\operatorname{lu}\left(A^{\bullet}, \square^{\bullet}\right) & :=-r(\bullet) A^{\bullet} \tag{11.59}\\
\operatorname{ari}\left(A^{\bullet}, \square^{\bullet}\right) & :=+r(\bullet) A^{\bullet} \tag{11.60}\\
\operatorname{arit}\left(A^{\bullet}\right) \square^{\bullet} & :=-r(\bullet) A^{\bullet} \tag{11.61}\\
\operatorname{arit}\left(\square^{\bullet}\right) A^{\bullet} & :=+r(\bullet) A^{\bullet} \tag{11.62}
\end{align*}
$$

and of course

$$
\begin{equation*}
\operatorname{lu}\left(\square^{\bullet}, \square^{\bullet}\right)=\operatorname{ari}\left(\square^{\bullet}, \square^{\bullet}\right)=\operatorname{arit}\left(\square^{\bullet}\right) \square^{\bullet}=0^{\bullet} \tag{11.63}
\end{equation*}
$$

11.6 Multizeta cleansing: elimination of unit weights.

Main statement.

The present section is devoted to proving the following:

[^84]
$\boldsymbol{P}_{\mathbf{0}}:($ Unit cleansing)

Every uncoloured multizeta $\zeta\left(s_{1}, \ldots, s_{r}\right)$ can be expressed as a finite sum, with rational coefficients, of unit-free multizetas. ${ }^{161}$ The result extends to all coloured multizetas, but it is less relevant there. ${ }^{162}$

We shall provide an effective algorithm for achieving the unit-cleansing. Along the way, we shall also come across some really fine combinatorics about bialternals, and construct a new infinitary subalgebra of ARI larger than $A L A L$.

Some heuristics.

As is natural with heuristics, we proceed backwards:
Step 4: restriction of the problem to bialternals.
Since scalar irreducibles accompany homogeneous bialternals, it will be both necessary and sufficient to express the latter without recourse to unit weights.
Step 3: the need for "reconstitution identities".
Since in the v_{i}-encoding, unit weights correspond to monomials not divisible by $v_{1} \ldots v_{r}$, the challenge it to reconstitute any homogeneous bialternal from its "essential part", i.e. the part that is divisible by $v_{1} \ldots v_{r}$.
Step 2: the need for "redistribution identities".
To do this, it is more or less clear beforehand that we shall have to find a means of expressing any homogeneous bialternal $M^{\boldsymbol{w}}$ with one or several vanishing v_{i} 's as a superpositions of $M^{w^{*}}$, with new v_{i}^{*} 's formed from the sole non-vanishing v_{i} 's.
Step 1: the need for "pairing identities".
To be able to extend the procedure to coloured multizetas (and also to respect the spirit of dimorphy), we must find a way of restating the redistribution identities for arbitrary bialternals that effectively depend on the u_{i} 's as well as on the v_{i} 's.

Step 1: The pairing identities.

An endoflexion (of length r) is any self-mapping of $B I M U_{r}$ of the form

$$
\begin{equation*}
\text { flex. } M^{w_{1}, \ldots, w_{r}}=M^{w_{1}^{*}, \ldots, w_{r}^{*}} \quad\left(w_{i}=\binom{u_{i}}{v_{i}}, w_{i}^{*}=\binom{u_{i}^{*}}{v_{i}^{*}}\right) \tag{11.64}
\end{equation*}
$$

${ }^{161}$ i.e. of multizetas $\zeta\left(s_{1}^{\prime}, \ldots, s_{r_{*}}^{\prime}\right)$ with partial weights $s_{i}^{\prime} \geq 2$.
${ }^{162}$ for two reasons: first, because the removal of the unit-weights necessitates a remixing of the colours; and second, because one may on the contrary play on the colours to express everything in terms of multizetas with nothing but unit-weights!
with

$$
\begin{aligned}
u_{i}^{*} & :=\overbrace{u_{m_{i}}+\ldots+u_{n_{i}}}^{\text {circular }}=\sum_{v_{1 \leq i \leq r}}^{\left(m_{i} \leq k \leq n_{i}\right) \mathbb{Z}_{r+1}} u_{k} \\
v_{i}^{*} & :=v_{p_{i}}-v_{q_{i}} \quad \text { and } \quad p_{i} \in \mathcal{P}^{+}, q_{i} \in \mathcal{P}^{-} \\
v_{i}^{*} & \equiv \sum_{1 \leq i \leq r} u_{i} v_{i}
\end{aligned}
$$

Here, all indices $m_{i}, n_{i}, p_{i}, q_{i}$ are in the set $\{0,1, \ldots, r\} \sim \mathbb{Z}_{r+1}$ and $\mathcal{P}=$ $\left(\mathcal{P}^{+}, \mathcal{P}^{-}\right)$is any given (strict) partition of $\{0,1, \ldots, r\}$. We say that flex is \mathcal{P}-compatible. Whereas flex determines \mathcal{P} if we impose (as we shall do) that 0 be in \mathcal{P}^{-}, there are usually many endoflexions flex compatible with a given partition \mathcal{P}.
$\boldsymbol{P}_{\mathbf{1}}:($ Existence and unicity of the pairing identities.)
For any strict partition \mathcal{P} of $\{0,1, \ldots, r\}$ into \mathcal{P}^{+}("white indices") and \mathcal{P}^{-} ("black indices") there exists a self-mapping flex \mathcal{P} of BIMU $_{\mathrm{r}}$ of the form:

$$
\begin{equation*}
\text { flex }_{\mathcal{P}}=\sum_{\text {flex }_{\mathrm{n}} \mathcal{P} \text {-compatible }} \epsilon_{n} \text { flex }_{\mathrm{n}} \quad\left(\epsilon_{n} \in\{0,1,-1\}\right) \tag{11.65}
\end{equation*}
$$

whose restriction to the bialternals is the identity:

$$
\begin{equation*}
\operatorname{flex}_{\mathcal{P}} \cdot M^{\bullet} \equiv M^{\bullet} \quad \forall M^{\bullet} \in \mathrm{ARI} I_{r}^{\mathrm{al} / \mathrm{al}} \tag{11.66}
\end{equation*}
$$

Furthermore, flex $_{\mathcal{P}}$ is unique modulo the alternality (not bialternality!) relations on $\mathrm{ARI}_{r}^{\mathrm{al} / \mathrm{al}}$.

Let us now return to the graph pairs $\boldsymbol{g}=(\boldsymbol{g a}, \boldsymbol{g i})$ defined in $\S 3.1$ (see also the examples and pictures infra). We say that such a pair \boldsymbol{g} is \mathcal{P} compatible if all edges of $\boldsymbol{g i}$ connect a "white" vertex $S_{p_{i}}$ with a "black" vertex $S_{q_{i}}$. Now, both $\boldsymbol{g i}$ and $\boldsymbol{g a}$ have r edges each, and every edge of $\boldsymbol{g} \boldsymbol{i}$ intersects exactly one edge of $\boldsymbol{g a}$ at exactly one point x, and there clearly exists a (topologically) unique graph gai with those r intersection points x as vertices, and with edges that intersect neither the unit circle nor the edges of $\boldsymbol{g} \boldsymbol{a}$ nor those of $\boldsymbol{g} \boldsymbol{i}$. To each vertex x_{*} of $\boldsymbol{g a i}$ there corresponds one unique coherent orientation $\mathcal{O}_{\boldsymbol{g}, x_{*}}$ of the edges of $\boldsymbol{g a i}$ or, what amounts to the same, one coherent arborescent order, also noted $\mathcal{O}_{\boldsymbol{g}, x_{*}}$, on the vertices x of $\boldsymbol{g a i}$, with x_{*} as the lowest vertex.

Next, for any \boldsymbol{g} that is \mathcal{P}-compatible and for any vertex x_{*} of the corresponding $\boldsymbol{g a i}$, let $\boldsymbol{\gamma}$ be a total order on the vertices of $\boldsymbol{g a i}$ that is compatible with the arborescent order $\mathcal{O}_{\boldsymbol{g}, x_{*}}$. We write $\gamma \in \mathcal{O}_{\boldsymbol{g}, x_{*}}$ to denote this compatibility and associate with γ the following endoflexion:

$$
\begin{equation*}
\operatorname{flex}_{\gamma} \cdot M^{w_{1}, \ldots, w_{r}}=M^{w_{1}^{*}(\gamma), \ldots, w_{r}^{*}(\gamma)} \quad\left(w_{i}=\binom{u_{i}}{v_{i}}, w_{i}^{*}(\gamma)=\binom{u_{i}^{*}(\gamma)}{v_{i}^{*}(\gamma)}\right) \tag{11.67}
\end{equation*}
$$

with

$$
\begin{aligned}
& u_{i}^{*}(\gamma):=\overbrace{u_{m_{i}}+\ldots+u_{n_{i}}}^{\text {circular }}=\sum_{v_{1 \leq i \leq r}^{*}}^{\left(m_{i} \leq k \leq n_{i}\right) \mathbb{Z}_{r+1}} u_{k} \\
& v_{i}^{*} u_{i}^{*}(\gamma) v_{i}^{*}(\gamma):=v_{p_{i}}-v_{q_{i}} \quad \text { and } \quad p_{i} \in \mathcal{P}^{+}, q_{i} \in \mathcal{P}^{-} \\
& \sum_{1 \leq i \leq r} u_{i} v_{i}
\end{aligned}
$$

and with the following notations:
$-x_{i}(\gamma)$ is the i-th vertex of $\boldsymbol{g a i}$ in the total order $\gamma ;$
$-g a_{i}(\gamma)$ is the unique edge of $\boldsymbol{g} \boldsymbol{a}$ passing through $x_{i}(\boldsymbol{\gamma})$;

- $g i_{i}(\boldsymbol{\gamma})$ is the unique edge of $\boldsymbol{g} \boldsymbol{i}$ passing through $x_{i}(\boldsymbol{\gamma})$;
- $u_{i}^{*}(\gamma)$ is the sum of all u_{k} with $S i_{k}$ on the 'correct' side of $g a_{i}(\gamma)$, i.e. on the side that contains the "white" vertex $S i_{p_{i}}$ of $g i_{i}(\gamma)$;
$-v_{i}^{*}(\boldsymbol{\gamma})$ is the difference $v_{p_{i}}-v_{q_{i}}$ with $S i_{p_{i}}$ and $S i_{q_{i}}$ being the "white" and "black" vertices joined by $g i_{i}(\gamma)$.

Next, we set:

$$
\begin{align*}
\operatorname{flex}_{\boldsymbol{g}, x_{*}} & :=\sum_{\boldsymbol{\gamma} \in \mathcal{O}_{\boldsymbol{g}, x_{*}}} \epsilon_{\boldsymbol{\gamma}} \mathrm{flex}_{\boldsymbol{\gamma}} \quad \text { with } \tag{11.68}\\
\epsilon_{\boldsymbol{\gamma}} & :=\prod_{g_{\text {gai }} \in \operatorname{Edge}(\boldsymbol{g a i})} \epsilon\left(\mathrm{gai}_{k}\right) \in\{1,-1\} \tag{11.69}
\end{align*}
$$

with a product in (11.69) extending to all $r-1$ edges $g a i_{k}$ of $\boldsymbol{g a i}$, and with factor signs $\epsilon\left(g a i_{k}\right)$ defined as follows. Each edge $g a i_{k}$ of $\boldsymbol{g a i}$ touches two edges $g i_{k^{\prime}}$ and $g i_{k^{\prime \prime}}$ of $\boldsymbol{g i}$, which in turn meet at a vertex $S i_{k^{*}}$ of $\boldsymbol{g} \boldsymbol{i}$. What counts is the colour of that vertex $S i_{k^{*}}$, and the position of the triangle $\left\{g a i_{k}, g i_{k^{\prime}}, g i_{k^{\prime \prime}}\right\}$ respective to the oriented vertex $g \overrightarrow{a a} i_{k}$. Concretely, we set:
(i) $\epsilon\left(g a i_{k}\right):=+1$ if $g \overrightarrow{a a} i_{k}$ sees a white $S i_{k^{*}}$ to its right or a black $S i_{k^{*}}$ to its left.
(ii) $\epsilon\left(g a i_{k}\right):=-1$ if $g a i_{k}$ sees a white $S i_{k^{*}}$ to its left or a black $S i_{k^{*}}$ to its right.

It is readily seen that the operator $\mathrm{flex}_{\boldsymbol{g}, x_{*}}$, when applied to alternal bimoulds, is independent of the choice of the base vertex: indeed, replacing x_{*} by a neighbouring vertex $x_{* *}$ simultaneously changes the signs of $\epsilon(\gamma)$ and flex $x_{\gamma} \cdot M^{\bullet}$, for any alternal M^{\bullet}. We shall therefore drop x_{*} and write simply flex $_{\boldsymbol{g}}$ whenever the operator flex $_{\boldsymbol{g}, \boldsymbol{x}_{*}}$ is made to act on alternals (or a fortiori on bialternals).

Remark: each one of the graphs $\boldsymbol{g a}$ or $\boldsymbol{g i}$ completely determines the other as well as $\boldsymbol{g a i}$. It also determines the only partition \mathcal{P} of $\{0,1, \ldots, r\}$ with which it is compatible, since 0 is automatically black, and so $S i_{0}$ is
declared black too, and the coloring then extends to all $S i_{k}$ by following $\boldsymbol{g i}$. On the other hand, the number of graph pairs $\boldsymbol{g}=\{\boldsymbol{g} \boldsymbol{a}, \boldsymbol{g} \boldsymbol{i}\}$ compatible with a given partition \mathcal{P} is on average equal to $\frac{(3 r)!}{(2 r+1)!r!2^{r}}$ and therefore tends to be very large.
$\boldsymbol{P}_{\mathbf{2}}:($ Explicit formula for the pairing identities.)
For each partition \mathcal{P} of $\{0,1, \ldots, r\}$, the pairing operator flex $_{\mathcal{P}}$ of (11.65) is explicitely given by:

$$
\begin{equation*}
\text { flex }_{\mathcal{P}}:=\sum_{\boldsymbol{g} \mathcal{P} \text {-compatible }} \text { flex }_{\boldsymbol{g}} \text { with } \epsilon_{\boldsymbol{g}} \in\{1,-1\} \tag{11.70}
\end{equation*}
$$

with a sum extending to all graph pairs $\boldsymbol{g}=(\boldsymbol{g a}, \boldsymbol{g} \boldsymbol{i})$ compatible with the white-black partition \mathcal{P}.
$\boldsymbol{P}_{\mathbf{3}}$: (Unitary criterion for bialternality.)
A bimould $M^{\bullet} \in \mathrm{BIMU}_{r}$ is bialternal if and only if it verifies all pairing identities flexp. $M^{\bullet} \equiv M^{\bullet}$, for all partitions $\mathcal{P}=\mathcal{P}^{+} \sqcup \mathcal{P}^{-}$of $\{0,1, \ldots, r\}$.

This is the only known characterisation of bialternality that is unitary - by which we mean that, unlike all the others, it does not split into two distinct sets of conditions, one bearing on M^{\bullet} and another on swap. M^{\bullet}.

Step 2: The redistribution identities.

$\boldsymbol{P}_{4}:$ (Redistribution identity on $\mathrm{ARI}^{\mathrm{al} / \text { al }}$ and swap.ALAL.)
If we take a bialternal $M^{\bullet} \in \mathrm{ARI}_{r}^{\mathrm{al} / \text { al }}$ and a partition $\mathcal{P}=\mathcal{P}^{+} \sqcup \mathcal{P}^{-}$of $\{0,1, \ldots, r\}$ and then turn all u_{i} 's into 0 and also turn all black v_{i} 's (i.e. all v_{i} 's with black indices) into 0 but leave all white v_{i} 's unchanged, the pairing identity of Proposition P_{2} becomes a redistribution identity:

$$
\begin{equation*}
\left\{\operatorname{flex}_{P .} M^{\bullet}=M^{\bullet}\right\} \Longrightarrow\left\{\operatorname{redis}_{P} . M^{\bullet}=M^{\bullet}\right\} \tag{11.71}
\end{equation*}
$$

so-called because it has the effect of 'spreading' or 'redistributing' the total multiplicity μ_{0} of the vanishing black v_{i} ' ${ }^{163}$ among the multiplicities μ_{i} of the remaining white v_{i} 's, with $\mu_{0}-1=\sum\left(\mu_{i}-1\right)$. The redistribution identities apply in particular to all bimoulds of swap.ALAL, since they are bialternal, \boldsymbol{u}-constant and polynomial in \boldsymbol{v}.
\boldsymbol{P}_{5} : (The infinitary redistribution algebra.)
The set of all "redistributive" bimoulds, i.e, of all bimoulds that are

[^85]- u-constant
- alternal
- and verify all redistribution identities
constitutes a subalgebra of ARI that is
- much larger than that of the \boldsymbol{u}-constant bialternals
- not subject to neg-invariance (unlike the bialternals)
- and yet defined by an infinitary group of constraints (like the bialternals).

Although the redistribution identities have a more elementary appearance than the pairing identities, they are in fact

- theoretically derivative,
- distinctly weaker (since they do not imply bialternality),
- and less transparent (since the terms on the right-hand side are composite ${ }^{164}$ and preceded by general integers rather than by \pm signs.)

Step 3: The reconstitution identities.

For any bimould M^{\bullet}, we denote by essen. M^{\bullet} the "essential part" of M^{\bullet}, i.e. the "part" of M^{\bullet} that is "divisible" by each v_{i}. In precise terms:

$$
(\text { essen. } M)^{\left(\begin{array}{c}
u_{1}, \ldots, u_{r} \tag{11.72}\\
\left.v_{1}, \ldots, v_{r}\right)
\end{array}\right.}=\sum_{\epsilon_{i} \in\{0,1\}}\left(\prod_{1 \leq i \leq r}(-1)^{1+\epsilon_{i}}\right) M^{\binom{u_{1}, \ldots, u_{r}}{\epsilon_{1} v_{1}, \ldots, \epsilon_{r} v_{r}}}
$$

Likewise, to each partition \mathcal{P} that makes 0 black, we associate the "slice" of M^{\bullet} that is "divisible" by all white v_{i} 's and constant in all black v_{i} 's: ${ }^{165}$

$$
\begin{equation*}
\left(\text { slice }_{\mathcal{P}} . M\right)^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=\sum_{\substack{\epsilon_{i} \in\{0,1\}_{i f} i f i \in \mathcal{P}^{+} \\ \epsilon_{i}=0 \text { if } i \in \mathcal{P}^{-}}}^{0 \in \mathcal{P}^{-}}\left(\prod_{i \in \mathcal{P}^{+}}(-1)^{1+\epsilon_{i}}\right) M^{\binom{u_{1}, \ldots, u_{r}}{\epsilon_{1} v_{1}, \ldots, \epsilon_{r} v_{r}}} \tag{11.73}
\end{equation*}
$$

M^{\bullet} is clearly the sum of all its slices:

$$
\begin{equation*}
M^{\bullet}=\sum_{\mathcal{P} \text { with } 0 \in \mathcal{P}^{-}} \text {slice }_{\mathcal{P}} . M^{\bullet} \tag{11.74}
\end{equation*}
$$

and if M^{\bullet} happens to be bialternal, each slice may be separately recovered from essen. M^{\bullet} by means of the redistribution identites, since:

$$
\begin{equation*}
\text { slice }_{\mathcal{P}} . M^{\bullet} \equiv \operatorname{redis}_{\mathcal{P}} . \operatorname{essen} . M^{\bullet} \tag{11.75}
\end{equation*}
$$

as we can see by applying the \mathcal{P}-related redistribution identity separately to each summand on the right-hand side of (11.72). Therefore:

[^86]$\boldsymbol{P}_{\mathbf{6}}:$ (Reconstitution identity on $\left.A R I^{\text {al } / \text { al }}.\right)$
For each bialternal bimould M^{\bullet} (purely of length r), the identity holds:
\[

$$
\begin{equation*}
M^{\bullet} \equiv \text { induc.essen. } M^{\bullet} \tag{11.76}
\end{equation*}
$$

\]

with the linear operator

$$
\begin{equation*}
\text { induc }:=\sum_{\mathcal{P} \text { with } 0 \in \mathcal{P}^{-}} \operatorname{redis}_{\mathcal{P}} \tag{11.77}
\end{equation*}
$$

This applies in particular to all elements of swap.ALAL, i.e. to all \boldsymbol{u} constant, \boldsymbol{v}-polynomial, and bialternal bimoulds. For such bialternals, the possiblity of recovering M^{\bullet} from essen. M^{\bullet} was by no means a foregone conclusion, since for a not too large ratio $d / r:=$ degree/length ${ }^{166}$ the essential part essen. M^{\bullet} carries but a minute fraction of the total data of M^{\bullet}.
$\boldsymbol{P}_{\mathbf{7}}:$ (Involutive nature of induc.)
While essen is (trivially) a projector, induc becomes (non-trivially) an involution when restricted to the space of \boldsymbol{u}-constant bialternals.

Step 4: The unit-cleansing algorithm.

The algorithm applies to all multizetas, coloured or uncoloured, but let us focus on the uncoloured case for simplicity.

Fix any basis $\left\{l \varnothing m a_{s}^{\bullet} ; s=3,5,7 \ldots\right\}$ of $A L I L$. That automatically fixes a system of irreducibles $\left\{\operatorname{irr} \emptyset_{I I}^{\bullet}, \operatorname{irr} \emptyset_{I I I}^{\bullet}\right\}$ and provides a way of expressing all multizetas in terms of these.

Now, reason inductively. Assume that all irreducibles of length $r<r_{0}$ have already been expressed in terms of unit-free multizetas $\zeta\left(s_{1}, \ldots, s_{r}\right)$. The machinery of $\S 6$ makes it possible to exactly determine the contribution that these "earlier" irreducibles (including π^{2}) are going to make to $Z i g^{\bullet}:=$ swap. $Z a g^{\bullet}$, at all higher lengths, including at length r_{0}. Next, subtract from $\operatorname{leng}_{r_{0}} . Z i g^{\bullet}$ (i.e. from the length- r_{0} component of $Z i g^{\bullet}$) all these contributions from the "earlier" irreducibles. What is left is a superposition M^{\bullet} of independent bialternals M_{j}^{\bullet} of length r_{0} :

$$
\begin{equation*}
M^{\bullet}=\sum \operatorname{irr} \phi_{j} M_{j}^{\bullet} \quad \text { with } \quad M_{j}^{\bullet} \in \text { swap. } \mathrm{ALAL}_{r} \text { and } \operatorname{irr} \phi_{j} \in \mathbb{C} \tag{11.78}
\end{equation*}
$$

with scalar coefficients $i r r \varnothing_{j}$ that are irreducibles of length r_{0}. But, as we just saw, M^{\bullet}, and therefore all M_{j}^{\bullet} and all $\operatorname{irr} \varnothing_{j}$, can be recovered from essen. M^{\bullet}, and as a consequence expressed in terms of unit-free multizetas $\zeta\left(s_{1}, \ldots, s_{r}\right)$. By induction, this applies to all irreducibles subsumed in the moulds $i r r \varnothing_{I I}^{\bullet}$, $\operatorname{irr} \emptyset_{I I I}^{\bullet}$ and of course also to the exceptional irreducible $\pi^{2}=6 \zeta(2)$.

[^87]But since every multizeta $\zeta\left(s_{1}, \ldots, s_{r}\right)$ can be (algorithmically) expressed in terms of irreducibles, this means that every multizeta can be expressed as a polynomial of unit-free multizetas $\zeta\left(s_{1}, \ldots, s_{r}\right)$, with rational coefficients. After symmetrel linearisation, this polynomial becomes a linear combination of multizetas, still unit-free and still with rational coefficients.

Example of pairing identities.

For $r=5, \mathcal{P}^{+}=\{1,2,4\}, \mathcal{P}^{-}=\{0,3,5\}$, the pairing identity $M^{\bullet} \equiv$ flex $_{\mathcal{P}} . M^{\bullet}$ takes the form:

$$
\begin{aligned}
& \left.M^{\left(\begin{array}{c}
u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, \\
v_{1}, \\
v_{2}
\end{array}, v_{3}, v_{4}, v_{5},\right.}\right) \equiv \\
& (* * *)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.+M^{\left(\begin{array}{c}
u_{1 * 0}, u_{5 * 1}, u_{3 * 5}, u_{2 * 3}, u_{4 * 3} \\
v_{1: 0},
\end{array} v_{2: 0}, v_{2: 5},\right.}, v_{2: 3}, v_{4: 5}\right) ~+M^{\left(\begin{array}{c}
u_{5 * 0}, u_{1 * 5}, u_{3 * 1}, u_{4 * 3}, u_{2 * 3} \\
v_{1: 0}, \\
v_{1: 5}, \\
v_{2 ; 5}, \\
v_{4: 5},
\end{array} v_{2: 3}\right.}\right)+M^{\left(\begin{array}{c}
u_{5 * 0}, u_{1 * 5}, u_{3 * 1}, u_{2 * 3}, u_{4 * 3} \\
v_{1: 0}, \\
v_{1: 5}, \\
v_{2}: 5
\end{array}, v_{2: 3}, v_{4: 5}\right.}\right)
\end{aligned}
$$

with the usual convention $u_{0}:=-\left(u_{1}+\cdots+u_{r}\right), v_{0}:=0$ and the convenient abbreviations:

$$
\begin{aligned}
u_{i * j} & :=s u_{i}-s u_{j} \quad \text { with } \quad s u_{k}:=u_{0}+u_{1}+\ldots+u_{k}=-u_{k+1}-u_{k+2} \ldots-u_{r} \\
v_{i: j} & :=v_{i}-v_{j}
\end{aligned}
$$

To arrive at the pairing identity $(* * *)$, we form all graph triples $\boldsymbol{g}=$ $\{\boldsymbol{g a}, \boldsymbol{g i}, \boldsymbol{g a i}\}$ compatible with the partition \mathcal{P}. There exist exactly 16 such triples. They are pictured on Figure 3, with split lines for the edges of $\boldsymbol{g a}$, plain lines for those of $\boldsymbol{g i}$, and large plain lines for those of $\boldsymbol{g a i}$. Next, on each $\boldsymbol{g a i}$, we pick a vertex x_{*} so chosen as to minimise the number $\nu\left(\boldsymbol{g a i}, x_{*}\right)$ of total orders γ on $\boldsymbol{g a i}$ compatible with the partial order induced by x_{*}. In each case, x_{*} has to be at the extremity of the longest branch of $\boldsymbol{g a i}$. For eight graphs $\boldsymbol{g a i}$, this minimal number $\nu_{\min }(\boldsymbol{g a i})$ is 1 ; for the remaining eight graphs, $\nu_{\min }(\boldsymbol{g a i})$ is 2 . Altogether, this yields the 24 elementary flexions flex ${ }_{\gamma}$ that contribute to the pairing identity $(* * *)$.

Lastly, to show how to calculate each flex $_{\boldsymbol{g}}$, we focus on the first graph triple (the one in top-left position on Figure 3) and reproduce it, enlarged, in Figure 4. Applying the rules just after (11.67), we see that the flexion

Figure 1: The 16 graph triads $\boldsymbol{g}=\{\boldsymbol{g a}, \boldsymbol{g i}, \boldsymbol{g a i}\}$ compatible with the partition \mathcal{P} of $\{0,1,2,3,4,5\}$ defined by $\mathcal{P}^{+}=\{1,2,4\}, \mathcal{P}^{-}=\{0,3,5\}$.
indices $w_{i}^{*}=\binom{u_{i}^{*}}{v_{i}^{*}}$ corresponding to the five vertices of $\boldsymbol{g a i}$ are given by:

$$
\begin{array}{ll}
u_{1}^{*}=u_{1,2,3,4,5} & \| \\
v_{1}^{*}=v_{1}-v_{0}=v_{1} \\
u_{2}^{*}=u_{0,1}=-u_{2,3,4,5} & \| v_{2}^{*}=v_{1}-v_{5} \\
u_{3}^{*}=u_{2,3} & \| v_{3}^{*}=v_{2}-v_{5} \\
u_{4}^{*}=u_{4,5,0,1,2}=-u_{3} & \| v_{4}^{*}=v_{2}-v_{3} \\
u_{5}^{*}=u_{4} & \| \\
v_{5}^{*}=v_{4}-v_{5}
\end{array}
$$

with the expected identity $\sum_{1 \leq i \leq 5} u_{i}^{*} v_{i}^{*} \equiv \sum_{1 \leq i \leq 5} u_{i} v_{i}$. There are three possible roots, $w_{1}^{*}, w_{4}^{*}, w_{5}^{*}$, with three corresponding flexions:
$\left(\text { flex }_{\boldsymbol{g}, w_{1}^{*} \cdot M}\right)^{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}}=+M^{w_{1}^{*}, w_{2}^{*}, w_{3}^{*}, w_{4}^{*}, w_{5}^{*}}+M^{w_{1}^{*}, w_{2}^{*}, w_{3}^{*}, w_{5}^{*}, w_{4}^{*}}$
$\left(\text { flex }_{g, w_{4}^{*}} \cdot M\right)^{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}}=-M^{w_{4}^{*}, w_{3}^{*}, w_{2}^{*}, w_{1}^{*}, w_{5}^{*}}-M^{w_{4}^{*}, w_{3}^{*}, w_{2}^{*}, w_{5}^{*}, w_{1}^{*}}-M^{w_{4}^{*}, w_{3}^{*}, w_{5}^{*}, w_{2}^{*}, w_{1}^{*}}$
$\left(\text { flex }_{\boldsymbol{g}, w_{5}^{*}} \cdot M\right)^{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}}=-M^{w_{5}^{*}, w_{3}^{*}, w_{2}^{*}, w_{1}^{*}, w_{4}^{*}}-M^{w_{5}^{*}, w_{3}^{*}, w_{2}^{*}, w_{4}^{*}, w_{1}^{*}}-M^{w_{5}^{*}, w_{3}^{*}, w_{4}^{*}, w_{2}^{*}, w_{1}^{*}}$

Figure 2: Flexion $f l e x_{\boldsymbol{g}}$ associated with a graph triad $\boldsymbol{g}=\{\boldsymbol{g a}, \boldsymbol{g} \boldsymbol{i}, \boldsymbol{g a i}\}$.
which coincide modulo the alternality relations:

$$
\operatorname{flex}_{\boldsymbol{g}, w_{1}^{*}} \cdot M^{\bullet} \equiv \operatorname{flex}_{\boldsymbol{g}, w_{4}^{*}} \cdot M^{\bullet} \equiv \operatorname{flex}_{\boldsymbol{g}, w_{5}^{*}} \cdot M^{\bullet} \quad \forall M^{\bullet} \text { alternal }
$$

One might also take $f l e x_{\boldsymbol{g}, w_{2}^{*}} . M^{\bullet}$ and $f l e x_{\boldsymbol{g}, w_{3}^{*}} M^{\bullet}$, but here the number of summands would be much larger: 8 and 12 respectively.

Example of redistribution identity.

For $r=5, \mathcal{P}^{+}=\{1,2,4\}$ and $\mathcal{P}^{-}=\{0,3,5\}$, we have a black multiplicity $\mu_{0}=3$, and the redistribution identity $M^{\bullet} \equiv$ redis $_{\mathcal{p}} . M^{\bullet}$ follows from the preceding pairing identity $M^{\bullet} \equiv$ flex $x_{\mathcal{P}} . M^{\bullet}$ by setting all black v_{i} 's equal to zero in $(* * *)$. For simplicity, we write the redistribution identity only for \boldsymbol{u}-constant bilaternals, and since for them the u_{i} 's don't matter, we don't mention them.

$$
\begin{array}{rlrll}
M^{v_{1}, v_{2}, 0, v_{4}, 0} \equiv & -M^{v_{1}, v_{1}, v_{1}, v_{4}, v_{2}} & -M^{v_{1}, v_{1}, v_{1}, v_{2}, v_{4}} & -M^{v_{4}, v_{4}, v_{2}, v_{1}, v_{2}} & -M^{v_{4}, v_{4}, v_{2}, v_{2}, v_{1}} \\
& +M^{v_{2}, v_{1}, v_{1}, v_{4}, v_{4}} & -2 M^{v_{1}, v_{2}, v_{4}, v_{4}, v_{4}} & +M^{v_{2}, v_{4}, v_{4}, v_{1}, v_{4}} & +M^{v_{2}, v_{4},,_{4}, v_{4}, v_{1}} \\
& +M^{v_{2}, v_{1}, v_{4}, v_{4}, v_{4}} & -2 M^{v_{1}, v_{2}, v_{2}, v_{4}, v_{4}} & +M^{v_{4}, v_{4}, v_{1}, v_{1}, v_{2}} & +M^{v_{4}, v_{4}, v_{1}, v_{2}, v_{1}} \\
& -M^{v_{1}, v_{1}, v_{2}, v_{2}, v_{4}, v_{4}, v_{2}} & -M^{v_{2}, v_{1}, v_{1}, v_{1}, v_{4}} & -M^{v_{1}, v_{1}, v_{2}, v_{4}, v_{2}} &
\end{array}
$$

Examples of reconstitution identities.

Up to length 2, the operator induc is trivial, but the number N_{r} of terms involved increases sharply thereafter. Thus: ${ }^{167}$

$$
N_{1}=1, N_{2}=2, N_{3} \sim 7, N_{4} \sim 38, N_{5} \sim 273, N_{6} \sim 1837, N_{7} \sim 15199, \text { etc } \ldots
$$

Here are the formulas up to length 4, for the case of \boldsymbol{u}-constant bimoulds (and after removal of the $u_{i}{ }^{\prime} s$):

$$
\begin{aligned}
&\text { (induc. } M \text {) })^{v_{1}}:=M^{v_{1}} ; \quad(\text { induc. } M)^{v_{1}, v_{2}}:=M^{v_{1}, v_{2}} \\
&\text { (induc. } M)^{v_{1}, v_{2}, v_{3}}:=+M^{v_{1}, v_{2}, v_{3}}+M^{v_{1}, v_{1}, v_{2}}+M^{v_{1}, v_{2}, v_{2}}+M^{v_{1}, v_{3}, v_{1}} \\
&+M^{v_{3}, v_{1}, v_{3}}+M^{v_{2}, v_{2}, v_{3}}+M^{v_{2}, v_{3}, v_{3}} \\
&\text { (induc. } M)^{v_{1}, v_{2}, v_{3}, v_{4}}:=+M^{v_{1}, v_{2}, v_{3}, v_{4}}+M^{v_{1}, v_{1}, v_{2}, v_{3}}+M^{v_{1}, v_{2}, v_{2}, v_{3}}+M^{v_{1}, v_{2}, v_{3}, v_{3}} \\
&+M^{v_{1}, v_{4}, v_{1}, v_{2}}+M^{v_{1}, v_{2}, v_{4}, v_{2}}+M^{v_{1}, v_{4}, v_{2}, v_{4}}+M^{v_{4}, v_{1}, v_{4}, v_{2}} \\
&+M^{v_{4}, v_{1}, v_{2}, v_{4}}+M^{v_{3}, v_{4}, v_{1}, v_{4}}+M^{v_{3}, v_{1}, v_{3}, v_{4}}+M^{v_{1}, v_{3}, v_{1}, v_{4}} \\
&+M^{v_{3}, v_{1}, v_{4}, v_{1}}+M^{v_{1}, v_{3}, v_{4}, v_{1}}+M^{v_{2}, v_{3}, v_{4}, v_{4}}+M^{v_{2}, v_{3}, v_{3}, v_{4}} \\
&+M^{v_{2}, v_{2}, v_{3}, v_{4}}+M^{v_{1}, v_{1}, v_{1}, v_{2}}+M^{v_{1}, v_{1}, v_{3}, v_{1}}+M^{v_{1}, v_{4}, v_{1}, v_{1}} \\
&+M^{v_{1}, v_{2}, v_{2}, v_{2}}+M^{v_{2}, v_{2}, v_{2}, v_{3}}+M^{v_{2}, v_{2}, v_{4}, v_{2}}+M^{v_{3}, v_{1}, v_{3}, v_{3}} \\
&+M^{v_{2}, v_{3}, v_{3}, v_{3}}+M^{v_{3}, v_{3}, v_{3}, v_{4}}+M^{v_{4}, v_{4}, v_{1}, v_{4}}+M^{v_{4}, v_{2}, v_{4}, v_{4}} \\
&+M^{v_{3}, v_{4}, v_{4}, v_{4}}+M^{v_{1}, v_{1}, v_{2}, v_{2}}+M^{v_{3}, v_{3}, v_{1}, v_{1}}+M^{v_{1}, v_{3}, v_{1}, v_{3}} \\
&+M^{v_{1}, v_{1}, v_{4}, v_{4}}+M^{v_{4}, v_{1}, v_{4}, v_{1}}+M^{v_{2}, v_{2}, v_{3}, v_{3}}+M^{v_{4}, v_{4}, v_{2}, v_{2},,_{2}, v_{4}}+M^{v_{3}, v_{3}, v_{4}, v_{4}} \\
&
\end{aligned}
$$

11.7 Multizeta cleansing: elimination of odd degrees.

We shall now construct a simple algorithm for expressing every multizeta of odd degree as a finite sum, with rational coefficients, of multizetas of even degree. ${ }^{168}$

[^88]We take as our starting point the symmetrel multitangent mould $T e^{\bullet}(z)$ and its generating function, the symmetril mould $\operatorname{Tig}^{\bullet}(z)$, with definitions transparently patterned on those of $Z e^{\bullet}$ and $Z i g^{\bullet}$:

$$
\begin{align*}
\operatorname{Te}^{\binom{\epsilon_{1}, \ldots, \epsilon_{1}}{s_{1}, \ldots, s_{r}}}(z) & :=\sum_{+\infty>n_{1}>\ldots>n_{r}>-\infty} \prod_{i=1}^{i=r}\left(e_{i}^{-n_{i}}\left(n_{i}+z\right)^{-s_{1}}\right) \tag{11.79}\\
\operatorname{Tig}{ }^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{v_{1}, \ldots, v_{r}}}(z) & :=\sum_{s_{i} \geq 1} T e^{\left(\epsilon_{1}, \ldots, \epsilon_{r}\right), s_{r}}(z) v_{1}^{s_{1}-1} \ldots v_{r}^{s_{r}-1} \tag{11.80}
\end{align*}
$$

The next step is to express the multitangents in terms of multizetas. Here, we have the choice between an uninflected formula which leaves z spread over all terms, and an inflected formula which concentrates z in a few elementary central terms:
$\operatorname{Tig}^{\boldsymbol{w}}(z)=\sum_{\boldsymbol{w}=\boldsymbol{w}^{+} \boldsymbol{w}^{-}} \mathrm{Zig}^{\boldsymbol{w}^{+}}(z) \operatorname{viZig}^{\boldsymbol{w}^{-}}(z)-\sum_{\boldsymbol{w}=\boldsymbol{w}^{+} w_{0} \boldsymbol{w}^{-}} \mathrm{Zig}^{\boldsymbol{w}^{+}}(z) \mathrm{Pi}^{w_{0}}(z) \operatorname{viZig}^{\boldsymbol{w}^{-}}(z)$
$\operatorname{Tig}^{\boldsymbol{w}}(z)=\operatorname{Rig}^{\boldsymbol{w}}-\sum_{\boldsymbol{w}=\boldsymbol{w}^{+} w_{0} \boldsymbol{w}^{-}} \mathrm{Zig}^{\left.\boldsymbol{w}^{+}\right\rfloor} \mathrm{Qii}^{\left\lceil w_{0}\right\rceil}(z) \operatorname{viZig}^{\left\lfloor\boldsymbol{w}^{-}\right.}$
The ingredient Rig $^{\bullet}$ in the above formulas is defined as follows:

$$
\begin{aligned}
& \operatorname{Rig}^{w_{1}, \ldots, w_{r}}:=0 \text { for } r=0 \text { or } r \text { odd } \\
& \operatorname{Rig}^{w_{1}, \ldots, w_{r}}:=\frac{(\pi i)^{r}}{r!} \delta\left(u_{1}\right) \ldots \delta\left(u_{r}\right) \quad \text { for } r \text { even }>0
\end{aligned}
$$

with δ denoting as usual the discrete dirac. ${ }^{169}$ The length- 1 bimoulds $P i^{\bullet}$ and Qii ${ }^{\bullet}:=Q i \boldsymbol{\bullet}_{\pi}^{\bullet}$ denote the polar and bitrigonometric flexion units of $\S 3.2$, and $v i Z i g^{\bullet}:=$ neg.pari.anti.Zig ${ }^{\bullet}$. Lastly, the bimoulds $\operatorname{Pi}^{\bullet}(z), \operatorname{Qii}^{\bullet}(z), \operatorname{Zig}^{\bullet}(z)$, $v i Z i g^{\bullet}(z)$ are deduced from $P i^{\bullet}, Q i i^{\bullet}, Z i g^{\bullet}, v i Z i g^{\bullet}$ under the change $v_{i} \rightarrow$ $v_{i}-z(\forall i)$.

By equating our uninflected and inflected expressions of $\operatorname{Tig}^{\bullet}(z)$ and then setting $z=0$, we get the remarkable identity:

$$
\begin{align*}
& \sum_{\boldsymbol{w}=\boldsymbol{w}^{+} \boldsymbol{w}^{-}} \mathrm{Zig}^{\boldsymbol{w}^{+}} \mathrm{viZig}^{\boldsymbol{w}^{-}}-\sum_{\boldsymbol{w}=\boldsymbol{w}^{+} w_{0} \boldsymbol{w}^{-}} \mathrm{Zig}^{\boldsymbol{w}^{+}} \mathrm{Pi}^{w_{0}} \operatorname{viZig}^{\boldsymbol{w}^{-}}= \\
& \operatorname{Rig}^{\boldsymbol{w}}-\sum_{\boldsymbol{w}=\boldsymbol{w}^{+} w_{0} \boldsymbol{w}^{-}} \mathrm{Zig}^{\left.\boldsymbol{w}^{+}\right\rfloor} \mathrm{Qii}^{\left[w_{0}\right\rceil} \mathrm{viZig} \boldsymbol{w}^{-} \quad(\forall \boldsymbol{w}) \tag{11.81}
\end{align*}
$$

where the factor sequences $\boldsymbol{w}^{ \pm}$can be \emptyset. As a consequence, (11.81) is of the form:

$$
\begin{equation*}
\mathrm{Zig}^{w_{1}, \ldots, w_{r}}+(-1)^{r} \mathrm{Zig}^{-w_{r}, \ldots,-w_{1}}=" \text { shorter terms" } \tag{11.82}
\end{equation*}
$$

${ }^{169} \delta(0):=1$ and $\delta(t):=0$ for $t \neq 0$.

But Zig^{\bullet} is symmetril and therefore mantir-invariant (see $\S 3.4$), which again yields an identity of the form:

$$
\begin{equation*}
\mathrm{Zig}^{-w_{1}, \ldots,-w_{r}}+(-1)^{r} \mathrm{Zig}^{-w_{r}, \ldots,-w_{1}}=\text { "shorter terms" } \tag{11.83}
\end{equation*}
$$

If we now take 'colourless' indices w_{i}, i.e. indices $w_{i}:=\binom{0}{v_{i}}$, then subtract (11.84) from (11.82), and calculate therein the coefficient of $\prod v_{i}^{s_{i}-1}$, we find:

$$
\left(1-(-1)^{d}\right) \mathrm{Ze}^{\left(\begin{array}{c}
\left.0, \ldots, s_{1}, \ldots, s_{r}\right) \tag{11.84}
\end{array}\right)}=\text { "shorter terms" } \quad\left(d:=\sum s_{i}-r\right)
$$

with quite explicit 'shorter terms'.
We have here a very effective algorithm for the 'elimination' of all uncoloured multizetas $\zeta\left(s_{1}, \ldots, s_{r}\right)$ of odd degree d. The argument extends to the case of bicoloured multizetas $Z e^{\left(\begin{array}{c}\epsilon_{1}, \ldots, \epsilon_{r}, s_{r}\end{array}\right)}$ with $\epsilon_{i} \in \frac{1}{2} \mathbb{Z} / \mathbb{Z}$, since we then have $\epsilon_{i} \equiv-\epsilon_{i}$. In the case of more than two colours, however, equation (11.84) becomes a singular linear system, which allows the elimination of most, but not all, multizetas of odd degree.

Remark 1: elimination of irreducibles other than π^{2}.
A simple argument shows that identity (11.81) still holds if we neglect all irreducibles other than π^{2}, i.e. if we retain only the first factor ${Z i g I^{\bullet}}^{\bullet}$ in the trifactorisation (9.1) of $Z_{i g^{\bullet}}$. But since $Z i g_{I}^{\bullet}$ is invariant under pari.neg, we clearly have $v i Z i g_{I}=$ anti. Zig $_{I}{ }^{\bullet}$, so that (11.81) becomes:

$$
\begin{equation*}
\mathrm{mu}\left(\mathrm{Zig}_{\mathrm{I}}^{\bullet}, 1^{\bullet}-\mathrm{Pi}^{\bullet}, \operatorname{anti} \cdot \mathrm{Zig}_{\mathrm{I}}^{\bullet}\right)=\operatorname{Rig}^{\bullet}-\operatorname{giwat}\left(\mathrm{Zig}_{\mathrm{I}}^{\bullet}\right) \cdot \mathrm{Qi} \mathbf{i}^{\bullet} \tag{11.85}
\end{equation*}
$$

Remark 2: separation of π^{2} from the rationals.

Actually, we may retain in (11.85) only the first two factors of Zig $_{I}{ }^{\bullet}$ (see (9.2)) namely $\operatorname{gira}\left(t i l^{\bullet}\right.$, sripil $\left.{ }^{\bullet}\right)$ with sripil $\boldsymbol{c}^{\bullet}:=\operatorname{invgira(pil^{\bullet })\text {.Furthermore,}}$ since in (11.85) the 'trigometric' part (which carries π^{2}) and the 'polar' part (which carries only rationals) do not mix, (11.85) leads to two distinct identities, to wit:

$$
\begin{align*}
& \mathrm{mu}\left(\text { sripil }{ }^{\bullet} \text {, anti.sripil }{ }^{\boldsymbol{\bullet}}\right)=\mathrm{mu}\left(\text { sripil }{ }^{\boldsymbol{\bullet}}, \mathrm{Pi}^{\boldsymbol{\bullet}} \text {, anti.sripil } \mathbf{l}^{\boldsymbol{\bullet}}\right) \tag{11.86}\\
& \mathrm{mu}\left(\mathrm{til}^{\bullet} \text {, anti.til }{ }^{\bullet}\right)=\operatorname{Rig}^{\bullet}-\operatorname{giwat}\left(\mathrm{til}{ }^{\bullet}\right) . \mathrm{Qi}^{\bullet} \tag{11.87}
\end{align*}
$$

Remark 3: universalisation.

Identity (11.86) admits an automatic extension to all exact units, namely:

$$
\begin{equation*}
\operatorname{mu}\left(\mathfrak{e s z}^{\bullet}, \text { anti.esjz}\right)=\operatorname{mu}\left(\mathfrak{e s z}^{\bullet}, \mathfrak{E}^{\bullet \bullet}, \text { anti. } \mathfrak{e s z}^{\bullet}\right) \tag{11.88}
\end{equation*}
$$

Identity (11.87), which involves the approximate unit $Q i^{\bullet}$, does not admit extensions to all approximate units, ${ }^{170}$ but it does possess a restriction to the polar unit $P i^{\bullet 171}$ and hence an extension to all exact units:

$$
\begin{equation*}
\operatorname{mu}\left(\mathfrak{e s s}^{\bullet}, \text { anti.es5s}\right)=-\operatorname{giwat}\left(\mathfrak{e s 5 ^ { \bullet }}\right) \cdot \mathfrak{E}^{\bullet} \tag{11.89}
\end{equation*}
$$

11.8 $G A R I_{\mathfrak{s e}}$ and the two separation lemmas.

Let \mathfrak{E} be an exact flexion unit and \mathfrak{O} its conjugate unit. Reverting to the notations of $\S 4.1$, with any $f(x):=x+\sum_{1 \leq r} x^{r+1}$ in the group GIFF, we associate its image $\mathfrak{S e}_{f}^{\bullet}$ in the group $G A R I_{<\mathfrak{s e}>}^{\leq} \subset G A R I^{\text {as }}$. Being the exponential of an alternal bimould of $A R I, \mathfrak{S e}_{f}^{\bullet}$ is automatically symmetral but its swappee $\mathfrak{S o ̈}_{f}^{\circ}:=\operatorname{swap} . \mathfrak{S e}_{f}^{\bullet}$ is only exceptionnally so. It does possess, however, two remarkable separation properties, which may be viewed as weakened forms of symmetrality. Indeed, if we set

$$
\begin{align*}
& \text { gepar. } \mathfrak{S e}_{f}^{\bullet}:=\operatorname{mu}\left(\text { anti.swap. } \mathfrak{S e}_{f}^{\bullet} \text {, swap. } \mathfrak{S e}_{f}^{\bullet}\right) \tag{11.90}\\
& \text { hepar. } \mathfrak{e e}_{f}^{\bullet}:=\sum_{1 \leq r \leq r(\bullet)} \text { pus }{ }^{k} . \operatorname{logmu} \text {.swap. } \mathfrak{S e}_{f}^{\bullet} \tag{11.91}
\end{align*}
$$

then both gepar. $\mathfrak{S e}_{f}^{\bullet}$ and hepar. $\mathfrak{S e}_{f}^{\bullet}$ turn out to be expressible as simple, uninflected products of the conjugate unit \mathfrak{O}. More precisely:

$$
\begin{align*}
\text { gepar. } \mathfrak{S e}_{f}^{w_{1}, \ldots, w_{r}} & :=a_{r}^{*} \mathfrak{D}^{w_{1}} \ldots \mathfrak{O}^{w_{r}} \text { with } \quad a_{r}^{*}:=(r+1) a_{r} \tag{11.92}\\
\text { hepar. } \mathfrak{S e}_{f}^{w_{1}, \ldots, w_{r}} & :=a_{r}^{* *} \mathfrak{D}^{w_{1}} \ldots \mathfrak{O}^{w_{r}} \text { with } \sum_{1 \leq r} a_{r}^{* *} x^{r}:=\frac{x}{2} \frac{f^{\prime \prime}(x)}{f^{\prime}(x)} \tag{11.93}
\end{align*}
$$

Remark 1: The definition of hepar involves logmu, which is of course the logarithm relative to the $m u$-product. It should be noted, however, that after simplification all rational coefficients disappear from the right-hand side of (11.91) and the only coefficients left are ± 1. In fact, the right-hand side of (11.91) is none other than the left-hand side of (2.75).

Remark 2: If $\mathfrak{S} \ddot{o}_{f}$ were exactly symmetral, it would verify the two subsymmetries implied by symmetrality, namely gantar-invariance (see (2.74)) and gus-neutrality (see (2.75)) and we would have $m u\left(\right.$ pari.anti. $\left.\mathfrak{S o}_{f}^{\bullet}, \mathfrak{S o}_{f}^{\bullet}\right) \equiv 1^{\bullet}$ and $\sum_{1 \leq r \leq r(\bullet)} p u s^{k} . \operatorname{logmu} . \mathscr{S o}_{f}^{\bullet} \equiv 0^{\bullet} \bmod B I M U_{1}$. As it is, we merely have the separation properties (11.92) and (11.93), with the addded twist that

[^89]separ involves $m u\left(\right.$ anti. $\left.\mathfrak{S}_{f}^{\bullet}, \mathfrak{S}_{\boldsymbol{o}}^{\boldsymbol{\bullet}}\right)$ rather than $m u\left(\right.$ pari.anti. $\left.\mathfrak{S o}_{f}^{\bullet}, \mathfrak{S}_{f}^{\boldsymbol{\circ}}\right)$.
Remark 3: The simplest way to prove the separation identities is to consider the infinitesimal dilator $f_{\#}(x)=\sum_{1 \leq r} \eta_{r} x^{r+1}$ of f and to form its image $\mathfrak{T e}_{f}^{\bullet}=\sum_{1 \leq r} \eta_{r} \mathfrak{r} \mathfrak{e}_{r}^{\bullet \bullet}$ in ARI. One of the defining identities for $\mathfrak{S e}_{f}^{\bullet}$ then reads:
\[

$$
\begin{equation*}
r(\bullet) \mathfrak{S e}_{f}^{\bullet}=\operatorname{preari}\left(\mathfrak{S e}_{f}^{\bullet}, \mathfrak{T e}_{f}^{\bullet}\right)=\operatorname{preawi}\left(\mathfrak{S e}_{f}^{\bullet}, \mathfrak{T}_{f}^{\bullet}\right) \tag{11.94}
\end{equation*}
$$

\]

Under the swap transform this becomes: ${ }^{172}$

$$
\begin{equation*}
r(\bullet) \mathfrak{S} \ddot{\mathfrak{o}}_{f}^{\bullet}=\operatorname{preira}\left(\mathfrak{S} \ddot{\boldsymbol{o}}_{f}^{\bullet}, \mathfrak{T} \ddot{\mathfrak{o}}_{f}^{\bullet}\right)=\operatorname{preiwa}\left(\mathfrak{S} \ddot{\mathfrak{o}}_{f}^{\bullet}, \mathfrak{T}_{f}^{\bullet \bullet}\right) \tag{11.95}
\end{equation*}
$$

If we then set:

$$
\begin{equation*}
\ddot{\mathfrak{O}}_{*}^{w_{1}, \ldots, w_{r}}:=a_{r}^{*} \mathfrak{D}^{w_{1}} \ldots \mathfrak{D}^{w_{r}} \quad ; \quad \ddot{\mathfrak{O}}_{* *}^{w_{1}, \ldots, w_{r}}:=a_{r}^{* *} \mathfrak{O}^{w_{1}} \ldots \mathfrak{D}^{w_{r}} \tag{11.96}
\end{equation*}
$$

we readily sees that (11.92) is equivalent to the rather elementary identity:

$$
\begin{equation*}
r(\bullet) \ddot{\mathfrak{O}}_{*}^{\bullet}=\operatorname{iwat}\left(\mathfrak{T} \ddot{\mathfrak{o}}_{f}^{\bullet}\right) \cdot \ddot{\mathfrak{O}}_{*}^{\bullet}+\operatorname{mu}\left(\ddot{\mathfrak{D}}_{*}^{\bullet}, \mathfrak{T}_{f}^{\bullet}\right)+\operatorname{mu}\left(\operatorname{anti} . \mathfrak{T} \tilde{\mathfrak{o}}_{f}^{\bullet}, \ddot{\mathfrak{O}}_{*}^{\bullet}\right) \tag{11.97}
\end{equation*}
$$

The proof of the (11.93) follows the same pattern, with $\ddot{\mathfrak{O}}_{*}$ replaced by $\ddot{\mathfrak{O}}_{* *}$, but is less direct.

Remark 4: In view of these two separation identities (11.92),(11.93), which involve respectively the coefficients a_{r}^{*} and $a_{r}^{* *}$ of f^{\prime} and $f^{\prime \prime} / f^{\prime}$, i.e. of the differential operators of first and second order that give rise to simple composition laws, one may speculate about the existence of a third separation identity that would involve the coefficients $a_{r}^{* * *}$ of the Schwarzian derivative of f. At the moment no such identity is known, but it may be pointed out that the formulas in Table 3 below also fall into the broad category of separation identities: see Remark 1 in $\S 12.3$.

11.9 Bisymmetrality of $\mathfrak{e s s}^{\circ}$: conceptual proof.

The bimould $\mathfrak{e s s}^{\bullet}$ of $\S 4.2$ is a special element $\mathfrak{S e}_{f}^{\bullet}$ of $G A R I_{<\mathfrak{s e}>}$ whose preimage f and dilator $f_{\#}$ are given by:

$$
\begin{equation*}
f(x):=1-e^{-x} \quad, \quad f_{\#}(x):=1+x-e^{x} \quad, \quad \frac{x}{2} \frac{f^{\prime \prime}(x)}{f^{\prime}(x)}:=-\frac{x}{2} \tag{11.98}
\end{equation*}
$$

[^90]As a consequence, the two separation lemmas of $\S 11.8$ yield:

$$
\begin{array}{r}
\operatorname{mu}\left(\operatorname{anti} . \ddot{\mathfrak{o s s}^{\bullet}}, \ddot{\mathrm{o} s s^{\bullet}}\right)=\operatorname{expmu}\left(-\mathfrak{V}^{\bullet}\right) \\
\sum_{1 \leq k \leq r} \operatorname{pus}^{k} . \operatorname{logmu} . \ddot{\mathrm{o} s 5^{\bullet}}=-\frac{1}{2} \mathfrak{V}^{\bullet} \tag{11.100}
\end{array}
$$

Both relations exhibit the only possibly form compatible with öss $^{\circ}$ being symmetral, but we aren't quite there yet. To collect more information, let us harken back to the relation that defines $\ddot{\mathbf{w s s}}^{\circ}$ in terms of its dilator $\ddot{\mathrm{ott}}$. It reads:

$$
\begin{equation*}
r(\bullet) \ddot{\mathfrak{o} s s^{\bullet}}=\operatorname{preiwa}\left(\ddot{\mathfrak{o} s s^{\bullet}}, \ddot{\mathfrak{o t t}}{ }^{\bullet}\right) \tag{11.101}
\end{equation*}
$$

with

$$
\begin{equation*}
\ddot{\mathfrak{o} t \mathfrak{t}^{\bullet}}:=-\sum_{1 \leq r} \frac{1}{(2 r+1)!} \mathfrak{r o}_{2 r}^{\bullet}=-\sum_{1 \leq r} \frac{1}{(2 r+1)!} \text { swap. } \mathfrak{r e}{ }_{2 r}^{\bullet} \tag{11.102}
\end{equation*}
$$

Let us further $m u$-factorise $\ddot{o b s s}^{\bullet}$ as in (4.46), with the same elementary right

$$
\begin{equation*}
\ddot{0} \mathfrak{S s}_{\star}^{\bullet}=\operatorname{mu}\left(\ddot{\mathfrak{o s s}_{\star \star}}, \ddot{o b s s}_{\star}^{\bullet}\right) \quad \text { with } \quad \ddot{0} \mathfrak{S s}_{\star}^{\bullet}:=\operatorname{expmu}\left(-\frac{1}{2} \mathfrak{O}^{\bullet}\right) \tag{11.103}
\end{equation*}
$$

Elementary calculations show that (11.101) transforms into:

$$
\begin{equation*}
r(\bullet) \ddot{o s s}_{\star \star}^{\bullet}=\operatorname{preiwa}\left(\ddot{o s s}_{\star \star}^{\bullet}, \ddot{o f t t}_{\star \star}^{\bullet}\right)+\frac{1}{2} \operatorname{mu}\left(\ddot{o s s}_{\star \star}^{\bullet}, \ddot{o t t}_{\star}^{\bullet}\right) \tag{11.104}
\end{equation*}
$$

with

$$
\begin{align*}
& \ddot{\mathrm{ott}}:= \tag{11.105}\\
& \ddot{\theta}_{\star}^{\bullet} \sum_{1 \leq r} \frac{1}{(2 r)!} \operatorname{mu}(\overbrace{\mathfrak{D}^{\bullet}, \ldots, \mathfrak{O}^{\bullet}}^{2 \mathrm{t} \text { times }})=\operatorname{coshmu}\left(\mathfrak{D}^{\bullet}\right) \tag{11.106}\\
& \mathfrak{o t t}_{\star \star}^{\bullet}:=-\sum_{1 \leq r} \frac{1}{(2 r+1)!} \mathfrak{r o ̈}_{2 r}^{\bullet}
\end{align*}
$$

But since $\ddot{\boldsymbol{o} t \mathfrak{t}_{\star}^{\bullet}}$ and $\ddot{\mathfrak{o}} \mathfrak{t t}_{\star \star}^{\bullet}$ have only non-vanishing components of even length, (11.104) shows that the same must hold for ${\ddot{\mathfrak{o} s s_{\star \star}^{*}}}^{\boldsymbol{*}}$. Reverting to the factorisation (11.101) and the separation identity (11.99) and using the invariance of $0 \mathfrak{o s s}^{\circ}$, we deduce from all this:

$$
\begin{equation*}
\operatorname{mu}\left(\text { pari.anti. } 0 \mathfrak{s s} \mathfrak{s}^{\bullet}, \ddot{0} \mathfrak{s s} 5^{\circ}\right)=1^{\bullet} \tag{11.107}
\end{equation*}
$$

(11.107) expresses the gantar-invariance of öss $^{\circ}$ and (11.100) expresses its gus-neutrality. In other words, öss $^{\circ}$ possesses the two fundamental subsymmetries implied by symmetrality. Yet this still doesn't imply full symmetrality. Fortunately, two crucial facts save the situation:
(i) since $\ddot{\mathbf{0} 55^{\bullet}}$ has a swappee $\mathfrak{e s s}^{\boldsymbol{\circ}}$ that is obviously symmetral, and therefore gantar-invariant, the gantar-invariance of $\ddot{0} \mathfrak{s s}^{\circ}$, in view of the factorisation (4.46), also implies its invariance under neg.gush or, what here amounts to the same, pari.gush.
(ii) between themselves, the neg.gush-invariance and gus-neutrality of $\ddot{\mathrm{o} s s}^{\circ}$ ensure its symmetrality. ${ }^{173}$

This fact is akin to the analogous implication valid in the algebras:

$$
\{\text { pus-neutrality }+ \text { push- or neg-push-invariance }\} \Rightarrow\{\text { alternality }\}
$$

Ultimately, it rests on the fact that pus and push, interpreted in the short and long notations, ${ }^{174}$ amount to circular permutations of order r and $r+1$ respectively, which together generate the full symmetric group \mathfrak{S}_{r+1}. More precisely, each $\sigma \in \mathfrak{S}_{r+1}$ can be written as a product $\alpha^{m_{1}} \beta^{n_{1}} \ldots \alpha^{m_{r-1}} \beta^{n_{r-1}}$ with $\alpha=$ pus and $\beta=$ push.

11.10 Bisymmetrality of $\mathfrak{e s 5 ^ { \circ }}$: combinatorial proof.

This alternative proof uses the inductive expression of $\ddot{\mathfrak{o} s \mathfrak{s}^{\circ}}$ in terms of its dilators $\ddot{\mathfrak{o} t \mathfrak{t}^{\bullet}}$ (direct) and $\mathfrak{0} \mathfrak{d}{ }^{\bullet}$ (inverse). Explicitely:

$$
\begin{align*}
& r(\bullet) \ddot{\mathfrak{o} s s^{\bullet}}=+\operatorname{preiwa}\left(\ddot{\mathfrak{o} s s^{\bullet}}, \ddot{\left.\mathfrak{o} t t^{\bullet}\right)}\right. \tag{11.108}\\
& r(\bullet) \ddot{\mathfrak{o} 55^{\bullet}}=-\operatorname{giwa}\left(\ddot{\mathfrak{o}} \mathfrak{d} \mathfrak{d}^{\bullet}, \ddot{\mathfrak{o} s s^{\bullet}}\right) \tag{11.109}
\end{align*}
$$

with

$$
\begin{align*}
\ddot{\mathfrak{o} t t^{\bullet}} & :=\text { swap. } \mathfrak{e t t} & \text { and } & \mathfrak{e t t} \tag{11.110}
\end{align*}
$$

These identities flow from the fact that the preimage of $\mathfrak{e s s}^{\circ}$ in GIFF is the diffeo $f(x):=1-e^{-x}$ with a reciprocal diffeo $f^{-1}(x)=-\log (1-x)$. The corresponding dilators therefore admit the expansions

$$
\begin{array}{cc}
f_{\#}(x)=1+x-e^{x} & =-\sum_{1 \leq r} \frac{1}{(r+1)!} x^{r+1} \\
\left(f^{-1}\right)_{\#}(x)=x+(1-x) \log (1-x) & =+\sum_{1 \leq r} \frac{1}{r(r+1)} x^{r+1}(\tag{}
\end{array}
$$

[^91]which provide us with the defining coefficients of $\mathfrak{e t t}^{\bullet}$ and $\mathfrak{e d d ^ { \bullet }}$.
On the face of it, relation (11.108), being linear in $\ddot{0} \mathfrak{s s}^{\circ}$, would seem a more promising starting point than relation (11.109), whose right-hand side is heavily non-linear in $\ddot{0 s s}^{\circ}$. This appearance is deceptive, though, because the bimould $\mathfrak{e t t} \mathfrak{}^{\bullet}$ possesses only a simple symmetry (alternal), unlike the bimould $\mathfrak{e d d}^{\bullet}$, which possesses a double one: it is alternal, with an \mathfrak{O}-alternal swappee, as already observed in $\S 4.1$. Indeed, $\mathfrak{e d 0 ^ { \bullet }}$ coincides with the bimould $\mathfrak{s r e}{ }^{\bullet}$ of (4.6). We shall therefore take our stand on (11.109) rather than (11.108). But first we require a general bimould identity.

For any two bimoulds S^{\bullet}, D^{\bullet} in $B I M U^{*} \times B I M U_{*}$, i.e. such that $S^{\emptyset}=1$ and $D^{\emptyset}=0$, we introduce the following abbreviations

$$
\begin{align*}
\boldsymbol{S}^{\left\{\left\{\boldsymbol{w}^{1} ; \boldsymbol{w}^{2}\right\}\right\}} & :=-S^{\boldsymbol{w}^{1}} S^{\boldsymbol{w}^{2}}+\sum_{\boldsymbol{w} \in \operatorname{sha}\left(\boldsymbol{w}^{1} ; \boldsymbol{w}^{2}\right)} S^{\boldsymbol{w}} \tag{11.114}\\
\boldsymbol{D}^{\left[\left[\boldsymbol{w}^{1} ; \boldsymbol{w}^{2}\right]\right]} & :=\left[\sum_{\boldsymbol{w} \in \operatorname{sho}\left(\boldsymbol{w}^{1} ; \boldsymbol{w}^{2}\right)} D^{\boldsymbol{w}}\right]_{\mathfrak{V} \cdot=-2 S_{\mathbf{1}}} \tag{11.115}\\
\boldsymbol{S}^{\{\boldsymbol{w}\}} & :=\left[\operatorname{mu}\left(S^{\bullet}, \operatorname{anti} . S^{\bullet}\right)+\operatorname{giwat}\left(S^{\bullet}\right) \cdot \mathfrak{V}^{\bullet}\right]_{\mathfrak{V} \cdot=-2 S_{\mathbf{1}}} \tag{11.116}
\end{align*}
$$

In all the above, S_{1}^{\bullet} denotes the projection of S^{\bullet} onto $B I M U_{1}$, and the interpretation of the three symbols is as follows:
(i) $\boldsymbol{S}^{\{\bullet \bullet ; \bullet\}}$ measures the failure of S^{\bullet} to be symmetral
(ii) $\boldsymbol{D}^{[\bullet ; \bullet]]}$ measures the failure of D^{\bullet} to be \mathfrak{O}-alternal, with \mathfrak{O}-alternality defined as in $\S 3.4$, but after replacement of the flexion unit \mathfrak{O}^{\bullet} by $-2 S_{1}^{\bullet}$, which is not required to be a flexion unit!
(iii) $\boldsymbol{S}^{\{\bullet\}}$ measure the failure of S^{\bullet} to verify a property closely related to gantar-invariance, which is a subsymmetry of symmetrality.

Thus, for $r\left(\boldsymbol{w}^{\mathbf{1}}\right)=r\left(\boldsymbol{w}^{\mathbf{2}}\right)=1$ and for any \boldsymbol{w}, we get (mark the signs and the position of anti):

$$
\begin{aligned}
\boldsymbol{S}^{\left\{\left\{\left(w_{1}\right) ;\left(w_{2}\right)\right\}\right\}} & =-S^{w_{1}} S^{w_{2}}+S^{w_{1}, w_{2}}+S^{w_{2}, w_{1}} \\
\boldsymbol{D}^{\left.\left[\left(w_{1}\right) ;\left(w_{2}\right)\right]\right]} & =D^{w_{1}, w_{2}}+D^{w_{2}, w_{1}}+2 D^{\left.w_{1}\right\rceil} S^{\left\lfloor w_{2}\right.}+2 D^{\left.w_{2}\right\rceil} S^{\left\lfloor w_{1}\right.} \\
\boldsymbol{S}^{\{\boldsymbol{w}\}} & =\sum_{\boldsymbol{w}^{1} \cdot \boldsymbol{w}^{2}=\boldsymbol{w}} S^{\boldsymbol{w}^{1}}(\text { anti. } S)^{\boldsymbol{w}^{2}}-2 \sum_{\boldsymbol{w}^{1} \cdot w_{0} \cdot \boldsymbol{w}^{2}=\boldsymbol{w}} S^{\left.\boldsymbol{w}^{1}\right\rfloor} S^{\left.S_{0}\right\rceil}(\text { anti. } S)^{\left\lfloor\boldsymbol{w}^{2}\right.}
\end{aligned}
$$

We now require the following lemma:

If the bimoulds S^{\bullet}, D^{\bullet} are related under the identity: ${ }^{175}$

$$
\begin{equation*}
-r(\bullet) S^{\bullet}=\operatorname{giwa}\left(D^{\bullet}, S^{\bullet}\right) \tag{11.117}
\end{equation*}
$$

then for any two $\boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{\mathbf{2}}$ the identity holds:

$$
\begin{equation*}
0=\left(r_{1}+r_{2}\right) \boldsymbol{S}^{\left\{\left\{\boldsymbol{w}^{1} ; \boldsymbol{w}^{2}\right\}\right\}}+\boldsymbol{D}^{\left[\left[\boldsymbol{w}^{\mathbf{1}} ; \boldsymbol{w}^{2}\right]\right]}+\boldsymbol{\Sigma}_{\mathbf{1}}+\boldsymbol{\Sigma}_{\boldsymbol{2}}+\boldsymbol{\Sigma}_{\mathbf{3}} \tag{11.118}
\end{equation*}
$$

(i) with a sum $\boldsymbol{\Sigma}_{\mathbf{1}}$ linear in earlier terms $\boldsymbol{D}^{\left[\left[\boldsymbol{w}^{\prime} ; \boldsymbol{w}^{\prime \prime}\right]\right]}$ and multilinear in earlier terms $S^{\boldsymbol{w}^{*}}$, "earlier" meaning that $r^{\prime}+r^{\prime \prime}$ and r^{*} are always $<r_{1}+r_{2}$.
(ii) with a sum $\boldsymbol{\Sigma}_{\mathbf{2}}$ bilinear in earlier terms $\boldsymbol{S}^{\left\{\left\{\boldsymbol{w}^{\prime} ; \boldsymbol{w}^{\prime \prime}\right\}\right\}}, D^{\boldsymbol{w}^{\prime \prime \prime}}$ and multilinear in earlier terms $S^{\boldsymbol{w}^{*}}$.
(iii) with a sum $\boldsymbol{\Sigma}_{\boldsymbol{3}}$ bilinear in earlier terms $\boldsymbol{S}^{\left\{\boldsymbol{w}^{\prime}\right\}}, D^{\boldsymbol{w}^{\prime \prime}}$ and multilinear in earlier terms $S^{\boldsymbol{w}^{*}}$.
Moreover, in all three sums, the coefficients in front of the monomials made up of 'earlier' terms are always equal to +1 .

The way to prove (11.118) is:
(i) to start from the identity

$$
\left(r_{1}+r_{2}\right) \boldsymbol{S}^{\left\{\left\{\boldsymbol{w}^{1} ; \boldsymbol{w}^{2}\right\}\right\}}=-\left(r_{1} S^{\boldsymbol{w}^{1}}\right) S^{\boldsymbol{w}^{2}}-S^{\boldsymbol{w}^{1}}\left(r_{2} S^{\boldsymbol{w}^{\boldsymbol{2}}}\right)+\sum_{\boldsymbol{w}^{1} \cdot \boldsymbol{w}^{2}=\boldsymbol{w}}\left(r_{1}+r_{2}\right) S^{\boldsymbol{w}}
$$

(ii) to replace therein all terms of the form $r(\bullet) S^{\bullet}$ by $-\operatorname{giwa}\left(D^{\bullet}, S^{\bullet}\right)$
(iii) to replace (- this clearly is the crucial step -) the usual definition of giwa for totally ordered sequences \boldsymbol{w} by an analogous expression valid for sequences \boldsymbol{w} carrying a weaker, arborescent order ${ }^{176}$ - in the present instance, for sequences \boldsymbol{w} consisting of two totally ordered, but mutually non comparable branches $\boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{\mathbf{2}}$.

Thus, in the (very elementary) case $r_{1}=1, r_{2}=2$, we find

$$
0=(1+2) \boldsymbol{S}^{\left\{\left\{\binom{u_{1}}{v_{1}} ; ;\binom{u_{2}, u_{2}, u_{3}}{v_{2}}\right\}\right\}}+\boldsymbol{D}^{\left[\left[\binom{u_{1}}{v_{1}} ;\left(u_{2}, u_{2}, v_{3}\right)\right]\right]}+\boldsymbol{\Sigma}_{\boldsymbol{1}}+\boldsymbol{\Sigma}_{\mathbf{2}}+\boldsymbol{\Sigma}_{\mathbf{3}}
$$

[^92]with
\[

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\mathbf{2}}=\boldsymbol{S}^{\left\{\left\{\binom{u_{1}}{v_{1}} ;\binom{u_{3}}{v_{3}}\right\}\right\}} S^{\binom{\left(u_{2}\right)}{v_{2}}}+\boldsymbol{S}^{\left\{\left\{\binom{u_{1}}{v_{1: 3}} ;\binom{u_{2}}{v_{2}: 3}\right\}\right\}} S^{\binom{u_{1} 23}{v_{3}}}+\boldsymbol{S}^{\left\{\left\{\binom{u_{1}}{v_{12}} ;\binom{u_{3}}{v_{3: 2}}\right\}\right\}} S^{\binom{u_{12} 23}{v_{2}}} \\
& \left.\Sigma_{3}=\boldsymbol{S}^{\left\{\begin{array}{l}
\left\{v_{2: 1}, v_{3}\right. \\
u_{2}, u_{3}
\end{array}\right\}} T^{\left(u_{1} v_{1}\right)} v_{1}\right)
\end{aligned}
$$
\]

At this point, all we have to do is:
(i) replace S^{\bullet} by $\ddot{\mathfrak{o s s}}{ }^{\bullet}$ and D^{\bullet} by $\ddot{\mathfrak{d}} \mathfrak{0}^{\bullet}$ in (11.118)
(ii) observe that since in this case $\mathfrak{O}^{\bullet}=-2 \ddot{\mathfrak{o g}}_{1}^{\bullet}$, all terms $\boldsymbol{D}^{[\bullet \bullet \bullet]}$ automatically vanish, since $D^{\bullet} \equiv \ddot{\mathfrak{o}} \mathfrak{d} \mathfrak{d}^{\bullet}$ is indeed \mathfrak{O}-alternal
(iii) observe that the identities $\boldsymbol{S}^{\{\bullet\}}=0$ (up to length $r-1$) are an easy consequence of the symmetrality of $S^{\bullet} \equiv \mathbf{0 . s s}^{\bullet}$ (up to length $r-1$) and of the factorisation (4.46). Besides, these identities $\boldsymbol{S}^{\{\boldsymbol{\bullet}\}}=0$ are also capable of an elementary, direct derivation, as we saw towards the end of §11.7: see (11.89).

Altogether, the identity (11.118) shows that if $\ddot{\mathfrak{o s s}}{ }^{\circ}$ is symmetral up to length $r-1$, it is automatically symmetral up to length r.

There exist several other strategies for establishing the symmetrality of $\ddot{o}^{\circ}{ }^{\circ}$, all of more or less equal length, ${ }^{177}$ but apparently no completely elementary proof.

12 Tables, index, references.

12.1 Table 1: basis for Flex (E).

Here are the bases of the first cells of the free monogenous structure \oplus Flex $x_{r}(\mathfrak{E})$ generated by a general \mathfrak{E} subject only to one of the four possible parity constraints (3.1): it doesn't matter which. By retaining only the first $\frac{(2 r)!}{(r+1)!r!}$ elements, one also obtains bases for the eumonogenous structure \oplus Flex ${ }_{r}(\mathfrak{E})$
${ }^{177}$ Thus, there exists a heavily calculational proof based on formula (12.6) of $\S 12.3$.
generated by an exact flexion unit \mathfrak{E}.

$$
\begin{aligned}
& \mathfrak{e}_{1,1}^{w_{1}} \quad:=\mathfrak{E}^{\binom{\left(u_{1}\right.}{v_{1}}} \quad \|
\end{aligned}
$$

$$
\begin{aligned}
& \| \mathfrak{e}_{3,11}^{w_{1}, w_{2}, w_{3}}:=\mathfrak{E}^{\left(u_{1} v_{1}\right)} \mathfrak{E}^{\left(u_{2: 1}\right)} \mathfrak{E}^{\left(u_{3}\right.}{ }_{v_{3}}^{\left(u_{3}\right)} \\
& \| \mathfrak{e}_{3,12}^{w_{1}, w_{2}, w_{3}}:=\mathfrak{E}^{\left(v_{1}\right)} \mathfrak{E}^{\left(u_{v_{2}}\right)} \mathfrak{E}^{\left(u_{v_{3}}\right)}
\end{aligned}
$$

Here follows the graphic interpretation of the bases, with full lines for the graphs $\boldsymbol{g i}$ and broken lines for the graphs $\boldsymbol{g a}$ (see $\S 3.3$).

Figure 3: Length $r=1,2$. Basis vectors $\left\{\mathfrak{e}_{1,1}^{\bullet}\right\}$ and $\left\{\mathfrak{e}_{2,1}^{\boldsymbol{\bullet}}, \mathfrak{e}_{2,2}^{\bullet}\right\} \cup\left\{\mathfrak{e}_{2,3}^{\bullet}\right\}$.

Figure 4: Length $r=3$. Basis vectors $\left\{\mathfrak{e}_{3,1}^{\dot{\bullet}}, \ldots, \mathfrak{e}_{3,5}^{\dot{\bullet}}\right\} \cup\left\{\mathfrak{e}_{3,6}^{\boldsymbol{\bullet}}, \ldots, \mathfrak{e}_{3,12}^{\boldsymbol{\bullet}}\right\}$.

We end with bases for the first cells of the structures \oplus Flex (\mathfrak{E}) and $\oplus \operatorname{Flex}_{r}(\mathfrak{O})$ for an approximate flexion unit \mathfrak{E} verifying the same tripartite equation (3.30) as $Q a a_{c}$ and an approximate flexion unit \mathfrak{O} verifying the same tripartite equation (3.31) as $Q i i_{c}$. Here, \mathfrak{d} denotes the discrete dirac
multiplied by c. In other words: $\mathfrak{d}^{t}:=c \delta(t)$.

$$
\begin{aligned}
& \mathfrak{e d}_{1}^{w_{1}}=\mathfrak{E}^{\left(u_{v_{1}}^{\left(u_{1}\right)}\right.} \\
& \mathfrak{e d}_{1}^{w_{1}, w_{2}}=\mathfrak{E}^{\binom{u_{1}}{v_{12}}} \mathfrak{E}^{\left(u_{u_{2}}\right)} \\
& \mathfrak{e v}_{2}^{w_{1}, w_{2}}=\mathfrak{E}^{\left(u_{12}\right)} \mathfrak{E}^{\left(u_{1}\right.}{ }_{v_{2}: 1}^{\left(u_{2}\right)} \\
& \mathfrak{e d}_{3}^{w_{1}, w 2}=\mathfrak{d}^{v_{1}} \quad \mathfrak{d}^{v_{2}} \\
& \mathfrak{e d}_{1}^{w_{1} . . w_{3}}=\mathfrak{E}^{\left(u_{1: 2}\right)} \quad \mathfrak{E}^{\left(u_{1}\left(u_{2: 3}\right)\right.} \mathfrak{E}^{\left(u_{123}\right)} \\
& \ldots \ldots \text {... }=\ldots . . \text {.............. } \\
& \mathfrak{e d}_{5}^{w_{1} \ldots w_{3}}=\mathfrak{E}^{\left(u_{12} v_{1}\right)} \mathfrak{E}^{\left(v_{v_{2} 1}\right)} \mathfrak{E}^{\left(u_{23}\left(u_{3: 2}\right)\right.}{ }^{\left(u_{3}\right)} \\
& \mathfrak{e d}_{6}^{w_{1} . . w_{3}}=\mathfrak{E}^{\left(u_{v_{1}}\right)} \quad \mathfrak{d}^{v_{2}} \quad \mathfrak{d}^{v_{3}} \\
& \mathfrak{e d}_{7}^{w_{1} . . w_{3}}=\mathfrak{E}^{\left(u_{v_{2}}\right)} \quad \mathfrak{d}^{v_{1}} \quad \mathfrak{d}^{v_{3}} \\
& \mathfrak{e d}_{8}^{w_{1} \ldots w_{3}}=\mathfrak{E}_{v_{3}}^{\left(u_{3}\right)} \quad \mathfrak{d}^{v_{1}} \quad \mathfrak{d}^{v_{2}} \\
& \mathfrak{e d}_{9}^{w_{1} . w_{3}}=\mathfrak{E}^{\left(u_{v_{1}}^{u_{1}}\right)} \mathfrak{d}^{v_{2: 1}} \quad \mathfrak{d}^{v_{3: 1}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{e d}_{23}^{w_{1} . w_{4}}=\mathfrak{E}^{\left(u_{v_{3}}\right)} \quad \mathfrak{E}^{\left(u_{4: 3}\right)} \mathfrak{d}^{v_{4}} \quad \mathfrak{d}^{v_{2}} \quad \| \mathfrak{o d}_{23}^{w_{1} . . w_{4}}=\mathfrak{D}^{\left(v_{1: 2}\right)} \mathfrak{O}^{\left(v_{3: 4}\right)} \mathfrak{d}^{u_{12}} \quad \mathfrak{d}^{u_{34}}
\end{aligned}
$$

12.2 Table 2: basis for Flexin(E).

In $\S 4.1$ we introduced three series of bimoulds $\left\{\mathfrak{m} \mathfrak{e}_{r}^{\bullet}\right\},\left\{\mathfrak{n} \mathfrak{e}_{r}^{\bullet}\right\},\left\{\mathfrak{r e} \mathfrak{e}_{r}^{\bullet}\right\}$, each of which, under $m u$-multiplication, produces a linear basis for Flexin (\mathfrak{E}). For the first two series, the inductive definitions $\mathfrak{m} \mathfrak{e}_{r}^{\boldsymbol{\bullet}}:=\operatorname{amit}\left(\mathfrak{m} \mathfrak{e}_{r-1}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet}$ and $\mathfrak{n e}{ }_{r}^{\bullet}:=\operatorname{anit}\left(\mathfrak{n e}_{r-1}^{\bullet}\right)$.E゚ straightaway generate atoms

$$
\begin{align*}
& \mathfrak{m} \mathfrak{e}_{r}^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=\mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{1}, 2}{v_{2}, 3}} \ldots \mathfrak{E}^{\binom{u_{1}, \ldots r}{v_{r}}} \tag{12.1}
\end{align*}
$$

in all cases, i.e. whether \mathfrak{E} is a flexion unit or not. Not so with the more important - because alternal - third series. Here, the inductive rule $\mathfrak{r e}{ }_{r}^{\bullet}:=$ $\operatorname{arit}\left(\mathfrak{r} \mathfrak{e}_{r-1}^{\bullet}\right) \cdot \mathfrak{E}^{\bullet}$ produces 2^{r-1} summands. If \mathfrak{E} is a flexion unit, this far exceeds the minimal number of atoms required, which is always r. Moreover, in the polar realisation $\mathfrak{E}=P i$, the mechanical application of the induction rule produces illusory poles. To remedy these drawbacks, we may use any one of these three alternative expressions:

$$
\begin{align*}
\mathfrak{r} \mathfrak{e}_{r}^{\bullet} & =\sum_{r_{1}+r_{2}=r}^{0 \leq r_{1}}(-1)^{r_{1}} r_{2} \operatorname{mu}\left(\mathfrak{n} \mathfrak{r}_{r_{1}}^{\bullet}, \mathfrak{m} \mathfrak{r}_{r_{2}}^{\bullet}\right) \tag{12.3}\\
\mathfrak{r} e_{r}^{\bullet} & =\sum_{r_{1}+r_{2}=r}^{0 \leq r_{2}}-(-1)^{r_{1}} r_{1} \operatorname{mu}\left(\mathfrak{n} \mathfrak{e}_{r_{1}}^{\bullet}, \mathfrak{m} \mathfrak{e}_{r_{2}}^{\bullet}\right) \tag{12.4}\\
\mathfrak{r e} \mathfrak{e}_{r}^{\bullet} & =\sum_{r_{1}+r_{2}=r}^{0 \leq r_{1}, r_{2}}(-1)^{r_{1}} \frac{r_{2}-r_{1}}{2} \operatorname{mu}\left(\mathfrak{n} \mathfrak{e}_{r_{1}}^{\bullet}, \mathfrak{m} \mathfrak{e}_{r_{2}}^{\bullet}\right) \tag{12.5}
\end{align*}
$$

with the convention $\mathfrak{m} \mathfrak{e}_{0}^{\bullet}=\mathfrak{n} \mathfrak{e}_{0}^{\bullet}:=1$. These sums produce indeed the minimal number of atoms ${ }^{178}$ and do away with illusory poles, but they are of course valid only if \mathfrak{E} is a flexion unit. Only the last expression is left-right symmetric, and renders the alternality of the $\mathfrak{r e}{ }_{r}^{\bullet}$ 'visually' obvious.

12.3 Table 3: basis for Flexinn (E).

To produce an explicit basis, we must first express the iterated preari products $\mathfrak{R e} \mathfrak{e}_{r}^{\bullet}$ of the basic alternal bimoulds $\mathfrak{r e}{ }_{r}^{\bullet}$, calculated as usual from left to right:

$$
\mathfrak{R} \mathfrak{e}_{r_{1}}^{\bullet}:=\mathfrak{r} \mathfrak{e}_{r_{1}}^{\bullet} \quad \text { and } \quad \mathfrak{R} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet}:=\operatorname{preari}\left(\mathfrak{R e} \dot{e}_{r_{1}, \ldots, r_{s-1}}^{\bullet}, \mathfrak{\mathfrak { e } _ { r _ { s } } ^ { \bullet }}\right)
$$

[^93]Technically, however, it is more convenient to consider the swappees $\mathfrak{R} \ddot{o}_{r}^{\bullet}:=$ swap. $\mathfrak{R e} \mathfrak{e}_{\boldsymbol{r}}^{\bullet}$. The formula for expressing them as minimal sums of inflected atoms may seem forbiddingly complex, but it is still very useful, and in some contexts even indispensable. It reads:

$$
\begin{equation*}
\mathfrak{R} \ddot{\boldsymbol{o}}_{r_{1}, \ldots, r_{s}}^{\bullet}:=\sum \mathfrak{P} \mathfrak{o}_{\substack{\left.\boldsymbol{c}_{r^{1}}^{n_{1}, \ldots, r_{t}}, r^{t}\right)}}^{r_{\bar{n}_{1}}} H_{\bar{n}_{1}, \underline{n}_{1}}^{r^{1}} \ldots H_{\bar{n}_{t}, \underline{n}_{t}}^{r^{t}} \tag{12.6}
\end{equation*}
$$

(i) with a sum extending to all partitions of $\boldsymbol{r}=\left(r_{1}, \ldots, r_{s}\right)$ into any number of partial sequences $\boldsymbol{r}^{\boldsymbol{i}}$, and to all choices of integers n_{i}, subject only to the following constraints: the internal order of each \boldsymbol{r}^{i} must be compatible with that of \boldsymbol{r}, whereas the various \boldsymbol{r}^{i} may be positioned in any order; and the integers n_{i} need only verify $r_{i-1}^{*}<n_{i} \leq r_{i}^{*}$ with $r_{i}^{*}:=\left\|\boldsymbol{r}^{\mathbf{1}}\right\|+\ldots+\left\|\boldsymbol{r}^{\boldsymbol{i}}\right\|$.
(ii) with half-integers \underline{n}_{i} and integers \bar{n}_{i} defined by

$$
\begin{array}{ll}
\underline{n}_{i}:=n_{i}-r_{i}^{*}-\frac{1}{2} & \text { with } r_{i}^{*}:=\left\|\boldsymbol{r}^{\mathbf{1}}\right\|+\ldots+\left\|\boldsymbol{r}^{\boldsymbol{i}}\right\| \\
\bar{n}_{i}:=1+r^{*}-n_{i} & \text { with } r^{*}:=\left\|\boldsymbol{r}^{\mathbf{1}}\right\|+\ldots+\left\|\boldsymbol{r}^{\boldsymbol{t}}\right\|=r_{1}+\ldots+r_{s}
\end{array}
$$

(iii) with inflected atoms of type: ${ }^{179}$

$$
\mathfrak{P o}_{\substack{n_{1} \tag{12.7}\\
r_{1}^{1}, \ldots, \ldots, r_{t} \\
n_{t}^{t}}}^{*}:=\prod_{1 \leq i \leq t}\left(\mathfrak{O}^{\binom{u_{1}+\ldots+u_{r_{i}^{*}}^{*}}{v_{n_{i}-v n_{i+1}}}} \prod_{\substack{\left(\begin{array}{c}
n_{i-1}^{*}<n \leq n_{i}^{*} \\
n \neq n_{i}
\end{array}\right)}} \mathfrak{O}^{\binom{u_{n}}{v_{n}-v_{n_{i}}}}\right)
$$

(iv) with coefficients $H_{\bar{n}, \underline{n}}^{r}$ given by the sums

$$
\begin{equation*}
H_{\bar{n}, \underline{n}}^{r}:=\sum_{r^{+} \cup \boldsymbol{r}^{-}=\boldsymbol{r}} \operatorname{sign}\left(\left\|\boldsymbol{r}^{+}\right\|-\underline{n}\right) F_{\boldsymbol{r}^{+}}(\bar{n}) F_{\boldsymbol{r}^{-}}(\bar{n}) \tag{12.8}
\end{equation*}
$$

ranging over all partitions $\boldsymbol{r}^{+} \cup \boldsymbol{r}^{-}$of \boldsymbol{r}.
If $\boldsymbol{r}^{+}=\left(r_{1}^{+}, \ldots, r_{p}^{+}\right)$and $\boldsymbol{r}^{-}=\left(r_{1}^{-}, \ldots, r_{q}^{-}\right)$, the two factors $F_{\boldsymbol{r}^{ \pm}}$are defined as follows:

$$
\begin{aligned}
& F_{\boldsymbol{r}^{+}}(\bar{n}):=(\bar{n})\left(r_{2}^{+}+r_{3}^{+}+. .+r_{p}^{+}-\bar{n}\right)\left(r_{3}^{+}+. .+r_{p}^{+}-\bar{n}\right) \ldots\left(r_{p}^{+}-\bar{n}\right) \\
& F_{\boldsymbol{r}^{-}}(\bar{n}):=(\bar{n})\left(r_{2}^{-}+r_{3}^{-}+. .+r_{q}^{-}+\bar{n}\right)\left(r_{3}^{-}+. .+r_{q}^{-}+\bar{n}\right) \ldots\left(r_{p}^{-}+\bar{n}\right)
\end{aligned}
$$

If $p(\operatorname{resp} . q)$ is 1 , then $F_{\boldsymbol{r}^{+}}(\bar{n})\left(\operatorname{resp} F_{\boldsymbol{r}^{-}}(\bar{n})\right)$ reduces to \bar{n}.
Lastly, for the extreme partitions $\left(\boldsymbol{r}^{+}, \boldsymbol{r}^{-}\right)=(\boldsymbol{r}, \emptyset)$ or $(\emptyset, \boldsymbol{r})$, we must replace the product $F_{\boldsymbol{r}^{+}}(\bar{n}) F_{\boldsymbol{r}^{-}}(\bar{n})$ respectively by

$$
\begin{aligned}
& F_{r, \emptyset}(\bar{n}):=+\bar{n}\left(r_{2}+r_{3}+. .+r_{p}-\bar{n}\right)\left(r_{3}+. .+r_{p}-\bar{n}\right) \ldots\left(r_{p}-\bar{n}\right) \\
& F_{\emptyset, \boldsymbol{r}}(\bar{n}):=-\bar{n}\left(r_{2}+r_{3}+. .+r_{q}+\bar{n}\right)\left(r_{3}+. .+r_{q}+\bar{n}\right) \ldots\left(r_{q}+\bar{n}\right)
\end{aligned}
$$

${ }^{179}$ For extreme values of the index i, we must of course set $n_{0}^{*}:=0$ and $v_{n_{t+1}}:=0$.

Remark 1: massive pole cancellations.

From formula (12.6) and the shape (12.7) of the atoms involved, we immediately infer a huge difference between the specialisations $(\mathfrak{E}, \mathfrak{O})=(P a, P i)$ and $(\mathfrak{E}, \mathfrak{O})=(P i, P a)$. In the first case, the $\mathfrak{R} \mathfrak{e}_{r}^{\bullet}$ and $\mathfrak{R} \ddot{o}_{r}^{\bullet}$ are saddled with a maximal number of poles, namely $r(r+1) / 2$. In the second case, they possess far fewer - as little as $2 r-1$. This results from massive and rather extraordinary compensations that occur during the iteration of the preari product when applied to the $\mathfrak{r e}_{r_{i}}$. Were we, however, to subject the separate components of the $\mathfrak{r e}_{r_{i}}$ (as given for instance by (12.5)) to preari-iteration, no such compensations would take place.

Remark 2: bases of Flexinn(E).
On their own, the $\mathfrak{R} \mathfrak{e}_{r}^{\bullet}$ span, not Flexinn($\left.\mathfrak{E}\right)$, but the larger Flexin($\left.\mathfrak{E}\right)$. If however we restrict ourselves to combinations of the form ${ }^{180}$

$$
\begin{equation*}
\Gamma \mathfrak{R e}_{\left\{r_{1}, \ldots, r_{s}\right\}}^{\bullet}:=\sum_{\left\{\boldsymbol{r}^{\prime}\right\}=\{\boldsymbol{r}\}} \Gamma^{r_{1}^{\prime}, \ldots, r_{s}^{\prime}} \mathfrak{R} \mathfrak{e}_{r_{1}^{\prime}, \ldots, r_{s}^{\prime}}^{\bullet} \quad(\Gamma \text { symmetral }) \tag{12.9}
\end{equation*}
$$

then the new ${ }^{\Gamma} \mathfrak{R e}_{\{\boldsymbol{r}\}}^{\boldsymbol{\bullet}}$, do constitute a basis of Flexinn (\mathfrak{E}), and that too irrespective of the choice of the symmetral mould Γ, provided $\Gamma^{r_{1}}$ be $\neq 0$ for all indices r_{1}. Three choices stand out:

$$
\begin{align*}
\Gamma_{1}^{r_{1}, \ldots, r_{s}} & :=1 / s! \tag{12.10}\\
\Gamma_{2}^{r_{1}, \ldots, r_{s}} & :=\prod_{1 \leq i \leq s} \frac{1}{r_{1}+\ldots+r_{i}} \tag{12.11}\\
\Gamma_{3}^{r_{1}, \ldots, r_{s}} & :=(-1)^{s} \prod_{1 \leq i \leq s} \frac{1}{r_{i}+\ldots+r_{s}} \tag{12.12}
\end{align*}
$$

(i) The basis ${ }^{\Gamma_{1}} \mathfrak{R e} \mathfrak{e}_{\{r\}}^{\bullet}$ permits the expression of the elements $\mathfrak{S e}_{f}^{\bullet}$ of $G A R I_{<\mathfrak{s e}>}$ in terms of the coefficients ϵ_{r} of the infinitesimal generator f_{*} of f.
(ii) The basis ${ }^{\Gamma}{ }_{2} \mathfrak{R} \mathfrak{e}_{\{\boldsymbol{r}\}}^{\bullet}$ permits the expression of the elements $\mathfrak{S e}_{f}^{\bullet}$ of $G A R I_{\langle\mathfrak{s e}>}$ in terms of the coefficients γ_{r} of the (direct) infinitesimal dilator $f_{\#}$ of f.
(iii) The basis ${ }^{\Gamma}{ }_{3} \mathfrak{R} \mathfrak{e}_{\{r \boldsymbol{\bullet}\}}$ permits the expression of the elements $\mathfrak{S e}_{f}^{\bullet}$ of $G A R I_{<\mathfrak{s e}>}$ in terms of the coefficients δ_{r} of the inverse infinitesimal dilator $\left(f^{-1}\right)_{\#}$.
${ }^{180}$ with a sum ranging over all permutations \boldsymbol{r}^{\prime} of the sequence \boldsymbol{r}.)

12.4 Table 4: the universal bimould ess $^{\circ}$.

$$
\begin{aligned}
& \mathfrak{e S 5}^{w_{1}} \quad=-\frac{1}{2} \quad \mathfrak{E}^{\binom{u_{1}}{v_{1}}} \\
& \mathfrak{e s s}^{w_{1}, w_{2}} \quad=+\frac{1}{12} \quad \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{12}}{v_{2}}} \\
& +\frac{1}{12} \mathfrak{E} \mathfrak{E}^{\binom{u_{1}}{v_{1}}} \mathfrak{E}^{\binom{u_{2}}{v_{2}}} \\
& \mathfrak{e S s}^{w_{1}, w_{2}, w_{3}} \quad=\quad-\frac{1}{24} \\
& \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{12}}{v_{2}}} \mathfrak{E ^ { (} \begin{array} { c }
{ u _ { 3 } } \\
{ v _ { 3 } }
\end{array})} \\
& \mathfrak{e} \mathfrak{S S}^{w_{1}, w_{2}, w_{3}, w_{4}}=-\frac{1}{720} \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{12}}{v_{2}: 3}} \mathfrak{E}^{\binom{u_{123}}{v_{3: 4}}} \mathfrak{E}^{\binom{u_{1234}}{v_{4}}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{240} \mathfrak{E}^{\binom{u_{12}}{v_{1}}} \mathfrak{E}^{\binom{u_{2}}{v_{2: 1}}} \mathfrak{E}^{\binom{u_{3}}{v_{3}: 4}} \mathfrak{E}^{\binom{u_{34}}{v_{4}}} \\
& +\frac{1}{180} \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{12}}{v_{2: 3}}} \mathfrak{E}^{\binom{u_{12}}{v_{3}}} \mathfrak{E}^{\binom{u_{4}}{v_{4}}} \\
& +\frac{1}{120} \mathfrak{E}^{\binom{u_{1}}{v_{1}}} \mathfrak{E ^ { (} (\begin{array} { c }
{ u _ { 2 } } \\
{ v _ { 2 } : 3 }
\end{array})} \mathfrak{E}^{\binom{u_{23}}{v_{3}}} \mathfrak{E ^ { (\begin{array} { l }
{ u _ { 4 } } \\
{ v _ { 4 } }
\end{array}) } (\begin{array} { l }
{ u _ { 1 2 } } \\
{ v _ { 1 } }
\end{array})} \\
& -\frac{1}{720} \mathfrak{E}^{\binom{u_{12}}{v_{1}}} \mathfrak{E}^{\binom{u_{2}}{v_{2}: 1}} \mathfrak{E ^ { (} (\begin{array} { c }
{ u _ { 3 } } \\
{ v _ { 3 } }
\end{array})} \mathfrak{E}^{\binom{u_{4}}{v_{4}}} \\
& \mathfrak{e 5 s}{ }^{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}}=-\frac{1}{240} \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{12}}{v_{2}}} \mathfrak{E}^{\binom{u_{3}}{v_{3}: 4}} \mathfrak{E}^{\binom{u_{34}}{v_{4}}} \mathfrak{E}^{\binom{u_{5}}{v_{5}}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{480} \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{123}}{v_{2}}} \mathfrak{E}^{\binom{u_{3}}{v_{3: 2}}} \mathfrak{E}^{\binom{u_{4}}{v_{4}: 5}} \mathfrak{E} \mathfrak{E}^{\binom{u_{45}}{v_{5}}} \\
& +\frac{1}{1440} \mathfrak{E} \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{12}}{v_{2: 3}}} \mathfrak{E} \mathfrak{E}^{\binom{u_{123}}{v_{3: 4}}} \mathfrak{E} \mathfrak{E}^{\left({ }^{u_{123}}{ }_{v_{4}}\right)} \mathfrak{E} \mathfrak{E}^{\binom{u_{5}}{v_{5}}} \\
& +\frac{1}{1440} \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}} \mathfrak{E}^{\binom{u_{1}}{v_{2}}} \mathfrak{E} \mathfrak{E}^{\binom{u_{3}}{v_{3: 2}}} \mathfrak{E ^ { (} (\begin{array} { c }
{ u _ { 4 } } \\
{ v _ { 4 } }
\end{array})} \quad \mathfrak{E}^{\binom{u_{5}}{v_{5}}}
\end{aligned}
$$

For $r=6$ or larger, the number of summands increases dramatically. However, one gets markedly simpler expressions when expanding $\mathfrak{e s s}^{\circ}$ in the bases $\left\{\mathfrak{m} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet}\right\},\left\{\mathfrak{n} \mathfrak{e}_{r_{1}, \ldots, r_{s}}^{\bullet}\right\},\left\{\mathfrak{r e}_{r_{1}, \ldots, r_{s}}^{\bullet}\right\}$ of Flexin $(\mathfrak{E}) \subset$ Flex (\mathfrak{E}) : see $\S 4.1$.

12.5 Table 5: the universal bimould $\mathfrak{e s j}_{\sigma}{ }^{\circ}$.

$$
\mathfrak{e s z}_{\sigma}^{w_{1}}=
$$

$$
+\sigma
$$

$$
\times \mathfrak{E}^{\binom{u 1}{v 1}}
$$

$\mathfrak{e s j}_{\sigma}^{w_{1}, w_{2}}=$
$+\frac{1}{3} \sigma(1+2 \sigma)$
$\times \mathfrak{E}^{\binom{u_{12}}{v_{2}}} \mathfrak{E}^{\binom{\left(u_{1: 2}\right)}{v_{1:}}}$
$-\frac{1}{3} \sigma(1-\sigma)$
$\times \mathfrak{E}^{\left(u_{12}\right)} \mathfrak{E}^{\left({ }_{v_{2: 1}}^{u_{2}}\right)}$
$\mathfrak{e s j}_{\sigma}^{w_{1}, w_{2}, w_{3}}=$
$+\frac{1}{6} \sigma(1+2 \sigma)(1+\sigma)$
$\times \mathfrak{E}^{\binom{u_{123}}{v_{3}}} \mathfrak{E}^{\binom{u_{12}}{v_{2}: 3}} \mathfrak{E}^{\binom{u_{1}}{v_{1: 2}}}$
$-\frac{1}{6} \sigma(1-\sigma) \quad \times \mathfrak{E}^{\binom{u_{123}}{v_{3}}} \mathfrak{E}^{\binom{u_{12}}{v_{1: 3}}} \mathfrak{E}^{\left(\begin{array}{l}u_{2}: 1\end{array}\right)}$
$-\frac{1}{3}(1-\sigma) \sigma^{2} \quad \times \mathfrak{E}^{\left(u_{12}\right)} \mathfrak{E}^{\left(\begin{array}{l}u_{1}: 2\end{array}\right)} \mathfrak{E}^{\binom{u_{3}}{v_{3}: 2}}$
$-\frac{1}{6} \sigma(1-\sigma) \quad \times \mathfrak{E}^{\binom{u_{12}}{v_{1}}} \mathfrak{E}^{\left(\begin{array}{c}u_{3: 1}\end{array}\right)} \mathfrak{E}^{\left(u_{v_{2: 3}}\right)}$
$+\frac{1}{6} \sigma(1-\sigma) \quad \times \mathfrak{E}^{\binom{u_{123}}{v_{1}}} \mathfrak{E}^{\left(u_{2: 1}\right)} \mathfrak{E}^{\left(u_{23} u_{3}\right)}$
$\mathfrak{e s j}_{\sigma}^{w_{1}, w_{2}, w_{3}, w_{4}}=$

$-\frac{1}{90} \sigma(1-\sigma)\left(9+2 \sigma-2 \sigma^{2}\right) \quad \times \mathfrak{E}^{\left(u_{1234}\right)} \mathfrak{E}^{\binom{u_{123}}{v_{3: 4}}} \mathfrak{E}^{\left.\binom{u_{1: 3}}{v_{12}} \mathfrak{E}^{\left(u_{2: 1}\right)}\right)}$

$+\frac{1}{90} \sigma(1-\sigma)\left(9-8 \sigma+8 \sigma^{2}\right) \times \mathfrak{E}^{\left(u_{1234}\right)} \mathfrak{E}^{\binom{u_{123}}{v_{12}}} \mathfrak{E}^{\binom{u_{2: 1}}{u_{2}}} \mathfrak{E}^{\binom{u_{3: 2}}{v_{3}}}$

$+\frac{1}{9} \sigma^{2}(1-\sigma)^{2} \quad \times \mathfrak{E}^{\left(u_{1234}\right)} \mathfrak{E}^{\binom{u_{12}}{v_{1: 3}}} \mathfrak{E}^{\left(u_{2: 1}\right)} \mathfrak{E}^{\binom{u_{2}}{v_{4: 3}}}$

$+\frac{1}{6}(1-\sigma) \sigma^{2} \times \mathfrak{E}^{\left(u_{1234}\right)} \mathfrak{E}^{\left(v_{1: 2}\right)} \mathfrak{E}^{\left(u_{1}\left(u_{3: 2}\right)\right.} \mathfrak{E}^{\left(v_{4: 3}\right)}$

$\left.+\frac{1}{9} \sigma^{2}(1-\sigma)^{2} \times \mathfrak{E}^{\left(u_{1234}\right)} \mathfrak{E}^{\left(u_{1} u_{3: 1}\right)} \mathfrak{E}^{\left(u_{2: 3}\right)} \mathfrak{E}^{\left(v_{2}\right.}{ }_{v_{4: 3}}^{u_{4}}\right)$
$+\frac{1}{90} \sigma(1-\sigma)\left(9-8 \sigma+8 \sigma^{2}\right) \quad \times \mathfrak{E}^{\left(u_{1234}\right)} \mathfrak{E}^{\binom{u_{223}}{v_{1}}} \mathfrak{E}^{\binom{u_{3}}{v_{4: 2}}} \mathfrak{E}^{\binom{u_{3: 4}}{v_{3}}}$

12.6 Table 6: the bitrigonometric bimould taal ${ }^{\circ} /$ tiil $^{\circ}$.

For simplicity, we drop the c in $Q a a_{c}$ and $Q i i_{c}$.

$$
\begin{aligned}
& \operatorname{taal}^{w_{1}}=-\frac{1}{2} \mathrm{Qaa}^{\binom{u_{1}}{u_{1}}} \\
& \operatorname{taal}^{w_{1}, w_{2}}= \\
& +\frac{1}{12} \mathrm{Qaa}^{\binom{\left(u_{12}\right)}{v_{1}}} \mathrm{Qaa}^{\left(\begin{array}{l}
u_{2} \\
u_{2} \\
u_{2}
\end{array}\right)} \\
& +\frac{1}{6} \mathrm{Qaa}^{\binom{u_{12}}{v_{2}}} \mathrm{Qaa}{ }^{\binom{u_{1: 2}}{v_{1}}} \\
& +\frac{1}{8} c^{2} \delta^{v_{1}} \delta^{v_{2}} \\
& \text { taal }^{w_{1}, w_{2}, w_{3}}= \\
& -\frac{1}{24} \mathrm{Qaa}^{\binom{u_{1}}{v_{12}}} \mathrm{Qaa}^{\binom{u_{12}}{v_{2}}} \mathrm{Qaa}^{\binom{u_{3}}{v_{3}}} \\
& -\frac{1}{48} c^{2} \mathrm{Qaa}^{\left({ }^{\left(u_{1}\right)}{ }_{v_{1}}\right)} \delta^{v_{2}} \delta^{v_{3}} \\
& +\frac{1}{24} c^{2} \mathrm{Qaa}{ }^{\left({ }_{v 2}\right)} \delta^{u_{2}} \delta^{v_{1}} \delta^{v_{3}} \\
& -\frac{1}{24} c^{2} \mathrm{Qaa}^{\left({ }^{\left(u_{3}\right)}\right)} \delta^{v_{1}} \delta^{v_{2}} \\
& \text { taal }^{w_{1}, w_{2}, w_{3}, w_{4}}=
\end{aligned}
$$

$$
\begin{aligned}
& \| \operatorname{tiil}^{w_{1}, w_{2}, w_{3}}= \\
& \left.\left.\|-\frac{1}{24} \operatorname{Qii}^{\left({ }^{\left(v_{12}\right.}\right)} \operatorname{Qii}^{\left({ }^{\left(u_{1}\right)}\right.}{ }_{v_{2}}\right) \operatorname{Qii}^{\left({ }^{\left(v_{3}\right)}\right.}\right) \\
& \|-\frac{1}{24} c^{2} \operatorname{Qii}^{\left(\begin{array}{l}
u_{1: 2} \\
v_{1} \\
\left(u_{2}\right)
\end{array} \delta^{u_{12}} \delta^{u_{3}}, ~\right.} \\
& \|+\frac{1}{24} c^{2} \mathrm{Qii}^{\left(u_{2: 3}\right)} \delta^{v_{2}} \delta^{u_{1}} \delta^{u_{23}} \\
& \left.\|+\frac{1}{48} c^{2} \mathrm{Qii}^{\left({ }_{u}\right)}{ }^{u_{3}}\right) \delta^{u_{1}} \delta^{u_{2}} \\
& \| \text { tiil }^{w_{1}, w_{2}, w_{3}, w_{4}}=
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\|-\frac{1}{240} \mathrm{Qii}^{\left({ }^{\left(u_{1}\right)}\right.} \mathrm{v}_{1}\right) \mathrm{Qii}^{\left(u_{2: 3}\right)} \mathrm{Qii}^{\left({ }^{u_{3}}\right.}{ }^{u_{23}}\right) \mathrm{Qii}^{\left({ }^{\left(u_{234}\right)}\right.}{ }_{v_{4}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\|+\frac{1}{120} \mathrm{Qii}^{\left({ }^{\left(u_{1}\right.}\right)} \mathrm{Qii}^{\left({ }^{\left(u_{2}\right.}{ }_{2}\right)} \mathrm{Qii}^{\left({ }^{\left(u_{23}\right)}\right.}{ }_{3} \mathrm{u}_{3} \mathrm{Qii}^{u_{4}}{ }_{v_{4}}^{v_{4}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{7}{720} c^{2} \mathrm{Qaa}^{\left({ }^{\left(u_{1}\right)}\right.}{ }^{1}\right) \mathrm{Qaa}^{\left({ }_{v 2} v_{2}\right)} \delta^{v_{3}} \delta^{v_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{5}{288} c^{2} \mathrm{Qaa}^{\left({ }^{u_{1}} v_{1}\right.} \mathrm{Qaa}^{\left({ }_{v}^{\left(u_{3}\right)}\right.}{ }^{\left(v_{3}\right)} \delta^{v_{2}} \delta^{v_{4}} \\
& \left.+\frac{19}{1440} c^{2} \mathrm{Qaa}^{\left({ }^{\left(u_{1}\right)}\right.}{ }^{v_{1}}\right) \mathrm{Qaa}^{\left({ }^{\left(u_{4}\right.} v_{4}\right)} \delta^{v_{2}} \delta^{v_{3}} \\
& \left.-\frac{1}{480} c^{2} \mathrm{Qaa}^{\left({ }_{2}{ }_{2}\right)} \mathrm{Qaa}^{\left({ }^{\left(u_{3}\right)}\right.}{ }^{v_{3}}\right) \delta^{v_{1}} \delta^{v_{4}} \\
& +\frac{1}{1440} c^{2} \mathrm{Qaa}^{\left({ }_{v 2} u_{2}\right)} \mathrm{Qaa}^{\left({ }_{v 4} u_{4}\right)} \delta^{v_{1}} \delta^{v_{3}} \\
& +\frac{1}{288} c^{2} \mathrm{Qaa}^{\left({ }_{v 3}{ }^{u 3}\right)} \mathrm{Qaa}^{\left({ }_{v 4}{ }_{v 4}\right)} \delta^{v_{1}} \delta^{v_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\|-\frac{1}{480} \mathrm{Qii}^{\left({ }^{\left(u_{1}\right)}\right.} \mathrm{v}_{1}\right) \mathrm{Qii}^{\left(u_{4} v_{4}\right)} \delta^{u_{2}} \delta^{u_{3}} \\
& \|-\frac{1}{480} \mathrm{Qii}^{\left({ }^{u_{3}}\right)} \mathrm{Qii}^{\left({ }^{u_{4}} v_{4}\right)} \delta^{u_{1}} \delta^{u_{2}} \\
& \left.\|-\frac{5}{288} c^{2} \mathrm{Qii}^{\left({ }_{2}{ }_{2: 3}\right)} \mathrm{Qii}^{\left({ }^{\left(u_{4}\right)}\right.}{ }^{v_{4}}\right) ~ \delta^{u_{1}} \delta^{u_{23}}
\end{aligned}
$$

$$
\begin{aligned}
& \|+\frac{19}{1440} c^{2} \mathrm{Qii}^{\left(u_{1: 2}\right)} \mathrm{Qii}^{\left(u_{1} u_{4}\right)} \delta^{u_{12}} \delta^{u_{3}} \\
& \left.\left.\|-\frac{1}{288} c^{2} \mathrm{Qii}^{\left({ }^{\left(u_{1}\right.} v_{1}\right.}\right) \mathrm{Qii}^{\left({ }^{\left(u_{3}\right)}\right.}{ }^{v_{3}}\right) ~ \delta^{u_{2}} \delta^{u_{34}} \\
& \left.\left.\|-\frac{11}{1440} c^{2} \mathrm{Qii}^{\left({ }^{\left(u_{1}\right)}\right.} \mathrm{v}_{1}\right) \mathrm{Qii}^{\left({ }^{\left(u_{3: 2}\right)}\right.}\right) \delta^{u_{23}} \delta^{u_{4}} \\
& \left.\|+\frac{1}{480} c^{2} \mathrm{Qii}^{\left({ }^{\left(u_{12}\right)}\right.} \mathrm{v}_{1}\right) \mathrm{Qii}^{\left({ }^{\left(u_{2: 1}\right)}\right.}{ }^{\left(u_{2}\right)} \delta^{u_{3}} \delta^{u_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{480} c^{2} \operatorname{Qaa}^{\binom{u_{1234}}{v_{1}}} \operatorname{Qaa}{ }^{\binom{u_{4}}{v_{4}}} \delta^{v_{1: 3}} \delta^{v_{1: 2}} \\
& \|-\frac{1}{480} c^{2} \mathrm{Qii}^{\left(u_{2} v_{2: 3}\right)} \mathrm{Qii}^{\left(u_{23}{ }_{23: 4}^{u_{23}}\right)} \delta^{u_{1}} \delta^{u_{234}}
\end{aligned}
$$

12．7 Index of terms and notations．

Slight liberties have been taken with the alphabetical order，so as to regroup similar objects or notions．
ALAL：§2．4，§5．7，§7，§8．4．
ASAS：§2．8．
al／al，al／al：§2．7．
as／as，as／as：§2．8．
ALIL：§4．7 §5．7．
ASIS：§4．7．
ALIIL，ASIIS：§4．7
al／il，al／il：§5．7．
as／is，as／is：§4．7．
alternal：§2．4，（2．72）．
alternil：§3．4．
anti：§2．1，（2．6）．
ami，amit，ani，anit，ari，arit：§2．2．
axi，axit：§2．1．
approximate flexion unit：$\S 3.2$（towards the end）．
bialternal：§2．7，§7，§8．
bisymmetral：§2．8，§9．1．
carma ${ }^{\bullet} /$ carmi $^{\bullet}$ ，corma ${ }^{\bullet} /$ cormi $^{\bullet}$ ，curma ${ }^{\bullet} /$ curmi $^{\bullet}$ ：§7．3，§7．7．
conjugate flexion units：§3．2．
dilator（infinitesimal）：§4．1，§11．8，§11．10，§12．3．
dimorphy，dimorphic：§1．1，§2，§10．1．
doma ${ }^{\bullet} /$ domi ${ }^{\bullet}$ ：§7．2．
ekma ${ }^{\bullet} /$ ekmi•：§7．3．
$\mathfrak{E}: \S 3.1, \S 3.2$ ．
\mathfrak{E}^{\bullet}－alternal：§3．4．
$\mathfrak{E} \bullet_{\bullet \bullet}$－symmetral：§3．4．
（E゚－mantar：§3．4，（3．46）．
$\mathfrak{E} \boldsymbol{\bullet}$－gantar：$\S 3.4,(3.49)$ ．
E゙－push：§3．4，（3．53），（3．54）．
E゚－－gush：§3．4，（3．60）．
\mathfrak{E}^{\bullet}－neg：$\S 3.4,(3.52)$ ．
ピ－geg：§3．4，（3．59）．
$\mathfrak{e s}^{\bullet}, \mathfrak{e z}^{\bullet}: \S 4.3$ ，（4．70），（4．71）．
$\mathfrak{e s s}^{\bullet}, \mathfrak{e s z}^{\bullet}: \S 4.2,(4.35),(4.36), \S 11.9, \S 11.10, \S 12.4, \S 12.5$ ．
expari：$\S 2.2,(2.50)$ ．
$\operatorname{Exter}\left(Q i_{c}\right): \S 11.5$ ．
flexion：§2．1．
flexion unit: §3.2.
flexion structure: $\S 2$.
gami, gamit, gani, ganit, gari, garit: §2.2.
gantar, gantir: §2.3, (2.74), (2.75), §3.4.
gepar: §4.1, (4.10), §11.8.
hepar: §11.8, (4.10).
gegu, gegi: §3.5, (3.65).
gus: §2.4, (2.74), (2.75).
gusi, gusu: §3.4.
gush: §2.4, (2.76).
gushi, gushu: §3.4.
invmu: §2.1, (2.2).
invgami, invgani, invgari: $\S 2.2,(2.58)$.
$\operatorname{Inter}\left(Q i_{c}\right): \S 11.5$.
lama ${ }^{\bullet} /$ lami $^{\bullet}: \S 6.5$.
loma ${ }^{\bullet} /$ lomi $^{\bullet}$: §6.6.
luma ${ }^{\bullet} /{ }^{\text {/lumi}}{ }^{\bullet}$: §6.7.
$\mathfrak{O}^{\bullet}: \S 3.2$.
$\mathfrak{m e}{ }_{r}^{\bullet}: \S 4.1, \S 12.2$.
$\mathfrak{n e}_{r}^{\bullet}: \S 4.1, \S 12.2$.
mantar, mantir: §2.1, (2.7), §3.4.
minu: §2.1, (2.4).
neg: $\S 2.1,(2.8)$.
negi, negu: §3.4, (3.61).
pari: §2.1, (2.5).
$P: P(t):=1 / t$.
pac•/pic•, paj•/pij`: §4.3.
$\mathrm{pal}^{\bullet} / \mathrm{pil}^{\bullet}, \mathrm{par}{ }^{\bullet} / \mathrm{pir}^{\bullet}$: $\S 4.2$ (last but one para).
perinomal: $\S 9.4, \S 9.5, \S 9.6$.
preami, preani, preari: $\S 2.2$.
predoma: §7.5.
precarma: §7.6.
pus: §2.1, (2.10).
pusi, pusu: §3.4.
push: §2.1, (2.11), (2.12).
pushi, pushu: §3.4, (3.62), (3.63).
$Q, Q_{c}: Q(t):=1 / \tan (t), Q_{c}(t):=c / \tan (c t)$.
$\mathfrak{r e}{ }_{r}^{\bullet}: \S 4.1, \S 12.2$.
$\mathfrak{\mathfrak { R } \mathfrak { e } _ { f } ^ { \bullet } , \mathfrak { R } \ddot { \boldsymbol { o } } _ { f } ^ { \boldsymbol { \bullet } } : \S 1 2 . 3 .}$
sap, swap, syap: $\S 2.2,(2.9), \S 3.3,(4.37),(4.38),(4.70),(4.71)$.
separ: §10.9.

```
sse:
5se}\mp@subsup{}{12}{0}:\S4.2
Seq
slank, srank, sang: §5.4, §5.5.
sen: §5.1.
senk, seng: §5.3.
singulator, singuland, singulate etc: §5.
symmetral: §2.4 (2.72).
symmetril: §3.5.
symmetry types (straight): §2.4.
symmetry types (twisted): §3.5.
subsymmetries (simple or double, straight): §2.4.
subsymmetries (simple or double, twisted): §3.5.
tac*/tic`,taj`/tij`: §4.2.
tal\boldsymbol{\bullet}/\mp@subsup{\mathrm{ til }}{}{\bullet},\mathrm{ taal }
tripartite relation: §3.2, (3.9).
wandering bialternals: §6.9, §9.1.
Wa
Za}:\1.2 (after (2.13))
Ze
Zag`/Zig`: §1.2, §9.
```


12.8 References.

[B] D.J. Broadhurst, Conjectured Enumeration of irreducible Multiple Zeta Values, from Knots and Feynman diagrams, preprint Physics Dept., Open Univ. Milton Keynes, MK76AA, Nov. 1996.
[Brem] C. Brembilla, Elliptic flexion units, to appear as part of an Orsay PhD Thesis, 2012.
[E1] J. Ecalle, A Tale of Three Structures: the Arithmetics of Multizetas, the Analysis of Singularities, the Lie algebra ARI, in Diff. Equ. and the Stokes Phenomenon, B.L. Braaksma, G.K.Immink,M.v.d. Put, J. Top Eds., World Scient. Publ., vol. 17, (2002), pp 89-146.
[E2] J. Ecalle, ARI/GARI, La dimorphie et l'arithmétique des multizêtas: un premier bilan, Journal de Théorie des Nombres de Bordeaux, 15 (2003), 411-478.
[E3] J. Ecalle, Multizetas, perinomal numbers, arithmetical dimorphy, Ann. Fac. Toulouse, Vol. 13, n. 4, 2004, pp. 683-708.
[E4] J. Ecalle, Multizeta Cleansing: the formula for eliminating all unit indices from harmonic sums, (forthcoming).
[E5] J. Ecalle, Remark on monogenous flexion algebras, (forthcoming).
[E6] J. Ecalle, Weighted products and parametric resurgence, Travaux en Cours, 47, Hermann Ed.,1994, pp.7-49.
[E8] J. Ecalle, Singular perturbation and co-equational resurgence, (forthcoming).
[D] V. G. Drinfel'd, On quasi-triangular quasi-Hopf algebras and some groups related to $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, Lening. Math. J. 2 (1991), 829-860.
N.B. There exists of course a vast literature on multizetas and related lore: polylogarithms, associators, knots, Feynman diagrams, etc. Ample references are readily available at the end of papers dealing with any of these topics. The present article, however, is not primarily about multizetas, but about the flexion structure, which happens to be a new subject. Hence the paucity of our bibliographical references.

[^0]: ${ }^{1}$ with some natural countable indexation $\{m\},\{n\}$, not necessarily on \mathbb{N} or \mathbb{Z}. We recall that a set $\left\{\alpha_{m}\right\}$ is a \mathbb{Q}-prebasis (or 'spanning subset') of a \mathbb{Q}-ring \mathbb{D} if any $\alpha \in \mathbb{D}$ is expressible as a finite linear combination of the α_{m} 's with rational coefficients. But the α_{m} 's need not be \mathbb{Q}-independent. When they are, we say that $\left\{\alpha_{m}\right\}$ is a \mathbb{Q}-basis.
 ${ }^{2}$ also known as MZV, short for multiple zeta values.

[^1]: ${ }^{3}$ As usual, $\operatorname{sha}\left(\boldsymbol{\omega}^{\prime}, \boldsymbol{\omega}^{\prime \prime}\right)$ denotes the set of all simple shufflings of the sequences $\boldsymbol{\omega}^{\prime}, \boldsymbol{\omega}^{\prime \prime}$, whereas in $\operatorname{she}\left(\boldsymbol{\omega}^{\prime}, \boldsymbol{\omega}^{\prime \prime}\right)$ we allow (any number of) order-compatible contractions $\omega_{i}^{\prime}+\omega_{j}^{\prime \prime}$.
 ${ }^{4}$ with the usual shorthand for differences: $\epsilon_{i: j}:=\epsilon_{i}-\epsilon_{j}$.

[^2]: ${ }^{5} d$ is called degree, because under the correspondence scalars \rightarrow generating series, the multizetas become coefficients of monomials of total degree d. See (2.19),(2.23).
 ${ }^{6}$ with the usual abbreviations: $u_{i, j}=u_{i}+u_{j}, u_{i, j, k}=u_{i}+u_{j}+u_{k}$ etc.
 ${ }^{7}$ still denoted by the same symbols.
 ${ }^{8}$ with the usual abbreviations $m_{i, j}:=m_{i}+m_{j}, m_{i, j, k}:=m_{i}+m_{j}+m_{k}$ etc.

[^3]: ${ }^{9}$ if we had no factor $\mu^{n_{1}, \ldots, n_{r}}$ in (1.18), we would have $Z i g_{k}^{\bullet} \|_{\mathrm{v}=0}=0$ and therefore no $M i n i_{k}^{\bullet}$ terms. But the mould $Z i g_{k}^{\bullet}$ would fail to be symmetril, as required. Herein lies the origin of the corrective terms in the conversion rule.
 ${ }^{10}$ In the case of bimoulds, \times is often noted $m u$ the better to distinguish it from the various other flexion products.

[^4]: ${ }^{11}$ Symmetrility is precisely defined in $\S 3.5$. Roughly, it mirrors symmetrelity, but with
 $\left.M^{\left(\ldots, ., u_{i}^{\prime}+u_{i}^{\prime \prime}\right.} \begin{array}{c}v_{j}^{\prime \prime} \\ \left.v_{j}, \ldots\right)\end{array}\right) P\left(v_{j}^{\prime \prime}-v_{i}^{\prime}\right)$.
 ${ }^{12}$ namely, some modified form of the rules (2.16),(2.17), which apply in the convergent case.

[^5]: ${ }^{13}$ This fact is almost implicit in the (right) formalism. Indeed, with the notations of $\S 9$, the general bisymmetral, entire bimould $z a g^{\bullet}$ factors as $z a g^{\bullet}=\operatorname{gari}\left(Z a g_{I}, \operatorname{expari}\left(m a^{\bullet}\right)\right)$ with $m a^{\bullet}=\sum_{S} \rho_{S} m a_{S}^{\bullet}$ denoting the general element of $A L I L$. Thus, to any linear basis $\left\{m a_{S}^{\bullet}\right\}$ of $A L I L$, there corresponds one-to-one a set $\left\{\rho_{S}\right\}$ of irreducibles, with the same countable indexation S, and a transparent formula for expressing the multizetas in terms of these irreducibles. A written exposition, resting on very similar ideas but couched in a quite different formalism, may be found in G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de l'unité, Publ. Math. IHES, 2002.
 ${ }^{14}$ see $[B]$ and §8.4.
 ${ }^{15}$ these are closely related variants.

[^6]: ${ }^{16}$ the components luma ${ }^{\boldsymbol{w}}$ are meromorphic functions with simple poles away from the origin.
 ${ }^{17}$ the components lama ${ }^{\boldsymbol{w}}$ and loma ${ }^{\boldsymbol{w}}$ have rational coefficients with "manageable" denominators.
 ${ }^{18}$ which up till now were still fluctuating from context to context in our various papers. Working out a coherent standardisation was, strangely, the hardest part in producing this survey.
 ${ }^{19}$ although much of it was circulated as private notes and e-files, or taught at Orsay in two DEA courses.
 ${ }^{20}$ involving the product $\mathfrak{E}^{w_{1}} \mathfrak{E}^{w_{2}}$ and two flexions thereof.

[^7]: ${ }^{21}$ Vast, multi-facetted, and very demanding in terms of computation, this field calls, or rather cries, for sustained teamwork.
 ${ }^{22} B I M U_{r}$ of course regroups all bimoulds whose components of length other than r vanish. These are often dubbed "length- r bimoulds" for short.

[^8]: ${ }^{23}$ The reason for dignifying the humble sign change in (2.4) with the special name minu is that minu enters the definition of scores of operators acting on various algebras: the rule for forming the corresponding operators that act on the corresponding groups, is then simply to change the trivial, linear minu, which commutes with everybody, into the nontrivial, non-linear invmu, which commutes with practically nobody (see (2.2)). To keep the minus sign instead of minu (especially when it occurs twice and so cancels out) would be a sure recipe for getting the transposition wrong.
 ${ }^{24}$ pus resp. push is a circular permutation in the short resp. long indexation of bimoulds. Indeed: (push. M) ${ }^{\left[w_{0}\right], w_{1}, \ldots, w_{r}}=M^{\left[w_{r}\right], w_{0}, \ldots, w_{r-1}}$.
 ${ }^{25}$ The sum \sum^{1} resp. \sum^{2} extends to all sequence factorisations $\boldsymbol{w}=\boldsymbol{a} . \boldsymbol{b} . \boldsymbol{c}$ with $\boldsymbol{b} \neq \emptyset, \boldsymbol{c} \neq \emptyset$ resp. $\boldsymbol{a} \neq \emptyset, \boldsymbol{b} \neq \emptyset$. The sum \sum^{3} extends to all factorisations $\boldsymbol{w}=\boldsymbol{a}^{1} \cdot \boldsymbol{b}^{1} \cdot \boldsymbol{c}^{1} \cdot \boldsymbol{a}^{2} \cdot \boldsymbol{b}^{\mathbf{2}} \cdot \boldsymbol{c}^{2} \ldots \boldsymbol{a}^{s} \cdot \boldsymbol{b}^{s} . \boldsymbol{c}^{s}$ such that $s \geq 1, \boldsymbol{b}^{i} \neq \emptyset, \boldsymbol{c}^{i} . \boldsymbol{a}^{i+1} \neq \emptyset \forall i$. Note that the extreme factor sequences $\boldsymbol{a}^{\mathbf{1}}$ and $\boldsymbol{c}^{\boldsymbol{s}}$ may be \emptyset.

[^9]: ${ }^{26}$ meaning that the group operation (like $A^{\bullet}, B^{\bullet} \mapsto \operatorname{gari}\left(A^{\bullet}, B^{\bullet}\right)$ in our example) is linear in A^{\bullet} but highly non-linear in $B^{\boldsymbol{\bullet}}$.

[^10]: ${ }^{27}$ Here, the associator assobin of a binary operation bin is straightforwardly defined as $\operatorname{assobin}(a, b, c):=\operatorname{bin}(\operatorname{bin}(a, b), c)-\operatorname{bin}(a, \operatorname{bin}(b, c))$. Nothing to do with the Drinfeld associators of the sequel!

[^11]: ${ }^{28}$ Properly speaking, preari applies only to elements M^{\bullet} of $A R I$, i.e. such that $M^{\emptyset}=0$. Here, however, only B^{\bullet} is in $A R I$, whilst A^{\bullet} is in $G A R I$ and therefore $A^{\emptyset}=1$. But this is no obstacle to applying the rule (2.46).
 ${ }^{29}$ Properly speaking, fragari applies only to arguments $S_{1}^{\bullet}, S_{2}^{\bullet}$ in $G A R I$, i.e. such that $S_{i}^{\emptyset}=1$. Here, however, only $S_{2}^{\bullet}:=A^{\bullet}$ is in $G A R I$, whilst $S_{1}^{\bullet}:=\operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right)$ is in ARI and therefore $S_{1}^{\emptyset}=0$. But this is no obstacle to applying the rule:
 $\operatorname{fragari}\left(S_{1}^{\bullet}, S_{2}^{\bullet}\right):=\operatorname{mu}\left(\operatorname{garit}\left(S_{2}^{\bullet}\right)^{-1} . S_{1}^{\mathbf{\bullet}}\right.$, invgari. $\left.S_{2}^{\bullet}\right)=\operatorname{mu}\left(\right.$ garit $\left(\right.$ invgari. $\left.\left.S_{2}^{\bullet}\right) . S_{1}^{\mathbf{\bullet}}, \operatorname{invgari} . S_{2}^{\bullet}\right)$
 ${ }^{30}$ Despite the spontaneous occurence of the pre-ari product in (2.56), it should be noted that $\operatorname{adari}\left(A^{\bullet}\right)$ is an automorphisms of $A R I$ but not of PREARI.

[^12]: ${ }^{31}$ each of these inflected summands, taken in isolation, is fairly complex!

[^13]: ${ }^{32}$ like with the alternality constraints, in which case $<\tau>_{r} \sim \mathfrak{S}_{r}$.
 ${ }^{33}$ like with the bialternality constraints, in which case $\langle\tau\rangle_{r}$ is generated by two distinct finite subgroups of $\mathrm{Gl}_{r}(\mathbb{Z})$, which we may denote as \mathfrak{S}_{r} and swap. $\mathfrak{S}_{r} . s w a p$.
 ${ }^{34}$ That combination is indeed a double symmetry, since a bimould's push-invariance is a consequence of its and its swappee's alternality or at least mantar-invariance.

[^14]: ${ }^{35}$ other than $s w a p$, which exchanges the u_{i} 's and v_{i} 's, and pus (see (2.10)) which, we recall, doesn't qualify as a proper flexion operation. But push is allowed, as well as all algebra and group operations.

[^15]: ${ }^{36}$ Each $\boldsymbol{g} \boldsymbol{a}$ verifying (i) has one orthogonal $\boldsymbol{g} \boldsymbol{i}$ verifying (ii) and vice versa. We are told that these objects are known as non-crossing trees in combinatorics.

[^16]: ${ }^{37}$ or even both, if $\boldsymbol{p} \in \mathcal{P}_{1}$.
 ${ }^{38}$ As a consequence, if the i-th and j-th letters b fall into distinct prime factors of \boldsymbol{p}, then i and j are non-comparable.

[^17]: ${ }^{39}$ when viewed as a distribution or as an almost-everywhere defined function on \mathbb{R}. But when viewed as a function on \mathbb{Z}, it becomes an approximate unit.

[^18]: ${ }^{40}$ In terms of applications, the failure of imparity has more disruptive consequences than the failure to verify the exact tripartite equation, because it means that \mathfrak{E} has no proper conjugate \mathfrak{O}, which in turn prevents it from serving as building block for dimorphic bimoulds such as $\mathfrak{e s s}^{\bullet}$ etc.
 ${ }^{41}$ with eu standing for good. For the polar resp. trigonometric specialisations of the unit, Flex (\mathfrak{E}) is known as the eupolar resp. eutrigonometric algebra. In the eutrigonometric case, though, the basis elements are more numerous than in the eupolar case, and amnit is no longer sufficient to generate everything. See the last table in $\S 12.1$.

[^19]: ${ }^{42}$ They have been verified up to $r=8$.

[^20]: ${ }^{43}$ ganit $\left(\mathfrak{e z}^{\bullet}\right)$ and gamit $\left(\mathfrak{e z}^{\bullet}\right)$ define two distinct mappings $A^{\bullet} \mapsto B^{\bullet}$, but both result in the same transformation of symmetries.

[^21]: ${ }^{44}$ Provided we include the approximate flexion units, for which the twisted symmetries become more intricate. For the trigonometric case, see §11.4.

[^22]: ${ }^{45}$ provided we assume (as assume we must, to ensure ari-stability) the component of length 1 to be even.
 ${ }^{46}$ again, assuming parity for the length- 1 component.
 ${ }^{47}$ see (2.12) for push and also (4.70) for $\mathfrak{e s}^{\bullet}$.

[^23]: ${ }^{48}$ i.e. $\operatorname{swamu}\left(M_{1}^{\bullet}, M_{2}^{\bullet}\right):=$ swap.mu(swap. M_{1}^{\bullet}, swap. $\left.M_{2}^{\bullet}\right)$
 ${ }^{49}$ so-called because it involves only six terms - three on the left-hand side and three on the right.

[^24]: ${ }^{50}$ To get the general formula, one simply transposes (3.47).

[^25]: ${ }^{51}$ The inverse teru ${ }^{-1}$ is not of finite arity, of course, but its main ingredient is the mould mupaj ${ }^{\bullet}:=i_{n v m u . p a j}{ }^{\bullet}$ which, due to symmetrality, has the simple form pari.anti.paj${ }^{\bullet}$.

[^26]: ${ }^{52}$ For their analytical expressions, see $\S 12.2$.
 ${ }^{53}$ This would no longer be the case if \mathfrak{E}^{\bullet} were not a flexion unit.

[^27]: ${ }^{54}$ with the multiple pre-brackets preari taken, as usual, from left to right.
 ${ }^{55}$ The simplest way to show that $\left\{\mathfrak{r e}_{\{r\}}^{\bullet}\right\}$ and $\left\{\mathfrak{s e}_{\{r\}}^{\bullet}\right\}$ span the same space and to find the conversion rule between the two bases, is to equate the expansions (4.11) and (4.12) for $\mathfrak{S e}_{f}^{\bullet}$ while expressing the coefficients α_{n} of the infinitesimal generator and the coefficients γ_{n} of the infinitesimal dilator in terms of each other.

[^28]: ${ }^{56}$ the two sums in (4.30) range over all ordered sequences \boldsymbol{r} that coincide, up to order, with the unordered sets $\left\{\boldsymbol{r}^{\prime}\right\}$.

[^29]: ${ }^{57}$ these are true induction, since the sought-after bimoulds occur only once, with length r, on the left-hand side; and several times on the right-hand side, but with lengths at most $r-1$ (resp. $r-2$) in (4.54), (4.56) (resp. (4.55), (4.57)).

[^30]: ${ }^{58}$ since h_{1} and h_{2}, unlike h_{3}, involve no sign changes.
 ${ }^{59}$ since h_{3}^{*}, unlike h_{1}^{*} and h_{2}^{*},, involves no sign changes.
 ${ }^{60}$ i.e. invariant under neg rather than pari.neg.

[^31]: ${ }^{61}$ But of course with an elementary corrective factor $\operatorname{mini} i_{c}^{\bullet} \in \operatorname{center}($ GARI $)$ in the connection formula: swap.til ${ }_{c}^{\bullet}=\operatorname{gari}\left(\operatorname{mana} a_{c}^{\bullet}, \operatorname{tal}_{c}{ }^{\bullet}\right)=\operatorname{gari}\left(\operatorname{tal_{c}}{ }^{\boldsymbol{\bullet}}, \operatorname{mana} a_{c}^{\boldsymbol{\bullet}}\right)$.

[^32]: ${ }^{62}$ i.e. neg-invariant.

[^33]: ${ }^{63}$ we would of course have similarly commutative diagrams (only with less explicit gariinverses) if we replaced $\mathfrak{s s e}^{\bullet}$ by any element of $G A R I^{\text {as/as }}$, since on that subgroup swap acts as an automorphism, just as it does on $A R I$ al/al .
 ${ }^{64}$ more precisely: $\mathfrak{e s s}^{\bullet}$ is pari.neg-invariant instead of neg-invariant.
 ${ }^{65}$ To derive (4.70) from (4.67), one must use the fact that \mathfrak{E} is a flexion unit.

[^34]: ${ }^{66}$ because it is the main part of the first factor $Z a g_{I}^{\bullet}$ in the trifactorisation of $Z a g^{\bullet}$ and also the main ingredient of the canonical-rational associator.
 ${ }^{67} \mathrm{We}$ recall that gepar. $S^{\bullet}:=m u\left(\right.$ anti.swap. S^{\bullet}, swap. $\left.S^{\bullet}\right)$.

[^35]: ${ }^{68}$ sym $_{0}$ is $\equiv 1 ;$ sym $_{1}$ is the sum; sym ${ }_{r}$ is the product.
 ${ }^{69} \mathrm{We}$ recall that slash. $S^{\bullet}:=\operatorname{gari}\left(\right.$ neg.S^{\bullet}, invgari. $\left.S^{\bullet}\right)$.

[^36]: ${ }^{70}$ As with $t a a j{ }_{c}^{\bullet}$ and $t i i j_{c}^{\bullet}$, once we carry out the swap transform in the above definitions.
 ${ }^{71} \mathrm{Or}$, more properly, "half-twisted", since the first symmetry remains straight, and only the second gets twisted.
 ${ }^{72}$ i.e. subgroups of $M U:=\left\{B I M U^{*}, m u\right\}$ or subalgebras of $L U:=\left\{B I M U_{*}, l u\right\}$.

[^37]: ${ }^{73}$ See §3.4.
 ${ }^{74}$ in the sense that it takes two symmetries, not one, to induce them.

[^38]: ${ }^{75}$ i.e. their being polynomials or entire functions or formal power series of their \boldsymbol{u} variables.

[^39]: ${ }^{76}$ neither under $\operatorname{adari}\left(\right.$ pal $\left.{ }^{\bullet}\right)$, adari $\left(\right.$ tal $\left.^{\bullet}\right)$, nor any conceivable replacement.

[^40]: ${ }^{77}$ additively in the case of algebras; multiplicatively in the case of groups.
 ${ }^{78}$ For the structures $A L A L$ and $A S A S$, on the other hand, central corrections are not required. In fact, allowing such corrections makes no difference at all, which again shows that the pairs $A L A L / / A S A S$ and $A L I L / / A S I S$ cannot be isomorphic.

[^41]: ${ }^{79} \mathrm{We}$ recall that mantar $:=-$ pari.anti and gantar $:=$ invmu.pari.anti with invmu denoting inversion with respect to the mould product $m u$.

[^42]: ${ }^{80}$ adari alone is an action; all the others are anti actions.
 ${ }^{81}$ Hint: use the fact that $\mathfrak{e s s}^{\bullet}$ is on the one hand invariant under pari.neg and on the other of alternal (even bialternal) type, so that invmu.ess ${ }^{\circ}=$ pari.anti.ess ${ }^{\circ}$.

[^43]: ${ }^{82}$ The components $\operatorname{seng}_{r}\left(\mathbf{e 5 5}{ }^{\circ}\right)$ fully depend on e5s $^{\circ}$ whereas the global operator $\operatorname{seng}\left(\right.$ es $\left.^{\circ}\right)$ only depends on $\mathfrak{e 5 ^ { \bullet }}=$ slash. $\cdot 5^{\circ}{ }^{\circ}$.
 ${ }^{83}$ In the obvious sense: i.e. $H^{w_{1}}$ as a function of w_{1}, and r as an integer.

[^44]: ${ }^{84}$ for example in perinomal algebra: see $\S 6$ and $\S 8$.

[^45]: ${ }^{85} s$ is odd $\geq 3 . l \varnothing m a_{s}^{\bullet}\left(\right.$ resp. $l \varnothing m i_{s}^{\bullet}$) carries exactly $s-1$ (resp. s) nonzero components of length $r \in[1, s-1]$ (resp. $r \in[1, s])$ and degree $d=s-r$. Indeed, the last components are $l \phi m a_{s}^{w_{1}, \ldots, w_{s}}=0$ and $l \phi m i_{s}^{w_{1}, \ldots, w_{s}}=1 / s$.

[^46]: ${ }^{86}$ We prefer this pair to the unwieldy singularisation-desingularisation not just for reasons of euphony, but also to keep close to the coinages singulator, singuland, singulate.
 ${ }^{87}$ The reason being that to a constant singuland $S_{r_{1}}^{w_{1}} \equiv 1$ there always answers a vanishing singulate $\Sigma_{r_{1}}^{\bullet} \equiv 0$.

[^47]: ${ }^{88}$ In the sense that the wandering bialternals, which are ultimately responsible for this indeterminacy, are "few and far between". See $\S 6.9$ and the concluding comments in §9.1.
 ${ }^{89}$ Away from the multipoles, of course. Exactly what this means shall become clear in in the sequel: see $\S 6.7$ and $\S 9$. As for the warning essentially stacked over the $=$ sign in the identities (6.12), (6.13), it means that we neglect simple corrective terms (with lower polar multiplicity) that ensure convergence on the right-hand side.
 ${ }^{90}$ These multiresidues $R_{\left[r_{1}, \ldots, r_{l}\right]}^{n_{1}, \ldots, n_{l}}$ have to be even (resp. odd) in n_{i} when r_{i} is even (resp. odd) to ensure that the singulate $S_{\left[r_{1}, \ldots, r_{l}\right]}^{x_{1}, \ldots, x_{l}}$ be odd (resp. even) when r_{i} is even (resp. odd).
 ${ }^{91}$ See $\S 6.7$ and $\S 9$.

[^48]: ${ }^{92}$ This new condition, of course, makes sense, only modulo the earlier one, i.e. assuming the removal of order 3 multipoles.

[^49]: ${ }^{93}$ Leaving aside, of course, simple averages of the first and second choice.
 ${ }^{94}$ They cease to be simple for singulands of length $l \geq 3$. Here, we get full-blown 'perinomalness'. See $\S 9.5$.

[^50]: ${ }^{95}$ so that s may be called the 'weight' of M^{\bullet}.

[^51]: ${ }^{96}$ i.e. correspond to invariance under a finite subgroup of $G l_{2}(\mathbb{C})$, which in the present instance is isomorphic to \mathfrak{S}_{3}. Finitariness ceases from length 3 onwards.

[^52]: ${ }^{97}$ see $\S 7.9, \S 8.5, \S 8.10$.
 ${ }^{98} \mathrm{This}$ applies equally to the $e k m a_{d}^{\bullet}, \operatorname{carma} \boldsymbol{a}_{d, c}^{\bullet}$ and their swappees $e k m i_{d}^{\bullet}$, carmi $\boldsymbol{\bullet}_{d, c}^{\bullet}$.

[^53]: ${ }^{99} \mathrm{We}$ add this last condition for the reason that one-variable elements of $\operatorname{ker}\left(\sigma_{1,1}^{*}\right)$ would contribute no carmas: see the construction in §7.7.
 ${ }^{100}$ arrived at by expanding the bi-even solutions of $\sigma_{1,1}^{*} \cdot S_{1,1}^{\bullet}=0$ in the 'good' basis $\mathcal{H}_{d ; 1, s_{d}}$.

[^54]: ${ }^{101}$ i.e. to ensure degree d for precarma $_{d, k}$. Thus $\delta(d, k)=d-\tau^{*}(d)-4 k-4 \kappa(d)$.
 ${ }^{102}$ As usual, $A L I L$ and $A L A L$ are short-hand for $A R I_{\text {ent } / c s t}^{\text {al } / \mathrm{il}}$ and $A R I_{\text {ent } / c s t}^{\text {al } / \mathrm{al}}$. Constructing a basis of $A L I L$ is of course no easy matter, as we saw in $\S 6$, but what we require here is only a basis up to length 3 , which is quite simple to construct: see $\S 6.3$.

[^55]: ${ }^{103}$ Due to the presence of the corrective term $C a_{3}^{\bullet} / C i_{3}^{\bullet}$ in the formula linking the components of length 3 and weight 3 of $l ø m \bullet^{\bullet} / l ø m i^{\bullet}$. See (6.3), (6.4).

[^56]: ${ }^{104}$ since for $r=2$ the constraints that define \mathcal{A} are always finitary.

[^57]: ${ }^{105}$ See $\S 7.2$.

[^58]: ${ }^{106}$ with $[[x]]:=$ entire part of x.
 ${ }^{107}$ see $\S 7.7$ and $\S 7.9$.

[^59]: ${ }^{108}$ they are those constructed from the lama/lami-basis of $A L I L$ (see $\S 6$ and $\S 7$).

[^60]: ${ }^{109}$ For the meaning of $\widehat{\otimes}$, see $\S 8.3$.

[^61]: ${ }^{111}$ with the sole exception of the first summand in the expansion (9.14) for $l \varnothing m a_{s}^{\bullet}$, which is of the form $l \varnothing m^{\binom{s}{1}} s a_{\binom{s}{1}}^{(}$with $l \emptyset m^{\binom{s}{1}}=1$.

[^62]: ${ }^{112}$ If one wishes for a basis of scalar irreducibles totally free of constraints, one can readily produce one by picking any minimal system of components of, say, $\operatorname{irr} \emptyset_{\mathrm{II}}^{\bullet}$ and $\operatorname{irr} \emptyset_{\mathrm{III}}^{\bullet}$, that is large enough to determine all other components by alternality. That essentially amounts to selecting a basis in the Lie algebra freely generated by the symbols $\epsilon_{3}, \epsilon_{5}, \epsilon_{7} \ldots$. Many such bases exist (Lyndon's etc) but none is truly canonical. Thus, while in calculations it may often be convenient to opt for free i.e. unconstrained systems of irreducibles, from a theoretical viewpoint it is far preferable to stick with the constrained systems implicit in $\operatorname{irr} \emptyset_{\mathrm{II}}^{\bullet}$ and $\operatorname{irr} \emptyset_{\mathrm{III}}^{\bullet}$ or their symmetral counterparts $\operatorname{Irr} \emptyset_{\mathrm{II}}^{\bullet}$ and $\operatorname{Irr} \emptyset_{\mathrm{III}}^{\bullet}$.

[^63]: ${ }^{113}$ For odd lengths r in the case of $l \varnothing m a_{s}^{\bullet}$ and even lengths in the case of $r \varnothing m a_{s}^{\bullet}$.

[^64]: ${ }^{114}$ No such condition is requires for $r u m \bullet$ since it automatically vanishes when the sum $r_{1}+\ldots+r_{l}$ is odd, and in particular when it reduces to $r_{1}=1$.
 ${ }^{115}$ i.e. singularities capable of compensating those of tal ${ }^{\bullet}$ and pal ${ }^{\bullet}$ and of ensuring the regularity of $Z a g_{I}^{\bullet}$ at the origin.

[^65]: ${ }^{116}$ Despite having two-layered indices $\binom{n_{i}}{r_{i}}$, peri\bullet should be viewed as a mould rather than a bimould, since it would be meaningless to subject the r_{i}-part (as opposed to the n_{i}-part) to the flexion operations.
 ${ }^{117}$ As a consequence, is is enough to know a rather small subset of all numbers

[^66]: ${ }^{118}$ see definition at the beginning of $\S 1.1$.
 ${ }^{119}$ compatible with \mathbb{D} 's natural product, which is induced by that of \mathbb{C}.

[^67]: ${ }^{120}$ first for ζ small, and then in the large by analytic continuation.
 ${ }^{121}$ Since we are dealing here with highly ramified functions, we have to consider various leaves over any given point.

[^68]: ${ }^{122}$ Their origin, roughly, is as follows: when we subject some 'monomial' $\overline{\mathcal{H}}^{\alpha}$ (resp. $\mathcal{H}^{\boldsymbol{\omega}}$) to an exotic derivation $\nabla_{\alpha_{0}}$ (resp. $\Delta_{\omega_{0}}$), what we get is a linear combination of simpler monomials $\overline{\mathcal{H}}^{\alpha^{\prime}}$ (resp. $\underline{\mathcal{H}}^{\omega^{\prime}}$) with constant coefficients $\bar{H}^{\alpha^{\prime \prime}}$ (resp. $\underline{H}^{\omega^{\prime \prime}}$), which are precisely the elements of our two prebases.

[^69]: ${ }^{123}$ like (3.9) or (3.28) or (3.29) etc.
 ${ }^{124}$ but with a given parity in u_{1} and v_{1}.
 ${ }^{125}$ There exists of course an abundant botanical literature on trees of various descriptions, their enumeration, generation, classification etc. But so far these trees have not been studied, generated, classified etc from the angle of the flexion operations, for the obvious reason that these operations are new.

[^70]: ${ }^{126}$ because often encountered in the 'semi-classical' mechanics - i.e. when expanding formal solutions of the Schrödinger equation in power series of the Planck constant \hbar. See §11.1, §11.2, §11.3 infra.
 ${ }^{127}$ since it is typically encountered in power series of a (singular perturbation) parameter.
 ${ }^{128}$ because it is loosely dual to 'equational resurgence', that is to say, to the type of resurgence encountered in power series of the equation's proper variable.
 ${ }^{129}$ As defined in §2.4.
 ${ }^{130}$ As defined in §2.4.
 ${ }^{131}$ i.e. symmetries affecting simultaneously a bimould M^{\bullet} and its swappee swap. M^{\bullet}.
 ${ }^{132}$ meaning of course the strictly double subsymmetries - i.e. those that don't follow from a single symmetry.

[^71]: ${ }^{133}$ or, should we say, half-twisted, since it is not the bimould M^{\bullet} itself, but only its swappee swap. M^{\bullet}, that may display a twisted symmetry. No other combination would be stable under the flexion operations.

[^72]: ${ }^{134}$ Though it houses the multizetas themselves (in a formalised version), the subalgebra in question is too cramped a framework for their complete elucidation, since most auxiliary constructions required in the process lie outside.

[^73]: ${ }^{135}$ i.e. of multizetas of length $r^{\prime}<r$. The more 'negative' s_{i} 's there are, the smaller the number r^{\prime} becomes.
 ${ }^{136}$ for details, see [E2].

[^74]: ${ }^{137}$ recall that $d:=s-r$: the degree d of a scalar multizeta (in the $Z e$ encoding) is equal to its total weight s minus its length r.
 ${ }^{138}$ In the second sum, $e_{j}:=\exp \left(2 \pi i \epsilon_{j}\right)$ as usual, and we apply standard symmetrel renormalisation to get a finite result when either s_{1} or s_{r} is $=1$.

[^75]: ${ }^{139}$ They were empirically observed by followers of the Ihara approach, and pointed out to me, as conjectures, by L. Schneps in March 2010.
 ${ }^{140}$ Namely for \boldsymbol{u}-polynomial and \boldsymbol{v}-constant bimoulds. The senary relations first appeared, among many similar consequences of double symmetries, in a 2002 paper by us and were mentioned, the next year, during a series of Orsay lectures.
 ${ }^{141}$ i.e. of all indices s_{i} that are equal to 1 .
 ${ }^{142}$ i.e. with $\epsilon_{i} \in \frac{1}{2} \mathbb{Z} / \mathbb{Z}$ or $\epsilon_{i} \in \frac{1}{3} \mathbb{Z} / \mathbb{Z}$
 ${ }^{143}$ The existence of three closely related variants (see $\S 9.1$ and $\S 9.3$) in no way detracts from the canonicity.
 ${ }^{144}$ The infinite process is described in $\S 6$.

[^76]: ${ }^{145}$ For any given length r, the resulting resurgence algebra is probably finite dimensional, which would be an additional incentive for unravelling its structure.
 ${ }^{146}$ See $\S 6.7$.
 ${ }^{147}$ See $\S 9.3$.

[^77]: ${ }^{148}$ No one would seriously expects the two arithmetics - exact and formal - to differ, but proving their identity is another matter.
 ${ }^{149}$ Think for definiteness of a differential equation with a small ϵ sitting in front of the highest order derivative.

[^78]: ${ }^{150}$ The resurgence locus of a resurgent function f is the set $\Omega \subset \mathbb{C} \cdot:=\widetilde{(\mathbb{C}-0)}$ of all ω_{0} that give rise to non-vanishing alien derivatives $\Delta_{\omega_{0}} f$ or $\Delta_{\omega_{0}} \Delta_{\omega_{1}} \ldots \Delta_{\omega_{r}} f$.
 ${ }^{151}$ in terms of their resurgence properties.
 ${ }^{152}$ The number of summands is exactly $r!!:=1.3 .5 \ldots(2 r-1)$ and all coefficients are of the form ± 1.

[^79]: ${ }^{153}$ i.e. in the case of bimoulds $M^{\boldsymbol{w}}$ that are even separately in each double index w_{i}.

[^80]: ${ }^{154}$ Its proper place is in resurgence theory - in the description of the "geometry" of co-equational resurgence.

[^81]: ${ }^{155}$ that is to say, the boundaries of these sets lie on the hypersurfaces.
 ${ }^{156}$ that is to say, none of the three sets can be defined in terms of the sole signs $\operatorname{si}\left(H_{i, j}(\mathbf{w})\right):=\operatorname{sign}\left(\Im\left(H_{i, j}(\mathbf{w})\right)\right)$, at least for $r \geq 3$. For $r=1$, tes $\bullet \equiv 1$ and for $r=2$, tes ${ }^{\bullet}= \pm 1 \mathrm{iff} \operatorname{si}\left(H_{0,1}(\mathbf{w})\right)=\operatorname{si}\left(H_{1,2}(\mathbf{w})\right)=\operatorname{si}\left(H_{2,0}(\mathbf{w})\right)= \pm$ and 0 otherwise.
 ${ }^{157}$ or purely imaginary, since under biprojectivity this amounts to the same. Of course, tes ${ }^{\mathbf{w}}$ vanishes in many more cases. In fact it vanishes most of the time: see $\boldsymbol{P}_{\mathbf{6}}$ above.

[^82]: ${ }^{158}$ in the short notation, of course. In the long notation (with the additional variable v_{0}), this is automatic and implies no constraint at all.

[^83]: ${ }^{159}$ due to the swap which is implicit in the definition of separ and gepar, the new variables are no longer v_{i} 's but u_{i} 's.

[^84]: ${ }^{160}$ One should refrain from applying to \square^{\bullet} any other rules than these, and never forget than \square^{\bullet} is just a convenient symbol rather than a true bimould. Indeed, the only bona fide bimould of $B I M U_{0}$ is (up to a scalar factor) the multiplication unit 1^{\bullet} with $1^{\oplus}:=1$.

[^85]: ${ }^{163}$ in the augmented notation, i.e. considering $\left\{v_{0}, v_{1}, \ldots, v_{r}\right\}$, with v_{0} automatically regarded as black. When v_{0} is the only black variable, i.e. when $\mathcal{P}^{-}=\{0\}$ and $\mathcal{P}^{+}=$ $\{1, \ldots, r\}$, then $\mu_{0}=1$ and both flex $_{P}$ and redis $_{P}$ reduce to the identity, so that in this case the pairing and redistribution identities become trivial.

[^86]: ${ }^{164}$ in the sense that they often conflate several contributions, which were clearly distinct in the pairing identities.
 ${ }^{165}$ If $\mathcal{P}^{+}=\{1, \ldots, r\}$ and $\mathcal{P}^{-}:=\{0\}$, the slice slice ${ }_{\mathcal{P}} . M^{\bullet}$ coincides with essen. M^{\bullet}.

[^87]: ${ }^{166}$ say, for $2<d / r<3$. (Recall that d / r can in no case be ≤ 2).

[^88]: ${ }^{167}$ Recall that the expression of induc is unique only modulo the alternality relations. Hence the sign \sim to caution that there is at least one expression of induc with the number N_{r} of summands mentioned. In any case, the minimal number $N_{r}^{\text {min }}$ cannot be significantly less.
 ${ }^{168}$ Recall that the degree $d:=s-r$ of a multizeta is defined as its total weight s minus its length (or depth) r.

[^89]: ${ }^{170}$ it has no simple counterpart with $\left(Q a^{\bullet}, t a l^{\bullet}\right)$ in place of $\left(Q i^{\bullet}, t i l^{\bullet}\right)$.
 ${ }^{171}$ after automatic elimination of the $\operatorname{Rig}{ }^{\bullet}$ part.

[^90]: ${ }^{172}$ The reasons why in this particular instance one may replace the pair ari/ira by the more convenient pair awi/iwa were explained in §4.1.

[^91]: ${ }^{173}$ which gantar-invariance + gus-neutrality do not!
 ${ }^{174}$ See at the beginning of $\S 5.1$, right before (5.2).

[^92]: ${ }^{175}$ We recall that $G I W A$ is the unary subgroup of GAXI relative to the involution $\mathcal{M}_{R}=$ anti. \mathcal{M}_{L}. Under normal circumstances, giwa $\left(A^{\bullet}, B^{\bullet}\right)$ has its two arguments A^{\bullet}, B^{\bullet} in $B I M U^{*}$. Here, however, we have to consider giwa $\left(D^{\bullet}, S^{\bullet}\right)$, with a first argument in $B I M U_{*}$, but we can take recourse to the usual definition $\operatorname{giwa}\left(D^{\bullet}, S^{\bullet}\right):=\operatorname{mu}\left(\operatorname{giwat}\left(S^{\bullet}\right) . D^{\bullet}, S^{\bullet}\right)$, which still makes perfect sense.
 ${ }^{176}$ This, of course, does not apply for giwa alone: all flexion operations without exception extend to the case of arborescent sequences \boldsymbol{w}, provided we suitably redefine the product $m u$ and the four flexions $\rfloor,\lceil\rceil,,\lfloor$ in accordance with the new order.

[^93]: ${ }^{178}$ Strictly speaking, this applies only to the first two sums. For r odd, the last sum involves a supererogatory atom.

