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Abstract. We present a self-contained survey of the flexion structure and its core
ARI//GARI. We explain why this pair algebra//group is uniquely suited to the
generation, manipulation, description and illumination of double symmetries, and
therefore conducive to an in-depth understanding of arithmetical dimorphy. Spe-
cial emphasis is laid on the monogenous algebras generated by flexion units, their
special bimoulds, and the corresponding singulators. We then attempt a broad-
brush overview of the whole question of canonical irreducibles and introduce the
promising subject of perinomal algebra. As a recreational aside, we also state,
justify, and computationally check a refinement of the standard conjectures about
the enumeration of multizeta irreducibles.
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1 Introduction and reminders

1.1 Multizetas and dimorphy

Let us take as our starting point arithmetical dimorphy, which in its purest
form manifests in the ring of multizetas. Some extremely important Q-
rings of transcendental numbers happen to be dimorphic, i.e. to possess
two natural Q-prebases1 {αm}, {βn} with a simple conversion rule and
two independent multiplication tables, all of which involve only rational
coefficients and finite sums:

αm=∑∗H n
m βn , βn=∑∗K m

n αm (H n
m , K m

n ∈Q)

αm1 αm2=
∑∗Am3

m1,m2
αm3 , βn1 βn2=

∑∗Bn3
n1,n2

βn3 (An3
n1,n2

, Bn3
n1,n2
∈Q).

The simplest, most basic of all such rings is Zeta , which is not only
multiplicatively generated but also linearly spanned by the so-called mul-
tizetas.2

In the first prebasis, the multizetas are given by polylogarithmic integrals:

Waα1,...,αl∗ :=(−1)l0

∫ 1

0

dtl
(αl − tl)

. . .

∫ t3

0

dt2
(α2 − t2)

∫ t2

0

dt1
(α1 − t1)

(1.1)

with indices α j that are either 0 or unit roots, and l0 :=∑
αi=0 1.

1 With some natural countable indexation {m}, {n}, not necessarily on N or Z. We recall that a set
{αm } is a Q-prebasis (or ‘spanning subset’) of a Q-ring D if any α ∈ D is expressible as a finite
linear combination of the αm ’s with rational coefficients. But the αm ’s need not be Q-independent.
When they are, we say that {αm } is a Q-basis.

2 Also known as MZV, short for multiple zeta values.
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In the second prebasis, multizetas are expressed as “harmonic sums”:

Ze∗
(

ε1
s1

,...,
,...,

εr
sr

) :=
∑

n1>···>nr >0

n−s1
1 . . . n−sr

r e−n1
1 . . . e−nr

r (1.2)

with s j ∈ N∗ and unit roots e j := exp(2π iε j ) with ‘logarithms’ ε j ∈
Q/Z.

The stars ∗ means that the integrals or sums are provisionally assumed
to be convergent or semi-convergent: for Waα∗ this means that α1 �= 0 and

αl �= 1, and for Ze
(

ε
s )
∗ this means that (

ε1
s1

) �= (
0
1) i.e. (

e1
s1

) �= (
1
1).

The corresponding moulds Wa•∗ and Ze•∗ turn out to be respectively
symmetral and symmetrel:3

Waα1

∗ Waα2

∗ =
∑

α ∈ sha(α1,α2)

Waα
∗ ∀α1,∀α2 (1.3)

Ze
(

ε1

s1 )

∗ Ze
(

ε2

s2 )

∗ =
∑

(
ε
s )∈ she(( ε1

s1 ),(
ε2

s2 ))

Ze
(

ε
s )
∗ ∀( ε1

s1 ),∀( ε2

s2 ). (1.4)

These are the so-called quadratic relations, which express multizeta di-
morphy. As for the conversion rule, it reads:4

Wa∗e1,0[s1−1],...,er ,0[sr−1] := Ze∗
(

εr
sr

,
,

εr−1:r
sr−1

,...,
,...,

ε1:2
s1

)
(1.5)

Ze∗
(

ε1
s1

,
,

ε2
s2

,...,
,...,

εr
sr

) =:Wa∗e1...er ,0[sr−1],...,e1e2,0[s2−1],e1,0[s1−1]
(1.6)

with 0[k] denoting a subsequence of k zeros.
There happen to be unique extensions Wa•∗ → Wa• and Ze•∗ → Ze• that

cover the divergent cases and keep our moulds symmetral or symmetrel
while conforming to the ‘initial conditions’ Wa0 = Wa1 = 0 and Ze(

0
1 ) =

0. The only price to pay will be a slight modification of the conversion
rule: see Section 1.2 infra.

Basic gradations/filtrations
Four parameters dominate the discussion:
– the weight s := ∑

si (in the Ze•-encoding) or s := l (in the Wa•-
encoding);
– the length or “depth” r := number of εi ’s or si ’s or non-zero αi ’s;

3 As usual, sha(ω′, ω′′) denotes the set of all simple shufflings of the sequences ω′, ω′′, whereas in
she(ω′, ω′′) we allow (any number of) order-compatible contractions ω′i + ω′′j .

4 With the usual shorthand for differences: εi : j := εi − ε j .
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– the degree d := s−r = number of zero αi ’s in the Wa•-encoding;5

– the “coloration” p := smallest p such that all root-related εi be in
1
p Z/Z.
Only the weight s defines an (additive and multiplicative) gradation; the
other parameters merely induce filtrations.

1.2 From scalars to generating series

The natural encodings Wa• and Ze• being unwieldy and too heteroge-
neous in their indexations, we must replace them by suitable generating
series, so chosen as to preserve the simplicity of the two quadratic rela-
tions and of the conversion rule. This essentially imposes the following
definitions:6

Zag(
u1
ε1

,...,
,...,

ur
εr

) :=
∑
1≤s j

Wae1,0[s1−1],...,er ,0[sr−1]
us1−1

1 us2−1
1,2 . . . usr−1

1...r (1.7)

Zig(
ε1
v1

,...,
,...,

εr
vr

) :=
∑
1≤s j

Ze(
ε1
s1

,...,
,...,

εr
sr

)
v

s1−1
1 . . . vsr−1

r . (1.8)

The first series Zag•, via its Taylor coefficients, gives rise to yet another
Q-prebasis {Za•} for the Q-ring of multizetas. The mould Za• is sym-
metral like Wa• but quite distinct from it and much closer, in form and
indexation, to the symmetrel mould Ze•:

Zag(
u1
ε1

,...,
,...,

ur
εr

) =:
∑
1≤s j

Za(
s1
ε1

,...,
,...,

sr
εr

) us1−1
1 . . . usr−1

r . (1.9)

These power series are actually convergent: they define generating func-
tions 7 that are meromorphic, with multiple poles at simple locations.
These functions, in turn, verify simple difference equations, and admit
an elementary mould factorisation (mark the exchange in the positions of
do and co):

Zag• := lim
k→∞ Zag•k = lim

k→∞ (doZag•k × coZag•k) (1.10)

Zig• := lim
k→∞ Zig•k = lim

k→∞ (coZig•k × doZig•k) (1.11)

5 d is called degree, because under the correspondence scalars→ generating series, the multizetas
become coefficients of monomials of total degree d. See (2.19), (2.23).

6 With the usual abbreviations: ui, j = ui+u j , ui, j,k = ui+u j+uk etc.

7 Still denoted by the same symbols.
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with dominant parts doZag•/doZig• that carry the u/v-dependence8:

doZag
(

u1
ε1

,...,
,...,

ur
εr

)

k

:=
∑

1≤mi≤k

e−m1
1 . . . e−mr

r P(m1−u1)P(m1,2−u1,2) . . . P(m1..r−u1..r )
(1.12)

doZig
(

ε1
v1

,...,
,...,

εr
vr

)

k

:=
∑

k≥n1>n2>...nr≥1

e−n1
1 . . . e−nr

r P(n1−v1)P(n2 − v2) . . . P(nr − vr )
(1.13)

and corrective parts coZag•/coZig• that reduce to constants:

coZag
(

u1
0

,...,
,...,

ur
0 )

k := (−1)r
∑

1≤mi≤k

P(m1)P(m1,2) . . . P(m1...r ) (1.14)

coZig
(

0
v1

,...,
,...,

0
vr

)

k := (−1)r
∑

k≥n1≥n2≥...nr≥1

µ n1,...,nrP(n1)P(n2). . . P(nr ) (1.15)

coZag
(

u1
ε1

,...,
,...,

ur
εr

)

k := 0 if (ε1, . . . , εr ) �= (0, . . . , 0) (1.16)

coZig
(

ε1
v1

,...,
,...,

εr
vr

)

k := 0 if (ε1, . . . , εr ) �= (0, . . . , 0) (1.17)

with P(t) := 1/t (here and throughout) and with µ n1,n2,..,nr := 1
r1! r2!..rl !

if the non-increasing sequence (n1, . . . , nr ) attains r1 times its highest
value, r2 times its second highest value, etc.

Setting Mini •k := Zig •k ‖v=0 we find:9

Mini
(

0
v1

,...,
,...,

0
vr

)

k :=
[

1≤l≤ r/2
1≤ni≤k

]∑[
2≤r1≤r2 ...≤rl
r1+r2+...rl=r

](−1)(r−l)µ r1,...,rl
(P(n1))

r1

r1
. . .

(P(nl))
rl

rl
(1.18)

Mini
(

ε1
v1

,...,
,...,

εr
vr

)

k := 0 if (ε1, . . . , εr ) �= (0, . . . , 0). (1.19)

Let us now compare the bimoulds C
•
k and C•k thus defined:

swap.Zag•k =
︷ ︸︸ ︷
swap.coZag•k ×

︷ ︸︸ ︷
swap.doZag•k = A

•
k × B

•
k =: C•k (1.20)

8 With the usual abbreviations mi, j := mi+m j , mi, j,k := mi+m j+mk etc.

9 If we had no factor µ n1,...,nr in (1.18), we would have Zig •k ‖v=0 = 0 and therefore no Mini•k
terms. But the mould Zig•k would fail to be symmetril, as required. Herein lies the origin of the
corrective terms in the conversion rule.
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(Mini•k)
−1×Zig•k=

︷ ︸︸ ︷
(Mini•k)

−1×coZig•k ×
︷ ︸︸ ︷
doZig•k= A•k×B•k=:C•k (1.21)

with × standing for ordinary mould or bimould multiplication10; with
(Mini•k)−1 denoting the multiplicative inverse of (Mini•k); and with the
involution swap defined as in (2.9) infra. Here, the v-dependent factors

B
(

ε
v )

k and B
(

ε
v )

k are both given by the finite sum∑
e−n1

1 . . . e−nr
r P(n1 − v1) . . . P(nr − vr ) (1.22)

with summation respectively over the domains Br,k and Br,k

Br,k :={k≥nr ≥1, 2k≥nr−1 >nr ,. . . , (r−1)k≥n2 >n3, r k≥n1 > n2}
Br,k :={k ≥ n1 > n2 > . . . nr−1 > nr ≥ 1}.

Likewise, the v-independent factors A
(

ε
v )

k and A
(

ε
v )

k vanish unless ε = 0,
in which case they are both given by the finite sum∑

(−1)r P(n1) . . . P(nr ) (1.23)

with summation respectively over the domains Ar,k and Ar,k

Ar,k :={k≥n1≥1, 2k≥n2≥n1, . . . ,(r−1)k≥nr−1≥nr−2, rk≥nr ≥nr−1}
Ar,k :={k ≥ nr ≥ nr−1 ≥ . . . n2 ≥ n1 ≥ 1}.
It easily follows from the above that for any compact K ⊂ Cr and k large

enough, the difference C
(

ε
v )

k − C
(

ε
v )

k is holomorphic on K , and that there
exists a constant cK such that:

‖C (
ε
v )

k − C
(

ε
v )

k ‖ ≤ (cK )r (log k)r−1

k
(v ∈ K , k large). (1.24)

Summing up, we have an exact equivalence between old and new sym-
metries:11

{Wa• symmetral} ⇐⇒ {Zag• symmetral} (1.25)

{Ze• symmetrel} ⇐⇒ {Zig• symmetril} (1.26)

10 In the case of bimoulds, × is often noted mu the better to distinguish it from the various other
flexion products.

11 Symmetrility is precisely defined in Section 3.5. Roughly, it mirrors symmetrelity, but

with all contractions M
(...,ω′i+ω′′j ,...) systematically replaced by M

(
...,
...,

u′i+u′′j
v′i

,...
,... )

P(v′i − v′′j ) +

M
(
...,
...,

u′i+u′′j
v′′j

,...
,... )

P(v′′j − v′i ).
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and the old conversion rule for scalar multizetas 12 becomes:

Zig• = Mini• × swap(Zag)• (1.27)(⇐⇒ swap(Zig•) = Zag• × Mana•
)

(1.28)

with elementary moulds Mana•/Mini• := limk→∞Mana•k/Mini•k whose
only non-zero components:

Mana(
u1
0

,...,
,...,

ur
0 ) ≡ Mini(

0
v1

,...,
,...,

0
vr

) ≡ Monor (1.29)

due to (1.18), may be expressed in terms of monozetas:

1+
∑
r≥2

Monor tr := exp

(∑
s≥2

(−1)s−1ζ(s)
t s

s

)
. (1.30)

To these relations one must add the so-called self-consistency relations:

Zag(
u1

q ε1
,...,
,...,

ur
q εr

)≡
∑

qε∗i =qεi

Zag
(

q u1
ε∗1

,...,
,...,

q ur
ε∗r ) ∀q|p,∀ui ∈C,∀εi ,ε

∗
i ∈

1

p
Z/Z (1.31)

which merely reflect trivial identities between unit roots of order p.

1.3 ARI//GARI and its dimorphic substructures

What is required at this point is an algebraic apparatus capable of ac-
commodating Janus-like objects like Zag•/Zig•, i.e. an apparatus with
operations that not only respect double symmetries and reproduce them
under composition, but also construct them from scratch, i.e. from a few
simple generators.

Such a machinery is at hand: it is the flexion structure, which arose in
the early 90s in the context of singularity analysis, more precisely in the
investigation of parametric or “co-equational” resurgence. Its objects
are bimoulds, i.e. moulds M• of the form

M• ∈ BIMU ⇐⇒ M• = {Mw1,...,wr = M (
u1
v1

...

...
ur
vr

)} (1.32)

with a double-layered indexation wi = (
ui
vi

). What makes these M• into
bimoulds, however, is not so much their double indexation as the very
specific manner in which upper and lower indices transform and inter-
act: all bimould operations can be expressed in terms of four elemen-
tary flexions that go by pairs, � with � and � with �, and have the effect

12 Namely, some modified form of the rules (2.16),(2.17), which apply in the convergent case.
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of adding together several consecutive ui and of pairwise subtracting
several vi , and that too in such a way as to conserve the scalar product
<u, v>:=∑

uivi and the symplectic form dw :=∑
dui ∧ dvi . Lastly,

central to the flexion structure is a basic involution swap which acts on
BIMU by turning the ui ’s into differences of v j ’s, and the vi ’s into sums
of u j ’s (see Section 2.1 below).

The flexion structure, to put it loosely but tellingly, is the sum total of
all interesting operations and structures that can be constructed on BIMU
by deftly combining the four elementary flexions. It turns out that these
interesting structures consist, up to isomorphism, of:
– seven + one Lie groups;
– seven + one Lie algebras (each with its pre-Lie structure);
– seven + one pre-Lie algebras.
In the three series, there exist exactly two triplets of type

group//algebra//superalgebra,
which “respect dimorphy”, namely

GARI//ARI//SUARI and GALI//ALI//SUALI.
Moreover, when restricted to dimorphic bimoulds (i.e. bimoulds display-
ing a double symmetry), these two triplets actually coincide, thus sparing
us the agony of choosing between them.

1.4 Flexion units, singulators, double symmetries

Tounderstanddimorphy,andinparticular todecompose the pair Zag•/Zig•
into the elementary building blocks capable of yielding the multizeta ir-
reducibles, we require bimoulds M• which combine three properties that
do not sit well together:
— M• must possess a given symmetry, say alternal or symmetral;
— swap.M• must possess its own symmetry, which usually coincides
with that of M• or a variant thereof;
— M• and swap.M• must be entire, i.e. for a given length r their de-
pendence on the complex indices (the ui ’s in the case of M• and the vi ’s
in the case of swap.M•) must be polynomial or holomorphic or a power
series. That precludes, in particular, singularities at the origin.

The strange thing, however, is that in order to come to grips with “en-
tire dimorphy” in the above sense, we cannot avoid making repeated use
of bimoulds that are dimorphic alright, but with abundant poles at the
origin. We must then get rid of these poles by subtracting suitable bi-
moulds, with exactly the same singular part, but without destroying the
double symmetry. The only way to pull this off is by using very specific
operators, the so-called singulators, whose basic ingredients are quite
special dimorphic bimoulds, which:
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— possess poles at the origin;
— lack the crucial parity property which most other dimorphic bimoulds
possess and which ensures their stability under the ARI or GARI opera-
tions;
— are constructed from very elementary functions Ew1 = E

(
u1
v1

), the so-
called flexion units, of which there exist about a dozen. These units are
odd in w1 and verify an elementary functional equation, the tripartite
relation, which is the most basic relation expressible in terms of flexions.

1.5 Enumeration of multizeta irreducibles

The Q-ring Zeta of formal multizetas (i.e. of multizeta symbols subject
only to the two quadratic relations (1.3), (1.4)) is known to be a polyno-
mial ring, freely generated by a countable set of so-called irreducibles.13

Hence the question: how many irreducibles (let us call that number Dd,r )
must one pick in each cell of degree d and length r to get a complete and
free system of irreducibles? The so-called BK-conjectures,14 which were
formulated in 1996 (they applied to the genuine rather than formal mul-
tizetas, and resulted from purely numerical tests) suggest a startlingly
complicated formula for Dd,r but no plausible rationale for its strange
form. Soon after that, we published in [4] a convincing explanation for
the formula, which however went largely unnoticed. We therefore return
to the question in Section 5 and Section 7 in much greater detail. We
actually enunciate four new conjectures which considerably improve on
the original BK-formula, and in Section 8 we report on formal computa-
tions carried out by S. Carr to test these strengthened conjectures. But the
key lies in the theoretical explanation: in our approach, the irreducibles
correspond one-to-one to polynomial bialternal bimoulds, of which there
exist two series: the regular and utterly simple ekma• on the one hand,
and the exceptional, highly intricate carma• on the other. We explain
in detail the mechanism responsible for the creation of these exceptional
generators. That mechanism crucially involves the singulators mentioned
in the preceding section.

13 This fact is almost implicit in the (right) formalism. Indeed, with the notations of Section 9,
the general bisymmetral, entire bimould zag• factors as zag• = gari

(
ZagI , expari(ma•)

)
with

ma• =∑
S ρS ma•S denoting the general element of ALIL. Thus, to any linear basis {ma•S} of ALIL,

there corresponds one-to-one a set {ρS} of irreducibles, with the same countable indexation S, and
a transparent formula for expressing the multizetas in terms of these irreducibles. A written expo-
sition, resting on very similar ideas but couched in a quite different formalism, may be found in
G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de l’unité , Publ. Math.
IHES, 2002.

14 See [1] and Section 8.4.
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1.6 Canonical irreducibles and perinomal algebra

In Section 6 and Section 9 we move from the (d, r)-gradation to the
more natural s-gradation, s being the weight. In that new setting, the
irreducibles correspond to entire bimoulds which are no longer alter-
nal/alternal (or bialternal for short) but alternal/alternil and which for that
reason never reduce to a single component, as bialternals do. That may
seem a complication, and it is, but it also brings a drastic simplification
in its wake: instead of the dual system of generators {ekma•d, carma•d,k}
for the algebra ALAL ⊂ ARIal/al

ent of entire bialternals, we now have a
single system, either {lama•s } or {loma•s }15, of generators for the algebra
ALIL ⊂ ARIal/il

ent of all entire bimoulds of alternal/alternil type, with a
transparent indexation by all odd weights s = 3, 5, 7 etc. Like carma•,
but to an even greater extent, lama• and loma• depend for their construc-
tion on the repeated use of singulators, with parasitical poles being al-
ternately produced and then destroyed. In Section 6.7 and Section 9 we
also introduce a third system of generators for ALIL, namely {nluma•},
with indices n now running through N∗ and with functional simplicity16

replacing arithmetical simplicity17 as guiding principle. Just like with
lama• and loma•, the singulators are key to the construction of luma•,
but under a quite different mechanism, which involves infinitely many
(interrelated) linear representations of Slr (Z). This is a whole new field
unto itself, and a fascinating one at that, which we call perinomal alge-
bra, and of which we try to give a foretaste.

1.7 Purpose of the present survey

A four-volume series (on the flexion structure and its applications) is ‘in
the works’, but as often happens with fast-evolving subjects, centrifu-
gal temptations are hard to resist, centripetal discipline difficult to main-
tain, and the whole bloated project shows more signs of expanding and
mutating than of converging. To remedy this, we intend to post some
of the accumulated material (including a library of Maple programmes
for ARI//GARI calculations) online, on our Web-page, before the end of
2010. But we feel that a compact Survey like the present one might also

15 These are closely related variants.

16 The components lumaw are meromorphic functions with simple poles away from the origin.

17 The components lamaw and lomaw have rational coefficients with “manageable” denominators.
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serve a purpose – not least that of fixing notations and nomenclature.18

Some of the subject-matter laid out here is fairly old – going back
eight years in some cases – but unpublished for the most part.19 There
are novelties, too, the main one being perhaps the systematic use of flex-
ion units as a means of introducing order into the theory’s bewildering
plethora of notions and objects: operations, symmetries, structures (alge-
bras, groups) and substructures, bimoulds, bimould identities etc.

‘The’ flexion unit E• is an unspecified function Ew1 that is odd in
w1 := (

u1
v1

) and verifies a bilinear, three-term relation20 – the so-called
tripartite relation. From E• one then constructs a whole string of ob-
jects (bimoulds, symmetries, subalgebras of ARI, subgroups of GARI,
etc.) which, despite their considerable complexity, owe all their proper-
ties to the tripartite relation verified by the seed-unit E•. As it happens,
E• is capable of a dozen or so distinct realisations as a concrete function
of w1, each of which automatically induces a realisation of the whole
string of satellite objects (bimoulds, symmetries, etc.). The total effect is
thus a drastic and welcome ‘division by twelve’ of the flexion jungle.

Throughout, there is as much emphasis on the apparatus – the flexion
structure and its special bimoulds – as on the applications to multizeta
theory. We wind up with a sketch of perinomal algebra, in the hope of
stimulating interest in this brand-new subject and of paving the way for a
collective programme of exploration,21 to start hopefully in the course of
2011.

One last word of caution: throughout this paper, the somewhat con-
tentious word canonical is never used as a substitute for unique (when
meaning unique, we say unique) but as a pointer to the existence, within
a class of seemingly undistinguishable objects (like the many conceiv-
able systems of multizeta irreducibles) of genuinely privileged represen-
tatives. To single out these representatives, esthetic considerations are
unavoidable, with the residual (often minimal) fuzziness that this entails.
But the subjectivity that attaches to the notion in no way detracts from its
importance. Quite the opposite, in fact.

18 Which up till now were still fluctuating from context to context in our various papers. Working
out a coherent standardisation was, strangely, the hardest part in producing this survey.

19 Although much of it was circulated as private notes and e-files, or taught at Orsay in two DEA
courses.

20 Involving the product Ew1 Ew2 and two flexions thereof.

21 Vast, multi-facetted, and very demanding in terms of computation, this field calls, or rather cries,
for sustained teamwork.
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2 Basic dimorphic algebras

2.1 Basic operations

Elementary flexions
In addition to ordinary, non-commutative mould multiplication mu (or×):

A• = B•×C• = mu(B•, C•) ⇐⇒ Aw =
r(w1),r(w2)≥0∑

w1.w2=w

Bw1
Cw2

(2.1)

and its inverse invmu:

(invmu.A)w=
∑

1≤s≤r(w)

(−1)s
∑

w1 . . . ws = w

Aw1
. . . Aws

(wi �= ∅) (2.2)

the bimoulds A• in BIMU = ⊕0≤r BIMUr (see (1.32))22 can be subjected
to a host of specific operations, all constructed from four elementary flex-
ions �, �, �, � that are always defined relative to a given factorisation of
the total sequence w. The way the flexions act is apparent from the fol-
lowing examples:

w = a.b a = ( u1,

v1,

u2,

v2,

u3
v3

)
b = ( u4,

v4,

u5,

v5,

u6
v6

)
�⇒ a� = ( u1,

v1:4,
u2,

v2:4,
u3
v3:4

) �b = ( u1234,

v4,

u5,

v5,

u6
v6

)
w = b.c b = ( u1,

v1,

u2,

v2,

u3
v3

)
c = ( u4,

v4,

u5,

v5,

u6
v6

)
�⇒ b� = ( u1,

v1,

u2,

v2,

u3456
v3

) �c = ( u4,

v4:3,
u5,

v5:3,
u6
v6:3

)
w = a.b.c a = ( u1,

v1,

u2,

v2,

u3
v3

)
b = ( u4,

v4,

u5,

v5,

u6
v6

)
c = ( u7,

v7,

u8,

v8,

u9
v9

)
�⇒ a� = ( u1,

v1:4,
u2,

v2:4,
u3
v3:4

) �b� = ( u1234,

v4,

u5,

v5,

u6789
v6

) �c= ( u7,

v7:6,
u8,

v8:6,
u9
v9:6

)
with the usual short-hand: ui,..., j := ui + . . .+u j and vi : j := vi −v j .
Here and throughout the sequel, we use boldface (with upper indexation)
to denote sequences (w, wi , w j etc), and ordinary characters (with lower
indexation) to denote single sequence elements (wi , w j etc), or some-
times sequences of length r(w) = 1. Of course, the ‘product’ w1.w2

denotes the concatenation of the two factor sequences.

Short and long indexations on bimoulds
For bimoulds M• ∈ BIMUr it is sometimes convenient to switch from
the usual short indexation (with r indices wi ’s) to a more homogeneous

22 BIMUr of course regroups all bimoulds whose components of length other than r vanish. These
are often dubbed “length-r bimoulds” for short.
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long indexation (with a redundant initial w0 which gets bracketted for
distinctiveness). The correspondence goes like this:

M (
u1
v1

,...,
,...,

ur
vr

) ∼= M
(
[u∗0 ],
[v∗0 ],

u∗1
v∗1

,...,
,...,

u∗r
v∗r )

(2.3)

with the dual conditions on upper and lower indices:

u∗0 = −u1...r := −(u1+. . .+ur ) , u∗i = ui ∀i ≥ 1
v∗0 arbitrary , v∗i − v∗0 = vi ∀i ≥ 1

and of course
∑

1≤i≤r uivi ≡∑
0≤i≤r u∗i v

∗
i .

Unary operations
The following linear transformations on BIMU are of constant use:23

B• = minu.A• ⇒ Bw1,...,wr = − Aw1,...,wr (2.4)

B• = pari.A• ⇒ Bw1,...,wr = (−1)r A−w1,...,wr (2.5)

B• = anti.A• ⇒ Bw1,...,wr = Awr ,...,w1 (2.6)

B• = mantar.A• ⇒ Bw1,...,wr = (−1)r−1 Awr ,...,w1 (2.7)

B• = neg.A• ⇒ Bw1,...,wr = A−w1,...,−wr (2.8)

B• = swap.A• ⇒ B(
u1
v1

,...,
,...,

ur
vr

) = A(
vr
u1..r

,...,
,...,

v3:4 ,
u123,

v2:3,
u12,

v1:2
u1

) (2.9)

B• = pus.A• ⇒ B(
u1
v1

,...,
,...,

ur
vr

) = A
(

ur ,
vr ,

u1,
v1,

u2
v2

,...,
,...,

ur−1
vr−1

)
(2.10)

B• = push.A• ⇒ B(
u1
v1

,...,
,...,

ur
vr

) = A
(
−u1...r ,
−vr ,

u1 ,
v1:r ,

u2
v2:r

,...,
,...,

ur−1
vr−1:r )

. (2.11)

All are involutions, save for pus and push, whose restrictions to each
BIMUr reduce to circular permutations of order r respectively r+1:24

push = neg.anti.swap.anti.swap (2.12)

lengr = pushr+1.lengr = pusr .lengr (2.13)

with lengr standing for the natural projection of BIMU onto BIMUr .

23 The reason for dignifying the humble sign change in (2.4) with the special name minu is that
minu enters the definition of scores of operators acting on various algebras: the rule for forming
the corresponding operators that act on the corresponding groups, is then simply to change the
trivial, linear minu, which commutes with everybody, into the non-trivial, non-linear invmu, which
commutes with practically nobody (see (2.2)). To keep the minus sign instead of minu (especially
when it occurs twice and so cancels out) would be a sure recipe for getting the transposition wrong.

24 Pus respectively push is a circular permutation in the short respectively long indexation of bi-
moulds. Indeed: (push.M)[w0],w1,...,wr = M [wr ],w0,...,wr−1 .
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Inflected derivations and automorphisms of BIMU
Let BIMU∗ respectively BIMU∗ denote the subset of all bimoulds M•
such that M∅ = 0 respectively M∅ = 1. To each pair A• = (A•L ,A•R) ∈
BIMU∗×BIMU∗ respectively BIMU∗×BIMU∗ we attach two remarkable
operators:

axit(A•) ∈ Der(BIMU) respectively gaxit(A•) ∈ Aut(BIMU)

whose action on BIMU is given by:25

N •=axit(A•).M•⇔Nw=
∑1

M a�cAb�
L +

∑2
M a�cA�b

R (2.14)

N •=gaxit(A•).M•⇔Nw=
∑3

M�b1� . . . �bs�Aa1�
L . . .Aas�

L A�c1

R . . .A�cs

R (2.15)

and verifies the identities:

axit(A•).mu(M•1 ,M•2 )≡mu(axit(A•).M•1 ,M•2 )+mu(M•1 ,axit(A•).M•2 ) (2.16)

gaxit(A•).mu(M•1 ,M•2 )≡mu(gaxit(A•).M•1 ,gaxit(A•).M•2 ). (2.17)

The BIMU-derivations axit are stable under the Lie bracket for operators.
More precisely, the identity holds:

[axit(B•), axit(A•)] = axit(C•) with C• = axi(A•,B•) (2.18)

relative to a Lie law axi on BIMU∗ × BIMU∗ given by:

C•L := axit(B•).A•L − axit(A•).B•L + lu(A•L ,B•L) (2.19)

C•R := axit(B•).A•R − axit(A•).B•R − lu(A•R,B•R). (2.20)

Here, lu denotes the standard (non-inflected) Lie law on BIMU:

lu(A•, B•) := mu(A•, B•)−mu(B•, A•). (2.21)

Let AXI denote the Lie algebra consisting of all pairs A• ∈ BIMU∗ ×
BIMU∗ under this law axi.

Likewise, the BIMU-automorphisms gaxit are stable under operator
composition. More precisely:

gaxit(B•).gaxit(A•) = gaxit(C•) with C• = gaxi(A•,B•) (2.22)

25 The sum
∑1 respectively

∑2 extends to all sequence factorisations w = a.b.c with b �=
∅, c �= ∅ respectively a �= ∅, b �= ∅. The sum

∑3 extends to all factorisations w =
a1.b1.c1.a2.b2.c2 . . . as.bs.cs such that s ≥ 1, bi �= ∅, ci .ai+1 �= ∅ ∀i . Note that the extreme
factor sequences a1 and cs may be ∅.
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relative to a law gaxi on BIMU∗ × BIMU∗ given by:

C•L := mu(gaxit(B•).A•L ,B•L) (2.23)

C•R := mu(B•R, gaxit(B•).A•R). (2.24)

Let GAXI denote the Lie group consisting of all pairs A• ∈ BIMU∗ ×
BIMU∗ under this law gaxi. This group GAXI clearly admits AXI as its
Lie algebra.
The mixed operations amnit = anmit
For A• := (A•, 0•) and B• := (0•, B•) the operators axit(A•) and
axit(B•) reduce to amit(A•) and anit(B•) respectively (see (2.32) and
(2.33) infra), and the, identity (2.18) becomes:

amnit(A•, B•) ≡ anmit(A•, B•) (∀A•, B• ∈ BIMU∗) (2.25)

with

amnit(A•, B•) := amit(A•).anit(B•)− anit(amit(A•).B•) (2.26)

anmit(A•, B•) := anit(B•).amit(A•)− amit(anit(B•).A•). (2.27)

When one of the two arguments (A•, B•) vanishes, the definitions reduce
to:

amnit(A•, 0•) = anmit(A•, 0•) := amit(A•) (2.28)

amnit(0•, B•) = anmit(0•, B•) = anit(B•). (2.29)

Moreover, when amnit operates on a one-component bimould M• ∈
BIMU1 (such as the flexion units E•, see Section 3.1 and Section 3.3
infra), its action drastically simplifies:

N • := amnit(A•, B•).M• ≡ anmit(A•, B•).M• ⇔ Nw

:=
∑

a wi b=w

Aa�M�wi � B�b. (2.30)

Unary substructures
We have two obvious subalgebras//subgroups of AXI//GAXI, answering
to the conditions:

AMI ⊂ AXI : A•R = 0• , GAMI ⊂ GAXI : A•R = 1•
ANI ⊂ AXI : A•L = 0• , GANI ⊂ GAXI : A•L = 1•

but we are more interested in the mixed unary substructures, consisting
of elements of the form:

A•=(A•L ,A•R) with A•R ≡ h(A•L) and h a fixed involution (2.31)
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with everything expressible in terms of the left element A•L of the pair
A•. There exist, up to isomorphism, exactly seven such mixed unary
substructures:

algebra h swap algebra h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ARI minu ↔ IRA minu.push
ALI anti.pari ↔ ILA anti.pari.neg
ALA anti.pari.negu ↔ ALA anti.pari.negu

ILI anti.pari.negv ↔ ILI anti.pari.negv

AWI anti.neg ↔ IWA anti
AWA anti.negu ↔ AWA anti.negu

IWI anti.negv ↔ IWI anti.negv

group h swap group h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GARI invmu ↔ GIRA push.swap.invmu.swap
GALI anti.pari ↔ GILA anti.pari.neg
GALA anti.pari.negu ↔ GALA anti.pari.negu

GILI anti.pari.negv ↔ GILI anti.pari.negv

GAWI anti.neg ↔ GIWA anti
GAWA anti.negu ↔ GAWA anti.negu

GIWI anti.negv ↔ GIWI anti.negv.

Each algebra in the first table (e.g. ARI) is of course the Lie algebra of
the like-named group (e.g. GARI). Conversely, each Lie group in the
second table is essentially determined by its eponymous Lie algebra and
the condition of left-linearity.26

Dimorphic substructures
Among all seven pairs of substructures, only two respect dimorphy, name-
ly ARI//GARI and ALI//GALI. Moreover, when restricted to dimorphic
objects, they actually coincide:

ARIal/al = ALIal/al with {al/al} ={alternal/alternal and even}
GARIas/as =GALIas/as with{as/as}={symmetral/symmetral and even}.
We shall henceforth work with the pair ARI//GARI, whose definition in-
volves a simpler involution h (it dispenses with the sequence inversion
anti: see above table).

26 Meaning that the group operation (like A•, B• �→ gari(A•, B•) in our example) is linear in A•
but highly non-linear in B•.
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2.2 The algebra ARI and its group GARI

Basic anti-actions
The proper way to proceed is to define the anti-actions (on BIMU, with its
uninflectedproduct muandbracket lu)first of the lateral pairs AMI//GAMI,
ANI//GANI and then of the mixed pair ARI//GARI:

N • = amit(A•).M• ⇔ Nw =
∑1

M a�c Ab� (2.32)

N • = anit(A•).M• ⇔ Nw =
∑2

M a�c A�b (2.33)

N • = arit(A•).M• ⇔ Nw =
∑1

M a�c Ab�−
∑2

M a�c A�b (2.34)

with sums
∑1 (respectively

∑2) ranging over all sequence factorisations
w = abc such that b �= ∅, c �= ∅ (respectively a �= ∅, b �= ∅).

N • = gamit(A•).M•⇔Nw=
∑1

M�b1 . . . �bs
Aa1�. . . Aas� (2.35)

N •=ganit(A•).M•⇔Nw=
∑2

M b1� . . . bs� A�c1
. . . A�cs

(2.36)

N • = garit(A•).M•⇔Nw=
∑3

M�b1� . . . �bs�Aa1�. . . Aas�A�c1

∗ . . . A�cs

∗ (2.37)

with A•∗ := invmu(A•) and with sums
∑1

,
∑2

,
∑3 ranging respectively

over all sequence factorisations of the form:

w = a1b1 . . . asbs (s ≥ 1 , only a1 may be ∅)

w = b1c1 . . . bscs (s ≥ 1 , only cs may be ∅)

w = a1b1c1 . . . asbscs (s ≥ 1 , with bi �= ∅ and ci ai+1 �= ∅).

More precisely, in
∑3 two inner neighbour factors ci and ai+1 may vanish

separately but not simultaneously, whereas the outer factors a1 and cs

may of course vanish separately or even simultaneously.

Lie brackets and group laws
We can now concisely express the Lie algebra brackets ami, ani, ari and
the group products gami, gani, gari:

ami(A•, B•) := amit(B•).A• − amit(A•).B• + lu(A•, B•) (2.38)

ani(A•, B•) := anit(B•).A• − anit(A•).B• − lu(A•, B•) (2.39)

ari(A•, B•) := arit(B•).A• − arit(A•).B• + lu(A•, B•) (2.40)

gami(A•, B•) := mu(gamit(B•).A•), B•) (2.41)

gani(A•, B•) := mu(B•, ganit(B•).A•)) (2.42)

gari(A•, B•) := mu(garit(B•).A•), B•). (2.43)
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Pre-Lie products (‘pre-brackets’)
Parallel with the three Lie brackets, we have three pre-Lie brackets:

preami(A•, B•) := amit(B•).A• +mu(A•, B•) (2.44)

preani(A•, B•) := anit(B•).A• −mu(A•, B•) (sign!) (2.45)

preari(A•, B•) := arit(B•).A• +mu(A•, B•) (2.46)

with the usual relations:

ari(A•, B•) ≡ preari(A•, B•)− preari(B•, A•) (2.47)

assopreari(A•, B•, C•) ≡ assopreari(A•, C•, B•) (2.48)

with assopreari denoting the associator27 of the pre-bracket preari. The
same holds of course for ami and ani.

Exponentiation from ARI to GARI
Provided we properly define the multiple pre-Lie brackets, i.e. from left
to right:

preari(A•1, . . . , A•s ) = preari(preari(A•1, . . . , A•s−1), A•s ) (2.49)

we have a simple expression for the exponential mapping from a Lie
algebra to its group. Thus, the exponential expari : ARI → GARI can be
expressed as a series of pre-brackets:

expari(A•)=
∑
0≤n

1

n! preari(

n times︷ ︸︸ ︷
A•, . . . , A•)=1•+

∑
0<n

1

n! preari(. . .) (2.50)

or, what amounts to the same, as a mixed mu+arit -expansion:

expari(A•) = 1• +
∑

1≤r , 1≤ni

Exn1,...,nr mu(A•n1
, . . . , A•nr

) (2.51)

with A•n :=
(
arit(A•)

)n−1
. A• and with the symmetral mould Ex•:

Exn1,...,nr := 1

(n1−1)!
1

(n2−1)! . . .
1

(nr−1)!
1

n1...r n2...r . . . nr
(2.52)

The operation from GARI to ARI that inverses expari shall be denoted as
logari. It, too, can be expressed as a series of multiple pre-ari products,
but in a much less straightforward manner than (2.50).

27 Here, the associator assobin of a binary operation bin is straightforwardly defined as
assobin(a, b, c) := bin(bin(a, b), c) − bin(a, bin(b, c)). Nothing to do with the Drinfeld associ-
ators of the sequel!
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For any alternal mould L• we also have the identities:∑
σ⊂S(r)

Lωσ(1),..., ωσ(r)preari(A•σ(1), . . . , A•σ(r)) ≡

1

r

∑
σ⊂S(r)

Lωσ(1),..., ωσ(r)ari(A•σ(1), . . . , A•σ(r)) (∀A•1, . . . , A•r )
(2.53)

which actually characterise preari.

Adjoint actions
We shall require the adjoint actions, adgari and adari, of GARI on GARI
and ARI respectively. The definitions are straightforward:

adgari(A•).B• := gari(A•, B•, invgari.A•) (A•, B• ∈ GARI) (2.54)

adari(A•).B•:= logari(adgari(A•).expari(B•)) (2.55)

:= fragari(preari(A•,B•),A•) (A•∈GARI, B•∈ARI) (2.56)

except for definition (2.56), which results from (2.55) and (2.43) and uses
the pre-ari product28 defined as in (2.46) supra and the gari-quotient29

defined as in (2.60) infra.
Definition (2.56) has over the equivalent definition (2.55) the advan-

tage of bringing out the B•-linearity of adari(A•).B• and of leading to
much simpler calculations.30

The centers of ARI and GARI
The sets Center(ARI) respectively Center(GARI) consist of all bimoulds
M• that verify
(i) M∅ = 0 respectively M∅ = 1;
(ii) M (

u1
0

,...,
,...,

ur
0 ) = mr ∈ C ∀ui ;

(iii) M (
u1
v1

,...,
,...,

ur
vr

) = 0 unless 0 = v1 = · · · = vr .

28 Properly speaking, preari applies only to elements M• of ARI, i.e. such that M∅ = 0. Here,
however, only B• is in ARI, whilst A• is in GARI and therefore A∅ = 1. But this is no obstacle to
applying the rule (2.46).

29 Properly speaking, fragari applies only to arguments S•1 , S•2 in GARI, i.e. such that S∅i = 1. Here,

however, only S•2 := A• is in GARI, whilst S•1 := preari(A•, B•) is in ARI and therefore S∅1 = 0.
But this is no obstacle to applying the rule:

fragari(S•1 , S•2 ) := mu(garit(S•2 )−1.S•1 , invgari.S•2 ) = mu(garit(invgari.S•2 ).S•1 , invgari.S•2 ).

30 Despite the spontaneous occurence of the pre-ari product in (2.56), it should be noted that
adari(A•) is an automorphisms of ARI but not of PREARI.
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Moreover, in view of (2.43), gari-multiplication by a central element C•
amounts to ordinary post-multiplication by that same C•:

gari(C•, A•)≡gari(A•, C•)≡mu(A•, C•) (C• ∈Center(GARI)) (2.57)

Relatedness of the four main group inversions
Lastly, we may note that the inversions relative to the four group laws mu,
gari, gami, gani are not totally unrelated, but verify the rather unexpected
identity:

invmu = invgari.invgami.invgani = invgani.invgami.invgari. (2.58)

In fact, the group generated by these four involutions is isomorphic to the
group with presentation < a, b, c, d > /{a2, b2, c2, d2, abcd}.
Complexity of the flexion operations
Compared with the uninflected mould operations, the flexion operations
on bimoulds tend to be staggeringly complex. Here is the natural com-
plexity ranking for some of the main unary operations:

invgami ∼ invgani� invgari� logari� expari

andhereis thenumberofsummandsinvolved31in invgari(A•)orexpari(A•)
as the length r increases:

length r 1 2 3 4 5 6 7 8 . . .

#(invgari) 1 4 20 112 672 4224 27459 183040 . . .

#(expari) 1 4 21 126 818 5594 39693 289510 . . .

Fortunately, the whole field is so strongly and harmoniously structured,
and offers so many props to intuition, that this underlying complexity
remains manageable. While formal computation is often indispensable
at the exploratory stage, the patterns and properties that it brings to light
tend to yield rather readily to rigorous proof.

2.3 Action of the basic involution swap

Dimorphy is a property that bears on a bimould and its swappee. How-
ever, even the group product most respectful of dimorphy, i.e. gari, does
not commute with the involution swap. But if we set

gira(A•, B•) := swap.gari(swap.A•, swap.B•) (2.59)

fragari(A•, B•) := gari(A•, invgari.B•) (2.60)

fragira(A•, B•) := gira(A•, invgira.B•) (2.61)

31 Each of these inflected summands, taken in isolation, is fairly complex!
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the operation gari//gira and fragari//fragira, though distinct, can be ex-
pressed in terms of each other

gira(A•, B•) ≡ ganit(rash.B•).gari(A•, ras.B•) (2.62)

gari(A•, B•) ≡ ganit(rish.B•).gira(A•, ris.B•) (2.63)

fragira(A•, B•) ≡ ganit(crash.B•).fragari(A•, B•) (2.64)

fragari(A•, B•) ≡ ganit(crish.B•).fragira(A•, B•) (2.65)

via the anti-action ganit(B•∗) and with inputs B•∗ related to B• through
one of the following, highly non-linear operations

ras.B• := invgari.swap.invgari.swap.B• (2.66)

rash.B• := mu(push.swap.invmu.swap.B•, B•) (2.67)

crash.B• := rash.swap.invgari.swap.B• (2.68)

ris := ras−1 = swap.invgari.swap.invgari (2.69)

rish := invgani.rash.ris (2.70)

crish := invgani.crash = rish.invgari (2.71)

2.4 Straight symmetries and subsymmetries

• alternality and symmetrality.
Like a mould, a bimould A• is said to be alternal (respectively symme-
tral) if it verifies∑

w∈sha(w′,w′′)
Aw≡0

(
respectively ≡ Aw′

Aw′′) ∀w′ �=∅,∀w′′ �=∅ (2.72)

with w running through the set sha(w′, w′′) of all shufflings of w′ and
w′′.
• {alternal} �⇒{mantar-invariant, pus-neutral}.
Alternality implies mantar-invariance, with mantar = minu.pari.anti de-
fined as in (2.7).

It also implies pus-neutrality, which means this:( ∑
1≤l≤r(•)

pusl

)
.A• ≡ 0 i.e.

∑
w′circ∼w

Aw′ ≡ 0 (if r(w) ≥ 2) (2.73)

• {symmetral} �⇒{gantar-invariant, gus-neutral}.
Symmetrality implies likewise gantar-invariance, with

gantar := invmu.anti.pari (2.74)
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as well as gus-neutrality, which means
( ∑

1≤l≤r(•) pusl
)
.logmu.A• ≡ 0

i.e. ∑
1≤k≤r(w)

(−1)k−1
∑

w1...wkcirc∼w

Aw1
. . . Awk≡ 0 (if r(w) ≥ 2) (2.75)

• {bialternal} essly�⇒{neg-invariant, push-invariant}.
Bialternality implies not only invariance under neg.push but also sep-
arate neg-invariance and push-invariance for any A• ∈ BIMUr but the
implication holds only if r > 1, since on BIMU1 we have neg=push.
So neg.push=id, meaning that there is no constraint at all on elements
of BIMU1. But we must nonetheless impose neg-invariance on BIMU1

(or what amounts to the same, push-invariance) to ensure the stability of
bialternals under the ari-bracket: see Section 2.7.

• {bisymmetral} essly�⇒{neg-invariant, gush-invariant}.
Bisymmetrality implies not only invariance under neg.gush, with

gush := neg.gantar.swap.gantar.swap (2.76)

but also separate neg-invariance and gush-invariance, but only if we as-
sume neg-invariance for the component of length 1. If we do not make
that assumption, every bisymmetral bimould in GARI splits into two bi-
symmetral factors: a regular right factor (invariant under neg) and an
irregular left factor (invariant under pari.neg).

Let us now examine the stable combinations of alternality or ‘subalter-
nality’ (respectively symmetrality or ‘subsymmetrality’), i.e. the combi-
nations that are preserved under at least some flexion operations and give
rise to interesting algebras or groups.

Primary and secondary subalgebras and subgroups
Broadly speaking, simple symmetries or subsymmetries (i.e. those that
bear only on bimoulds or their swappees but not both) tend to be sta-
ble under a vast range of binary operations, both uninflected (like the
lu-bracket or the mu-product) or inflected (like ari/gari or ali/gali). The
corresponding algebras or groups are called primary. On the other hand,
double symmetries or subsymmetries (i.e. those that bear simultaneously
on bimoulds and their swappees) are only stable – when at all – under
(suitable) inflected operations. We speak in this case of secondary alge-
bras or groups.
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“Finitary” and “infinitary” constraints
Another important distinction lies in the character – “finitary” or oth-
erwise – of the contraints corresponding to each set of symmetries of
subsymmetries. These constraints always assume the form

0=
∑

τ

ε(τ ) Mτ(w) +
∑

σ

ε(σ, w) Mσ(w) (2.77)

with w=(w1, . . . , wr ); ε(τ )∈Z, ε(σ, w)∈C, τ ∈Glr (Z) (2.78)

with a first sum involving a finite number of sequences τ(w) (respec-
tively σ(w)) that are linearly dependent on w and of equal (respectively
lesser) length. What really matters is the subgroup < τ >r of Glr (Z)

generated by the τ in the first sum and unambiguously determined (up
to isomorphism) by the constraints. When < τ >r is finite32 we speak
of finitary constraints. The corresponding algebras or groups are always
easy to investigate; the algebras in particular split into ‘cells’, or com-
ponent subspaces in BIMUr , whose dimensions are readily calculated by
using standard invariant theory. When <τ >r is infinite 33 things can of
course get much trickier, but the important point to note is this: whereas
simple symmetries (like alternality) are always finitary, and full double
symmetries (like bialternality) always infinitary, there exists a very use-
ful intermediary class – that namely of finitary double symmetries. The
prototypal case is the (ari-stable) combination of alternality and push-
invariance.34

We can now proceed to catalogue all the basic symmetry-induced al-
gebras and groups – basic in the sense that all others can be derived from
them by intersection.

Throughout, we adopt the following convenient notations. For any set
E ⊂ BIMU:
(i) Eh or Eh/∗ denotes the subset of all bimoulds M• with the property h;
(ii) Eh/k denotes the subset of all bimoulds such that M• has the property
h and swap.M• has the property k;
(iii) if h or k is a unary operation, the property in question should be taken
to mean h- or k-invariance;
(iv) pusnu or gusnu denote pus - or gus -neutrality (see Section 2.4);

32 Like with the alternality constraints, in which case <τ >r∼ Sr .

33 Like with the bialternality constraints, in which case < τ >r is generated by two distinct finite
subgroups of Glr (Z), which we may denote as Sr and swap.Sr .swap.

34 That combination is indeed a double symmetry, since a bimould’s push-invariance is a conse-
quence of its and its swappee’s alternality or at least mantar-invariance.
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(v) the underlining (as in al/al or as/as) always signals the parity con-
dition for the length-1 component;
(vi) boldface ARI or GARI is used to distinguish the few infinitary sub-
algebras or subgroups of ARI or GARI.

The only infinitary algebras are:

ARIal/al , ARIpusnu/pusnu , ARIpusnu/pusnu
mantar/. :=ARIpusnu/pusnu ∩ ARImantar/.

As for the intersection ARIpusnu/pusnu ∩ ARIpush, it can be shown to co-
incide with ARIal/al deprived of its length-one component. The same
pattern holds the groups.

2.5 Main subalgebras

la• li• := swap(la•) subalgebra
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
push-invariant ⇔ push-invariant . . . ARIpush

pus-neutral . . . . . . . . . . . . . . . . . . . . . ARIpusnu/∗

. . . . . . . . . . . . . . . . . . pus-neutral (strictly) . . . ARI∗/pusnu

pus-neutral (strictly) pus-neutral (strictly) . . . ARIpusnu/pusnu

push-neutral ⇔ push-neutral . . . unstable

pus-invariant . . . . . . . . . . . . . . . . . . . . . unstable

. . . . . . . . . . . . . . . . . . pus-invariant . . . unstable

mantar-invariant . . . . . . . . . . . . . . . . . . . . . ARImantar/∗

. . . . . . . . . . . . . . . . . . mantar-invariant . . . unstable

mantar-invariant mantar-invariant . . . unstable

mantar-invariant mantar-invariant neg ARImantar/mantar

push-invariant mantar-invariant . . . ARIpush/mantar

mantar-invariant push-invariant . . . ARImantar/push

alternal . . . . . . . . . . . . . . . . . . . . . ARIal/∗

. . . . . . . . . . . . . . . . . . alternal . . . unstable

alternal alternal . . . unstable

alternal alternal neg ARIal/al

alternal mantar-invariant . . . unstable

alternal mantar-invariant neg ARIal/mantar

alternal push-invariant . . . ARIal/push

mantar-invariant alternal . . . unstable

mantar-invariant alternal neg ARImantar/al

push-invariant alternal . . . ARIpush/al.
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2.6 Main subgroups

ga• gi• := swap(ga•) subgroup
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
gush-invariant ⇔ gush-invariant . . . GARIgush

gus-neutral . . . . . . . . . . . . . . . . . . . . . GARIgusnu/∗

. . . . . . . . . . . . . . . . . . gus-neutral (strictly) . . . GARI∗/gusnu

gus-neutral (strictly) gus-neutral (strictly) . . . GARIgusnu/gusnu

gush-neutral ⇔ gush-neutral . . . unstable

gus-invariant . . . . . . . . . . . . . . . . . . . . . unstable

. . . . . . . . . . . . . . . . . . gus-invariant . . . unstable

gantar-invariant . . . . . . . . . . . . . . . . . . . . . GARIgantar/∗

. . . . . . . . . . . . . . . . . . gantar-invariant . . . unstable

gantar-invariant gantar-invariant . . . unstable

gantar-invariant gantar-invariant neg GARIgantar/gantar

gush-invariant gantar-invariant . . . GARIgush/gantar

gantar-invariant gush-invariant . . . GARIgantar/gush

alternal . . . . . . . . . . . . . . . . . . . . . GARIas/∗

. . . . . . . . . . . . . . . . . . symmetral . . . unstable

symmetral symmetral . . . unstable

symmetral symmetral neg GARIas/as

symmetral gantar-invariant . . . unstable

symmetral gantar-invariant neg GARIas/gantar

symmetral gush-invariant . . . GARIas/gush

gantar-invariant symmetral . . . unstable

gantar-invariant symmetral neg GARIgantar/as

gush-invariant symmetral . . . GARIgush/as.

2.7 The dimorphic algebra ARIal/al ⊂ ARIal/al .

The space ARIal/al of bialternal and even bimoulds is a subalgebra of
ARI. The total space ARIal/al of all bialternals is only marginally larger,
since

ARIal/al = ARIȧl/ȧl ⊕ ARIal/al (2.79)

with a complement space ARIȧl/ȧl := BIMU1,odd that simply consists of
all odd bimoulds with a single non-zero component of length 1. The total
space ARIal/al is not an algebra, but there is some additional structure on
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it, in the form of a bilinear mapping oddari of ARIȧl/ȧl into ARIal/al :

oddari : (ARIȧl/ȧl, ARIȧl/ȧl) −→ ARIal/al (oddari �= ari) (2.80)

with

C• = oddari(A•.B•) �⇒ (2.81)

C (
u1
v1

,
,

u2
v2

) := +A(
u1
v1

) B(
u2
v2

) + A(
−u1−u2−v2

) B(
u1

v1−v2
) + A(

u2
v2−v1

) B(
−u1−u2−v1

)

−B(
u1
v1

) A(
u2
v2

) − B(
−u1−u2−v2

) A(
u1

v1−v2
) − B(

u2
v2−v1

) A(
−u1−u2−v1

)

Remark. Although swap doesn’t act as an automorphism on ARI, it does
on ARIal/al, essentially because all elements of ARIal/al are push invariant.

2.8 The dimorphic group GARIas/as ⊂ GARIas/as

The set GARIal/al of bisymmetral and even bimoulds is a subgroup of
GARI. The total set GARIas/as of all bisymmetrals is only marginally
larger, since we have the factorisation

GARIas/as = gari(GARIȧs/ȧs, GARIas/as) (2.82)

GARIȧs/ȧs =
⋃
E

ess
•
E (E = flexion unit, ess

•
E bisymmetral) (2.83)

with a left factor GARIȧs/ȧs consisting of bisymmetral bimoulds that are
invariant under pari.neg (rather than neg) and correspond one-to-one to
very special bimoulds of BIMU1, the so-called flexion units (see Sec-
tion 3.2 and Section 3.5). Of course, the union

⋃
E• extends to the van-

ishing unit E• = 0•, to which there corresponds essE = idG ARI . The
total set GARIas/as is not a group, but the above decomposition makes it
clear that it is stable under postcomposition by GARIas/as:

gari(GARIas/as, GARIas/as) = GARIas/as (2.84)

Remark. Although swap doesn’t act as an automorphism on GARI, it
does on GARIas/as, essentially because all elements of GARIas/as are gush
invariant. In fact, for B• in GARIas/as, formula (2.62) reads gira(A•, B•)=
gari(A•, B•) since in that case rash(B•) = 1• and ras(B•) = B•.

3 Flexion units and twisted symmetries

3.1 The free monogenous flexion algebra Flex(E)

To any E• ∈ BIMU1 of a given parity type (
s1
s2

), i.e. such that

E
(

ε u1
η v1

)≡εs1 ηs2 E
(

u1
v1

) with s1, s2∈{0, 1}; ε, η∈{+,−}; ∀u1, v1 (3.1)
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let us attach the space Flex(E) of all bimoulds generated by E• under all
flexion operations, unary or binary35. Flex(E) thus contains subalgebras
not just of ARI but of all 7+1 distinct flexion algebras, and subgroups
not just of GARI but of all 7+1 distinct flexion groups. Moreover, for
truly random generators E•, all realisations Flex(E) are clearly isomor-
phic: they depend only on the parity type (

s1
s2

). Lastly, for all four parity
types, we have the same universal decomposition of Flex(E) into cells
Flexr (E) ⊂ BIMUr whose dimensions are as follows:

Flex(E)=
⊕
r≥0

Flexr (E) with dim(Flexr (E)) = (3 r)!
r ! (2 r+1)! . (3.2)

The reason is that Flexr (E) can be freely generated by just two operations,
namely mu and amnit:

A•i ∈ Flexri (E) �⇒ mu(A1, . . . , As) ∈ Flexr1+..rs (E) (3.3)

A•i ∈ Flexri (E) �⇒ amnit(A1, A2).E
• ∈ Flex1+r1+r2(E). (3.4)

As a consequence, each cell Flexr (E) can be shown to possess four natu-
ral bases of exactly the required cardinality, namely {e•t } ∼ {e•p} ∼ {e•o} ∼{e•g}. Theses bases are actually one, and merely differ by the indexation:
1) t runs through all r -node ternary trees;
2) p runs through all r -fold arborescent parenthesisings;
3) o runs through all arborescent, coherent orders on {1, . . . , r};
4) g runs through all pairs g = (ga, gi) of r -edged, non-overlapping
graphs.

The basis {e•t }
The free generation of Flexr (E) under the operations (3.3) and (3.4) pro-
duces an indexation by trees θ of a definite sort which, though not ternary,
stand in one-to-one correspondence with ternary trees t . We need not
bother with that here.

The basis {e•g}
We fix r and puncture the unit circle at all points Sik and Sak of the form

Sik := exp

(
2π i

k

r+1

)
, Sak := exp

(
2π i

k+ 1
2

r+1

)
(k ∈ Z/(r+1)Z)

35 Other than swap, which exchanges the ui ’s and vi ’s, and pus (see (2.10)) which, we recall,
doesn’t qualify as a proper flexion operation. But push is allowed, as well as all algebra and group
operations.
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Let Gr be the set of all (3 r)!
r ! (2 r+1)! pairs g = (ga, gi) such that:

(i) ga is a connected graph with vertices at each Sa j and with exactly r
straight, non-intersecting edges;
(ii) gi is a connected graph with vertices at each Si j and with exactly r
straight, non-intersecting edges;
(iii) ga and gi are ‘orthogonal’ in the sense that each edge of one inter-
sects exactly one edge of the other.36

To each such g = (ga, gi) we attach the bimould e•g ∈ Flexr (E) de-
fined by

e
(

u1
v1

,...,
,...,

ur
vr

)

g :=
∏

x∈ga∩ gi

E
(

u(x)
v(x)

)
(exactly r factors) (3.5)

with

u(x) :=
∑

[Si0<Sam1<San<Sam2 ]circ

un (with 1 ≤ n ≤ r)

v(x) := vn2 − vn1 (n2 �= 0 ; vn1 = 0 if n1 = 0)

with Sam1, Sam2 (respectively Sin1, Sin2 ) denoting the end-points of the
edge of ga (respectively gi) going through x and with the indexation
order so chosen as to ensure

[Si0 < Sam1 < Sam2]circ and [Sin1 < Sam1 < Sin2 < Sam2]circ.

The basis {e•o}
A partial order o on {1, . . . , r} is arborescent if each i in {1, . . . , r} has
at most one direct o-antecedent i−, and it is coherent if the following
implication (which involves both the natural order ≤ and the o-order �)
holds:

{i1 ≤ i2 ≤ i3 , i � i1 , i � i3} �⇒ {i � i2} (3.6)

This amounts to saying that the set of all j such that i � j has to be an
interval i− ≤ j ≤ i+ for the natural order. The basis elements are then
defined as follows

e
(

u1
v1

,...,
,...,

ur
vr

)

o :=
∏

1≤i≤r

E
(

u(i)
v(i) ) with u(i) :=

∑
i� j

u j=
j=i+∑
j=i−

u j , v(i) :=vi − vi−

If i has no o-antecedent i− we must of course set v(i) := vi .

36 Each ga verifying (i) has one orthogonal gi verifying (ii) and vice versa. We are told that these
objects are known as non-crossing trees in combinatorics.
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The basis {e•p}
The set Pr of all r -fold arborescent parenthesisings may be visualised as
consisting of non-commutative words p made up of r letters a (“open-
ing parentheses”), r letters b (“inter-parenthesis content”) and r letters
c (“closing parentheses”). These words, in turn, are defined by a sim-
ple induction: each non-prime p admits a unique factorisation into prime
factors pi , and each prime p admits a unique expression of the form

p = a. p1.b. p2.c ( p1, p2 ∈ P) (3.7)

with factors p1, p2 that need not be prime, and one of which may be
empty.37 Thus P1 = {abc}, P2 = {aabcbc, ababcc, abcabc}, etc.

To define the correspondance between the p- and o-indexations, we as-
similate each i in {1, . . . , r} to the i-th letter b in the words p ∈ Pr and
set

h(i) := α − γ = γ ′ − α′ (3.8)

if that i-th letter b is preceded in p by α letters a and γ letters c or, what
amounts to the same, followed by α′ letters a and γ ′ letters c. We then
define the order o on {1, . . . , r} by decreeing that i ≺ j iff h(i) < h( j)
and h(i) < h(k) for all k between i and j .38

3.2 Flexion units

As it happens, the most useful monogenous algebras Flex(E) are not
those spawned by ‘random’ generators E but on the contrary by very
special ones – the so-called flexion units.

Exact flexion units. The tripartite relation
A flexion unit is a bimould E• ∈ BIMU1 that is odd in w1 and verifies the
tripartite relation below. More precisely:

E−w1 ≡ −Ew1, Ew1 Ew2 ≡ Ew1� E�w2 + Ew1� E�w2 i.e

E
(
−u1−v1

) ≡ −E
(

u1
v1

)
, E

(
u1
v1

)
E

(
u2
v2

) ≡ E
(

u1
v1:2 )

E
(

u12
v2

) + E
(

u12
v1

)
E

(
u2

v2:1 )
.

(3.9)

In view of the imparity of E• the tripartite identity may also be written in
more symmetric form:

E
(

u1
v1:0 )

E
(

u2
v2:0 )+E

(
u2

v2:1 )
E

(
u0

v0:1 )+E
(

u0
v0:2 )

E
(

u1
v1:2 )≡0 ∀ui ,∀vi with u0+u1+u2=0

37 Or even both, if p ∈ P1.

38 As a consequence, if the i-th and j-th letters b fall into distinct prime factors of p, then i and j
are non-comparable.
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Another way of characterising flexion units is via the push-neutrality of
their powers mun(E•). Indeed, if we set:

mun(E•) = mu(

n times︷ ︸︸ ︷
E
•, . . . , E•) (3.10)

then E is a flexion unit iff mu1(E•) and mu2(E•) are push-neutral, in
which case it can be shown that all powers mun(E•) are automatically
push-neutral:

{
E is a flexion unit

}⇔{( ∑
0≤k≤n

pushk

)
.mun(E•)= 0, ∀n∈N∗

}
. (3.11)

If two units E• and O• are constant respectively in v1 and u1, then the
sum E• +O• is also a unit.

Lastly, if E• is a unit, then for each α, β, γ, δ ∈ C the relation

E
(

u1
v1

)

[α,β,γ,δ] := δ eγ u1 v1 E
(

u1/α

v1/β
)

(3.12)

defines a new unit E•[α,β,γ,δ].

Conjugate units
If E• is a unit, then the relation O

(
u1
v1

) := E
(

v1
u1

) define another unit O• –
the so-called conjugate of E•. Indeed, setting (u1, u2) := (v′1, v

′
2−v′1),

(v1, v2) := (u′1+u′2, u′2), then using the imparity of E• and re-ordering
the terms, we find that (3.9) becomes:

O
(

u′1
v′1

)

O
(

u′2
v′2

) ≡ O
(

u′1
v′1:2

)

O
(

u′12
v′2

) +O
(

u′12
v′1

)

O
(

u′2
v′2:1

)

with O
(

u1
v1

) := E
(

v1
u1

)

i.e. conserves its form.
Let us now mention the most useful flexion units, some exact and oth-

ers only approximate. Throughout the sequel, we shall set:

P(t) := 1

t
, Q(t) := 1

tan(t)
, Qc(t) := c

tan(c t)
(3.13)

Polar units
They consist purely of poles at the origin:

Paw1 = P(u1) (3.14)

Piw1 = P(v1) (3.15)

Paiw1
α,β = P

(u1

α

)
+ P

(
v1

β

)
= α

u1
+ β

v1
(3.16)

Pa•, Pi•, Pai•α,β are exact units.
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Trigonometric units
They are ‘periodised’ variants of the polar units:

Qaw1
c = Qc(u1) = c

tan(c u1)
(3.17)

Qiw1
c = Qc(v1)= c

tan(c v1)
(3.18)

Qaiw1
c,α,β = Qc

(u1

α

)
+Qc

(
v1

β

)
= c

tan
(c u1

α

)+ c

tan

(
c v1

β

) (3.19)

Qaihw1
c,α,β = Qc

(u1

α

)
−Qc i

(
v1

β

)
= c

tan
(c u1

α

) − c

tanh

(
c v1

β

) (3.20)

Qa•c , Qi•c are approximate units but Qai•c,α,β , Qaih•c,α,β are exact.

Elliptic units (after C. Brembilla)
Let σ(z ; g2, g3) be the classical Weierstrass sigma function:

σ(z ; g2, g3)=z − g2

24.3.5
z5 − g3

23.3.5.7
z7 +O(z9) with

σ(z ; g2, g3)≡−σ(−z ; g2, g3) ≡ t σ(z t−1 ; g2 t4, g3 t6) (∀t).
Then for all g2, g3, α, β, γ, δ ∈ C (αβ �= 0), the relation

E
(

u1
v1

)

g2,g3 :=
σ(u1 + v1 ; g2, g3)

σ (u1 ; g2, g3) σ (v1 ; g2, g3)
(3.21)

defines a two-parameter family of exact flexion units, which in turn, un-
der the standard parameter saturation of (3.12), give rise to:

E
(

u1
v1

)

g2,g3,α,β,γ,δ := δ eγ u1 v1 E
(

u1/α

v1/β
)

g2,g3 (3.22)

E
•
g2,g3,α,β,γ,δ ≡ E

•
g2 t4 ,g3 t6 ,α t ,β t ,γ ,δ t−1 (∀t). (3.23)

This six-parameter,five-dimensional complex variety of flexion units con-
tains all previously listed exact units (polar or trigonometric) as limit
cases. In fact, it would seem (the matter is still under investigation) that
it exhausts all flexion units meromorphic in both u1 and v1.

We must now examine further units, exact or approximate, that fail to
be meromorphic in one of these variables, or both.
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Bitrigonometric units
Qaaw1

c (respectively Qiiw1
c ) is defined for u1 ∈ C and v1 ∈ Q/Z (respec-

tively vice versa):

Qaa
(

u1
v1

)

c :=
∑
n1∈Z

c e−2 π in1v1

πn1+cu1

=
∑

1≤n1≤den(v1)

c e−2π in1v1

den(v1)
Qc

(
π n1+c u1

den(v1)

)
Qii

(
u1
v1

)

c :=
∑
n1∈Z

c e−2 π in1u1

πn1+cv1

=
∑

1≤n1≤den(u1)

c e−2π in1u1

den(u1)
Qc

(
π n1+c v1

den(u1)

)
= Qaa

(
v1
u1

)

c

(3.24)

with den denoting the denominator (of a rational number). Qaa•c and Qii•c
are both approximate units (see (3.30), (3.31) below).

Flat units
Let σ be the sign function on R, i.e. σ(R±) = ±1 and σ(0) = 0. Then
set:

Saw1 = σ(u1), Siw1 = σ(v1), Saiw1 = σ(u1)+ σ(v1) (3.25)

Sa• , Si• are approximate units but Sai• is exact.39

Mixed units

Qasw1
c,± = Qc(u1)± c i σ(v1), Qisw1

c,± = Qc(v1)± c i σ(u1) (3.26)

Qas•c,± , Qis•c,± are exact units.

“False” units

Qiw1
c,± = Qiw1

c ± c i = c Q(c v1)± c i = ± 2 c i
e± 2 c i v1

e± 2 c i v1 − 1
(3.27)

Qi•c,+ and Qi•c,− verify the exact tripartite relation but not the imparity
condition.40

39 When viewed as a distribution or as an almost-everywhere defined function on R. But when
viewed as a function on Z, it becomes an approximate unit.

40 In terms of applications, the failure of imparity has more disruptive consequences than the failure
to verify the exact tripartite equation, because it means that E has no proper conjugate O, which in
turn prevents it from serving as building block for dimorphic bimoulds such as ess• etc.
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Approximate flexion units. Tweaking the tripartite relation
The approximate flexion units listed above verify tweaked variants of the
tripartite relation:

Qaw1
c Qaw2

c ≡Qaw1�
c Qa�w2

c + Qaw1�
c Qa�w2

c + c2 (3.28)

Qiw1
c Qiw2

c ≡Qiw1�
c Qi�w2

c + Qiw1�
c Qi�w2

c − c2 (3.29)

Qaaw1
c Qaaw2

c ≡Qaaw1�
c Qaa�w2

c + Qaaw1�
c Qaa�w2

c + c2 δ(v1) δ(v2) (3.30)

Qiiw1
c Qiiw2

c ≡Qiiw1�
c Qii�w2

c + Qiiw1�
c Qii�w2

c − c2 δ(u1) δ(u2) (3.31)

Saw1 Saw2≡Saw1� Sa�w2 + Saw1� Sa�w2 − 1+ δ(u1) δ(u2) (3.32)

Siw1 Siw2≡Siw1� Si�w2 + Siw1� Si�w2 + 1− δ(v1) δ(v2). (3.33)

In the last four relations, δ(t) := 1 if t = 0 and δ(t) := 0 otherwise.

3.3 Unit-generated algebras Flex(E)

For an exact flexion unit E• the monogenous flexion algebra Flex(E), also
known as eumonogeneous41 algebra, is richer in interesting bimoulds,
though much smaller in size than in the case of a random generator
E•. The total algebra Flex(E) can still, as in Section 3.1, be freely-
canonically generated, but under the sole operation amnit and without
mould multiplication mu. In other words, we retain only the steps (3.4)
and forego the steps (3.3). As a consequence, Flex(E) decomposes into
cells Flexr (E) ⊂ BIMUr whose dimensions are given by the Catalan
numbers and whose inductive construction goes like this:

Flex(E)=
⊕
r≥0

Flexr (E) with dim(Flexr (E)) = (2 r)!
r ! (r+1)! (3.34)

Flexr (E)=
⊕

r1+r2=r−1
r1,r2≥0

amnit(Flexr1(E), Flexr2(E)) . E•. (3.35)

The new basis {e•t }
It follows from (3.35) that Flexr (E) has a natural basis {e•t } indexed by
all r -node binary trees t . The construction is by induction on r :

e
•
t = amnit(e•t1, e

•
t2) . E• = anmit(e•t1, e

•
t2) . E• (3.36)

41 With eu standing for good. For the polar respectively trigonometric specialisations of the unit,
Flex(E) is known as the eupolar respectively eutrigonometric algebra. In the eutrigonometric case,
though, the basis elements are more numerous than in the eupolar case, and amnit is no longer
sufficient to generate everything. See the last table in Section 12.1.
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where t1,t2 denote the left and right subtrees (one of them possibly empty)
attached to the root of the binary tree t .

This new basis {e•t } is a natural subset of the analogous basis of Sec-
tion 3.1, which was indexed by ternary trees.

The new basis {e•g}
It coincides with the analogous system in Section 3.1, but restricted to the
pairs g = (ga, gi) meeting either of these two equivalent conditions:
(i) the graph ga has no pair of edges issuing from the same vertex and
containing Si0 in the angle so defined.
(ii) the graph gi has no pair of edges with end-points (Sip, Sik), (Sik+1, Siq)
disposed in the circular order 0 ≤ p < k < k+1 < q ≤ r+1.

The new basis {e•o}
It coincides with its prototype in of Section 3.1, but under restriction to
the separative orders o, i.e. to orders such that:

{i − j = 1} �⇒ {i � j} or { j � i} (3.37)

In other words, elements that are consecutive in the natural order must be
comparable in the o-order. This implies that o has a smallest element. It
also implies that if i, j are not o-comparable, then the intervals [i−, i+]
and [ j−, j+] cannot be contiguous (which justifies calling the order o
“separative”).

The new basis {e•p}
It coincides with the analogous system in Section 3.1, but restricted to the
words p constructed from the sole induction rule (3.7), without recourse
to word concatenation. These less numerous p are necessarily prime, and
can be compactly represented by sequences h = [h(1), . . . , h(r)], with
h(i) denoting the height of the i-th letter b in p, as defined in (3.8). For
the lengths r ≤ 3 we have thus:

H1=
{[1]} ←→P1=

{
abc

}
H2=

{[1,2],[2,1]} ←→P2=
{
ababcc, aabcbc

}
H3=

{[1,2,3],[1,3,2],[2,1,2],[2,3,1],[3,2,1]}←→P3=
{
abababccc, . . .

}
The involution syap between conjugate flexion structures
All monogenous structures Flex(E) generated by the exact flexion units
listed in Section 3.2 are actually isomorphic. In the case of two conjugate
units, the isomorphism becomes an involution, denoted syap:

syap : Flexr (E)↔ Flexr (O), e
•
t ↔ o

•
t (E, O conjugate). (3.38)

The involution syap, being defined only on monogenous structures, is
quite distinct from the universal involution swap, which applies to the
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whole of BIMU. On the other hand, syap is more regular: it commutes
with all flexion operations, whether unary or binary, whereas swap com-
mutes only with a few, such as ami//gami.

The involution sap on each flexion structure
Both mappings swap and syap exchange Flex(E) and Flex(O). Since
these two involutions actually commute, their product sap is also a linear
involution, with eigenspaces {±1} of approximately equal size:

syap : Flexr (E)↔ Flexr (O) (3.39)

swap : Flexr (E)↔ Flexr (O) (3.40)

sap : Flexr (E)↔ Flexr (E), Flexr (O)↔ Flexr (O) (3.41)

with sap := syap.swap = swap.syap. (3.42)

For r even, the dimensions d±r of sap’s eigenspaces of eigenvalues±1 are
equal, but for r odd d+r is slightly larger than d−r . In fact, computational
evidence supports the following conjectures42:

d+2 r − d−2 r = 0 (∀r) (3.43)

d+2 r+1 − d−2 r+1 =
(2 r)!

r !(r+1)! = d+r + d−r (∀r) (3.44)

Polar specialisation and graphic interpretation
In the specal case (E•, O•) = (Pa•, Pi•), both the canonical basis and the
involution syap have a simple interpretation, as shown on the polygonal
diagrams in Section 12.1, with the dotted respectively full lines represent-
ing the variables u respectively v.

3.4 Twisted symmetries and subsymmetries in universal mode

To every exact flexion unit E there correspond twisted variants of all
straight symmetries and subsymmetries listed in Section 2.4. But be-
fore defining these, we must introduce two elementary bimoulds ez• and
ez• = pari.ez• :

ez
w1,...,wr := E

w1 . . . Ewr , ez
w1,...,wr := (−1)r

E
w1 . . . Ewr (3.45)

as well as the symmetral bimould es• := sap.ez•. (See also (4.70)).

42 They have been verified up to r = 8.
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• E-alternality and E-symmetrality
The simplest characterisation of the E-twisted symmetries is by means of
the equivalence:

{B• E-alternal resp. E-symmetral}⇐⇒ {A• alternal resp. symmetral}

with B• = ganit(ez•).A• or B• = gamit(ez•).A•, on choice.43

As for the analytic expression of the twisted symmetries, it reproduces
that of the straight symmetries on which they are patterned, except for
the systematic occurence of inflected pairs (wi , w j ), with wi , w j not in
the same factor sequence. Let us illustrate the E-alternality (respectively
E-symmetrality) relations for two sequences w′, w′′ first of length 1:

Bw1,w2+Bw2,w1+Bw1�ez�w2+B�w2ez
w1�=0 (resp. Bw1 Bw2) i.e

B(
u1
v1

,
,

u2
v2

)+B(
u2
v2

,
,

u1
v1

)−B(
u12
v1

)
E

(
u2

v2:1 )−B(
u12
v2

)
E

(
u1

v1:2 )=0 (resp. B(
u1
v1

) B(
u2
v2

)
)

and then of length 2:

Bw1,w2,w3,w4+Bw1,w3,w2,w4+Bw3,w1,w2,w4+Bw1,w3,w4,w2+Bw3,w1,w4,w2+Bw3,w4,w1,w2

+Bw1�,w2,w4ez
�w3 + B�w3,w2,w4ez

w1� + Bw1�,w4,w2ez
�w3 + B�w3,w4,w2ez

w1�

+Bw3,w1�,w2ez
�w4 + Bw3,�w4,w2ez

w1� + Bw1,w2�,w4ez
�w3 + Bw1,�w3,w4ez

w2�

+Bw1,w3,w2�ez�w4 + Bw1,w3,�w4ez
w2� + Bw3,w1,w2�ez�w4 + Bw3,w1,�w4ez

w2�

+Bw1�,w2�ez�w3,�w4 + B�w3,w2�ezw1�,�w4 + Bw1�,�w4ez
�w3,w2� + B�w3,�w4ez

w1�,w2�

= 0 (respectively Bw1,w2 Bw3,w4 ).

These two examples should suffice to make the pattern clear. Remark-
ably, when E runs through the set of all flexion units, the corresponding
E-symmetralities essentially exhaust all commutative flexion products44

that may be defined on BIMU.
Like their straight models, the twisted symmetries induce important

subsymmetries, which we must now sort out.

• {E-alternal} �⇒ {E-mantar-invariant, E-pus-neutral}
E-mantar is a linear operator conjugate to mantar:

E-mantar := ganit(ez•).mantar.ganit(ez•)−1 (3.46)

43 ganit(ez•) and gamit(ez•) define two distinct mappings A• �→ B•, but both result in the same
transformation of symmetries.

44 Provided we include the approximate flexion units, for which the twisted symmetries become
more intricate. For the trigonometric case, see Section 11.4.
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and with explicit action:

((E-mantar).B)w = (−1)r−1
∑

∏
i ai bi ci=w̃

B�b1�...�bs�∏
i

ez
ai� ∏

i

ez
�ci

(3.47)

(Note that w̃ always denotes the sequence w in reverse order).
E-pus-neutrality also is derived from straight pus-neutrality:( ∑

1≤l≤r(•)
pusl

)
.ganit(ez)−1.B• ≡ 0

and admits a simpler direct expression:∑
w′ circ∼ w

Bw′ + (−1)r(w)
∑

ai wi bi=w

B�wi � ez
ai�

ez
�bi ≡ 0. (3.48)

• {E-symmetral} �⇒ {E-gantar-invariant, E-gus-neutral}
E-gantar is a non-linear operator conjugate to gantar:

E-gantar := ganit(ez•).gantar.ganit(ez•)−1

= ganit(ez•).invmu.anti.pari.ganit(ez•)−1

= ganit(ez•).invmu.anti.pari.minu.ganit(ez•)−1minu

= invmu.ganit(ez•).anti.pari.minu.ganit(ez•)−1minu

= invmu.(E-mantar).minu.

To establish the above sequence, we used the commutation of ganit(M•)
with both minu and invmu, and the mutual commutation of minu, anti,
pari.

Using the last identity, we see that the action of E-gantar is given by:

((E-gantar).B)w

=
∑

∏
i ai bi ci=w̃

∑
∏

j b j=∏
i �bi �

(−1)r−s
∏

1≤ j≤s

Bb j ∏
i

ez
ai� ∏

i

ez
�ci (3.49)

E-gus-neutrality also is derived from straight gus-neutrality:( ∑
1≤l≤r(•)

gusl

)
.ganit(ez)−1.B• ≡ 0

and admits a simpler direct expression:∑
1≤s

(−1)s
∑

w1 . . . ws circ∼ w

Bw1
. . . Bws≡(−1)r(w)

∑
ai wi bi=w

B�wi � ez
ai�

ez
�bi

. (3.50)
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One should take care to interpret the circular sums correctly, i.e. without
repetitions. Thus, if w has length 4, on the left-hand side of (3.50) the
terms Bw1,w2 Bw3,w4 and Bw2,w3 Bw4,w1 occur once rather than twice, and
the term Bw1 Bw2 Bw3 Bw4 also occurs once, not four times.

• {alternal//O-alternal} essly�⇒ {E-neg-invariant, E-push-invariant}
As mentioned in Section 2.4, bialternality implies invariance not just un-
der negpush= mantar.swap.mantar.swap but also45 separate invariance
under neg and push. Likewise, given any pair of conjugate flexion units
(E, O), a bimould B• of type al/ol (i.e. alternal and with a O-alternal
swappee) is ipso facto invariant not just under E-negpush but also46 sepa-
rately so under E-neg and E-push. The definitions of these operators run
parallel to those of the straight case47:

E-negpush := mantar.swap.(E-mantar).swap (3.51)

E-neg := neg.adari(es•) = adari(pari.es•).neg (3.52)

E-push := (E-neg).mantar.swap.(E-mantar).swap. (3.53)

In fact, invariance under E-push is equivalent to invariance under a dis-
tinct and simpler operator E-push∗, which is defined as follows:

E-push∗ := (E-ter)−1.push.mantar.(E-ter).mantar (3.54)

with

((E-ter).B•)w1,...,wr := Bw1,...,wr−Bw1,...,wr−1E
wr+Bw1,...,wr−1�E�wr (3.55)

((E-ter)−1.B•)w1,...,wr :=
∑

a.b.c = w=(w1,...,wr )

Ba�
mues

�b
es

c (3.56)

and with mues• := invmu.es• = pari.anti.es• and es• as in (4.70).
The reason for this equivalence is the identity:

(id− E-push∗).B
• ≡ swamu(es•, (id− E-push).B•) ∀B• (3.57)

with swamu defined as the swap-conjugate of mu.48

45 Provided we assume (as assume we must, to ensure ari-stability) the component of length 1 to be
even.

46 Again, assuming parity for the length-1 component.

47 See (2.12) for push and also (4.70) for es•.
48 I.e. swamu(M•1 , M•2 ) := swap.mu(swap.M•1 , swap.M•2 )
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The notable advantage of E-push∗-invariance over E-push-invariance
is that it leads straightaway to the so-called senary relation:49

(E-ter).B• = push.mantar.(E-ter).mantar.B• (3.58)

which is the simplest way of expressing the E-push-invariance of B•.

• {symmetral//O-symmetral} essly�⇒{E-geg-invariant,E-gush-invariant}
Here, the first induced subsymmetry is the same as above, namely invari-
ance under the linear operator E-geg, defined as E-neg in (3.52) but with
adari replaced by adgari:

E-geg := neg.adgari(es•) = adgari(pari.es•).neg. (3.59)

The second induced subsymmetry is E-gush-invariance, with:

E-gush := (E-geg).gantar.swap.(E-gantar).swap. (3.60)

The only moot point is whether E-gush-invariance is equivalent to in-
variance under some simpler operator E-gush∗ defined along the same
lines as (3.54). Even though the existence of a senary relation, or for that
matter of a relation of finite arity is unlikely, it ought to be possible to
improve considerably on E-gush.

3.5 Twisted symmetries and subsymmetries in polar mode

Let us now restate the above results for the most important unit special-
isation, which is the polar specialisation (E•, O•) = (Pa•, Pi•). The
transposition goes like this:

E-alternal → alternul (∗) ; O-alternal → alternil
E-symmetral → symmetrul (∗) ; O-symmetral → symmetril
E-mantar → mantur (∗) ; O-mantar → mantir
E-gantar → gantur (∗) ; O-gantar → gantir
E-pus → pusu (∗) ; O-mantar → pusi
E-gus → gusu (∗) ; O-gus → gusi
E-push → pushu ; O-push → pushi (∗)
E-gush → gushu ; O-gush → gushi (∗)
E-neg → negu ; O-neg → negi (∗)
E-geg → gegu ; O-geg → gegi (∗)
E-ter → teru ; O-ter → teri (∗)

49 So-called because it involves only six terms – three on the left-hand side and three on the right.
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And of course:

alternal/O-alternal → alternal/alternil

alternal/E-alternal → alternal/alternul (∗).

In the above tables, the stars (∗) accompany all symmetry types that are
incompatible with entireness. For further details, see Section 4.7.

• Alternility and symmetrility
Let us write down the alternility (respectively symmetrility) relations for
two sequences w′, w′′ first of length (1,1):

B(
u1,
v1,

u2
v2

) + B(
u1,
v1,

u2
v2

) − B(
u12
v1

) Pv2:1 − B(
u12
v2

) Pv1:2 = 0
(
resp. B(

u1
v1

) B(
u2
v2

))
then of length (1,2):

B(
u1,
v1,

u2,
v2,

u3
v3

) + B(
u2,
v2,

u1,
v1,

u3
v3

) + B(
u2,
v2,

u3,
v3,

u1
v1

) − B(
u12,
v1,

u3
v3

) Pv2:1 − B(
u12,
v2,

u3
v3

) Pv1:2

− B(
u2,
v2,

u13
v1

) Pv3:1 − B(
u2,
v2,

u13
v3

) Pv1:3 = 0
(
respectively B(

u1
v1

) B(
u2,
v2,

u3
v3

))
and then of length (2,2):

B
(

u1,
v1,

u2,
v2,

u3,
v3,

u4
v4

)+B
(

u1,
v1,

u3,
v3,

u2,
v2,

u4
v4

)+B
(

u3,
v3,

u1,
v1,

u2,
v2,

u4
v4

)

+B
(

u1,
v1,

u3,
v3,

u4,
v4,

u2
v2

)+B
(

u3,
v3,

u1,
v1,

u4,
v4,

u2
v2

)+B
(

u3,
v3,

u4,
v4,

u1,
v1,

u2
v2

)

−B
(

u13,
v1,

u2,
v2,

u4
v4

)
Pv3:1−B

(
u13,
v3,

u2,
v2,

u4
v4

)
Pv1:3−B

(
u13,
v1,

u4,
v4,

u2
v2

)
Pv3:1−B

(
u13,
v3,

u4,
v4,

u2
v2

)
Pv1:3

−B
(

u13,
v3,

u1,
v1,

u2
v2

)
Pv4:1−B

(
u13,
v3,

u14,
v4,

u2
v2

)
Pv1:4−B

(
u1,
v1,

u23,
v2,

u4
v4

)
Pv3:2−B

(
u1,
v1,

u23,
v3,

u4
v4

)
Pv2:3

−B
(

u1,
v1,

u3,
v3,

u24
v2

)
Pv4:2−B

(
u1,
v1,

u3,
v3,

u24
v4

)
Pv2:4−B

(
u3,
v3,

u1,
v1,

u24
v2

)
Pv4:2−B

(
u3,
v3,

u1,
v1,

u24
v4

)
Pv2:4

+ B
(

u13,
v1,

u24
v2

)
Pv3:1 Pv4:2 + B

(
u13,
v3,

u24
v2

)
Pv1:3 Pv4:2

+ B
(

u13,
v1,

u24
v4

)
Pv3:1 Pv2:4 + B

(
u13,
v3,

u24
v4

)
Pv1:3 Pv2:4

= 0
(
respectively B

(
u1,
v1,

u2
v2

)
B

(
u3,
v3,

u4
v4

))
.

Here and in all such formulas, we set Pvi := P(vi ) := 1/vi , purely for
typographical coherence.
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• {alternil} �⇒ {mantir-invariant, pusi-neutral}
For length r = 1, 2, 3 the mantir operator acts thus:50

(mantir.B)
(

u1
v1

)= +B(
u1
v1

)

(mantir.B)
(

u1,
v1,

u2
v2

)= −B(
u2,
v2,

u1
v1

) + B(
u12
v1

) Pv2:1 + B(
u12
v2

) Pv1:2

(mantir.B)
(

u1,
v1,

u2,
v2,

u3
v3

)= +B(
u3,
v3,

u2,
v2,

u1
v1

)

−B(
u23,
v3,

u1
v1

) Pv2:3−B(
u23,
v2,

u1
v1

) Pv3:2−B(
u3,
v3,

u12
v2

) Pv1:2−B(
u3,
v3,

u12
v1

) Pv2:1

+B(
u123
v1

) Pv2:1 Pv3:1 + B(
u123
v2

) Pv1:2 Pv3:2 + B(
u123
v3

) Pv1:3 Pv2:3

and pusi-neutrality means this:∑
circ

B(
u1,
v1,

u2
v2

)=+B(
u12
v1

) Pv2:1+B(
u12
v2

) Pv1:2

∑
circ

B(
u1,
v1,

u2,
v2,

u3
v3

)=+B(
u123
v1

) Pv2:1 Pv3:1+B(
u123
v2

) Pv1:2 Pv3:2+B(
u123
v3

) Pv1:3 Pv2:3

• {symmetril} �⇒ {gantir-invariant, gusi-neutral}
For length r = 1, 2, 3 the gantir operator acts thus:

(gantir.B)
(

u1
v1

) = +B
(

u1
v1

)

(gantir.B)
(

u1,
v1,

u2
v2

) = −B
(

u2,
v2,

u1
v1

) + B
(

u2
v2

)
B

(
u1
v1

) + B
(

u12
v1

)
Pv2:1 + B

(
u12
v2

)
Pv1:2

(gantir.B)
(

u1,
v1,

u2,
v2,

u3
v3

) =+B
(

u3,
v3,

u2,
v2,

u1
v1

)+B
(

u3
v3

)
B

(
u2
v2

)
B

(
u1
v1

)−B
(

u3
v3

u2
v2

)
B

(
u1
v1

)−B
(

u3
v3

)
B

(
u2
v2

u1
v1

)

− B
(

u23,
v3,

u1
v1

)
Pv2:3 − B

(
u23,
v2,

u1
v1

)
Pv3:2 − B

(
u3,
v3,

u12
v2

)
Pv1:2 − B

(
u3,
v3,

u12
v1

)
Pv2:1

+B
(

u23
v3

)
B

(
u1
v1

)
Pv2:3+ B

(
u23
v2

)
B

(
u1
v1

)
Pv3:2+ B

(
u3
v3

)
B

(
u12
v2

)
Pv1:2+B

(
u3
v3

)
B

(
u12
v1

)
Pv2:1

+ B
(

u123
v1

)
Pv2:1 Pv3:1 + B

(
u123
v2

)
Pv1:2 Pv3:2 + B

(
u123
v3

)
Pv1:3 Pv2:3 .

As for gusi-neutrality, it has the same expression as pusi-neutrality, but
with left-hand side replaced for r = 2, 3, etc., respectively by:

B(
u1,
v1,

u2
v2

) + B(
u2,
v2,

u1
v1

) − B(
u1
v1

) B(
u3
v3

)

B(
u1,
v1,

u2,
v2,

u3
v3

)+B(
u2,
v2,

u3,
v3,

u1
v1

)+B(
u3,
v3,

u1,
v1,

u2
v2

)

−B(
u1,
v1,

u2
v2

)B(
u3
v3

)−B(
u2,
v2,

u3
v3

)B(
u1
v1

)−B(
u3,
v3,

u1
v1

)B(
u2
v2

)

etc.

• {alternal//alternil} �⇒ {negu-invariant, pushu-invariant}
The first induced subsymmetry here is invariance under negu, with

negu := neg.adari(paj•) = adari(pari.paj•).neg (3.61)

50 To get the general formula, one simply transposes (3.47).



70 Jean Ecalle

and with paj• defined as in (4.72). The second induced subsymmetry is
invariance under pushu,with

pushu := negu.mantar.swap.mantir.swap (3.62)

with mantar as in (2.7) and mantir as above; and it is in fact equivalent
to invariance under the simpler operator pushu∗:

pushu∗ := teru−1.push.mantar.teru.mantar (3.63)

whose main ingredient is the arity-3 operator teru and its inverse:51

(teru.B•)w1,...,wr := Bw1,...,wr − Bw1,...,wr−1 E
wr + Bw1,...,wr−1� Pa�wr

(teru−1.B•)w1,...,wr :=
∑

a.b.c = w= (w1,...,wr )

Ba� mupaj�b pajc

leading to the linear senary relation:

teru.B• = push.mantar.teru.mantar.B• (3.64)

• {symmetral//symmetril} �⇒ {negu-invariant, gushu-invariant}
Here, the first induced subsymmetry is gegu-invariance, with gegu de-
fined as negu in(3.61), but with adari replaced by adgari:

gegu := neg.adgari(paj•) = adgari(pari.paj•).neg (3.65)

and the second is gushu-invariance, with

gushu := gegu.gantar.swap.gantir.swap (3.66)

with gantar as in (2.74) and gantir as above.

4 Flexion units and dimorphic bimoulds

4.1 Remarkable substructures of Flex(E)

We shall now use the flexion units to construct two objects of pivotal
importance: two very special secondary or dimorphic bimoulds (i.e. bi-
moulds with a double symmetry) which are, uncharacteristically, inva-

51 The inverse teru−1 is not of finite arity, of course, but its main ingredient is the mould mupaj• :=
invmu.paj• which, due to symmetrality, has the simple form pari.anti.paj•.
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riant under pari.neg rather than neg, and which, owing to that rare prop-
erty, will prove helpful:
– in bridging the gap between straight and twisted double symmetries;
– in connecting GARIas/as with GARIas/as ;
– in constructing the singulators on which all the deeper results rest.
To do this, however, we must proceed step by step, and begin by con-
structing some important subspaces of Flex(E) and some remarkable bi-
mould families like the re•r which, though not exactly dimorphic, come
very close.

The subspaces Flexinn(E) ⊂ Flexin(E) ⊂ Flex(E)

For each integer sequence r := (r1, . . . , rs) let us define inductively the
three bimoulds me•r , ne•r , re•r :52

me•1 := E• ; me•r := amit(me•r−1).E
• ; me•r1,...,rs

:= mu(me•r1
, . . . , me•rs

)

ne•1 := E• ; ne•r := anit(ne•r−1).E
• ; ne•r1,...,rs

:= mu(ne•r1
, . . . , ne•rs

)

re•1 := E• ; re•r := arit(re•r−1).E
• ; re•r1,...,rs

:= mu(re•r1
, . . . , re•rs

).

Clearly, me•r ,ne•r ,re•r are in Flexr (E) with r :=‖r‖=∑
ri . In fact, one can

show that all three sets: {me•r , ‖r‖ = r}, {ne•r , ‖r‖ = r}, {re•r , ‖r‖ = r}
span one and the same53 subspace Flexinr (E) of Flexr (E), with dimen-
sion 2r−1.

These three bases of Flexinr (E) are connected by six simple matrices
(two of them rational-valued, the other four entire-valued). Indeed:

me
•
r0
=

∑
1≤s

∑
∑

ri=r0

(−1)s+r
ne
•
r1,...,rs

ne
•
r0
=

∑
1≤s

∑
∑

ri=r0

(−1)s+r
me
•
r1,...,rs

re
•
r0
=

∑
1≤s

∑
∑

ri=r0

(−1)s+1 rs me
•
r1,...,rs

re
•
r0
=

∑
1≤s

∑
∑

ri=r0

(−1)s+r r1 ne
•
r1,...,rs

me
•
r0
=

∑
1≤s

∑
∑

ri=r0

1

r1r12 . . . r12...s
re
•
r1,...,rs

ne
•
r0
=

∑
1≤s

∑
∑

ri=r0

(−1)s+r

r12...s . . . rs−1,srs
re
•
r1,...,rs

with ri, j,... or even ri j ... standing as usual for ri+r j + . . .

52 For their analytical expressions, see Section 12.2.

53 This would no longer be the case if E• were not a flexion unit.
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If we now denote by {r1, . . . , rs} any non-ordered integer set with rep-
etitions allowed (or ‘partition’, if you prefer) and if we set:54

re
•
{r1,...,rs } =

∑
{r ′1,...,r ′s }={r1,...,rs }

1

s! preari(re•r ′1, . . . , re
•
r ′s )

se
•
{r1,...,rs } =

∑
{r ′1,...,r ′s }={r1,...,rs }

1

r ′1r ′12 . . . r ′12...s

preari(re•r ′1, . . . , re
•
r ′s )

then it can be shown that, despite the very different summation weights,
the two sets {re•{r}, ‖r‖ = r}, {se•{r}, ‖r‖ = r} span one and the same55

subspace Flexinnr (E) of Flexinr (E), with dimension p(r) equal to the
number of partitions of r . Summing up, we have:

Flexinn(E)=⊕Flexinnr (E)⊂Flexin(E)=⊕Flexinr (E)⊂Flex(E)=⊕Flexr (E)

dim(Flexinnr (E))= p(r); dim(Flexinr (E))=2r−1; dim(Flexr (E))= (2 r)!
r ! (r+1)!

(i) Flex(E) is stable under all flexion operations.
(ii) Flexin(E) is stable under mu, lu, and arit(re•r0

) (∀r0).
(iii) Flexinn(E) is stable under nothing much, but crucial nonetheless.

Action of arit(re•r ) on Flexin(E)

It is neatly encapsulated in the formulas:

arit(re•q).me
•
p =

∑
s≥1

∑
∑

ri=p+q , r1≥p

(−1)1+s rs me
•
r1,...,rs

(4.1)

arit(re•q).ne
•
p =

∑
s≥1

∑
∑

ri=p+q , rs≥p

(−1)1+s+q r1 ne
•
r1,...,rs

(4.2)

arit(re•q).re
•
p = p re

•
p+q +

∑
i≤q

lu(re•i , re
•
p+q−i ) (4.3)

= p re
•
p+q +

∑
i<p

lu(re•i , re
•
p+q−i ) (4.4)

The algebra ARI<re> and its group GARI<se>

Of the three bases of Flex(E), the first two are simplest, in the sense that

54 With the multiple pre-brackets preari taken, as usual, from left to right.

55 The simplest way to show that {re•{r}} and {se•{r}} span the same space and to find the conversion

rule between the two bases, is to equate the expansions (4.11) and (4.12) for Se•f while expressing
the coefficients αn of the infinitesimal generator and the coefficients γn of the infinitesimal dilator
in terms of each other.
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here we have atomic basis elements me•r1,...,rs
or ne•r1,...,rs

, i.e. elements
that reduce to single products of the form Ew′1 . . . Ew′r for suitably in-
flected w′i . With the third basis, on the other hand, we have molecular
basis elements that can only be expressed as superpositions of at least∏

ri atoms. But the individual re•r (r ∈ N∗), whose definition we recall:

re
w1,...,ws
r := 0 if r �= s

re
w1
1 := E

w1, re
•
r := arit(re•r−1).re

•
1 if r ≥ 2

(4.5)

more than make up for their ‘molecularity’ by possessing three essential
properties:
(i) the bimoulds re•r thus defined are alternal;
(ii) when suitably combined, they exhibit traces of dimorphy, since the
bimould sre•:

sre
• := 1

2
re
•
1+

1

6
re
•
2+

1

12
re
•
3+· · · =

∑
r≥1

1

r(r+1)
re
•
r ∈ ARIal/ol (4.6)

is not only alternal, but has a O-alternal swappee srö
•;

(iii) but the real importance of the re•r derives from the remarkable iden-
tities:

ari(re•r1
, re•r2

) = (r1 − r2) re
•
r1+r2

∀r1, r2 ≥ 1 (4.7)

which lead straightaway to the following commutative diagram:

GIFF<x>
isom.−→ GARI<se> ⊂ GARIas ‖ ser (x) = x

(1−xr )
1
r
−→ se•r

↑ exp ↑ expari ‖ ↑ exp ↑ expari

DIFF<x>
isom.−→ ARI<re> ⊂ ARIal ‖ rer (x) = xr+1∂x −→ re•r

Here, GIFF<x> denotes the group of (formal, one-dimensional) identity-
tangent mappings of the form:

f := x �→ x .

(
1+

∑
1≤r

ar xr

)
(4.8)

and DIFF<x> denotes its infinitesimal algebra, whose elements may be
represented as sums

∑
1≤r ar xr+1∂x , provided we change the sign before

their natural bracket.
Of course, since the Lie algebra ARI<re> contains only alternal bi-

moulds, its exponential, the group GARI<se>, contains only symmetral
bimoulds. Moreover, since elements of ARI<re> also possess traces of
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dimorphy, so too will their images in GARI<se>. In the case of two re-
markable bimoulds, ess• and esz• of GARI<se>, we shall even get exact
dimorphy rather than ‘traces’.

But rather than jumping ahead, let us first explicate the isomorphisms
f ↔ Se

•
f between the classical group GIFF<x> and its counterpart

GARI<se> in the flexion structure. We begin with the easier direction,
i.e. from flexion to classical.

The isomorphism GARI<se>→ GIFF<x> made explicit
Let Se

•
f in GARI<se> be the image of some f (x) := x (1+∑

ar xr ) in
GIFF<x>. How do we read the coefficients ar directly off the bimould
Se
•
f itself, without going through the costly operation logari ? The an-

swer is given by the bilinear operator gepar:

gepar.H • := mu(anti.swap.H •, swap.H •) (4.9)

and by the formula:

(gepar.Se f )
w1,...,wr ≡(r+1) arO

w1 . . . Owr with Oconjugate toE (4.10)

The isomorphism GIFF<x>→ GARI<se> made explicit
The isomorphism from classical to flexion is more difficult but also more
interesting to unravel. We may of course transit through DIFF<x> and
ARI<re> in the above diagram, but that involves performing the ‘costly’
operation expari and leads, in the course of the calculations, to ratio-
nal coefficients with large denominators, which vanish in the end result.
Concretely, that means forming the infinitesimal generator f∗ of f (see
(4.13), (4.15)) and inserting its coefficients εn into (4.11). Fortunately,
there exists a much more direct scheme, which involves only integer co-
efficients: this time, we form the infinitesimal dilator f# of f , which is
a far more accessible object than f∗ (see (4.14), (4.16)) and inject its
coefficients γn into (4.12).

Se
•
f =

∑
{r}

re
•
{r} ε{r} with ε{r1,...,rs } := εr1 . . . εrs (4.11)

Se
•
f =

∑
{r}

se
•
{r} γ{r} with γ {r1,...,rs } := γr1 . . . γrs (4.12)

f∗(x) = x
∑
1≤k

εk xk = infinitesimal generator of f (4.13)

f#(x) = x
∑
1≤k

γk xk = x − f (x)

f ′(x)
= infinitesimal dilator of f (4.14)



75 The flexion structure and dimorphy . . .

(
exp( f∗(x) ∂x)

)
. x = f (x) (4.15)(

f ◦ (id + ε f#)
)
(x) = x +

∑
1≤n

(1+ ε n) an xn+1 +O(ε2). (4.16)

Ultimately, of course, the coefficients γn of f# have to be expressed in
terms of those of f itself. Here, however, we have the choice between
the three main representations of GIFF<x>:

x �→ f (x) = x +∑
1≤n an x1+n (x ∼ 0)

y �→ f (y) = y +∑
1≤n bn y1−n = 1/ f (y−1) (y ∼ 0)

z �→ f (z) = z +∑
1≤n cn en z = log f (ez) (z ∼ 0)

leading for γn to three rather similar expressions:

∑
γn xn ≡

∑
n an xn

1+∑
(n+1) an xn

≡ −∑
n bn xn

1−∑
(n−1) bn xn

≡
∑

n cn xn

1+∑
n cn xn

.

(4.17)

Under closer examination, it turns out that the coefficients {an}, {bn}, {cn}
of f , f , f are well-suited for expressing Se

•
f in the bases {ne•r},{me•r},{re•r}

respectively (mark the order!), leading to three expansions:

Se
•
f =

∑
r

Ar
ne
•
r =

∑
r

Br
me
•
r =

∑
r

Cr
re
•
r . (4.18)

To get a complete grip on the situation, we must calculate the moulds A•,
B•, C• in terms of the an , bn , cn . To this end, we lift the infinitesimal
dilation identity (4.16) from GIFF<x> to GARI<se>. We find:

r(•).Se
•
f=arit(Te

•
f ).Se

•
f+mu(Se

•
f , Te

•
f ) with Te

•
f :=

∑
1≤r

γr re
•
r (4.19)

or more compactly:

r(•). Se
•
f = preari(Se

•
f , Te

•
f ) with Te

•
f :=

∑
1≤r

γr re
•
r . (4.20)

In view of the formulas (4.1), (4.2), (4.3) for the action of arit(re•r ) on
Flexin(E), the identity (4.19) immediately translates into these three sim-
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ple induction rules for the calculation of A•, B•, C•:

‖r‖Ar =
∑

r1 r2 = r

Ar1N r2

0 +
∑

r1 r2 r3 = r

∑
1≤r0<‖r2‖

Ar1r0r3N r2

r0
(4.21)

‖r‖Br =
∑

r1 r2 = r

Br1Mr2

0 +
∑

r1 r2 r3 = r

∑
1≤r0<‖r2‖

Br1r0r3Mr2

r0
(4.22)

‖r‖Cr =
∑

r1 r2 = r

Cr1Rr2

0 +
∑

r1 r2 r3 = r

∑
1≤r0<‖r2‖

Cr1r0r3Rr2

r0
. (4.23)

The auxiliary moulds N •, M•, R• are defined as follows:

N r
r0
:= γ‖r‖−r0(a) (−1)1+s+‖r‖−r0 r1 (�0<r0≤rs −�0=r0) (4.24)

Mr
r0
:= γ‖r‖−r0(b) (−1)1+s rs (�0≤r0≤r1) (4.25)

Rr1
r0
:= γ‖r‖−r0(c) (�0=r0=r1 + r0 �0<r0<r1) (4.26)

Rr1,r2
r0
:= γ‖r‖−r0(c) (�r1<r0≤r2 −�r2<r0≤r1) (4.27)

Rr1,...,rs
r0

:= 0 if s ≥ 3 (4.28)

(i) with r := (r1, . . . , rs) for any s, ri ∈ N∗;
(ii) with �S denoting the characteristic function of any given set S;
(iii) with γn(a), γn(b), γn(c) denoting the coefficients of the infinitesimal
dilator f# expressed (via the formulas (4.17)) in terms of the coefficients
ai , bi , ci respectively.

The main facts here are these:
(i) The moulds B• and A• are symmetrel whereas C• is symmetral;
(ii) Ar , Br , Cr are homogeneous polynomials of total degree ‖r‖ in the
variables ai , bi , ci respectively, but whereas Cr has (predictably) rational
coefficients, Ar and Br have (unexpectedly) entire coefficients;
(iii) These rational (respectively entire) coefficients display remarkable
symmetry properties: see (4.31), (4.32) below.

Here are the first structure polynomials Ar , Br , Cr up to ‖r‖ = 4:

B1 = −b1 A1 = a1 C1 = c1

B2 = −2 b2 +b2
1 A2 = −2 a2 +a2

1 C2 = +c2
B1,1 = +b2 A1,1 = +a2 C1,1 = + 1

2 c2
1

B3 = −3b3 +3b1b2 −b3
1 A3 = +3a3 −3a1a2 +a3

1 C3 = +c3

B1,2 = +2b3 A1,2 = −a3 −a1a2 +a3
1 C1,2 = +c1c2 − 1

6 c3
1

B2,1 = +b3 −b1b2 A2,1 = −2a3 +2a1a2 −a3
1 C2,1 = + 1

6 c3
1

B1,1,1 = −b3 A1,1,1 = +a3 C1,1,1 = + 1
6 c3

1
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B4 = −4 b4 +4 b1 b3 +2 b2
2 −4 b2

1 b2 +b4
1

B1,3 = +3 b4

B3,1 = +b4 −b1 b3 −2 b2
2 +b2

1 b2

B2,2 = +2 b4 −2 b1 b3 +b2
2

B1,1,2 = −2 b4 −b2
2

B1,2,1 = −b4 +b2
2

B2,1,1 = −b4 +b1 b3

B1,1,1,1 = +b4

A4 = −4 a4 +4 a1 a3 +2 a2
2 −4 a2

1 a2 +a4
1

A1,3 = +a4 +2 a1 a3 +a2
2 −5 a2

1 a2 +2 a4
1

A3,1 = +3 a4 −3 a1 a3 −3 a2
2 +6 a2

1 a2 −2 a4
1

A2,2 = +2 a4 −2 a1 a3 +a2
2

A1,1,2 = −a4 −a2
2 +a2

1 a2

A1,2,1 = −a4 −a1 a3 +2 a2
1 a2 −a4

1

A2,1,1 = −2 a4 +2 a1 a3 +a2
2 −3 a2

1 a2 +a4
1

A1,1,1,1 = +a4

C4 = +c4

C1,3 = +c1 c3 + 1
2 c2

2 − 1
2 c2

1 c2 + 1
24 c4

1

C3,1 = − 1
2 c2

2 + 1
2 c2

1 c2 − 1
24 c4

1

C2,2 = + 1
2 c2

2

C1,1,2 = + 1
2 c2

1 c2 − 1
8 c4

1

C1,2,1 = + 1
12 c4

1

C2,1,1 = + 1
24 c4

1

C1,1,1,1 = + 1
24 c4

1.

For any unordered integer sequence {r} := {r1, . . . , rs}, with repetitions
allowed, we set:

a{r} :=
∏

i

ari ; b{r} :=
∏

i

bri ; c{r} :=
∏

i

cri . (4.29)

There exist efficient algorithms for calculating the three series of structure
coefficients A•,{•}, B•,{•}, C•,{•} which occur in the above tables:

Ar =
∑
{r ′′}

Ar,{r ′′} a{r ′′} Br =
∑
{r ′′}

B r,{r ′′} b{r ′′} Cr =
∑
{r ′′}

C r,{r ′′} c{r ′′}

and which encode, each in their way, all the information about the map-
ping from GIFF<x> to GARI<se>. These structure coefficients have many
properties, some of which are still imperfectly understood. We mention
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here but two of them. Consider the regularised coefficients B{•},{•},A{•},{•}
defined by:56

A{r
′},{r ′′} =

∑
r∈{r ′}

Ar,{r ′′}; B{r
′},{r ′′} =

∑
r∈{r ′}

B r,{r ′′}. (4.30)

We then have the remarkable symmetry properties:

A{r
′},{r ′′} = A{r

′′},{r ′}; B{r
′},{r ′′} = B{r

′′},{r ′} (4.31)

together with the identity:

B{r
′},{r ′′} = (−1)r A{r

′},{r ′′} with r :=
∑

r ′i =
∑

r ′′i . (4.32)

The following tables give A{r ′},{r ′′} up to r = 6. The entries left vacant
correspond to zeros.

2 12 3 1.2 13

2 −2 +1 3 +3 −3 +1
12 +1 1.2 −3 +1

13 +1

4 1.3 22 12.2 14

4 −4 +4 +2 −4 +1
1.3 +4 −1 −2 +1
22 +2 −2 +1

12.2 −4 +1
14 +1

5 1.4 2.3 12.3 1.22 13.2 15

5 +5 −5 −5 +5 +5 −5 +1
1.4 −5 +1 +5 −1 −3 +1
2.3 −5 +5 −1 −2 +1
12.3 +5 −1 −2 +1
1.22 +5 −3 +1
13.2 −5 +1
15 +1

56 The two sums in (4.30) range over all ordered sequences r that coincide, up to order, with the
unordered sets {r ′}.
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6 1.5 2.4 32 12.4 1.2.3 13.3 23 12.22 14.2 16

1.5 +6 −1 −6 −3 +1 +7 −1 +2 −4 +1
2.4 +6 −6 +2 −3 +2 +4 −2 −2 +1
3.3 +3 −3 −3 +3 +3 −3 0 +1

12.4 −6 +1 +2 +3 −1 −3 +1
1.2.3 −12 +7 +4 −3 −3 +1
13.3 +6 −1 −2 0 +1

23 −2 +2 −2 +1
12.22 +9 −4 +1
14.2 −6 +1

16 +1

If now, following (4.30), we set C {r ′},{r ′′} = ∑
r∈{r ′} C

r,{r ′′}, we are sad-
dled with rational numbers, but the symmetry relation becomes even
more striking than with A{•},{•} and B{•},{•}. Indeed:

C {r
′},{r ′′} = C {r

′′},{r ′} = 0 if {r ′} �= {r ′′} (4.33)

C {r},{r} = cs1
r1

s1!
cs2

r2

s2! . . . if {r} = { s1 times
r1, . . . , r1 ,

s2 times
r2, . . . , r2 , . . . }. (4.34)

4.2 The secondary bimoulds ess• and esz•

Dimorphic elements of GARI<se>

We are now, at long last, in a position to construct the two main dimorphic
bimoulds ess•σ and esz•σ of GARI<se>, simply by taking the images of
two well-chosen elements fσ and gσ of GIFF<x>. In the last section, we
mentioned the economical way of taking such images, without transiting
through the algebras. Here, for the sake of expediency, we plump for the
theoretical way, via the infinitesimal generators:

fσ (x) −→ ess•σ ‖ gσ (x) −→ esz•σ
↑ exp ↑ expari ‖ ↑ exp ↑ expari

f∗σ (x) −→ less
•
σ ‖ g∗σ (x) −→ lesz

•
σ .

The above diagram immediately translates into the formulas:

ess
•
σ := expari

(∑
r≥1

σ r εr re
•
r

)
←→ fσ (x) := 1− e−σ x

σ
(4.35)

esz
•
σ := expari

(∑
r≥1

ησ,r re
•
r

)
←→ gσ (x) := 1−(1−x)1−2 σ

1− 2 σ
(4.36)
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with rational coefficients εr and ησ,r determined by:(
exp

((∑
r≥1

σ rεr xr

)
.x .∂x

))
.x = fσ (x)= x

(
1+

∑
r≥1

σ r cr xr

)
= x − σ

2
x2 + . . .

(4.37)

(
exp

((∑
r≥1

ησ,r xr

)
.x .∂x

))
.x =gσ (x)= x

(
1+

∑
r≥1

dσ,r xr

)
= x + σ x2 + . . .

(4.38)

Thus:

ε1= −1

2
, ε2=− 1

12
, ε3=− 1

48
, ε4=− 1

180
,

ε5=− 11

8640
, ε6=− 1

6720
. . .

ησ,1=s, ησ,2= 1

3
σ (1−σ), ησ,3= 1

6
σ (1−σ)2,

ησ,4= 1

90
σ (1−σ)(3−4 σ)(3−2 σ) . . .

Main property: The bimoulds ess•σ are bisymmetral (i.e. of type as/as)
whilst the bimoulds esz•σ are symmetral/O-symmetral (i.e. of type as/os).
Here, O denotes as usual the flexion unit conjugate to E.

Remark 1: This is a survey, dedicated to stating rather than proving.
However, the double symmetries of ess•σ and esz•σ are so essential that we
must pause to justify them. The symmetrality of these two bimoulds is
easy enough: it simply results from their being, by construction, elements
of GARI<se>. But what about their swappees? The way the operator
gepar is defined (see (4.1)), it is clear that if ess•σ is to be symmetral,
then gepar.ess•σ too has to be symmetral. Similarly, if esz•σ is to be O-
symmetral, then gepar.esz•σ too has to be O-symmetral. Now, in view of
(4.10) and (4.37), (4.38), we can see that

(gepar.essσ )w1,...,wr = Sσ,r O
w1 . . . Owr (4.39)

(gepar.eszσ )w1,...,wr = Zσ,r O
w1 . . . Owr (4.40)

with

Sσ,r=(r+1) σ r cr = (−σ)r

r ! (4.41)

Zσ,r=(r+1) dσ,r = 1

r !
∏

0≤ j≤r−1

(2 σ+ j). (4.42)
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Now, it is an easy matter to check that the above coefficients Sσ,r re-
spectively Zσ,r are the only ones that can make the bimoulds defined by
the right-hand sides of (4.39) respectively (4.40) symmetral respectively
O-symmetral. Thus, gepar.ess•σ and gepar.esz•σ do possess the right sym-
metries, and from there it is but a short step to check that their constituent
factors, namely swap.ess•σ and anti.swap.ess•σ respectively swap.esz•σ
and anti.swap.esz•σ , also possess the right symmetries: see Section 11.9
and Section 11.10.

Remark 2: Whereas the bimoulds esz•σ really differ when σ varies, the
bimoulds ess•σ merely undergo dilatation – an elementary transform that
commutes with all flexion operations. So all these ess•σ essentially re-
duce to their prototype ess• := ess•1, which we shall henceforth call the
bisymmetral element of Flex(E).

Remark 3: By continuity in σ , we see that g1/2(x) = − log(1 − x).
Thus f1 ◦ g1/2 = id and therefore gari(ess•1, esz

•
1/2) = idGARI = 1•,

which shows that invgari.ess•1 and by implication all invgari.ess•σ are not
bisymmetral.

Remark 4: odd-even factorisations of the bisymmetrals.
The pre-image f (x) := 1 − e−x of ess• in GIFF<x> factors as f =
f$ ◦ f$$, with an elementary first factor and a second factor that carries
only even-indexed coefficients:

f$(x) := x

1+ 1
2 x
=

(
exp

(
−1

2
x2 ∂x

))
. x (4.43)

f$$(x) := x

(
1+

∑
1≤n

a$$2 n x2 n

)
. (4.44)

For ess• this immediately translates into the factorisation (4.45) in
GARI<se>. For swap.ess• =: öss

•, it translates, though less immedi-
ately, into the factorisation (4.46) in BIMU. Mark the order inversion,
though, and note that swap.ess•∗ �= öss

•
�, swap.ess•∗∗ �= öss

•
��.

ess
•=gari(ess•∗, ess

•
∗∗) with ess

•
∗, ess

•
∗∗ symmetral (4.45)

swap.ess•= öss
•=mu(öss•��, öss

•
�) with öss

•
�, öss

•
�� symmetral. (4.46)
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All four factor bimoulds are symmetral. The single-starred ones are ele-
mentary:

ess
•
∗ := expari

(
−1

2
E
•
)
⇒ ess

(
u1
v1

,...,
,...,

ur
vr

)

∗

= (−1)r

2r
E

(
u1

v1:2 )
E

(
u12
v2:3 )

. . . E(
u1...r

vr
)

(4.47)

öss
•
� := expmu

(
−1

2
O
•
)
⇒ öss

(
u1
v1

,...,
,...,

ur
vr

)

�

= (−1)r

2r r ! O
(

u1
v1

)
O

(
u2
v2

)
. . . O(

ur
vr

).

(4.48)

The double-starred factors, though non-elementary, carry only (non-zero)
components of even length:

ess
•
∗ , öss

•
� ∈ BIMUas

neg.pari (4.49)

ess
•
∗∗ , öss

•
�� ∈ BIMUas

neg ∩ BIMUas
pari. (4.50)

As a consequence:

anti.öss•� = öss
•
�; anti.oss•�� = invmu.oss•� (4.51)

and therefore:

gepar.ess•=mu(anti.öss•�, anti.öss•��, öss
•
��, öss

•
�)

=mu(oss•�, oss
•
�) = expmu(−O

•). (4.52)

Remark 5: induction for the calculation of ess, ess∗∗ and oss, öss�� .
The source diffeos for ess• and ess•∗∗ are f and f , with infinitesimal
dilators:

f#(x) = 1+ x − ex ; f$$#(x) = x − cosh(x) (4.53)

to which there answer the following elements of ARI<re> and IRA<rö>:

ett
• :=−

∑
1≤n

1

(n + 1)! re
•
n ; ett

•
∗∗ :=−

∑
1≤n

1

(2 n + 1)! re
•
2 n

ött
•:=−

∑
1≤n

1

(n + 1)! rö
•
n ; ött

•
��:=−

∑
1≤n

1

(2 n + 1)! rö
•
2 n
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which in turn lead to these linear and highly effective inductive formu-
las57 for the calculation of our four bimoulds:

r(•) ess
• = preari(ess•, ett•) (4.54)

r(•) ess
•
∗∗ = preari(ess•∗∗, ett

•
∗∗) (4.55)

r(•) öss
• = preira(öss•, ött•) (4.56)

r(•) öss
•
�� = preira(öss•��, ött

•
��)+

1

2
mu(öss•��, ött

•
�) (4.57)

with

ött
•
� := coshmu(O•) := 1

2

(
expmu(O•)+ expmu(−O

•)
)
.

In (4.54) and (4.55), preari may be replaced by preali or preawi; and in
(4.56) and (4.57), preira may be replaced by preila or preiwa, since the
involutions h1, h2, h3 that define the algebras ARI, ALI, AWI (see Sec-
tion 2.1 towards the end) have the same effects on the basic alternals re•n:

h1 re
•
n ≡ h2 re

•
n ≡ h3 re

•
n ; h∗1 rö

•
n ≡ h∗2 rö

•
n ≡ h∗3 rö

•
n. (4.58)

Whatever the pre-bracket chosen, the induction algorithm yields the same
result, but expressed in very different bases. For the direct bimoulds, the
best choice is preari or preali 58; and for the swappees, it is preiwa59

along with the following expression of rö
•:

rö
(

u1
v1

,...,
,...,

ur
vr

) =
∑

i

(r+1− i) O
(

u1...r
vi

)
∏
j �=i

O
(

u j
v j :i )

(4.59)

Comparing ess• and ëss
• := sap.ess•

The bimould ess• belongs to the group GARI<se> whereas its image ëss
•

under the involution sap=swap.syap belongs to swap.GARI<syap.se> i.e.
to swap.GARI<so>, which is not a group – only the swappee of one. Nev-
ertheless, ess• and ëss

• have much in common, since they:
– belong both to Flex(E) and are both bisymmetral, i.e. in GARIas/as ;

57 These are true induction, since the sought-after bimoulds occur only once, with length r , on the
left-hand side; and several times on the right-hand side, but with lengths at most r−1 (respectively
r−2) in (4.54), (4.56) (respectively (4.55), (4.57)).

58 Since h1 and h2, unlike h3, involve no sign changes.

59 Since h∗3, unlike h∗1 and h∗2,, involves no sign changes.
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– are both invariant under pari.neg;
– have both the same length-one component: essw1 = ëss

w1 .
This is enough for them to be exchanged under gari-postcomposition by
a bimould sëes

• that is not only bisymmetral, but also even60, i.e. in
GARIas/as . It is therefore the exponential of an element lëel

• of ARIal/al .
In other words:

ess
• = gari(ëss•, sëes•) = gari(ëss•, expari(lëel•)) (4.60)

But since both sëes
• and lëel

• are invariant under neg and pari.neg, they
are invariant under pari. All their non-vanishing components are there-
fore of even length; or more precisely of even length r ≥ 4, since an
initial, length-2 component of sëes

• would have to be a bialternal ele-
ment of Flex2(E), and no such element exists.

Up to length r = 14, the bialternal subalgebra Flexal/al(E) of ARIal/al

is freely generated by the non-vanishing components of lëel
•, i.e.

lëel
•
4 , lëel

•
6 , lëel

•
8 , lëel

•
10 , lëel

•
12 , lëel

•
14 . . . (4.61)

or, alternatively, by the series of singulates lel
•
2 r (see Section 4.2 below):

lel
•
2 r := senk2 r (ess

•).E• (r ≥ 2) (4.62)

but after 14 this no longer holds. As of now, for large values of r , the
exact dimension of Flexal/al

2 r (E) is not known.
If we now repeat the above construction but with E replaced by the

conjugate unit O, identity (4.60) becomes, with self-explanatory nota-
tions:

oss
• = gari(öss•, söos•) = gari(öss•, expari(löol•)). (4.63)

So far, so predictable. The remarkable thing, however, is that the compo-
nents lëel

•
2 r and löol

•
2 r of the rightmost bimoulds in (4.60) and (4.63) get

exchanged, up to sign, under the involutions swap and syap (see (Sec-
tion 3.3)). As a consequence, each one of them is, again up to sign,
invariant under the involution sap.

Polar and trigonometric specialisations
Let us now consider the three polar and the three trigonometric spe-
cialisations of E•, along with the corresponding bisymmetrals and their

60 I.e. invariant under neg rather than pari.neg.
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swappees:

Flexion units E• : Pa• Pi• Pai•α,β Qa•c Qi•c Qai•c,α,β

bisymmetrals ess• : par• pil• pail•α,β . . . til•c tail•c,α,β

swappees öss
• : pir• pal• pial•α,β . . . tal•c tial•c,α,β

type as/os esz•σ : bar•σ bil•σ bail•c,α,β . . . . . . dail•σ,c,α,β

swappees ösz
•
σ : bir•σ bal•σ bial•σ,α,β . . . . . . dial•σ,c,α,β .

All these unit specialisations are exact, except Qa•c , which generates no
bisymmetral, and Qi•c , which does.61

Let Dt be the dilation operator:

(Dt .M)
(

u1
v1

,...,
,...,

ur
vr

) := M
(

u1/t
v1/t

,...,
,...,

ur /t
vr /t )

.

It clearly respects bialternality and bisymmetrality. Due to the general
identities:

A• v-constant and B• u-constant �⇒
swap.mu(A•, B•) ≡ mu(swap.B•, swap.A•)

we can form new bisymmetrals:

vipail•α,β := mu(Dα.pal•, Dβ.pil•) ⊂ GARIas/as

vipair•α,β := mu(Dα.par•, Dβ.pir•) ⊂ GARIas/as

vitail•c,α,β := mu(Dα.tal•c, Dβ.til•c) ⊂ GARIas/as.

The next four identities are special cases of (4.60) when E specialises
respectively to Pa, Pi, Paiα,β , Qaic,α,β :

par• ≡ gari(pal•, lar•) with lar• ⊂ GARIas/as

pil• ≡ gari(pir•, ril•) with ril• ⊂ GARIas/as

pail•α,β ≡ gari(pial•β,α, lappil•α,β) with lappil•α,β ⊂ GARIas/as

tail•c,α,β ≡ gari(tial•c,β,α, lattil•c,α,β) with lattil•c,α,β ⊂ GARIas/as

vipail•α,β ≡ gari(pail•α,β, paiv•α,β) with paiv•α,β ⊂ GARIas/as

vitail•c,α,β ≡ gari(tail•c,α,β, taiv•c,α,β) with taiv•c,α,β ⊂ GARIas/as

while the last two identities provide yet other examples of elements of
GARIas/as sharing the same first component and related under postcom-
position by an element of GARIas/as .

61 But of course with an elementary corrective factor mini•c ∈ center(GARI) in the connection
formula: swap.til•c = gari(mana•c , talc•) = gari(talc•, mana•c).
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Difference between even and non-even bissymmetrals
To bring out the sharp difference between even and non-even bisymme-
trals, we introduce two distinct copies E1,E2 of the universal unit E, and
define their blend as follows:

sse
•
1,2=blend(E•1, E

•
2) ⇐⇒

sse
(

u1
v1

,...,
,...,

ur
vr

)

1,2 =E
(

u1
v1:2 )

1 E
(

u12
v2:3 )

1 E
(

u123
v3:4 )

1 . . .E
(

u1..r
vr

)

1 E
(

u1
v1

)

2 E
(

u2
v2

)

2 E
(

u3
v3

)

2 . . . E
(

ur
vr

)

2 .

(4.64)

The blend sse•1,2 is obviously even. It is also easily seen to be symmetral.
In fact, since, up to order, blend commutes with swap:

blend(E•1, E
•
2)

swap←→ blend(swap.E•2, swap.E•1) (4.65)

and since the swappee of an exact flexion unit E coincides with the con-
jugate unit O, the blend is actually bisymmetral.

Moreover, we have a remarkable (non-elementary) identity for ex-
pressing the gari-inverse of the blend of two flexion units: it is itself a
blend, but preceded by pari and with the two arguments arguments ex-
changed. Therefore, under invgari, the two entries of (4.65) become:

pari.blend(E•2, E
•
1)

swap←→ pari.blend(swap.E•1, swap.E•2) (4.66)

and are still connected by swap.
As a consequence, for the even62 bisymmetral ess•1,2 we have this com-

mutative diagram,63 with self-explanatory notations:

(symmetral) sse•1,2
swap←→ sso•2,1 (symmetral)

invgari % % invgari

(symmetral) pari.sse•2,1
swap←→ pari.sso•1,2 (symmetral!).

In sharp contrast, with the non-even64 bisymmetral ess• constructed in
(4.35), the diagram’s commutativity breaks down:

(symmetral) ess•
swap←→ öss

• (symmetral)
invgari % ↘ invgari

(symmetral) ess•∗
swap←→ öss

•
∗ �= öss

•
∗∗ (non symmetral!).

62 I.e. neg-invariant.

63 We would of course have similarly commutative diagrams (only with less explicit gari-inverses)
if we replaced sse• by any element of GARIas/as, since on that subgroup swap acts as an automor-
phism, just as it does on ARIal/al.

64 More precisely: ess• is pari.neg-invariant instead of neg-invariant.
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4.3 The related primary bimoulds es• and ez•

After constructing the secondary bimoulds ess•, esz•σ (non-elementary,
with a double symmetry), we must now define the much simpler, yet
closely related primary bimoulds es•, ez• (elementary, with a single sym-
metry):

es
• := expari(E•) (4.67)

ez
• := invmu(1• − E

•) (4.68)

es
• sap↔ ez

• (4.69)

This leads to the more explicit formulas:65

es
(

u1
v1

,...,
,...,

ur
vr

) := E
(

u1
v1:2 )

E
(

u12
v2:3 )

E
(

u123
v3:4 )

. . . E(
u1...r

vr
) (symmetral) (4.70)

ez
(

u1
v1

,...,
,...,

ur
vr

) := E
(

u1
v1

)
E

(
u2
v2

)
E

(
u3
v3

)
. . . E(

ur
vr

) (E-symmetral). (4.71)

The symmetrality of es• respectively E-symmetrality of ez• relies entirely
on E being an exact flexion unit, but the definitions also extend, albeit at
the cost of significant complications, to approximate units.

Let us now consider the three polar and the three trigonmetric special-
isations of E• and the corresponding incarnations of es• and ez•:

Flexion units E• : Pa• Pi• Pai•α,β Qa•c Qi•c Qai•c,α,β

symmetrals es• : paj• pij• paij•α,β tajc tij•c taij•c,α,β

E-symmetrals ez• : pac• pic• paic•α,β tac•c tic•c taic•c,α,β .

The definitions of the new bimoulds are straightforward for the exact
units, but less so for the approximate units Qac and Qic. In those two
cases, we mention only the elementary part (mod. c2), which conforms
entirely to the general formulas (4.70) and (4.71), and refer to Section 3.9
for the corrective terms.

pajw1,...,wr :=
∏

1≤ j≤r

P(u1+. . .+u j ) (4.72)

pijw1,...,wr :=
circ∏

1≤ j≤r

P(v j−v j+1) (4.73)

paijw1,...,wr
α,β :=

circ∏
1≤ j≤r

(
P

(
u1+. . .+u j

α

)
+ P

(
v j−v j+1

β

))
(4.74)

65 To derive (4.70) from (4.67), one must use the fact that E is a flexion unit.
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tajw1,...,wr
c :=

∏
1≤ j≤r

Qc(u1+. . .+u j ) (modulo c2) (4.75)

tijw1,...,wr
c :=

circ∏
1≤ j≤r

Qc(v j−v j+1) (modulo c2) (4.76)

taijw1,...,wr
c,α,β :=

circ∏
1≤ j≤r

(
Qc

(
u1+. . .+u j

α

)
+Qc

(
v j−v j+1

β

))
(exactly). (4.77)

In the above products, circ means that the (non-existing) variable vr+1

should be construed as v0 = 0 whenever it occurs. No such precaution is
required for the following specialisations of ez•.

pacw1,...,wr :=
∏

1≤ j≤r

P(u j ) (4.78)

picw1,...,wr :=
∏

1≤ j≤r

P(v j ) (4.79)

paicw1,...,wr
α,β :=

∏
1≤ j≤r

(
P

(u j

α

)
+ P

(
v j

β

))
(4.80)

tacw1,...,wr
c :=

∏
1≤ j≤r

Qc(u j ) (modulo c2) (4.81)

ticw1,...,wr
c :=

∏
1≤ j≤r

Qc(v j ) (modulo c2) (4.82)

taicw1,...,wr
c,α,β :=

∏
1≤ j≤r

(
Qc

(u j

α

)
+ Qc

(
v j

β

))
(exactly) (4.83)

4.4 Some basic bimould identities

Let us list, first in universal mode, the main relations between the primary
bimoulds:

invmu.es• = pari.anti.es• ‖ invmu.ez• = 1• − E•
invgami.es• = pari.ez• ‖ invgami.ez• = pari.es•
invgani.es• = unremarkable ‖ invgani.ez• = pari.anti.es•
invgari.es• = pari.es• ‖ invgari.ez• = unremarkable.

The relations that really matter, however, are the ones linking primary
and secondary bimoulds. To state them, we require a highly non-linear
operator slash which measures, in terms of GARI, the un-evennness of a
bimould:

slash.B• := fragari(neg.B•, B•) = gari(neg.B•, invgari.B•). (4.84)
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We can now write down the two secondary-to-primary identities:

slash.ess• = es
• with ess

• := ess
•
1 (4.85)

sap.esz•0 = ez
• with sap := syap.swap = swap.syap. (4.86)

To conclude this section, let us reproduce some of the above identities in
the polar and trigonometric specialisations – for definiteness, and also to
show which relations survive and which don’t when E specialises to the
approximate flexion units like Qa•c and Qi•c .

slash.pal• = paj• , slash.tal•c = taj•c
slash.pil• = pij• , slash.til•c = tij•c
slash.pail•α,β = paij•α,β , slash.tail•c,α,β = taij•c,α,β

paj• = expari.Pa• , taj•c = expari.Qa•c
pij• = expari.Pi• , tij•c �= expari.Qi•c
paij•α,β = expari.Pai•α,β , taij•c,α,β = expari.Qai•c,α,β

invgami.paj• trivially= invgani.anti.paj• ≡ pari.pac•

invgami.pij• trivially= invgani.anti.pij• ≡ pari.pic•

invgami.paij•α,β

trivially= invgani.anti.paij•α,β ≡ pari.paic•α,β

invgami.taj•c
trivially= invgani.anti.taj•c �≡ pari.tac•c

invgami.tij•c
trivially= invgani.anti.tij•c �≡ pari.tic•c

invgami.taij•c,α,β

trivially= invgani.anti.taij•c,α,β ≡ pari.taic•c,α,β .

4.5 Trigonometric and bitrigonometric bimoulds

Correspondence between polar and trigonometric
Polar bimoulds of a given type may have one trigonometric equivalent,
or several, or none. The reverse correspondence, however, is always
straightforward: when c goes to 0, (Qac, Qic) goes to (Pa, Pi) and the
various trigonometric bimoulds, whenever they exist, go to their polar
namesakes.

Correspondence between trigonometric and bitrigonometric
The correspondence, here, is always one-to-one. This may come as a
surprise, since the bitrigonometric units Qaac, Qiic are far more complex
than their trigonometric counterparts Qac, Qic. To turn a trigonomeric
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bimould of a given type into a bitrigonometric one of the same type, the
recipe is:
– to change Qac respectively Qic into Qaac respectively Qiic;
– to change c2 s into c2 sδ(linw

1 ) . . . δ(linw
2 s) with discrete diracs δ defined

as in Section 3.2 (see after (3.33)) and with their arguments linw
j denoting

suitable differences of vi ’s or sums of ui ’s, as the case may be. There
are simple rules for picking, in each instance, the right inputs linw

j , which
alone preserve the symmetries. We shall see examples in the last para of
the present section, when explicating the passage from trigo to bitrigo for
the primary bimoulds.

The secondary bimoulds tal•c/til•c and taal•c/tiil•c
Of all the bimoulds constructed so far, these are the most important,66 but
also the most difficult to construct and describe. We can do no more here
than state the main facts:
– the secondary bimoulds esz•σ have no trigonometric specialisation,
whether under E = Qac or E = Qic;
– the secondary bimould ess• has no trigonometric specialisation under
E = Qac, but it has one under E = Qic, namely til•c , with tal•c as swappee.

In other words, while the polar pair par•/pir• has no trigonometric,
and therefore no bitrigonometric, counterpart, the polar pair pal•/pil•
does possess exact, though far more complex analogues, namely tal•c/til•c
and taal•c/tiil•c .

For illustration, the pair taal•c/tiil•c has been tabulated in Section 12.6
up to length r = 4. The simpler pair tal•c/til•c can be deduced from it,
simply by recalibrating the flexion units and by changing all δ’s into 1’s.

Like pil• in the polar case, the bisymmetral til•c and its gari-inverse
ritil•c possess the important property of separativity: under the gepar
transform67 they turn into polynomials of c and the Qc(ui ) (all strict ui -
sums vanish!), with a particularly simple expression in the case of ritil•c :

(gepar.tilc)
w1,...,wr=homog. polynomial in(c,Qc(u1), . . . ,Qc(ur )) (4.87)

(gepar.ritilc)
w1,...,wr=

∑
0≤s≤ r

2

(−1)sc2 s

2 s+1
symr−2 s(Qc(u1), . . ., Qc(ur )) (4.88)

with symk(x1, . . . , xr ) denoting the k-th symmetric function of the xi .68

66 Because it is the main part of the first factor Zag•
I

in the trifactorisation of Zag• and also the main
ingredient of the canonical-rational associator.

67 We recall that gepar.S• := mu(anti.swap.S•, swap.S•).
68 sym0 is ≡ 1; sym1 is the sum; symr is the product.
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The primary bimoulds: trigonometric specialisation
To explicate the primary bimoulds, we require six series of coefficients
that are best defined by their generating series:

α(t) =arctan(t) =
∑
s≥0

αn tn+1= t − 1

3
t3 + 1

5
t5 − 1

7
t7 . . .

β(t)= tan(t) =
∑
s≥0

βn tn+1= t + 1

3
t3 + 2

15
t5 + 17

315
t7 . . .

α̂(t) = t
(1+t2)1/2 = t (α′(t)) 1

2 =
∑
s≥0

α̂n tn+1= t − 1

2
t3 + 3

8
t5 − 5

16
t7 . . .

β̂(t)= t
cos(t) = t (β ′(t)) 1

2 =
∑
s≥0

β̂n tn+1= t + 1

2
t3 + 5

24
t5 + 61

720
t7 . . .

α̌(t) = arctan(t)
(1+t2)−1/2 =α(t)(α′(t))−1

2 =
∑
s≥0

α̌n tn+1= t+ 1

6
t3− 11

120
t5+ 103

1680
t7 . . .

β̌(t)=sin(t) =β(t)(β ′(t))−1
2 =

∑
s≥0

β̌n tn+1= t− 1

6
t3+ 1

120
t5− 1

5040
t7 . . .

As in the polar case, the basic primary bimoulds taj•c, tij•c (symmetral)
derive from the secondary bimoulds tal•c, til•c (bisymmetral) under the
slash-tranform69 and are best expressed via their swappees. To the polar
pair pac•/pic•, however, there now correspond two trigonometric pairs,
namely tac•c, tic•c and the “correction” tak•c, tik•c which will be needed to
reproduce all the exact relations between primary bimoulds that obtained
in the polar case. Let us begin with the definitions. We have:

swap.tajwc =
∑
s≥0

∑
w0wn1w1...wns ws=w

Jiw
0

∗ Qi
wn1
c Jiw

1
. . . Qi

wns
c Jiw

s

swap.tijwc =
∑
s≥0

α̂r−s

∑
w0wn1w1...wns ws=w

Jaw0
Qa

wn1
c Jaw1

. . . Qa
wns
c Jaws

tacw
c =

∑
s≥0

αr−s

∑
w0wn1w1...wns ws=w

Caw0
Qa

wn1
c Caw1

. . . Qa
wns
c Caws

ticw
c =

∑
s≥0

∑
w0wn1w1...wns ws=w

Ciw
0

Qi
wn1
c Ciw

1
. . . Qi

wns
c Ciw

s

takw
c =

∑
s≥0

α̌r−s

∑
w0wn1w1...wns ws=w

Kaw0
Qa

wn1
c Kaw1

. . . Qa
wns
c Kaws

∗

tikw
c = β̌r cr if w = (w1, . . . , wr )

69 We recall that slash.S• := gari(neg.S•, invgari.S•).



92 Jean Ecalle

with auxiliary building blocks themselves defined by:

Jaw1,...,wr = Caw1,...,wr := cr (∀r ≥ 0)

Jiw1,...,wr = Ciw1,...,wr := cr βr (∀r ≥ 0)

Jiw1,...,wr∗ := cr β̂r (∀r ≥ 0)

Kaw1,...,wr := cr (∀r ≥ 0)

Kaw1,...,wr∗ := cr (∀r ≥ 1) but Ka∅∗ := 0.

Here are some of the main trigonometric identities that are exact transpo-
sitions of their polar prototypes:

slash.tal•c = tajc
• (4.89)

slash.til•c = tijc
• (4.90)

invgani.tac•c = anti.swap.anti.pari.tic•c (4.91)

invgani.tic•c = anti.swap.anti.pari.tac•c (4.92)

invgami.taj•c = invgani.anti.taj•c (4.93)

invgami.tij•c = invgani.anti.tij•c . (4.94)

And here is an example when polar identities:

invmu.paj• trivially= pari.anti.paj• = invgani.pac• (4.95)

invmu.pij• trivially= pari.anti.pij• = invgani.pic• (4.96)

require a corrective term in the trigonometric transposition:

invmu.taj•c
trivially= pari.anti.taj•c = fragani(tak•c, tac•c) (4.97)

invmu.tij•c
trivially= pari.anti.tij•c = fragani(tik•c, tic•c). (4.98)

The abbreviation fragani denotes of course the gani-fraction:

fragani(A•, B•) := gani(A•, invgani.B•)

and the relations (4.97), (4.98) basically reflect the functional identities:

β̂ = α̌ ◦ α; α̂ = β̌ ◦ β.

Here is another example. The important polar identity:

pij• = expari.Pi•

doesn’t transpose to tij•c = expari.Qi•c but to the variant:

tijj•c = expari.Qi•c (anti.swap.tijj• =: astajj)
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with a bimould tijj•c best defined via its anti.swap-transform astajj•c , for
which the following remarkable expansion holds:

astajjw1,...,wr
c =

∑
0≤t≤ r

2

(−1)t c2 t
s=r−2 t∑

w0wn1w1...wns ws=w

Tam1,m2...,m2 t Qawn1 . . . Qawns

with

[m1, m2, . . . , m2 t ] := [1, 2, . . . , r ] −̇ [n1, n2, . . . , ns]
and

Tam1,m2...,m2 t := m1

m2

m3

m4
. . .

m2 t−1

m2 t
.

Primary bimoulds: bitrigonometric specialisation
The bimoulds of the preceding para become:

swap.taajwc =
∑
s≥0

∑
w0wn1w1...wns ws=w

Jiiw
0

∗ Qii
wn1
c Jiiw

1
. . . Qii

wns
c Jiiw

s

swap.tiijwc =
∑
s≥0

α̂r−s

∑
w0wn1w1...wns ws=w

Jaaw0
Qaa

wn1
c Jaaw1

. . . Qaa
wns
c Jaaws

taacw
c =

∑
s≥0

αr−s

∑
w0wn1w1...wns ws=w

Caaw0
Qaa

wn1
c Caaw1

. . . Qaa
wns
c Caaws

tiicw
c =

∑
s≥0

∑
w0wn1w1...wns ws=w

Ciiw
0

Qii
wn1
c Ciiw

1
. . . Qii

wns
c Ciiw

s

taakw
c =

∑
s≥0

α̌r−s

∑
w0wn1w1...wns ws=w

Kaaw0
Qaa

wn1
c Kaaw1

. . . Qaa
wns
c Kaaws

∗

tiikw
c =β̌r cr δ(u1) . . . δ(ur ) if w = (w1, . . . , wr )

with elementary building blocks defined by:

Caaw1,...,wr = Jaaw1,...,wr := cr δ(v1) . . . δ(vr ) (∀r ≥ 0)

Ciiw1,...,wr = Jiiw1,...,wr := βr cr δ(u1) . . . δ(ur ) (∀r ≥ 0)

Jii∅ := 0 , Jiiw1,...,wr∗ := β̂r cr δ(u1) . . . δ(ur ) (∀r ≥ 1)

Kaa∅ := 1 , Kaaw1,...,wr := cr δ(v1) . . . δ(vr ) (∀r ≥ 1)

Kaa∅∗ := 0 , Kaaw1,...,wr∗ := cr δ(v1) . . . δ(vr ) (∀r ≥ 1)

Remark 1: though there is one and only one ‘proper’ way of ‘filling
in’ the trigonometric formulas with δ’s to get the bitrigonometric equiva-
lents, the procedure is non-trivial. Indeed, the arguments inside the δ’s are
not always single ui ’s or vi ’s but often non-trivial sums or differences.70

70 As with taaj•c and tiij•c , once we carry out the swap transform in the above definitions.
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Remark 2: The even-odd factorisations (4.45), (4.46) have their exact
counterpart here. Thus, in trigonometric mode:

til• = gari(til•∗, til•∗∗) with til•∗, til•∗∗ symmetral (4.99)

tal• = mu(tal•��, tal•�) with tal•�, tal•�� symmetral (4.100)

with elementary factors tal•�, til•∗ alongside non-elementary factors tal•��,
til•∗∗ that carry only even-lengthed components.

4.6 Dimorphic isomorphisms in universal mode

We can now enunciate the main statement of the whole section, namely
that there exists a canonical isomorphism between straight dimorphic
structures (algebras or groups) and their twisted counterparts.71 But be-
fore that, we must begin with the less remarkable isomorphisms which
connect straight or twisted monomorphic structures72 and exchange only
one symmetry with another.

All these results are summarised in the following diagrams:
– with various groups in the upper lines;
– with various Lie algebras in the lower lines;
– with horizontal arrows that stand for (algebra or group) isomorphisms;
– with vertical arrows representing the natural exponential mapping of
each Lie algebra into its group.

Basic diagrams of monomorphic transport

MU as ganit(ez•)−→ MUes ‖ MU as ganit(pari.anti.es•)←− MUes

↑ expmu ↑ expmu ‖ ↑ expmu ↑ expmu

LU al ganit(ez•)−→ LUel ‖ LU al ganit(pari.anti.es•)←− LUel

MU as gamit(ez•)−→ MUes ‖ MU as gamit(pari.es•)←− MUes

↑ expmu ↑ expmu ‖ ↑ expmu ↑ expmu

LU al gamit(ez•)−→ LUel ‖ LU al gamit(pari.es•)←− LUel.

71 Or, more properly, “half-twisted”, since the first symmetry remains straight, and only the second
gets twisted.

72 I.e. subgroups of MU := {BIMU∗, mu} or subalgebras of LU := {BIMU∗, lu}.
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Basic diagram of dimorphic transport

GARI as/as adgari(ess•)−→ GARI as/os

logari ↓↑ expari logari ↓↑ expari

ARI al/al adari(ess•)−→ ARI al/ol.

Dimorphic subsymmetries
The subsymmetries listed below are by no means the only ones73 but they
are the ones that matter most and also (whether coincidentally or not) the
only ones that are properly dimorphic.74

A• ∈ ARIal/al �⇒ A• = neg.A• = push.A•
A• ∈ GARIas/as �⇒ A• = neg.A• = gush.A•

A• ∈ ARIal/ol �⇒ A• = O-neg.A• = O-push.A•
A• ∈ ARIas/os �⇒ A• = O-geg.A• = O-gush.A•.

As noted earlier, O-neg-invariance is expressible in terms of an elemen-
tary primary bimould es• := slash.ess•, and O-push-invariance also is
equivalent to the much simpler senary relation.

4.7 Dimorphic isomorphisms in polar mode

Diagrams of monomorphic transport
For the specialisation E = Pa, the first universal diagrams of monomor-
phic transport become:

MU as ganit(pac•)−→ MUus ‖ MU as ganit(pari.anti.paj•)←− MUus

↑ expmu ↑ expmu ‖ ↑ expmu ↑ expmu

LU al ganit(pac•)−→ LUul ‖ LU al ganit(pari.anti.paj•)←− LUul.

For the specialisation E = Pi, they become:

MU as ganit(pic•)−→ MUis ‖ MU as ganit(pari.anti.pij•)←− MUis

↑ expmu ↑ expmu ‖ ↑ expmu ↑ expmu

LU al ganit(pic•)−→ LUil ‖ LU al ganit(pari.anti.pij•)←− LUil.

73 See Section 3.4.

74 In the sense that it takes two symmetries, not one, to induce them.
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Diagrams of dimorphic transport
For the specialisation (E, O) = (Pa, Pi), the diagram of dimorphic trans-
port becomes:

GARI as/as adgari(pal•)−→ GARI as/is

logari ↓↑ expari logari ↓↑ expari

ARI al/al adari(pal•)−→ ARI al/il

and the dimorphic subsymmetries become:

A• ∈ ARIal/il �⇒ A• = negu.A• = pushu.A•
A• ∈ GARIas/is �⇒ A• = gegu.A• = gushu.A•.

For the ‘conjugate’ specialisation (E, O) = (Pi, Pa), the diagram be-
comes:

GARI as/as adgari(pil•)−→ GARI as/us

logari ↓↑ expari logari ↓↑ expari

ARI al/al adari(pil•)−→ ARI al/ul

and the dimorphic subsymmetries become:

A• ∈ ARIal/ul �⇒ A• = negi.A• = pushi.A•
A• ∈ GARIas/us �⇒ A• = gegi.A• = gushi.A•.

The matter of ‘entireness’
A few comments are in order here, regarding the preservation, or other-
wise, of the entire character of bimoulds.75

(i) The simple symmetries al and as are compatible with entireness, and
so are the double symmetries al/al and as/as.
(ii) The twisted symmetries il and is are compatible with entireness, but
ul and us are not.
(iii) However, even in second monomorphic diagram, when all four struc-
tures contain entire bimoulds and the isomorphism ganit(pic•) might
conceivably preserve entireness, it does not. The same holds when
ganit(pic•) is replaced by gamit(pic•).
(iv) The (important) twisted double symmetries al/il and as/is are com-
patible with entireness, but the (less important) double symmetries al/ul
and as/us are not.

75 I.e. their being polynomials or entire functions or formal power series of their u-variables.
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(v) However, even in the first dimorphic diagram, where all four struc-
tures do contain entire bimoulds and when the isomorphism adari(pal•)
might conceivably preserve entireness, it does not.
(vi) The dimorphic subsymmetries induced by al/il and as/is (i.e. negu-
and pushu- or gushu-invariance), despite the massive involvement of
‘poles’, are compatible with entireness, whereas the dimorphic subsym-
metries induced by al/ul and as/us (i.e. negi- and pushi- or gushi-inva-
riance), are not. For the first dimorphic subsymmetries (of the ‘neg’ sort),
both the compatibility and incompatibility may be checked on the formu-
las:

negu.B• = neg.adari(paj•).B• = adari(pari.paj•).neg.B• (4.101)

negi.B• = neg.adari(pij•).B• = adari(pari.pij•).neg.B•. (4.102)

For the first dimorphic subsymmetries (of the ‘push’ sort), the compatibil-
ity respectively incompatibility may be checked on the senary relations:

teru.B• = push.mantar.teru.mantar.B• (4.103)

teri.B• = push.mantar.teri.mantar.B• (4.104)

which express pushu-invariance, respectively pushi-invariance, in much
simpler form, and involve the elementary, linear operators:

C•= teru.B•⇐⇒Cw1,...,wr = Bw1,...,wr − Bw1,...,wr−1 Pawr + Bw1,...,wr−1� Pa�wr

C•= teri.B•⇐⇒Cw1,...,wr = Bw1,...,wr − Bw1,...,wr−1 Piwr + Bw1,...,wr−1� Pi�wr .

The six entire structures
All the above remarks still hold, mutatis mutandis, when we replace the
polar symmetries by their trigonometric counterparts (to be precisely de-
fined in Section 11.4). Thus, whereas for the six fundamental structures
we have the following commutative diagram, with all horizontal arrows
denoting either group or algebra isomorphisms:

GARI as/asadgari(pal•)−→ GARI as/isadgari(ZagI
•)−→ GARI as/iisadgari(tal•)←− GARI as/as

↑ expari ↑ expari ↑ expari ↑ expari

ARI al/al adari(pal•)−→ ARI al/il
adari(ZagI

•)−→ ARI al/iil adari(tal•)←− ARI al/al

the picture changes when we add the requirement of entireness: the strai-
ght and twisted structures are no longer isomorphic76 and only the mid-
dling isomorphism adari(Zag•

I
) between the twisted structures (polar and

76 Neither under adari(pal•), adari(tal•), nor any conceivable replacement.
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trigonometric) survives, as pictured in the following diagram:

GARI as/as
ent

adgari(pal•)
�→ GARI as/is

ent

adgari(ZagI
•)−→ GARI as/iis

ent

adgari(tal•)
�← GARI as/as

ent

↑ expari ↑ expari ↑ expari ↑ expari

ARI al/al
ent

adari(pal•)
�→ ARI al/il

ent

adari(ZagI
•)−→ ARI al/iil

ent

adari(tal•)�← ARI al/al
ent .

The six entire and v-constant structures
This applies in particular to the six important substructures below, whose
bimoulds:
– are power series of the upper indices ui ;
– are constant in the lower indices vi .
Here is the diagram, with self-explanatory notations:

ASAS
adgari(pal•)
�→ ASIS

adgari(ZagI
•)−→ ASIIS

adgari(tal•)
�← ASAS

↑ expari ↑ expari ↑ expari ↑ expari

ALAL
adari(pal•)
�→ ALIL

adari(ZagI
•)−→ ALIIL

adari(tal•)�← ALAL.

The projector cut:

(cut.M)
(

u1
v1

,...,
,...,

ur
vr

) := M (
u1
0

,...,
,...,

ur
0 ) (4.105)

clearly defines epimorphisms of

ARIal/al, GARIas/as, ARIal/il, GARIas/is, ARIal/iil, GARIas/iis

respectively onto

ALAL, ASAS, ALIL, ASIS, ALIIL, ASIIS.

Now, all the bimoulds associated with colourless multizetas, happen to
have lower indices vi that are all = 0 as elements of Q/Z. We shall take
advantage of the above property of cut to identify these bimoulds with
their cuttees, i.e. to view them as v-constant.

Central corrections
For structures with a twisted double symmetry, instead of demanding that
the exact swappee should display the second symmetry, we often relax
the condition and simply demand that the swappee corrected77 by a suit-
able central element should display that symmetry. Thus, under these

77 Additively in the case of algebras; multiplicatively in the case of groups.
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relaxed conditions:

A• ∈ ARIal/il ⇔ {A• ∈ alternal; swap(A• + C•A) ∈ alternil}
S• ∈ GARIal/il ⇔ {S• ∈ symmetral; swap(gari(A•, C•S)) ∈ symmetril}

with C•A ∈ Center(ARI) and C•S ∈ Center(GARI).
The sets thus defined are still algebras or groups, albeit larger ones.

In the case of the v-constant family ALIL, ASIS, ALIIL, ASIIS, we shall
always assume this relaxed definition for without the central corrections
these sets would be empty.78 Besides, the bimoulds Zag• associated with
the (coloured or uncoloured) multizetas also require a central correction
to display their double symmetry.

5 Singulators, singulands, singulates

At this point, we already have a valuable tool at our disposal, namely the
operator adari(pal•), which acts as an algebra isomorphism and respects
double symmetries. What it doesn’t do, though, is respect entireness:
when applied to entire bimoulds of type, say, al/al, it produces bimoulds
that have the right type, in this case al/il, but with singularities at the
origin. To remove these without destroying the double symmetry al/il,
we require a universal machinery capable, roughly speaking, of produc-
ing all possible singularities of type al/il. Such a machinery is at hand.
It consists of singulators, singulands, and singulates. The singulators are
quite complex linear operators. The singulands are arbitrary entire bi-
moulds subject only to simple parity constraints. Lastly, when acting on
singulands, the singulators turn them into singulates, which are bimoulds
of type al/il and with singularities at the origin that are, so to speak,
‘made to order’, and capable of neutralising, by subtraction, any given,
unwanted singularity of type al/il.

After some heuristics (destined to divest our construction of its ‘con-
trived’ character), we shall examine the singulators, first in universal
mode, then in the relevant polar specialisation.

5.1 Some heuristics. Double symmetries and imparity

Analytical definition of sen
Let us first introduce a mapping sen : (A•, S•) �→ B• that is:
– linear in S• ∈ BIMU1;
– quadrilinear in A• ∈ BIMU∗;

78 For the structures ALAL and ASAS, on the other hand, central corrections are not required. In fact,
allowing such corrections makes no difference at all, which again shows that the pairs ALAL//ASAS
and ALIL//ASIS cannot be isomorphic.
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– which turns group-like properties of A• into algebra-like properties
of B•;
– whose action strongly depends on the parity properties of A•, S•.
Here goes the definition:

B•=sen(A•).S•⇔ 2 Bw=
∑

wi w
1w2w j w

3w4circ=w∗

Aw1

1 Aw2�
2 S�w j �A�w

3

3 Aw4

4

with w∗ = augment(w) and (5.1)

A•1 = anti.A•, A•2 = A•, A•3 = pari.anti.A•, A•4 = pari.A•

with the augment w∗ defined in the usual way:

w =
(

u1

v1

, . . . ,

, . . . ,

ur

vr

)
⇒ w∗ =

( [u0],
[v0] ,

u1

v1

, . . . ,

, . . . ,

ur

vr

)
with the redundant additional component w0:

u0 := −u1 − u2 · · · − ur , v0 = 0

and with the circular summation rule amounting to the double summation∑
0≤i≤r

∑
wi w

1w2w j w
3w4=wi wi+1...wr w0w1...wi−1

. (5.2)

Main properties of sen

Let B• := sen(A•).S•.
P1 : If r is even and S−w1 = Sw1 then Bw1,...,wr = 0.

P2 : If r is odd and S−w1 = −Sw1 then Bw1,...,wr = 0.

P3 : If neg.A• = pari.A•, then sen essentially commutes with swap:

swap.sen(A•).S• = −pari.sen(swap.A•).swap.S• (5.3)

= +sen(pari.swap.A•).swap.S• (5.4)

P4 : If A• is gantar-invariant, then B• is mantar-invariant.79

P5 : If A• is symmetral, then B• is alternal.

P6 : If neg.A• = pari.A• and A• is bisymmetral, then B• is bialternal.

79 We recall that mantar := −pari.anti and gantar := invmu.pari.anti with invmu denoting inver-
sion with respect to the mould product mu.
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Compact definition of sen
Lastly, we may note that, for A• symmetral, the analytical definition (5.1)
of sen(A•).S• can be rewritten in compact form as:

2 sen(A•).S•=pushinvar.mut(pari.A•).garit(A•).S• (∀A• ∈as) (5.5)

– with the linear mapping pushinvar of ⊕r BIMUr onto ⊕r BIMUr
push:

pushinvar.M• :=
∑

0≤k≤r

pushk .M• if M• ∈ BIMUr

– with the anti-action mut(A•) of MU on BIMU:

mut(A•).M• := mu(A•∗, M•, A•) with A•∗ = invmu(A•) (5.6)

– with the anti-action garit(A•) of GARI on BIMU, which is given by
2.37 but simplifies when M• is of length 1:

(garit(A•).M)w =
∑

w1w2w
3=w

Aw1�M�w2�A�w
3

∗ if M• ∈ BIMU1. (5.7)

(Pay attention to the position of A•∗ on the left in the definition of mut(A•)
and on the right in that of garit(A•). Nonetheless, we have anti-actions
in both cases.)

5.2 Universal singulators senk(ess•) and seng(es•)

Let E be the universal (exact) flexion unit, and let es• (respectively ess•)
be the primary (respectively secondary) bimould attached to E. Further,
let us set:

neginvar := id+ neg (5.8)

pushinvar :=
∑
0≤r

(id+ push+ push2 + . . . pushr ).lengr (5.9)

(with lengr denoting the projector from BIMU onto BIMUr ) and let us
define mut as in (5.6) above, and ganit, garit, adari 80 as in Section 2.2.

One can then prove that the following two identities define one and the
same operator senk(ess•):

2 senk(ess•).S• := neginvar.(adari(ess•))−1.mut(es•).S• (5.10)

2 senk(ess•).S• := pushinvar.mut(neg.ess•).garit(ess•).S• (5.11)

80 Adari alone is an action; all the others are anti actions.
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and, likewise, that the following two identities define one and the same
operator seng(es•):

2 seng(es•).S• := (
id+ neg.adari(es•)

)
.mut(es•).S• (5.12)

2 seng(es•).S• := mut(es•).S• + garit(es•).neg.S•
−arit

(
garit(es•).neg.S•

)
.logari(es•). (5.13)

The next identity shows how the two basic singulators senk(ess•) and
seng(es•) are related; and the other two describe their near-commutation
with the basic involution swap.

seng(es•) ≡ adari(ess•).senk(ess•) (5.14)

swap.senk(ess•) ≡ senk(neg.swap.ess•).swap (5.15)

swap.seng(es•) ≡ ganit(syap.ez•).seng(syap.es•).neg.swap. (5.16)

Thus, basically, under the impact of the involution swap, the inner argu-
ment of the singulators also undergoes an involution, namely neg.swap in
the case of senk, and syap in the case of seng.

Without going into tedious details, let us point out that most of the
properties listed above follow:
(i) from the the properties of sen (see Section 4.1);
(ii) from the fact that senk(ess•).S•, as defined by (5.11), is none other
than sen(ess•).S•, as defined by (5.1) or (5.5);81

(iii) from the following identity, valid for any push-invariant bimould M•:

swap.adari(ess•).M•≡ganit(syap.ez•).adari(swap.ess•).swap.M•. (5.17)

5.3 Properties of the universal singulators

The singulators senk(ess•) and seng(es•) do not yield remarkable results
when acting on general bimoulds of BIMU, but they turn bimoulds of
BIMU1 into dimorphic bimoulds of type al/al and al/ol respectively.
Thus:

senk(ess•).S• ∈ ARIal/al ∀S• ∈ BIMU1 (5.18)

seng(es•).S• ∈ ARIal/ol ∀S• ∈ BIMU1. (5.19)

For senk(ess•), this follows from senk(ess•) = sen(ess•) (because ess•
is symmetral, indeed bisymmetral) and then from (5.15). For seng(es•),
this follows from (5.14) or (5.16), on choice.

81 Hint: use the fact that ess• is on the one hand invariant under pari.neg and on the other of alternal
(even bialternal) type, so that invmu.ess• = pari.anti.ess•.
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These two operators, however, are in a sense too ‘global’. To really
generate all possible ‘dimorphic derivatives’ of bimoulds S• in BIMU1,
we need to split senk(ess•) and seng(es•) into separate components with
the help of the projectors lengr of BIMU onto BIMUr .

senk(ess•)=
∑
1≤r

senkr (ess
•) (5.20)

seng(es•)=
∑
1≤r

sengr (ess
•) (mark : first es

•, then ess
• !) (5.21)

with

senkr (ess
•) := lengr .senk(ess•) (5.22)

sengr (ess
•) :=adari(ess•).senkr (ess

•) (5.23)

=adari(ess•).lengr .adari(ess•)−1.seng(es•). (5.24)

Although the decomposition runs on different lines82 in both cases, the
resulting components share the same dimorphy-inducing properties:

senkr (ess
•).S• ∈ ARIal/al ∩ BIMUr ∀S• ∈ BIMU1 (5.25)

sengr (ess
•).S• ∈ ARIal/ol ∩ BIMUr≤ ∀S• ∈ BIMU1 (5.26)

with
BIMUr≤ := ⊕r≤r ′ BIMUr ′ . (5.27)

But beware: the r -indexation is slightly confusing since, as an operator
acting on BIMU1, senkr (ess

•) is (r−1)-linear in E. Moreover, Ew1 is odd
in w1. As a consequence, senkr (ess

•).S• and therefore sengr (ess
•).S•

automatically vanish in exactly two cases: when Sw1 and r are both even
or both odd.83

Dimorphic elements in the monogenous algebra Flex(E)

The above results also apply, of course, within Flex(E), but since the only
singuland in Flex1(E) is, up to scalar multiplication, the unit E•, which is
odd, we only get bialternal singulates in Flex2 r (E). Moreover, the singu-
late in Flex2(E) vanishes, because it essentially reduces to oddari(E•, E•)
(see 2.80). To sum up:

senk2 r−1(ess
•).E•=0 ∀r; senk2(ess

•).E• = 0 (5.28)

senk2 r (ess
•).E• ∈ARIal/al ∩ Flex2 r (E) and �= 0 if r ≥ 2. (5.29)

82 The components sengr (ess•) fully depend on ess• whereas the global operator seng(es•) only
depends on es• = slash.ess•.
83 In the obvious sense: i.e. Hw1 as a function of w1, and r as an integer.
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5.4 Polar singulators: description and properties

There is little point in considering the unit specialisation E �→ Pi, since
it leads to the symmetry types al/ul and as/us which, as already pointed
out, are not compatible with entireness. That leaves the specialisation
E �→ Pa and the symmetry types al/il and as/is that go with it. For
the bisymmetral bimould, it induces the straightforward specialisation
ess• �→ par•, but instead of par• we may also consider pal•, which in
fact turns out to be more convenient. This, however, has no impact on the
specialisation sang of seng(es•) = seng(slash.ess•) since slash.par• =
slash.pal• = paj•. The definitions of Section 4.2 become:

2 sang.S• := (
id+ neg.adari(paj•)

)
.mut(paj•).S• (5.30)

= mut(paj•).S• + garit(paj•).neg.S•

−arit
(
garit(paj•).neg.S•

)
.logari(paj•)

(5.31)

and the equivalence between these two definitions is relatively easy to
check, based on the fact that the bimoulds vipaj• and vimupaj• thus de-
fined:

vipaj• := adari(paj•).paj• , vimupaj• := adari(paj•).mupaj•

admit the following expressions:

vipajw1,...,wr = (−1)r−1mupajw1,...,wr−1 P(u1 + . . . + ur )

vimupajw1,...,wr = (−1)r pajw2,...,wr P(u1 + . . . + ur ).

This in turn enables us to recast definition (5.31) in more direct form:

2 (sang.S)w = +
∑

a wi b=w

mupaja Swi pajb

+
∑

a wi b=w

paja� (neg.S)�wi �mupaj�b

+
∑

a wi b wr=w

paja� (neg.S)�wi �mupaj�b P(|u|)

−
∑

w1a wi b=w

paja� (neg.S)�wi �mupaj�b P(|u|).

For the singulator senk(ess•), however, we get two distinct specialisa-
tions slank and srank, based respectively on pal• and par•:

2 slank.S• := neginvar.(adari(pal•))−1.mut(pal•).S• (5.32)

= pushinvar.mut(neg.pal•).garit(pal•).S• (5.33)

2 srank.S• := neginvar.(adari(par•))−1.mut(par•).S• (5.34)

= pushinvar.mut(neg.par•).garit(par•).S•. (5.35)
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Both slank and srank relate to sang under the predictable formulas:

sang = adari(pal•).slank = adari(par•).srank (5.36)

and both slank and srank (respectively sang) turn arbitrary singulands
S• ∈ BIMU1 into dimorphic singulates of type al/al (respectively al/il).

5.5 Simple polar singulators

The polar singulators, like their universal models, have to be broken down
into their constituent parts. For slank and srank, the formulas are straight-
forward:

slankr := lengr .slank (5.37)

srankr := lengr .srank. (5.38)

For sang, the decomposition is more roundabout, and depends on the
choice of either pal• or par•:

slangr := adari(pal•).lengr .
(
adari(pal•)

)−1
.sang (5.39)

= adari(pal•).slankr �= lengr .sang (5.40)

srangr := adari(par•).lengr .
(
adari(par•)

)−1
.sang (5.41)

= adari(par•).srankr �= lengr .sang. (5.42)

Thus, despite the similar-looking identities

slank=
∑
r≥1

slankr , srank=
∑
r≥1

srankr , sang=
∑
r≥1

slangr=
∑
r≥1

srangr

there is no way we can avoid secondary bimoulds (in this case, the bisym-
metral pal• or par•) even in the decomposition of the ‘primary-looking’
singulator sang.

5.6 Composite polar singulators

To produce all possible dimorphic singularities, we require not just the
singulator components, but also their Lie brackets. For reasons that shall
be spelt out in Section 4.7, we settle for the choice pal• and the corre-
sponding singulators, and we set, for any arguments S•1, . . . ,S•l in BIMU1:

slank[r1,...,rl ] . mu(S•1 , . . . , S•l ):=ari(slankr1 .S
•
1 , . . . , slankrl .S

•
l ) ∈ ARIal/al

r

slang[r1,...,rl ] . mu(S•1 , . . . , S•l ):=ari(slangr1
.S•1 , . . . , slangrl

.S•l ) ∈ ARIal/il
r≤
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with r := r1+. . .+rl and of course:

ARIal/al
r := ARIal/al ∩ BIMUr ; ARIal/il

r≤ := ARIal/il ∩ (⊕r≤r ′ BIMUr ′
)

and with the multiple ari-braket defined from left to right. By multilin-
earity, the above actions extend to mappings:

slank[r1,...,rl ] : S• �→ �•; BIMUl → ARIal/al
r (5.43)

slang[r1,...,rl ] : S• �→ �•; BIMUl → ARIal/il
r≤ . (5.44)

It is sometimes convenient, nay indispensable,84 to consider also the pre-
Lie brackets of the singulator components. The formulas read:

slankr1,...,rl . mu(S•1 , . . . , S•l ) :=preari(slankr1 .S
•
1 , . . . , slankrl .S

•
l ) (5.45)

slangr1,...,rl
. mu(S•1 , . . . , S•l ) :=preari(slangr1

.S•1 , . . . , slangrl
.S•l ) (5.46)

with the multiple pre-ari-braket defined again from left to right, as in
(2.49). By multilinearity, the above actions extend to mappings:

slankr1,...,rl : S• �→ �•; BIMUl → ARIal
r (5.47)

slangr1,...,rl
: S• �→ �•; BIMUl → ARIal

r≤. (5.48)

Here, the resulting singulates�• are of course alternal, but their swappees
exhibit no distinctive symmetry. In practical applications, however, these
multiple singulators based on preari always occur in sums

∑
Q•slank• or∑

Q•slang•, with scalar moulds Q• that are alternal (respectively sym-
metral), and these new composite operators do produce dimorphy: they
turn arbitrary singulands S• into singulates �• of type al/al or al/il (re-
spectively as/as or as/is).

5.7 From al/al to al/il. Nature of the singularities

The reason for preferring the singulator slank (built from pal•) to the
singulator srank (built from par•) is that it leads to simpler denominators.
Indeed, for a singuland Sw1 regular at the origin and ‘random’, although
the bialternal singulates slankr .Sw and srankr .Sw, as functions of w =
(w1, . . . , wr ), have both multipoles of order r−1 at the origin, the total
number of factors differs sharply. After common denominator reduction,

84 For example in perinomal algebra: see Section 6 and Section 8.
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slankr .Sw has only r+1 factors on its denominator, whereas srankr .Sw

has r (r+1)/2. More precisely:

denom(slankr .S
w) = u0 u1 . . . ur−1 ur with u0 := −(u1 + · · · + ur )

denom(srankr .S
w) =

∏
1≤i≤ j≤r

∑
i≤k≤ j

uk .

The results are slightly more complex for the singulates of type al/il,
namely slangr .S

• and srangr .S
•, since these, as a rule, possess non-

vanishing components of any length r ′ ≥ r , but here again the first choice
leads to simpler denominators.

Another reason for preferring the pal•-based choice to the par•-based
one is that pal• possesses a trigonometric counterpart tal•c whereas par•
doesn’t.

6 A natural basis for ALIL ⊂ ARIal/il

6.1 Singulation-desingulation: the general scheme

This section is devoted to the construction of bimoulds løma• in ALIL. In
other words:
– lømaw should be u-entire, i.e. in C[[u1, . . . , ur ]];
– lømaw should be v-constant;
– løma• should be alternal;
– lømi• := swap.løma• should be alternil modulo Center(ALIL).
But we also add two key conditions:
(i) lømaw should be in Q[[u1, . . . , ur ]], i.e. carry rational Taylor coeffi-
cients;
(ii) the first component should be of the form:

lømaw1 = u2
1 (1− u2

1)
−1 = u2

1 + u4
1 + u6

1 + u8
1 + . . . (6.1)

Condition (ii) is there to ensure that in the iso-weight decomposition:

løma• = løma•3 + løma•5 + løma•7 + løma•9 + . . . (6.2)

the part løma•s of weight s be non-zero85 and start with lømaw1
s = us−1

1 ,
with the ultimate objective of getting a basis {løma•s ; s odd ≥ 3} of ALIL.

85 s is odd≥ 3. løma•s (respectively lømi•s ) carries exactly s−1 (respectively s) nonzero components
of length r ∈ [1, s−1] (respectively r ∈ [1, s]) and degree d = s − r . Indeed, the last components
are løma

w1,...,ws
s = 0 and lømi

w1,...,ws
s = 1/s.



108 Jean Ecalle

The ‘central correction’ formula reads:

lomi•s = swap(loma•s + Ca•s ); Ca•s ∈ Center(ALIL) (6.3)

with a central bimould Ca•s which, due to condition (6.1), can be shown
to be of the form:

Caw1,...,ws
s = 1

s
(∀wi ); Caw1,...,wr

s = 0 if r �= s (∀wi ) (6.4)

Expanding løma• into series of singulates
Before decomposing løma•s weight-by-weight, we must construct it as a
series of singulates. There are actually two variants:

løma•=
r ≤ 2︷︸︸︷
�•[1] +

r ≤ 4︷ ︸︸ ︷
�•[1,2] +

r ≤ 6︷ ︸︸ ︷
�•[1,4]+�•[2,3]+�•[1,1,3]+�•[2,1,2]+�•[1,1,1,2] +. . . (6.5)

løma•=
r ≤ 2︷︸︸︷
�•1 +

r ≤ 4︷ ︸︸ ︷
�•1,2 +�•2,1 +

r ≤ 6︷ ︸︸ ︷
�•1,4 +�•4,1 +�•2,3 +�•3,2

+
r ≤ 6︷ ︸︸ ︷

�•1,1,3 +�•1,3,1 +�•3,1,1 +�•2,2,1 +�•2,1,2 +�•1,2,2 (6.6)

+
r ≤ 6︷ ︸︸ ︷

�•1,1,1,2 +�•1,1,2,1 +�•1,2,1,1 +�•2,1,1,1 + . . .

with

�•[r1,...,rl ] := slang[r1,...,rl ].S
•
[r1,...,rl ] (6.7)

�•r1,...,rl
:= slang r1,...,rl

.S•r1,...,rl
. (6.8)

The singulates �•[r1,...,rl ] are going to be in ARIal/il
r≤ but the singulates

�•r1,...,rl
only in ARIal

r≤. As for the singulands S[r1,...,rl ] and Sr1,...,rl , they
are merely in BIMUl , but with a definite parity in each xi , which is ex-
actly opposite to the parity of ri . Moreover, we can without loss of gen-
erality assume that they vanish as soon as one of the xi ’s vanishes. Then
again, they may be sought either in the form of power series or of mero-
morphic functions of a quite specific type:

Sx1,...,xl
[r1,...,rl ] ∈ xν1

1 . . . xνl
l C[[x2

1 , . . . , x2
l ]] (power series) (6.9)

Sx1,...,xl
[r1,...,rl ] =

∑
ni∈Z∗

Rn1,...,nl
[r1,...,rl ]P(n1+x1) . . . P(nl+xl) (merom. funct.) (6.10)

with νi = 1 (respectively 2) if ri is even (respectively odd).
Both expansions (6.5) and (6.6) lead to the same results. The first ex-

pansion (6.5) relies on ari-brackets and has the advantage of involving
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fewer summands. The downside is that it forces us to choose a basis in
the Lie algebra generated by the simple singulates �•ri

and that there ex-
ist no clear canonical choices for such bases. This arbitrariness, though,
manifests only during the construction and doesn’t show in the final re-
sult.

The second expansion (6.6) relies on pre-ari-brackets, and here the
position is exactly the reverse: we have uniqueness and canonicity at
every construction step, but more numerous summands.

Altogether, theari-expansion is to be preferred in calculations, whereas
the pre-ari-expansion is theoretically more appealing. In perinomal alge-
bra, its use will even become mandatory (see Section 9). In any case,
the conversion rules for changing from the one to the other are simple
enough. Thus, up to length r = 5, we find:

Sx1,x2
1,2 = +Sx1,x2

[1,2] ; Sx1,x2
2,1 = −Sx2,x1

[1,2]
Sx1,x2

1,4 = +Sx1,x2
[1,4] ; Sx1,x2

4,1 = −Sx2,x1
[1,4]

Sx1,x2
2,3 = +Sx1,x2

[2,3] ; Sx1,x2
3,2 = −Sx2,x1

[3,2]

Sx1,x2,x3
1,1,3 =+Sx1,x2,x3

[1,1,3] ;Sx1,x2,x3
1,3,1 =−Sx1,x3,x2

[1,1,3] −Sx3,x1,x2
[1,1,3] ; Sx1,x2,x3

3,1,1 =+Sx3,x2,x1
[1,1,3]

Sx1,x2,x3
2,2,1 =−Sx1,x3,x2

[2,1,2] ;Sx1,x2,x3
2,1,2 =+Sx1,x2,x3

[2,1,2] +Sx3,x2,x1
[2,1,2] ; Sx1,x2,x3

1,2,2 =−Sx3,x1,x2
[2,1,2]

Sx1,x2,x3,x4
1,1,1,2 = +Sx1,x2,x3,x4

[1,1,1,2]
Sx1,x2,x3,x4

1,1,2,1 = −Sx1,x2,x4,x3
[1,1,1,2] − Sx1,x4,x2,x3

[1,1,1,2] − Sx4,x1,x2,x3
[1,1,1,2]

Sx1,x2,x3,x4
1,2,1,1 = +Sx1,x4,x3,x2

[1,1,1,2] + Sx4,x1,x3,x2
[1,1,1,2] + Sx4,x3,x1,x2

[1,1,1,2]
Sx1,x2,x3,x4

2,1,1,1 = −Sx4,x3,x2,x1
[1,1,1,2] .

In the above table, as indeed throughout the sequel, we write down only
the upper indices of the singulands (since, in the colourless case with
which we are concerned here, the lower indices don’t matter). Moreover,
we write these upper indices of the singulands as “xi ” rather than “ui ”, the
better to bring out their independence from the ui ’s that serve as upper in-
dices for the singulates. Indeed, when expressing the entireness condition
for the sums of singulates (see Section 6.3, Section 6.4 below), we may
work either with �•r∗ itself or swap.�•r∗ , and the distinct but equivalent
constraints on the singulands which both approaches yield look much the
same – all of which suggests that the singulands that go into the making
of løma• stand, in a sense, halfway between that bimould and its swappee
lømi•.
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Singulation-desingulation86

In keeping with the above remarks, we may (and shall), without loss of
generality, limit ourselves to singulands Sx1,...,xl

[r1,...,rl ] and Sx1,...,xl
r1,...,rl

that are even
(respectively odd) in each xi if the corresponding index ri is odd (respec-
tively even). We may also (and shall), again without loss of generality,
impose divisibility by x1 . . . xl . 87

The construction of lømaw is by induction, and goes like this.
Fix any odd integer r∗ and assume we have already found singulates

�•[r] or �•r of total index |r| :=∑
ri odd and≤ r∗, such that the truncated

expansion:

�•r∗ :=
∑
|r|≤r∗

�•[r] =
∑
|r|≤r∗

�•r (6.11)

has only entire components for all lengths r ≤ r∗. One can then show the
following:
(i) the component of �•r∗ of (even) length 1+r∗ is automatically entire;
(ii) the component of �•r∗ of (odd) length 2+r∗ is not entire, but possesses
mulipoles of order r∗ at the origin;
(iii) it is always possible to pick singulands S•[r] or S•r of total index
|r| = 2+r∗ and such that the corresponding singulates �•[r] or �•r ex-
actly compensate the multipoles mentioned in (ii), so that the truncated
sum �•2+r will coincide with �•r for all its components of length r ≤ 1+r∗
but will have a singularity-free component of length r = 2+r∗;
(iv) the constraints on the newly added singulates are found by writing
down, successively, the conditions for multipoles of order r∗,r∗−1,r∗−2
etc to be absent from the component �

w1,...,w2+r∗
2+r∗ ;

(v) these constraints do not exactly determine the new singulates, but
very nearly so88, and in any case there exist two (closely related) priv-
ileged choices, leading to two closely related, canonical choices lama•,
loma• for lømaw;
(vi) there is also a third choice, luma•, whose components aren’t sought
in the ring of power series in u but rather in the space of meromorphic
functions of u, with multipoles located at the multiintegers n, and with

86 We prefer this pair to the unwieldy singularisation-desingularisation not just for reasons of eu-
phony, but also to keep close to the coinages singulator, singuland, singulate.

87 The reason being that to a constant singuland S
w1
r1 ≡ 1 there always answers a vanishing singulate

�•r1
≡ 0.

88 In the sense that the wandering bialternals, which are ultimately responsible for this indetermi-
nacy, are “few and far between”. See Section 6.9 and the concluding comments in Section 9.1.
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essentially bounded behaviour at infinity:89

Sx1,...,xl
[r1,...,rl ]

esslly=
∑

ni∈Z∗
Rn1,...,nl
[r1,...,rl ] P(x1+n1) . . . P(xl+nl) (6.12)

Sx1,...,xl
r1,...,rl

esslly=
∑

ni∈Z∗
Rn1,...,nl

r1,...,rl
P(x1+n1) . . . P(xl+nl). (6.13)

Here, the solution luma• turns out to be unique, its search essentially
reducing to that of the multiresidues Rn

[r] or Rn
r carried by the multipoles

of the singulands.90 These multiresidues are uniquely determined rational
numbers, and perinomal functions91 of their argument n. So the difficulty
here is not the search for a canonical solution, but the elucidation of the
arithmetical nature of the Taylor coefficients at the origin of the various
components lumaw, at least for lengths r(w) ≥ 5, since for lesser lengths
the answer is elementary.

6.2 Singulation-desingulation up to length 2

As usual, we set 1/t =: P(t) =: Pt throughout, and favour the third
variant inside mould equations, for greater visual coherence. At lengths
r ≤ 2, one singuland only contributes to løma•. At length 1, both sin-
guland and singulate coincide. At length 2, the formula for the singulate
involves poles of order 1, but these cancel out, duly yielding an entire
lømaw1,w2 .

lømaw1 = lømaw1
1 = �

w1
[1] = Su1

[1] = u2
1 + u4

1 + u6
1 + u8

1 + . . .

lømaw1,w2 = lømaw1,w2
1 = �

w1,w2
[1] =

1

2
Pu1 (Su12

[1] − Su2
[1])+

1

2
Pu2 (Su1

[1] − Su12
[1] )+

1

2
Pu12 (Su2

[1] − Su1
[1])

89 Away from the multipoles, of course. Exactly what this means shall become clear in in the sequel:
see Section 6.7 and Section 9. As for the warning essentially stacked over the= sign in the identities
(6.12), (6.13), it means that we neglect simple corrective terms (with lower order multiples) that
ensure convergence on the right-hand side.

90 These multiresidues R
n1,...,nl[r1,...,rl ] have to be even (respectively odd) in ni when ri is even (re-

spectively odd) to ensure that the singulate S
x1,...,xl[r1,...,rl ] be odd (respectively even) when ri is even

(respectively odd).

91 See Section 6.7 and Section 9.
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6.3 Singulation-desingulation up to length 4

The condition expressing that lømaw1,w2,w3 has no poles of order 1 at
the origin involves only the singulands and singulates of indices [1] and
[1, 2]. For power series singulands, it reads:

0 = + 1

12

(
Px2 S x12

[1] − Px12 S x2
[1] − Px2 S x1

[1] + Px12 S x1
[1]

)
+ S x1,x2

[1,2] + S x2,x12
[1,2] − S x1,x12

[1,2] − S x12,x2
[1,2] .

(6.14)

For meromorphic singulands (of type (6.12)), it translates into a condition
on the multiresidues R •[•], which reads:

0=1/12
(
δn12 Rn1

[1]−δn2 Rn1
[1]

)+Rn1,n2
[1,2] −Rn1,n12

[1,2] (6.15)

0=1/12
(
δn2 Rn12

[1] −δn2 Rn1
[1]−δn12 Rn2

[1]
)+Rn1,n2

[1,2] +Rn2,n12
[1,2] −Rn12,n2

[1,2] . (6.16)

When fulfilled, the above conditions ensure the entireness not just of
lømaw1,...,w3 but also of lømaw1,...,w4 .

6.4 Singulation-desingulation up to length 6

At this stage of the construction, we are dealing with a component
lømaw1,...,w5 that may have multipoles of order 3, 2, 1 at the origin. Ex-
pressing that there are no such multipoles of order 3 leads to a single
equation:

S[1] + S[1,4] + S[1,4] = 0 (6.17)

with contributions:

S[1] := + 1

120

(
Px2 S x12

[1] − Px2 S x1
[1]

)
S[1,4] := −S x1,x2

[1,4] + S x12,x2
[1,4]

S[2,3] := +2 S x12,x2
[2,3] + S x1,x2

[2,3] − S x1,x12
[2,3] − S x2,x12

[2,3] .

We may note that the singulate S[1,2] remains, somewhat surprisingly,
uninvolved at this stage.

Next, we must write down the condition for lømaw1,...,w5 to have no
multipoles of order 2 at the origin. This again leads to a single equation92

92 This new condition, of course, makes sense, only modulo the earlier one, i.e. assuming the
removal of order 3 multipoles.
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that involves all singulands save the last one (i.e. S[1,1,1,2]):

S∗[1] + S∗[1,2] + S∗[1,4] + S∗[2,3] + S∗[1,1,3] + S∗[2,1,2] = 0 (6.18)

with contributions:

720S∗[1] :=−P x2 P x3 S x123
[1] − P x1 P x23 S x2[1] + P x1 P x23 S x3

[1]
+4 P x2 P x23 S x123

[1] − 4 P x2 P x23 S x1[1] − 4 P x1 P x123 S x3
[1]

+11 P x12 P x123 S x2[1] − 11 P x12 P x123 S x1[1] − 11 P x1 P x123 S x2[1]
+14 P x12 P x3 S x1[1] − 14 P x2 P x3 S x1[1] − 14 P x3 P x12 S x2[1]
−15 P x1 P x3 S x23

[1] − 15 P x2 P x123 S x12[1] + 15 P x2 P x123 S x3
[1]

+15 P x1 P x3 S x2[1] − 15 P x1 P x3 S x12[1] + 15 P x2 P x123 S x1[1]
+15 P x1 P x123 S x12[1] + 15 P x1 P x3 S x123

[1] + 15 P x2 P x3 S x12[1]
−15 P x2 P x123 S x23

[1] + 25 P x3 P x123 S x23
[1] − 25 P x3 P x23 S x123

[1]
−25 P x3 P x123 S x1[1] + 25 P x3 P x23 S x1[1]

12S∗[1,2] :=+2 P x123 Sx3,x23
[1,2] − 2 P x123 Sx23,x3

[1,2] + 2 P x123 Sx2,x3
[1,2] − 2 P x123 Sx2,x23

[1,2]
−2 P x3 Sx23,x123

[1,2] + 2 P x3 Sx123,x23
[1,2] + 2 P x3 Sx1,x123

[1,2] − 2 P x3 Sx1,x23
[1,2]

−3 P x1 Sx2,x3
[1,2] + 3 P x1 Sx23,x3

[1,2] + 3 P x1 Sx2,x23
[1,2] − 3 P x1 Sx3,x23

[1,2]
+3 P x1 Sx3,x123

[1,2] − 3 P x1 Sx123,x3
[1,2] − 3 P x1 Sx12,x123

[1,2] + 3 P x1 Sx12,x3
[1,2]

+3 P x2 Sx1,x23
[1,2] + 3 P x2 Sx123,x3

[1,2] + 3 P x2 Sx23,x123
[1,2] − 3 P x2 Sx1,x123

[1,2]
−3 P x2 Sx12,x3

[1,2] − 3 P x2 Sx3,x123
[1,2] + 3 P x2 Sx12,x123

[1,2] − 3 P x2 Sx123,x23
[1,2]

12S∗[1,4] :=−2 P x123 S x3,x23
[1,4] + 2 P x123 S x1,x3

[1,4] − 2 P x123 S x2,x3
[1,4] + 2 P x123 S x2,x23

[1,4]

−2 P x23 S x1,x3
[1,4] − 2 P x23 S x2,x123

[1,4] + 2 P x23 S x3,x123
[1,4] + 2 P x23 S x123,x3

[1,4]
+2 P x3 S x1,x23

[1,4] − 2 P x3 S x1,x123
[1,4] + 2 P x3 S x2,x123

[1,4] − 2 P x3 S x123,x23
[1,4]

+3 P x12 S x1,x3
[1,4] − 3 P x12 S x2,x3

[1,4] + 3 P x12 S x1,x123
[1,4] − 3 P x12 S x2,x123

[1,4]
−3 P x1 S x3,x23

[1,4] + 3 P x1 S x2,x23
[1,4] − 3 P x1 S x3,x123

[1,4] + 3 P x1 S x2,x123
[1,4]

−3 P x2 S x1,x3
[1,4] − 3 P x2 S x1,x23

[1,4] + 3 P x2 S x123,x3
[1,4] + 3 P x2 S x123,x23

[1,4]
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12S∗[2,3] :=−P x123 S x3,x1
[2,3] + P x23 S x3,x1

[2,3] + P x23 S x123,x2
[2,3] − P x3 S x123,x2

[2,3]
+2 P x23 S x3,x123

[2,3] + 2 P x23 S x123,x3
[2,3] − 3 P x123 S x1,x3

[2,3] + 3 P x123 S x23,x3
[2,3]

+3 P x12 S x1,x3
[2,3] − 3 P x12 S x2,x3

[2,3] + 3 P x12 S x2,x123
[2,3] − 3 P x12 S x1,x123

[2,3]
−3 P x1 S x2,x3

[2,3] − 3 P x1 S x12,x3
[2,3] + 3 P x1 S x12,x123

[2,3] + 3 P x1 S x2,x123
[2,3]

+3 P x1 S x123,x3
[2,3] + 3 P x1 S x23,x3

[2,3] + 3 P x2 S x1,x3
[2,3] − 3 P x2 S x1,x123

[2,3]
−3 P x2 S x3,x123

[2,3] − 3 P x2 S x12,x123
[2,3] + 3 P x2 S x12,x3

[2,3] − 3 P x2 S x23,x123
[2,3]

+3 P x3 S x2,x123
[2,3] + 3 P x3 S x23,x123

[2,3] + 3 P x23 S x2,x123
[2,3] − 3 P x23 S x1,x3

[2,3]
−5 P x123 S x3,x23

[2,3] − 5 P x3 S x123,x23
[2,3] − 6 P x1 S x3,x23

[2,3] − 6 P x1 S x3,x123
[2,3]

+6 P x2 S x123,x3
[2,3] + 6 P x2 S x123,x23

[2,3]

2S∗[1,1,3] :=+S x1,x2,x3
[1,1,3] − S x1,x2,x23

[1,1,3] − S x1,x23,x3
[1,1,3] + S x3,x1,x23

[1,1,3] − S x1,x12,x3
[1,1,3]

+S x2,x12,x3
[1,1,3] + S x1,x3,x23

[1,1,3] − S x2,x1,x23
[1,1,3] − S x123,x2,x3

[1,1,3] + S x1,x123,x3
[1,1,3]

+S x2,x3,x123
[1,1,3] + S x2,x1,x123

[1,1,3] − S x1,x3,x123
[1,1,3] − S x3,x1,x123

[1,1,3] − S x123,x3,x23
[1,1,3]

−S x3,x123,x23
[1,1,3] + S x2,x123,x23

[1,1,3] + S x123,x23,x3
[1,1,3] + S x123,x2,x23

[1,1,3] − S x2,x23,x123
[1,1,3]

−S x2,x12,x123
[1,1,3] + S x3,x23,x123

[1,1,3] + S x1,x12,x123
[1,1,3] − S x2,x123,x3

[1,1,3]

S∗[2,1,2] :=+S x3,x1,x23
[2,1,2] − S x123,x2,x3

[2,1,2] − S x3,x1,x123
[2,1,2] + S x123,x2,x23

[2,1,2] + S x123,x23,x3
[2,1,2]

−S x123,x3,x23
[2,1,2] − S x3,x123,x23

[2,1,2] + S x3,x23,x123
[2,1,2] .

Lastly, we must write down the condition for lømaw1,...,w5 to have no poles
of order 1 at the origin. This once again leads to a single equation, but
one that now involves all seven relevant singulands:

S∗∗[1] + S∗∗[1,2] + S∗∗[1,4] + S∗∗[2,3] + S∗∗[1,1,3] + S∗∗[2,1,2] + S∗∗[1,1,1,2] = 0. (6.19)

Though easy to compute, the various contributions S∗∗[r] are too unwieldy
for us to write down. So we simply mention their number #(S∗∗[r]) of
summands. Here is the list:

#(S∗∗[1]) = 126, #(S∗∗[1,2]) = 299, #(S∗∗[1,4]) = 176, #(S∗∗[2,3]) = 314

#(S∗∗[1,1,3]) = 288, #(S∗∗[2,1,2]) = 324, #(S∗∗[1,1,1,2]) = 192.

If we now look for meromorphic singulands of type (6.12), the absence
of multipoles of order 3 at the origin is equivalent to a system of two
independent identities of the form R[1] +R[1,4] +R[2,3] = 0, namely:

0=− 1

120
δ n2 Rn1

[1] − Rn1,n2
[1,4] + Rn1,n2

[2,3] − Rn1,n12
[2,3] (6.20)

0= 1

120

(
δ n2 Rn12

[1] −δ n2 Rn1
[1]

)−Rn1,n2
[1,4] +Rn12,n2

[1,4] +Rn1,n2
[2,3] −Rn2,n12

[2,3] +2Rn12,n2
[2,3] .



115 The flexion structure and dimorphy . . .

The absence of multipoles of order 2 at the origin is also equivalent to
a system of two independent identities, with effective involvement of all
singulands except the last one:

R∗[1] +R∗[1,2] +R∗[1,4] +R∗[2,3] +R∗[1,1,3] +R∗[2,1,2] = 0 (6.21)

R†
[1] +R†

[1,2] +R†
[1,4] +R†

[2,3] +R†
[1,1,3] +R†

[2,1,2] = 0 (6.22)

360R∗[1] =−δ n1δ n23 Rn2[1] − 4δ n2δ n23 Rn1[1] − 11δ n1δ n123 Rn2[1] − 11δ n12δ n123 Rn1[1]
+14δ n12 δ n3 Rn1[1] −14δ n2δ n3 Rn1[1] +15δ n1δ n3 Rn2[1] +15δ n2δ n123 Rn1[1]
−15δ n1 δ n3 Rn12[1] + 15δ n1 δ n123 Rn12[1]

360R†
[1] =+δ n1 δ n23 Rn3

[1] − δ n2 δ n3 Rn123
[1] − 14δ n2 δ n3 Rn1[1] − 14δ n12 δ n3 Rn2[1]

+15δ n1δ n3 Rn2[1] +15δ n2δ n3 Rn12[1] −15δ n1δ n3 Rn23
[1] +15δ n2δ n123 Rn3

[1]
+25δ n23 δ n3 Rn1[1] + 25δ n3 δ n123 Rn23

[1] − 25δ n23 δ n3 Rn123
[1]

2R∗[1,2]=+δ n1 Rn2,n3
[1,2] − δ n1 Rn2,n23

[1,2] − δ n2 Rn1,n23
[1,2] + δ n2 Rn1,n123

[1,2]
−δ n1 Rn12,n3

[1,2] + δ n1 Rn12,n123
[1,2]

6R†
[1,2]=+2 δ n3 Rn1,n23

[1,2] − 2 δ n123 Rn2,n3
[1,2] − 2 δ n123 Rn3,n23

[1,2] + 2 δ n123 Rn23,n3
[1,2]

−2 δ n3 Rn123,n23
[1,2] + 2 δ n3 Rn23,n123

[1,2] + 3 δ n1 Rn2,n3
[1,2] + 3 δ n2 Rn12,n3

[1,2]
−3 δ n1 Rn23,n3

[1,2] + 3 δ n1 Rn3,n23
[1,2] + 3 δ n2 Rn3,n123

[1,2] − 3 δ n2 Rn123,n3
[1,2]

2R∗[1,4]=δ n12 Rn1,n3
[1,4] − δ n2 Rn1,n3

[1,4] − δ n2 Rn1,n23
[1,4] + δ n1 Rn2,n23

[1,4]
+δ n12 Rn1,n123

[1,4] + δ n1 Rn2,n123
[1,4]

6R†
[1,4]=2 δ n3 Rn2,n123

[1,4] − 2 δ n23 Rn1,n3
[1,4] + 2 δ n3 Rn1,n23

[1,4] − 2 δ n123 Rn2,n3
[1,4]

+2 δ n23 Rn3,n123
[1,4] + 2 δ n23 Rn123,n3

[1,4] − 2 δ n123 Rn3,n23
[1,4] − 2 δ n3 Rn123,n23

[1,4]
−3 δ n2 Rn1,n3

[1,4] − 3 δ n12 Rn2,n3
[1,4] − 3 δ n1 Rn3,n23

[1,4] + 3 δ n2 Rn123,n3
[1,4]

2R∗[2,3]=δ n2 Rn1,n3
[2,3] − δ n1 Rn2,n3

[2,3] + δ n12 Rn1,n3
[2,3] − δ n2 Rn1,n123

[2,3]
+δ n1 Rn2,n123

[2,3] − δ n1 Rn12,n3
[2,3] − δ n12 Rn1,n123

[2,3] + δ n1 Rn12,n123
[2,3]

6R†
[2,3]=δ n23 Rn3,n1

[2,3] − δ n3 Rn123,n2
[2,3] + 2 δ n23 Rn123,n3

[2,3] + 2 δ n23 Rn3,n123
[2,3]

+3 δ n2 Rn1,n3
[2,3] − 3 δ n23 Rn1,n3

[2,3] − 3 δ n1 Rn2,n3
[2,3] − 3 δ n12 Rn2,n3

[2,3]
+3 δ n2 Rn12,n3

[2,3] + 3 δ n1 Rn23,n3
[2,3] + 3 δ n3 Rn2,n123

[2,3] − 3 δ n2 Rn3,n123
[2,3]

+3 δ n3 Rn23,n123
[2,3] + 3 δ n123 Rn23,n3

[2,3] − 5 δ n123 Rn3,n23
[2,3]

−5 δ n3 Rn123,n23
[2,3] − 6 δ n1 Rn3,n23

[2,3] + 6 δ n2 Rn123,n3
[2,3]
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R∗[1,1,3]=Rn1,n2,n3
[1,1,3] −Rn1,n2,n23

[1,1,3] +Rn1,n12,n123
[1,1,3] −Rn1,n12,n3

[1,1,3] +Rn2,n1,n123
[1,1,3] −Rn2,n1,n23

[1,1,3]
R†
[1,1,3]=Rn1,n2,n3

[1,1,3] + Rn2,n12,n3
[1,1,3] − Rn1,n23,n3

[1,1,3] + Rn3,n1,n23
[1,1,3] + Rn1,n3,n23

[1,1,3]
−Rn123,n2,n3
[1,1,3] − Rn2,n123,n3

[1,1,3] + Rn2,n3,n123
[1,1,3] − Rn123,n3,n23

[1,1,3]
−Rn3,n123,n23
[1,1,3] + Rn123,n23,n3

[1,1,3] + Rn3,n23,n123
[1,1,3]

R∗[2,1,2] = 0

R†
[2,1,2] = 2

(
R

n3,n1,n23[2,1,2] −R
n123,n2,n3[2,1,2] +R

n3,n23,n123[2,1,2] −R
n123,n3,n23[2,1,2] −R

n3,n123,n23[2,1,2] +R
n123,n23,n3[2,1,2]

)
.

Lastly, the condition for lømaw1,...,w5 to have no poles of order 1 at the ori-
gin can be expressed by a single equation, that involves all seven relevant
singulands:

R∗∗[1]+R∗∗[1,2]+R∗∗[1,4]+R∗∗[2,3]+R∗∗[1,1,3]+R∗∗[2,1,2]+R∗∗[1,1,1,2] = 0. (6.23)

Once again the R∗∗[r] are too unwieldy for us to write down, and we merely
mention their number #(R∗∗[r]) of summands:

#(R∗∗[1]) = 34, #(R∗∗[1,2]) = 58, #(R∗∗[1,4]) = 40, #(R∗∗[2,3]) = 74

#(R∗∗[1,1,3]) = 48, #(R∗∗[2,1,2]) = 64, #(R∗∗[1,1,1,2]) = 24

6.5 The basis lama•/lami•.

As already pointed out, the desingulation conditions listed above admit
multiple solutions when the singulands are sought in the space of power
series, even after imposing the proper parity in each variable. To ensure
uniqueness, many additional constraints are theoretically possible, but
two stand out as clearly privileged, in the sense that they, and they alone,
guarantee coefficients with arithmetically simple denominators.

We mention here the first constraint, leading to the bimould lama•, for
the first non-trivial singulands S•[1,2] = S•1,2. For the coefficients of weight
s, the equation (6.14) admits exactly one solution of the form:

Sax1,x2
1,2 =

∑
1≤δ≤ent( s−1

2 )−ent( s+1
6 )

a2 δ x2 δ
1 xs−2−2 δ

2 . (6.24)

This is, moreover, the choice for which the prime factors in the denomi-
nator admit the best universal bound p ≤ Cst s. In fact, for this choice,
the bound is p ≤ s

3 .

6.6 The basis loma•/lomi•

Now, let us move on to the second type of constraints, leading to the
bimould loma•, again for the first non-trivial singulands S•[1,2] = S•1,2.
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For the coefficients of weight s, the equation (6.14) admits exactly one
solution of the form:

Sox1,x2
1,2 = x2

1 x2

∑
0≤δ≤ent( s−3

6 )

a2 δ

(
x2 δ

1 xs−5−2 δ
2 + xs−5−2 δ

1 x2 δ
2

)
(6.25)

which entails far fewer coefficients. This is basically the only other
choice93 for which the prime factors in the denominator admit a universal
bound p ≤ Cst s. In this case the bound is p ≤ 2 s−5

3 .

6.7 The basis luma•/lumi•

Here, we may deal at once with all length-2 singulands:

Sx1,x2
[r1,r2] = Sx1,x2

r1,r2

essly=
∑

ni∈Z∗
Rn1,n2

r1,r2
P(x1+n1) P(x2+n2). (6.26)

The multiresidues are simple enough:94

Rn1,n2
[r1,r2] = Rn1,n2

r1,r2
= γr1,r2 µ(n1, n2) nn2−1

1 nn1−1
2 (6.27)

with γr1,r2 a simple rational constant, and with µ(n1, n2) being 1 (respec-
tively 0) if n1, n2 are co-prime (respectively otherwise). The Taylor coef-
ficients of the singulates, however, are less simple: they carry Bernoulli
numbers in their denominators, and sometimes very large prime factors,
that can exceed any given bound of the form Cst s:

Sux1,x2
r1,r2

(s)=(−1)r1
Br1+r2−1

r1+r2−1

δ1+δ2=s+2∑
δ1≥r1
δ2≥r2

B∗δ1−r1
B∗δ2−r2

B∗δ1+δ2−r1−r2

uδ2−2
1 uδ1−2

2 (6.28)

with B∗n =
Bn

n! , B2 n :=Bernoulli number, Bn :=0 for n odd or<0.

Pay attention to the exponents: it is δ2−2 on top of u1 and δ1−2 on top
of u2. In fact, since both s and r1+r2 are always odd, the summation rule
produces only positive powers of u1, u2 (one even, the other odd), except
for the pairs (r1, r2) = (1, 2) respectively (2, 1) where constant monomi-
als in u1 respectively u2 do appear – but these may be neglected, since
they contribute nothing to the singulate. Of course, the usual identity
Sux1,x2

r1,r2
+ Sux2,x1

r2,r1
= 0 holds.

93 Leaving aside, of course, simple averages of the first and second choice.

94 They cease to be simple for singulands of length l ≥ 3. Here, we get full-blown ‘perinomalness’.
See Section 9.5.
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6.8 Arithmetical vs analytic smoothness

To show how the three choices compare, arithmetically speaking, we list
the weight-s component S•1,2(s) of the first non-trivial singuland in all
three variants Sa•1,2(s), So•1,2(s), Su•1,2(s), up to the weight s = 17:

Sax1,x2
1,2 (5) = Sox1,x2

1,2 (5) = Sux1,x2
1,2 (5) = − 5

12
x2

1 x2

Sax1,x2
1,2 (7) = Sox1,x2

1,2 (7) = Sux1,x2
1,2 (7) = − 7

24
x2

1 x3
2 −

7

24
x4

1 x2

Sax1,x2
1,2 (9) = Sox1,x2

1,2 (9) = Sux1,x2
1,2 (9) = − 5

18
x2

1 x5
2 −

7

36
x4

1 x3
2 −

5

18
x6

1 x2

Sax1,x2
1,2 (11) = −11

8
x2

1 x7
2 +

55

24
x4

1 x5
2 −

11

6
x6

1 x3
2

Sox1,x2
1,2 (11) = −11

40
x2

1 x7
2 −

11

60
x4

1 x5
2 −

11

60
x6

1 x3
2 −

11

40
x8

1 x2

Sux1,x2
1,2 (11) = Sox1,x2

1,2 (11)

Sax1,x2
1,2 (13)=−91

48
x4

1 x7
2 +

65

24
x6

1 x5
2 −

91

48
x8

1 x3
2 ,

Sox1,x2
1,2 (13)=− 65

252
x2

1 x9
2 −

143

504
x4

1 x7
2 −

143

504
x8

1 x3
2 −

65

252
x10

1 x2

Sux1,x2
1,2 (13)=−2275

8292
x2

1 x9
2−

1001

5528
x4

1 x7
2−

715

4146
x6

1 x5
2−

1001

5528
x8

1 x3
2−

2275

8292
x10

1 x2

Sax1,x2
1,2 (15)=−691

360
x2

1 x11
2 +

665

144
x4

1 x9
2 −

2233

360
x6

1 x7
2 +

209

48
x8

1 x5
2 −

21

10
x10

1 x3
2

Sox1,x2
1,2 (15)=− 691

2520
x2

1 x11
2 −

13

72
x4

1 x9
2 −

143

840
x6

1 x7
2 −

143

840
x8

1 x5
2 −

13

72
x10

1 x3
2

− 691

2520
x12

1 x2

Sux1,x2
1,2 (15)=Sox1,x2

1,2 (15)

Sax1,x2
1,2 (17)=−442

15
x2

1 x13
2 +

1105

12
x4

1 x11
2 −

1666

15
x6

1 x9
2 +

187

3
x8

1 x7
2 −

153

10
x10

1 x5
2

Sox1,x2
1,2 (17)=−17

60
x2

1 x13
2 −

17

144
x4

1 x11
2 −

221

720
x6

1 x9
2 −

221

720
x10

1 x5
2 −

17

144
x12

1 x3
2

−17

60
x14

1 x2

Sux1,x2
1,2 (17)=− 2975

10851
x2

1 x13
2 −

11747

65106
x4

1 x11
2 −

5525

32553
x6

1 x9
2 −

2431

14468
x8

1 x7
2

− 5525

32553
x10

1 x5
2 −

11747

65106
x12

1 x3
2 −

2975

10851
x14

1 x2.
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6.9 Singulator kernels and “wandering” bialternals

Let BIMUs
l be the space of all bimoulds M• whose only non-vanishing

component Mw1,...,wl is constant in the vi -variables, and homogeneous
polynomial of total degree d = s − l in the ui -variables.95

Likewise, let BIMUs
r1,...,rl

be the subspace of BIMUs
l consisting of all

bimoulds M• whose only non-vanishing component Mw1,...,wl :
– is divisible by each ui ;
– is even in ui if ri is odd, and vice versa.

For each pair r and s large enough (s ≥ sr ), there always exist non-
trivial collections of special singulands S•r :

{S•r1,...,rl
∈ BIMUs

r1,...,rl
; 1 < l < r , r1 + · · · + rl = r} (6.29)

such that the corresponding bialternal singulates �•r combine to form
a �•r that is singularity-free, i.e. polynomial, with the predictable total
degree s−r and an unchanged ‘weight’ s:

�•r :=
∑

1<l<r

∑
r1+...+rl=r

slankr1,...,rl .S
•
r1,...,rl

∈ ALAL ∩ BIMUs
r (6.30)

instead of presenting at the origin multipoles of order τ :

τ := r − lmin with 2 ≤ lmin := inf(l) for S•r1,...,rl
�= 0• (6.31)

as would be the case for randomly chosen singulands S•r . The result
holds even if we impose that there be a least one nonzero singuland S•r1,r2

of minimal length l = 2.
These paradoxical non-singular singulates �•r are known as wander-

ing bialternals. They span a subspace of BIMU which is in fact a (small)
subalgebra ALALwander of ALAL ⊂ ARIal/al . On top of the natural gra-
dation by r (the length), ALALwander admits a natural filtration by τ (the
‘avoided polar order’).

The presence of these wandering bialternals is responsible for the
very slight indeterminacy that exists in the construction by singulation-
desingulation of a basis of ALIL ⊂ ARIal/il. As we saw, to remove that
indeterminacy, additional criteria (arithmetical or functional) are called
for, leading to the three (distinct yet closely related) bases of Section 6.5,
Section 6.6, Section 6.7.

95 So that s may be called the ‘weight’ of M•.
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7 A conjectural basis for ALAL ⊂ ARIal/al . The three series of
bialternals

7.1 Basic bialternals: the enumeration problem

We shall have to handle three series of bialternals, each with a single non-
zero component, of length 1, 2, 4 respectively. Here they are, with their
names and natural indexation:

ekma•d/ekmi•d ∈ BIMU1, d even ≥ 2

doma•d,b/domi•d,b ∈ BIMU2, d even ≥ 6, 1 ≤ b ≤ β(d)

carma•d,c/carmi•d,c ∈ BIMU4, d even ≥ 8, 1 ≤ c ≤ γ (d).

As usual, the vocalic alternation a ↔ i is indicative of the basic invo-
lution swap. The integers α(d), β(d), γ (d) are given by the generating
functions:∑

α(d)td := t6(1−t2)−1(1−t4)−1= t6+t8+2 t10+2 t12+3 t14. . . (7.1)∑
β(d)td := t6(1−t2)−1(1−t6)−1= t6+t8+t10+2 t12+2 t14. . . (7.2)∑
γ (d)td := t8(1−t4)−1(1−t6)−1= t8+t12+t14+t16+t18+2 t20. . . (7.3)

and clearly verify α(d) ≡ β(d) + γ (d−2). Mark the absence of t10

in (7.3).

7.2 The regular bialternals: ekma, doma

The ekma bialternals are utterly elementary

ekmaw1
d := ud

1; ekmiw1
d := vd

1 (7.4)

since, for length 1, bialternality reduces to neg-invariance. If the ekmas
freely generated a subalgebra EKMA of ALAL, the dimension of EKMA2,d

(length 2, degree d) would be exactly α(d). This, however, is not the
case. Indeed, since the bialternality constraints for length 2 are finitary96,
Hilbert’s invariant theory applies, and it is a simple matter to verify that
ALAL2:
(i) is spanned by ekma brackets;
(ii) admits the following domas as a canonical (in the sense of ‘simplest’)
basis:

domaw1,w2
d,b := fa(u1, u2) (ga(u1, u2))

b−1 (ha(u1, u2))
d/2−3b (7.5)

domiw1,w2
d,b := fi(v1, v2) (gi(v1, v2))

b−1 (hi(v1, v2))
d/2−3b (7.6)

96 I.e. correspond to invariance under a finite subgroup of Gl2(C), which in the present instance is
isomorphic to S3. Finitariness ceases from length 3 onwards.
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with

fa(u1, u2) := u1u2(u1−u2)(u1+u2)(2u1+u2)(2u2+u1) (7.7)

ga(u1, u2) := (u1+u2)
2u2

1u2
2; ha(u1, u2) := u2

1+u1u2+u2
2 (7.8)

fi(v1, v2) := v1v2(v1−v2)(v1+v2)(2v1−v2)(2v2−v1) (7.9)

gi(v1, v2) := (v1−v2)
2v2

1v
2
2; hi(v1, v2) := v2

1−v1v2+v2
2 . (7.10)

Therefore dim(EKMA2,d) = dim(ALAL2,d) = β(d) ≤ α(d) and, for each
even degree d+2, the ekma-brackets verify exactly γ (d) independent
relations of the form:∑
d1+d2=d+2

Qd1,d2
c ari(ekma•d1

,ekma•d2
)=0• (1≤c≤γ (d), Qd1,d2

c ∈Q) (7.11)

easily derivable from the decompositions:

ari(ekma•d1
, ekma•d2

)=
∑

1≤b≤β(d1+d2)

K b
d1,d2

doma•d1+d2,b
(K b

d1,d2
∈Q). (7.12)

7.3 The irregular bialternals: carma

Not all bialternals of length r = 4 may be obtained as superpositions of
ekma brackets. Thus, there exists (up to scalar multiplication) exactly one
bialternal of length r = 4 and degree d = 8, which clearly cannot be gen-
erated by ekmas, since the first ekma has degree 2, and self-bracketting it
four times yields nothing.

One of our conjectures (for which there is compelling theoretical and
numerical evidence97) is that the number of these independent excep-
tional or irregular bialternals – we call them carma bialternals – is ex-
actly γ (d) as given by (7.3), and that these bialternals carmad,c (1 ≤ c ≤
γ (d)) are in one-to-one, constructive correspondence (see Section 7.7)
with the elements (7.11) of length 2 and degree d+2 in the ekma ideal,
under a transparent and quite universal restoration mechanism (see Sec-
tion 7.9).

7.4 Main differences between regular and irregular bialternals

For one thing, the algebra EKMA ⊂ ALAL generated by the ekmas is
intrinsical, while the algebra CARMA ⊂ ALAL generated by the car-
mas depends, as we shall see in Section 8.5, on the choice of a basis for

97 See Section 7.9, Section 8.5, Section 8.10.
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ALIL. (That said, there exist clearly canonical bases of ALIL, and there-
fore canonical choices for CARMA as well.)

Then, the definition of the ekma•d is as elementary as the construction
of the carma•d,c is complex. Unsurprisingly, this difference finds its re-
flection in the arithmetical properties (divisibility etc) and above all in
the sheer size of their coefficients.98 For instance, if we consider the first
‘cells’ ALALr,d where elements of EKMA and DOMA coexist with unique
elements of CARMA, namely the ‘cells’ r = 4 and d ≤ 18, and then com-
pare typical elements of EKMAr,d and DOMAr,d with those of CARMAr,d ,
we find that the latter are strikingly more complex.

For illustration, here is, with self-explanatory labels, a list of represen-
tatives chosen in the three algebras, with red signalling that our polyno-
mials are taken in their simplest form, i.e. with coprime coefficients:

carad := red(carmad,1) (d=8,12,14,16,18)

ekad := red(ari(ekmad−6, ekma2,ekma2, ekma2)) (d=10,12,14,16,18)

doa14 := red(ari(doma6,1, doma8,1))

doa16 := red(ari(doma6,1, doma10,1))

doa18 := red(ari(doma6,1, doma12,2)).

The first table (below) mentions the exact number of monomials effec-
tively present in each polynomial. That number is always larger in the
u-variables (vowel a) than in the v-variables (vowel i), and the figures in
boldface represent the difference. For comparison, the first column FULL
mentions the maximum number of monomials in general homogeneous
polynomials of the corresponding degree.

d FULL CARMA CARMI EKMA EKMI DOMA DOMI
8 165 142 118 24

10 286 254 254 0
12 455 434 420 14 422 408 14
14 680 658 640 18 650 586 64 498 420 78
16 969 946 924 22 940 752 188 778 616 162
18 1330 1306 1280 26 1300 922 378 930 798 132 .

The next table (below) mentions the approximate norms of our (reduced!)
polynomials, i.e. the sum of the absolute values of all their co-prime
coefficients. Here again, the norms are much larger for the u- than for
the v-variables, and the numbers in boldface represent the approximate

98 This applies equally to the ekma•d , carma•d,c and their swappees ekmi•d , carmi•d,c .
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ratios of the two.

d CARMA CARMI EKMA EKMI DOMA DOMI
8 8.6 106 2.6 106 3

10 1.9 104 1.4 104 1.3
12 1.2 1011 6.0 109 19 1.8 105 3.3 104 5
14 6.8 1012 7.9 1010 87 2.0 106 8.5 104 23 3.6 105 2.5 104 14
16 7.6 1013 3.8 1011 200 9.5 107 1.0 106 95 5.2 106 8.8 104 59
18 1.3 1017 1.6 1014 845 1.5 109 3.9106 379 4.9 106 2.3 105 21 .

Thus, while the polynomials in CARMA are only marginally fuller (i.e.
less lacunary) than those in DOMA and EKMA, the main difference lies
in their dramatically larger coefficients. Arithmetically, too, their coeffi-
cients are more complex, as borne out by their various reductions mod p.

7.5 The pre-doma potentials

Rectifying σ1,1 to σ ∗1,1
The mapping (A•, B•) ∈ BIMU1 × BIMU1 �→ C• := ari(A•, B•) ∈
BIMU2 induces by bilinearity a mapping σ1,1 : S• ∈ BIMU2 �→ �• ∈
BIMU2 with:

�

(
u1,
v1,

u2
v2

)
= +S

(
u1,
v1,

u2
v2

)
+ S

(
u2,

v2:1,
u12
v1

)
+ S

(
u12,
v2,

u1
v1:2

)
− S

(
u2,
v2,

u1
v1

)
− S

(
u12,
v1,

u2
v2:1

)
− S

(
u1,

v1:2,
u12
v2

)
.

For arguments Sw1,w2 that are even in both w1 and w2, σ1,1 coincides with
the simpler mapping σ ∗1,1 : S• ∈ BIMU2 �→ �•∗ ∈ BIMU2 with:

�

(
u1,
v1,

u2
v2

)
∗ = +S

(
u1,
v1,

u2
v2

)
+ S

(
u2,

v2:1,
−u12−v1

)
+ S

(−u12,
−v2,

u1
v1:2

)
− S

(
u2,
v2,

u1
v1

)
− S

(−u12,
−v1,

u2
v2:1

)
− S

(
u1,

v1:2,
−u12−v2

)
= +S

(
u1,

v1:0,
u2

v2:0
)
+ S

(
u2,

v2:1,
u0

v0:1
)
+ S

(
u0,

v0:2,
u1

v1:2
)

− S
(

u2,
v2:0,

u1
v1:0

)
− S

(
u0,

v0:1,
u2

v2:1
)
− S

(
u1,

v1:2,
u0

v0:2
)

which in the “long notation” (i.e. under adjunction of u0 := −u1,2 and
v0 := ‘free’) takes on the pleasant form:

�[w0],w1,w2∗ = +S[w0],w1,w2 + S[w1],w2,w0 + S[w2],w0,w1

− S[w0],w2,w1 − S[w1],w0,w2 − S[w2],w1,w0 .

In this form, the ‘finitariness’ of σ ∗1,1 is conspicuous, since the right-hand
side involves exactly all six permutations of the sequence (w0, w1, w2).
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But σ ∗1,1 has another merit: it turns not just all bi-even, but also all bi-odd
alternals Sw1,w2 into bialternals �w1,w2∗ (whereas σ1,1 only turns bi-even
alternals into bialternals). When acting on bi-even (respectively bi-odd)
alternals, σ ∗1,1 bilinearly extends the action of ari (respectively that of
oddari: see (2.80)). The mappings σ1,1 and σ ∗1,1 are of course reminiscent
of the mappings from singulands S• to singulates �• which we studied
at length in Section 5, except that now neither �• nor �•∗ carries poles.

The bi-even pre-doma potentials
Before turning to our proper object – the kernel of σ ∗1,1 – let us look for
pre-doma-potentials, i.e. for (alternal, bi-even) pre-images of the doma•d,b
under σ ∗1,1. If we impose the a priori form:

predomax1,x2
d,b =

∑
1≤δ ent( d

6 )

cd,b;δ (x2 δ
1 xd−2 δ

2 − x2 δ
2 xd−2 δ

1 )

(
d even , 1 ≤ b ≤ ent

(
d

6

))
the solution is unique, and this is essentially the only choice that yields
arithmetical smoothness, i.e. that ensures for the prime factors p in the
denominators of the coefficients cd,b;δ universal bounds of type p ≤ C d .
In fact, the bound here is p ≤ d − 3.

The bi-odd pre-doma potentials
Here again, there is only one (alternal, bi-odd) a priori form (analogous
to the above) that ensures arithmetical smoothness.

Arithmetical smoothness
So, even in the case of the atypical, singularity-free singulator σ ∗1,1 we
encounter anew the phenomenon which, in the preceding section, led us
to the privileged bases lama•s and loma•s , namely the existence of very
specific conditions on the singulates that ensure uniqueness and simple
‘factorial’ bounds for the coefficients’ denominators.

7.6 The pre-carma potentials

Natural basis for ker(σ ∗1,1)

On the space of alternal bimoulds that are independent of (v1, v2) and
polynomial in (u1, u2) of even (total) degree d, the dimension of ker(σ ∗1,1)

is sd := ent( d−1
3 ). Let us look for a convenient basis. Reverting to the

(x1, x2) variables favoured for singulands, we see that the alternal bi-
moulds

H
(

x1
0

,
,

x2
0 )

d,s := (x1+x2)
s (xs

1 xd−2 s
2 − xs

2 xd−2 s
1 ) (7.13)
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clearly belong to ker(σ ∗1,1). Consider now the sequences:

Hd;s1,s2 = {H •d,s1
, H •d,s1+1, . . . , H •d,s2−1, H •d,s2

}. (7.14)

The main facts here are these:
(i) The elements of Hd;1,sd constitute a basis of ker(σ ∗1,1).
(ii) The same holds for the shifted sets Hd;1+k,sd+k .
(iii) But it is only the first basis Hd;1,sd that leads to arithmetically smooth
expansions.

Natural basis for the pre-carma space
The pre-carmas (so-called because they are the raw material from which
the carmas shall be built) are the elements of ker(σ ∗1,1) which are bi-
even (i.e. even separately in x1 and x2) and divisible by x2

1 x2
2 .99 The

main result here100 is that there exists a complete system of arithmetically
smooth pre-carmas of the form:

precarmax1,x2
d,k =Qτ(d)(x1,x2)R8(x1,x2)

kS4(x1,x2)
κ(d)−kTd,k(x1,x2) (7.15)

with 1 ≤ k ≤ κ(d) = γ (d − 2) and γ as in (7.3) or, equivalently:

κ(d) = ent

(
d − 2

12

)
if d �= 10 mod 12 (ent = entire part)

κ(d) = ent

(
d − 2

12

)
+ 1 if d = 10 mod 12.

The first factor depends on τ(d) := gcd(d, 12). It is of degree τ ∗(d) :=
τ(d) except when 12|d, in which case τ ∗(d) := 8. It is given for the four
possible values of τ(d) by:

Q2 := x2
1 − x2

2 , Q4 := x4
1 − x4

2 , Q6 := x6
1 − x6

2 , Q12 := Q4 Q6

Q2
.

The second factor, of degree 8, is given by:

R8 := x2
1 x2

2 (x2
1 − x2

2)
2

and the reason for its spontaneous occurrence is that the six following
polynomials are divisible by x2

1 x2
2 (x1+x2)

2:

R8(xi , x j ), R8(xi , xi+x j ), R8(xi+x j , x j ) with i, j ⊂ {1, 2}.

99 We add this last condition for the reason that one-variable elements of ker(σ∗1,1) would contribute
no carmas: see the construction in Section 7.7.

100 Arrived at by expanding the bi-even solutions of σ∗1,1.S•1,1 = 0 in the ‘good’ basis Hd;1,sd .
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The third factor, of degree 4, can be chosen arbitrarily, provided it is
symmetric in (x1, x2), even in each variable, and co-prime with R8. The
following choices:

S4 := Q2
4

Q2
2

= (x2
1 + x2

2)
2; S4 := Q6

Q2
= x4

1 + x2
1 x2

2 + x4
2

are natural candidates to the extent that they introduce no new factors, but
there seems to exist no really privileged choice, i.e. no choice that would
render the last factor Td,k indisputably simplest.

That last factor, symmetric in x1,x2 and with the right degree δ(d,k),101

is then fully determined by the condition σ ∗1,1.precarmad,k = 0. It is thus
simplest for k maximal, i.e. k = κ . The corresponding precarmad,κ is
also the only fully canonical precarmad,k , since it does not depend on the
choice of S4.

7.7 Construction of the carma bialternals

The idea behind the construction
Fix a polynomial basis {løma•s , s = 3, 5, 7 . . .} of ALIL ⊂ ARIal/il 102 and
consider a pre-carma polynomial precar of total degree d+2 (recall that d
has to be even and either = 8 or ≥ 12) with alternal coefficients c2 δ1,2 δ2 :

precarx1,x2 =
δi≥1∑

2 (δ1+δ2)=d+2

c2 δ1,2 δ2 x2 δ1
1 x2 δ2

2 . (7.16)

Next, form the bimould cør• by bracketting the løma•s with the coeffi-
cients c2 δ1,2 δ2 as weights:

cør• :=
δi≥1∑

2 (δ1+δ2)=d+2

c2 δ1,2 δ2 preari(løma•1+2 δ1
, løma•1+2 δ2

) ∈ ALIL (7.17)

=
δi≥1∑

2 (δ1+δ2)=d+2

c2 δ1,2 δ2

1

2
ari(løma•1+2 δ1

, løma•1+2 δ2
) ∈ ALIL (7.18)

and consider the projection cørma• of cør• on B I MU4. By construction,
cør• is of type al/il and its first non-vanishing component is therefore, on

101 I.e. to ensure degree d for precarmad,k . Thus δ(d, k) = d − τ∗(d)− 4 k − 4 κ(d).

102 As usual, ALIL and ALAL are short-hand for ARI
al/il
ent/cst and ARI

al/al
ent/cst . Constructing a basis of

ALIL is of course no easy matter, as we saw in Section 6, but what we require here is only a basis up
to length 3, which is quite simple to construct: see Section 6.3.
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its own, of type al/al, i.e. bialternal. That first component cannot have
length r = 2, because precar is a pre-carma. It cannot have length r = 3
either, because the component of length 3 is a polynomial of odd degree
1+ d and for that reason cannot possibly be bialternal. This implies,
therefore, that cørma•, i.e. the component of length 4, is either ≡ 0 or a
non-trivial bialternal of degree d . Based on extensive computational and
theoretical evidence, we conjecture that the latter is always the case, and
more precisely, that when precar runs through a basis of the precarma
space, the corresponding cørma• span a space CØRMA4 such that

CØRMA4 ⊕ EKMA4 = ALAL4 ⊂ ARIal/al
4 . (7.19)

In simpler words: the cørma• provide all the missing bialternals of length
r = 4 and put them in one-to-one correspondance with the precarma•,
i.e. with the “unproductive” brackets of ekma•.

The construction works for any basis {løma•s } of ALIL. Specialising
it to the three canonical bases {lama•s }, {loma•s }, {luma•s }, we get three
series of ‘exceptional’ bialternals {carma•s }, {corma•s }, {curma•s }, span-
ning spaces CARMA4, CORMA4, CURMA4 which, though distinct, each
verify the complementarity relation (7.19).

7.8 Alternative approach

In the expansion (6.5) for {løma•s }, let us retain only the first two singu-
lates (those namely that contribute to the components of length r ≤ 4)
and then let us restrict everything to the homogeneous parts of weight s.
We get:

løma•s = �•[1],s +�•[1,2],s (mod BIMU5≤). (7.20)

If we now plug this into (7.17) for pairs(s1,s2)= (1+2δ1,1+2δ2), we get
four contributionsP[r1],[r2], consisting of the terms linear in �•[r1],1+2 δ1

and
�•[r2],1+2 δ2

. The contribution P[1,2],[1,2] begins with a non-zero component
of length 6 and therefore vanishes modulo BIMU5≤. The contribution
P[1],[1] vanishes exactly, for the reason that, adari(pal•) being an algebra
isomorphism, P[1],[1] is necessarily of the form adari(pal•).leng4.P[1],[1],
with lengr denoting as usual the projector of BIMU onto BIMUr . But
leng4.P[1],[1] ≡ 0 since we have assumed precar• of (7.16) to be a pre-
carma. Thus P[1],[1] ≡0. That leaves only the two contributions P[1],[1,2]+
P[1,2],[1], whose component of length 4 is clearly a singulate of type
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��•[1,1,2] := slank[1,1,2].S•[1,1,2]. It can in fact be shown to be of the form:

��
w1,w2,w3,w4
[1,1,2] = (slank[1,1,2].S[1,1,2])w1,w2,w3,w4

= +Xu1,u2,u3,u4 P(u0)+ Y u1,u2,u3,u4 P(u2+u3)

+ Xu2,u3,u4,u0 P(u1)+ Y u2,u3,u4,u0 P(u3+u4)

+ Xu3,u4,u0,u1 P(u2)+ Y u3,u4,u0,u1 P(u4+u0)

+ Xu4,u0,u1,u2 P(u3)+ Y u4,u0,u1,u2 P(u0+u1)

+ Xu0,u1,u2,u3 P(u4)+ Y u0,u1,u2,u3 P(u1+u2)

(7.21)

with polynomials X• and Y • given by:

2 Xu1,u2,u3,u4 = Su3,u2,u1
[1,1,2] +Su1,u3,u4

[1,1,2] +Su3,u4,u1
[1,1,2] +Su3,u1,u4

[1,1,2] −Su2,u1,u4[1,1,2]
−Su2,u3,u4
[1,1,2] −Su2,u4,u1[1,1,2] −Su4,u2,u1[1,1,2] +Su3,u1,u12

[1,1,2] +Su4,u2,u12[1,1,2] +Su2,u4,u12[1,1,2] +Su1,u3,u12
[1,1,2]

+Su2,u3,u34
[1,1,2] +Su4,u1,u34

[1,1,2] +Su1,u4,u34
[1,1,2] +Su3,u2,u34

[1,1,2] +Su2,u12,u4[1,1,2] +Su2,u23,u4
[1,1,2]

+Su2,u23,u1
[1,1,2] +Su4,u34,u1

[1,1,2] −Su2,u3,u12
[1,1,2] −Su3,u2,u12

[1,1,2] −Su4,u1,u12[1,1,2] −Su1,u4,u12[1,1,2] −Su1,u3,u34
[1,1,2]

−Su4,u2,u34
[1,1,2] −Su3,u1,u34

[1,1,2] −Su2,u4,u34
[1,1,2] −Su1,u12,u4[1,1,2] −Su3,u23,u4

[1,1,2] −Su3,u23,u1
[1,1,2] −Su3,u34,u1

[1,1,2]
+Su2,u3,u123
[1,1,2] +Su2,u1,u123

[1,1,2] +Su2,u4,u234
[1,1,2] +Su4,u2,u234

[1,1,2] −Su1,u3,u123
[1,1,2] −Su3,u1,u123

[1,1,2]
−Su3,u4,u234
[1,1,2] −Su3,u2,u234

[1,1,2] +Su1,u12,u123
[1,1,2] +Su3,u23,u123

[1,1,2] +Su3,u23,u234
[1,1,2] +Su3,u34,u234

[1,1,2]
−Su2,u23,u123
[1,1,2] − Su2,u12,u123

[1,1,2] − Su2,u23,u234
[1,1,2] − Su4,u34,u234

[1,1,2]

2 Y u1,u2,u3,u4 = Su4,u3,u1
[1,1,2] +Su1,u4,u2[1,1,2] +Su4,u1,u2[1,1,2] +Su1,u3,u4

[1,1,2] +Su3,u4,u1
[1,1,2] +Su3,u1,u4

[1,1,2]
−Su2,u1,u4[1,1,2] −Su1,u4,u3

[1,1,2] −Su4,u2,u1[1,1,2] −Su1,u2,u4[1,1,2] −Su2,u4,u1[1,1,2] −Su4,u1,u3
[1,1,2] +Su3,u4,u123

[1,1,2]
+Su4,u3,u123
[1,1,2] +Su1,u3,u234

[1,1,2] +Su3,u1,u234
[1,1,2] +Su4,u123,u3

[1,1,2] +Su1,u234,u3
[1,1,2] −Su4,u2,u123

[1,1,2]
−Su2,u4,u123
[1,1,2] −Su2,u1,u234

[1,1,2] −Su1,u2,u234
[1,1,2] −Su4,u123,u2

[1,1,2] −Su1,u234,u2
[1,1,2] +Su2,u1234,u4

[1,1,2]
+Su2,u1234,u1
[1,1,2] +Su1234,u4,u3

[1,1,2] +Su1234,u2,u4
[1,1,2] +Su1234,u2,u1

[1,1,2] +Su1234,u1,u3
[1,1,2] −Su3,u1234,u1

[1,1,2]
−Su3,u1234,u4
[1,1,2] −Su1234,u3,u4

[1,1,2] −Su1234,u4,u2
[1,1,2] −Su1234,u3,u1

[1,1,2] −Su1234,u1,u2
[1,1,2]

+Su2,u1234,u123
[1,1,2] +Su2,u1234,u234

[1,1,2] +Su1234,u2,u123
[1,1,2] +Su1234,u2,u234

[1,1,2] +Su1234,u123,u2
[1,1,2]

+Su1234,u234,u2
[1,1,2] −Su3,u1234,u123

[1,1,2] −Su3,u1234,u234
[1,1,2] −Su1234,u3,u123

[1,1,2] −Su1234,u3,u234
[1,1,2]

−Su1234,u123,u3
[1,1,2] −Su1234,u234,u3

[1,1,2]

and with a singuland S•[1,1,2] that has to be a homogeneous polynomial of
total degree 1+ d subject to three types of constraints.

First, it must be even in x1, x2, odd in x3, and divisible by x1 x2 x3.
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Second, it must verify the identity:

0 = −S x1,x2,x3
[1,1,2] + S x1,x2,x23

[1,1,2] + S x2,x1,x23
[1,1,2] + S x1,x23,x3

[1,1,2] + S x1,x12,x3
[1,1,2] − S x1,x3,x23

[1,1,2]
− S x3,x1,x23
[1,1,2] − S x2,x12,x3

[1,1,2] + S x1,x3,x123
[1,1,2] + S x3,x1,x123

[1,1,2] + S x2,x123,x3
[1,1,2] + S x123,x2,x3

[1,1,2]
−S x2,x1,x123
[1,1,2] −S x2,x3,x123

[1,1,2] −S x1,x123,x3
[1,1,2] +S x2,x23,x123

[1,1,2] +S x2,x12,x123
[1,1,2] +S x3,x123,x23

[1,1,2]
+S x123,x3,x23
[1,1,2] −S x1,x12,x123

[1,1,2] −S x3,x23,x123
[1,1,2] −S x2,x123,x23

[1,1,2] −S x123,x2,x23
[1,1,2] −S x123,x23,x3

[1,1,2]
which ensures the absence of poles at the origin and therefore, in the
terminology of Section 5.9, makes ��•[1,1,2] into a wandering bialternal.

Lastly, it must verify a third, similar-looking identity, which reflects
the fact that precar• is a pre-carma and, by so doing, guarantees that the
bialternal ��•[1,1,2] won’t be in EKMA.

Caveat: for each d , there is exactly one carma bialternal that is not
captured by the above formula (7.21) but by a slight modification of the
same.103 This, however, is a minor technicality.

7.9 The global bialternal ideal
and the universal ‘restoration’ mechanism

Suppose that, contrary to all evidence (see Section 8.5) the ideal IDEKMA
is not generated by IDEKMA2, i.e. by the sole pre-carmas. There would
then exist at least one r > 2 and one identity of the form:

δi≥1∑
2(δ1+...+δr )=2δ

c2 δ1,...,2 δr x2 δ1
1 . . . x2 δr

r ari(ekma•2 δ1
, . . . , ekma•2 δr

)≡0 (7.22)

corresponding to a ‘prime’ (i.e. non-derivative) element of IDEKMAr .
We might then form the polynomial prehar:

preharx1,...,xr =
δi≥1∑

2 (δ1+...+δr )=2 δ

c2 δ1,...,2 δr x2 δ1
1 . . . x2 δr

r (7.23)

as an analogue of precar (see Section 7.7) and then use the alternal coef-
ficients of prehar to construct a bimould hør•:

hør• :=
δi≥1∑

2 (δ1+...+δr )=2 δ

c2δ1,...,2 δr preari(løma•1+2δ1
, . . . , løma•1+2δr

)∈ALIL (7.24)

=
δi≥1∑

2 (δ1+...+δr )=2 δ

c2δ1,...,2δr

1

r
ari(løma•1+2 δ1

, . . . , løma•1+2 δr
)∈ALIL (7.25)

103 Due to the presence of the corrective term Ca•3/Ci•3 in the formula linking the components of
length 3 and weight 3 of løma•/lømi•. See (6.3), (6.4).
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exactly analogous to cør•. By arguing on the same lines as in Sec-
tion 7.7, we would see that the first non-vanishing component hørma•
of hør•, necessarily of even degree 2 δ−2 k and therefore of length r+2 k
with k ≥ 1, would automatically provide an ‘exceptional’ bialternal that
would ‘make up’ for the missing element of EKMA corresponding to
(7.22). Although, in keeping with our general conjectures, the existence
of prime relations (7.22) is most unlikely, it is reasonable to speculate
that, if perchance they exist, the corresponding hørma• must then have
length r +2 and degree 2 δ−2, although they might conceivably have
length r+2 k and degree 2 δ−2 k for some k ≥ 2. In any case, we have
here a transparent stop-gap mechanism which automatically associates
one exceptional bialternal to any ‘missing’ regular bialternal.

8 The enumeration of bialternals.
Conjectures and computational evidence

8.1 Primary, sesquary, secondary algebras

Before addressing the enumeration of bialternals, let us return to the main
subalgebras A of ARI listed in Section 2.5, but in the special case of bi-
moulds that are polynomial in u and constant in v. For each such sub-
algebra A, we tabulate the dimension dim(Ar,d) of the cells of length
r ≥ 3 and of total u-degree d. The reason for neglecting the length
r = 1 respectively 2 is that the results there are trivial respectively el-
ementary.104 As in Section 2.5, we reserve bold-face for the secondary
subalgebras.

r = 3 \\ d = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ARIal/∗ ‖ 1 2 3 5 7 9 12 15 18 22 26 30 35 40
ARImantar/∗ ‖ 2 4 6 9 12 16 20 25 30 36 42 49 56 64
ARIpusnu/∗ ‖ 2 4 6 10 14 18 24 30 36 44 52 60 70 80
ARIpusnu/∗

mantar/∗ ‖ 1 2 3 5 7 9 12 15 18 22 26 30 35 40
ARIal/al ‖ 0 0 0 0 0 0 0 1 0 2 0 2 0 4
ARIal/push ‖ 0 1 0 2 1 3 2 5 3 7 5 9 7 12
ARIpush ‖ 0 2 2 5 4 8 8 13 12 18 18 25 24 32
ARIpusnu/pusnu

mantar/. ‖ 1 0 1 0 2 0 3 1 4 2 6 2 8 4
ARIpusnu/pusnu ‖ 1 2 2 5 7 8 12 15 17 22 26 29 35 40

104 Since for r = 2 the constraints that define A are always finitary.
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r = 4 \\ d = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ARIal/∗ ‖ 1 2 5 8 14 20 30 40 55 70 91 112 140 168
ARImantar/∗ ‖ 2 5 10 16 28 40 60 80 110 140 182 224 280 336
ARIpusnu/∗ ‖ 3 7 15 25 42 62 90 122 165 213 273 339 420 508
ARIpusnu/∗

mantar/∗ ‖ 2 4 9 14 24 34 50 66 90 114 147 180 224 268
ARIal/al ‖ 0 0 0 0 0 0 0 1 0 1 0 3 0 5
ARIal/push ‖ 0 0 1 1 3 3 6 7 11 13 18 21 28 32
ARIpush ‖ 1 4 5 7 12 16 24 33 44 58 72 91 112 136
ARIpusnu/pusnu

mantar/∗ ‖ 1 2 4 6 10 15 20 28 35 48 56 74 84 109
ARIpusnu/pusnu ‖ 2 4 10 15 28 40 60 79 110 140 182 223 280 336

r = 5 \\ d= 1 2 3 4 5 6 7 8 9 10 11 12 13 14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ARIal/∗ ‖ 1 3 7 14 25 42 66 99 143 200 273 364 476 612

ARImantar/∗ ‖ 3 9 19 38 66 110 170 255 365 511 693 924 1204 1548

ARIpusnu/∗ ‖ 4 12 28 56 100 168 264 396 572 800 1092 1456 1904 2448

ARIpusnu/∗
mantar/∗ ‖ 2 6 14 28 50 84 132 198 286 400 546 728 952 1224

ARIal/al ‖ 0 0 0 0 0 0 0 0 0 1 0 2 0 5

ARIal/push ‖ 0 1 1 3 3 9 9 19 22 36 42 66 74 108

ARIpush ‖ 1 5 6 12 20 38 52 85 118 169 224 310

ARIpusnu/pusnu
mantar/∗ ‖ 2 3 8 14 26 42 69 99 200 364 612

ARIpusnu/pusnu ‖ 2 6 14 28 50 84 132 198 286 400 546 728 952 1224 .

Let us now tabulate the corresponding generating functions. These are always
rational. For brevity, we set Xn

m := (1−xm)−n .

r = 3 ‖ generating function
∑

dim(d) xd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ARIal/∗ ‖ x X2

1 X1
3

ARImantar/∗ ‖ x (2−2 x2+x3) X2
1 X1

2

ARIpusnu/∗ ‖ 2 x X2
1 X1

3

ARIpusnu/∗
mantar/. ‖ x X2

1 X1
3

ARIal/al ‖ x8 (1+x2−x4) X1
2 X1

4 X1
6

ARIal/push ‖ x2 X2
2 X1

3

ARIpush ‖ x2 (2+x2−x3−x4+x5) X1
1 X1

2 X1
4

ARIpusnu/pusnu
mantar/∗ ‖ x (1+x7+x9+x10−x11) X1

2 X1
4 X1

6

ARIpusnu/pusnu‖ x (1−x+x2) (1+x−x2) X2
1 X1

3
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r = 4 ‖ generating function
∑

dim(d) xd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ARIal/∗ ‖ x X2

1 X2
2

ARImantar/∗ ‖ 2 x X2
1 X2

2

ARIpusnu/∗ ‖ x (3+x+x2+x3) X2
1 X1

2 X1
4

ARIpusnu/∗
mantar/∗ ‖ x (2+x2) X2

1 X1
2 X1

4

ARIal/al ‖ x8 (1+2 x4+x6+x8+2 x10+x14−x16) X1
2 X1

6 X1
8 X1

12

ARIal/push ‖ x3 X1
1 X2

2 X1
5

ARIpush ‖x(1+x−4x2+3x3+2x4−5x5+4x6+x7−2x8−x9+x10)X3
1 X1

5

ARIpusnu/pusnu
mantar/∗ ‖ x (1+x+x5−x6) X1

1 X2
2 X1

4

ARIpusnu/pusnu‖ x (2+2 x2−x3+2 x4−2 x6+x7) X2
1 X1

2 X1
4

r = 5 ‖ generating function
∑

dim(d) xd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ARIal/∗ ‖ x (1+ x3) X3

1 X1
2 X1

5

ARImantar/∗ ‖ x (3−5 x2+5 x3+x4−3 x5 + x6) X3
1 X2

2

ARIpusnu/∗ ‖ 4 x (1+x3) X3
1 X1

2 X1
5

ARIpusnu/∗
mantar/∗ ‖ 2 x (1+x3) X3

1 X1
2 X1

5

ARIal/al ‖ x10 (1+2 x2+3 x4+3 x6+2 x8) X2
4 X2

6 X1
10

ARIal/push ‖ x2 (1+x+x2+3x4+2x5+x6+x7+2x8) X2
2 X1

3 X1
5 X1

6

ARIpush ‖ ???

ARIpusnu/pusnu
mantar/∗ ‖ ???

ARIpusnu/pusnu‖ 2 x (1+x3) X3
1 X1

2 X1
5 .

8.2 The ‘factor’ algebra EKMA and its subalgebra DOMA

Of these two subalgebras of ALAL, generated respectively by the ekmas
and domas, the first is obviously far from free (though all relations be-
tween the ekmas are conjectured to be generated by the sole bilinear re-
lations) but the second is conjectured to be free, with the doma•d,b, of
length 2, as canonical generators.

The main unresolved point, even at the conjectural level, is this: how
much of EKMA must one ‘add’ to DOMA to recover (ideally, with unique
decomposition) the whole of EKMA? While the inclusion

DOMA⊕ ari(DOMA, EKMA1) ⊂ EKMA
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is strict, the (rather small) gap between the two spaces would seem to be
bridgeable, but exactly how is unclear at the moment.

8.3 The ‘factor’ algebra CARMA

Like DOMA, CARMA is conjectured to be free (the theoretical case as
well as the computational evidence here are even more overwhelming)
but, unlike DOMA, it is not intrinsically defined: it exists in various iso-
morphic realisations (some canonical), all of which are conjectured to
verify:

EKMA ⊗̂CARMA = ALAL

with the notation E ⊗̂C = A (not a tensor product!) signalling that A
is freely generated by E and C, i.e. without constraints other than those
internal to E and C: see Section 8.5, C1 infra.

8.4 The total algebra of bialternals ALAL
and the original BK-conjecture

How many multizeta irreducibles of weight s and length r must one re-
tain to freely generate the Q-ring Zeta of formal (uncoloured) multizetas?
How many independent bialternals of weight s and length r are there in
ALAL ? It is easy to show that the answer to both questions is the same
number Ds,r , but harder to find these numbers. Based on their numerical
investigation of genuine rather that formal multizetas, and on the assump-
tions that both rings are actually “the same”, Broadhurst and Kreimer
conjectured in [1] that the Ds,r are deducible, after Möbius inversion,
from the formula:

∏
2≤d,1≤r

(
1− zs yr

)Ds,r = 1− z3 y

1− z2
+ z12 y2(1− y2)

(1− z4)(1− z6)
. (8.1)

8.5 The factor algebras and our sharper conjectures

C1 : Under the ari-bracket, the factor algebras EKMA and CARMA freely
generate the total algebra ALAL of all polynomial bialternals. Freely
means: without other relations than those internal to each factor alge-
bra.
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C2 : Only the factor EKMA has internal relations, and all of these are
generated by the bilinear relations between the {ekma•d ; d=2, 4, 6 . . . }.
We recall105 that for each even degree d there are exactly [[ d−2

4 ]] − [[ d6 ]]
such relations.106

C3 : The {doma•d,δ ; d=6, 8 . . . , δ ≤ [[ d6 ]]} freely generate DOMA.

C4 : The {carma•d,δ; d=8, 12, 14 . . . , δ ≤ [[ d4 ]] − [[ d+2
6 ]]} freely gener-

ate CARMA.

If we now denote Dd,r , Dek
d,r , Ddo

d,r , Dcar
d,r the dimensions of the cells of

ALAL, EKMA, DOMA, CARMA of degree d and length r , the above con-
jectures translate into the following formulas:

C∗
1 :

∏
2≤d,1≤r

(
1− xd yr

)Dd,r = 1− x2 y

1− x2
+ x8 y2(x2 − y2)

(1− x4)(1− x6)
(8.2)

C∗
2 :

∏
2≤d,1≤r

(
1− xd yr

)Dek
d,r = 1− x2 y

1− x2
+ x10 y2

(1− x4)(1− x6)
(8.3)

C∗
3 :

∏
6≤d,1≤r

(
1− xd yr

)Ddo
d,r = 1− x6 y2

(1− x2) (1− x6)
(8.4)

C∗
4 :

∏
8≤d,1≤r

(
1− xd yr

)Dcar
d,r = 1− x8 y4

(1− x4)(1− x6)
. (8.5)

Formula C∗
1 merely restates the classical BK-conjecture in the (d, r)-

parameters, but C∗
2 , C∗

3 , C∗
4 are sharp improvements. Above all, these for-

mulas, together with the compellingly natural restoration mechanism107

that underpins them, provide a convincing explanation for the compli-
cated y4-term in C∗

1 and completely divest it of its mysterious char-
acter.

For explicitness, we shall now list the partial generating functions
D∗r (x) =∑

D∗d,r xd for each algebra and the first lengths r .

105 See Section 7.2.

106 With [[x]] := entire part of x.

107 See Section 7.7 and Section 7.9.
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8.6 Cell dimensions for ALAL

D1 = x2

(1− x2)

D2 = x6

(1− x2) (1− x6)

D3 = x8 (1+ x2 − x4)

(1− x2) (1− x4) (1− x6)

D4 = x8 (1+ 2 x4 + x6 + x8 + 2 x10 + x14 − x16)

(1− x2) (1− x6) (1− x8) (1− x12)

D5 = x10 (1+ 2 x2 + 3 x4 + 3 x6 + 2 x8)

(1− x4)2 (1− x6)2 (1− x10)

D6 = x12(1+ x8 − 2x10 + x14 − 4x16 + 4x18 − 2x20 − x22 + 2x24 − 2x26

+ 2 x28 − x32 + 3 x34 − 3 x36 + x38)(1− x2)−3(1− x4)−1

× (1− x6)−1(1− x8)−1(1− x12)−1(1− x18)−1

D7 = x14(1+ 4 x2 + 8x4 + 8x6 + 6x8 + 4x10 + 5x12 + 6x14 + 3x16 − 2x18

− 3 x20 − x22 + x24 + x26)(1− x4)−3(1− x6)−3(1− x14)−1

D8 = x16 (1+ 3 x2 + 7 x4 + 8 x6 + 13 x8 + 14 x10 + 15 x12 + 16 x14 + 8 x16

+ 10 x18 + 4 x22 − 3 x24 + x26 − 2 x28 + x30 + x34)

× (1− x2)−2(1− x6)−2(1− x8)−2(1− x12)−2

8.7 Cell dimensions for EKMA

Dek
1 =

x2

(1− x2)

Dek
2 =

x6

(1− x2) (1− x6)

Dek
3 =

x8 (1+ x2 − x4)

(1− x2) (1− x4) (1− x6)

Dek
4 =

x10 (1+ x2 + 2 x4 + x6 + 2 x8 + x10 − x16)

(1− x2) (1− x6) (1− x8) (1− x12)

Dek
5 =

x12 (1+ 3 x2 + 4 x4 + 3 x6 + x8 + x10 − x14 − x16)

(1− x4)2 (1− x6)2 (1− x10)

Dek
6 = x14 (1+ x4 − x6 + x8 − 2 x10 − x14 + x16 − x18 − x20 + x22

− x26 + 2 x28 + x34 − x36)(1− x2)−3(1− x4)−1(1− x8)−1

× (1− x6)−1(1− x12)−1(1− x18)−1

Dek
7 = x16 (1+ 4 x2 + 8 x4 + 10 x6 + 8 x8 + 6 x10 + 6 x12 + 6 x14 + 2 x16

− 3 x18 − 5 x20 − 3 x22 + x26)(1− x4)−3(1− x6)−3(1− x14)−1

Dek
8 = x18 (1+2 x2 +7 x4 +8 x6 +17 x8 +14 x10 +23 x12 +13 x14 +17 x16

+ 6 x18 + 3 x20 − x22 − 5 x24 − 2 x26 − 5 x28 − x30 − x32 + x36)

× (1− x2)−2(1− x6)−2(1− x8)−2(1− x12)−2
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8.8 Cell dimensions for DOMA.

Ddo
1 =Ddo

3 = Ddo
5 . . . = 0

Ddo
2 =

x6

(1− x2) (1− x6)

Ddo
4 =

x14 (1+ x4)

(1− x2) (1− x4) (1− x6) (1− x12)

Ddo
6 =

x20 (1+ x10)

(1− x2)2 (1− x4) (1− x6)2 (1− x18)

Ddo
8 =

x26 (1+ x2) (1+ x4) (1+ x8)

(1− x2) (1− x4)3 (1− x6)2 (1− x12)2

Ddo
10=

x32(1+x4+2x8+2x10+x12+x14+4x18+x22+x24+2x26+2x28+x32+x36)

(1− x2)3 (1− x4) (1− x6)3 (1− x10) (1− x12) (1− x30)
.

8.9 Cell dimensions for CARMA

Dcar
1 = Dcar

2 = Dcar
3 = 0

Dcar
4 = x8

(1− x4) (1− x6)

Dcar
5 = Dcar

6 = Dcar
7 = 0

Dcar
8 = x20

(1− x2) (1− x6) (1− x8) (1− x12)

Dcar
9 = Dcar

10 = Dcar
11 = 0

Dcar
12 =

x28 (1+ x12)

(1− x2) (1− x4) (1− x6) (1− x8) (1− x12) (1− x18)
.

Predictably, for the two free subalgebras of ALAL, i.e. DOMA and
CARMA, the generating functions verify self-symmetry relations:

(x)−2 n Ddo
2 n(x) =

(
1

x

)−2 n

Ddo
2 n

(
1

x

)
(8.6)

(x)−3 n Dcar
4 n (x) =

(
1

x

)−3 n

Dcar
4 n

(
1

x

)
. (8.7)
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8.10 Computational checks (Sarah Carr)

We checked conjecture C∗
3 (which of course is not independent of C∗

2 )
for r ≤ 8 and d ≤ 100, by using the following, highly efficient method:
(i) form the domi-generating functions (see notations fi, hi, gi in Sec-
tion 7.2):

gedomiw1,w2
t;a,b :=

t6 fi(v1, v2)

(1− t2 a hi(v1, v2))(1− t6 a gi(v1, v2))
; (8.8)

(ii) form the ari-brackets of several copies of gedomiwt;ai ,bi
; keep the vari-

ables v1, v2 and parameters ai , bi provisionally unassigned; and studi-
ously refrain from simplifying the rational functions obtained in the pro-
cess;
(iii) assign random entire values to the v1, v2 and ai , bi and reduce every-
thing modulo some moderately large prime number p (8 or 9 digits);
(iv) expand everything into power series of t and, for each d, study the
dimensions of the spaces generated by the coefficient in front of td .

We then requested Sarah Carr, during her 2010 stay at Orsay, to computa-
tionally check the other conjectures C∗

1 , C∗
2 , C∗

4 for lengths r up to 8 and
degrees d up to 100. To that end, we supplied her with a complete system
of independent carma/carmi-polynomials108 of degree d ≤ 40 (there are
exactly 44 such polynomials). Here is her own account of the method she
used and the scope of her verifications.

Checking the conjectures C∗
2 about EKMA

Checking C∗
2 is equivalent to checking conjecture C∗∗

2 ,according to which
all ari-relations between the ekma•d are generated by the sole bilinear
relations (whose exact number is known from the theory). To test C∗∗

2 , I
created the generators in the lengths and degrees given in Table A infra.
To slightly reduce the complexity of the calculations, I opted for work-
ing with the ekmi•d rather than the ekma•d , so as to deal with pair-wise
differences of vi’s rather than multiple sums of ui’s.

For each length r and degree d, I calculated and stored all elements of
the form ari(fd′,r′, fd−d′,r−r′) where 1 ≤ r′ ≤ [r/2] and 2 r ′+2 ≤ d ′ ≤ d,
and where fd′,r′ (respectively fd−d′,r−r′) is a basis element of the length r′
(respectively r− r′) degree d ′ (respectively d− d′) graded part of the Lie
algebra. Let the number of such generators be denoted by Gek

d,r and let
the elements in the set of generators be denoted by (gek)i

d,r; 1 ≤ i ≤ Gek
d,r.

108 They are those constructed from the lama/lami-basis of ALIL (see Section 6 and Section 7).



138 Jean Ecalle

Since we know that the integers Dek
d,r are upper bounds for the dimen-

sions, we need to verify that we have at least Dek
d,r linearly independent el-

ements. To check this, I created the generating series
∑

1≤i≤Gek
d,r

αi (gek)i
d,r .

The polynomials have many terms with large coefficients. I first zeroed
out some of the terms in this series by setting a number of variables
(between none and 5, depending on the length and degree) equal to zero.
Then I defined Gek

d,r randomly generated vectors from the series, by sub-
stituting a randomly chosen number (using the Linear Algebra [Random
Vector] Maple function) between 1 and 20 for each of the variables, and
repeating the process Gek

d,r times. Lastly, I reduced these vectors modulo
either 101 or 100003. Now, given the linear system defined by these ma-
trices, there are a number of options for solving it. Since we expect this
system to have some relations coming from the universal Jacobi identity
and from the bilinear relations special to our problem, I tested the effi-
ciency of the Maple commands linalg[rank],linalg[ker] and solve. The
solve command proved to be the most efficient. I then used the solution
of the linear system to find a basis for the length r, degree d part.

The tests confirmed the conjecture C∗∗
2 to lengths and degrees given in

Table A. More precisely, the dimensions of all degrees between 2+2 ×
length and the highest degree entered in the table were verified.

Table A.

Length Highest degree generators Dimension highest degree
1 100 100
2 100 100
3 100 100
4 100 58
5 50 40
6 38 32
7 32 28
8 26 24

Checking the conjectures C∗
4 about CARMA

The calculations were done with the same method as for EKMA. The
scope of the verification is indicated in the following Table.

Table B.

Length Highest degree generators Range of degrees verifying C∗
4

4 46 8 – 46
8 54 20 – 54
12 58 28 – 58
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Checking the conjectures C∗
1 about EKMA ⊗̂CARMA109

Here again I used the same method as for the two previous conjectures.
The results are consigned in the following Table.

Table C.

Length Highest degree generators Range of degrees verifying C∗
1

4 46 8 – 46
8 54 20 – 54
12 58 28 – 58

Acknowledgments. My computations were done on the calculation
servers at the Max Planck Institut für Math. in Bonn, the Medicis servers
at the Ecole Polytechnique and the calculation servers at the Math. Dept.
of Orsay University. I would like to thank these institutions for their per-
mission and trust, and warmly thank the system administrators for their
indispensable and patient guidance. (Sarah Carr).

9 Canonical irreducibles and perinomal algebra

9.1 The general scheme

The trifactorisation of Zag•
Let Zag• denote the generating functions of the (uncoloured) multizetas,
defined as in (1.9), but with all εi = 0 and all ei = 1. This generating
function Zag• admits a remarkable trifactorisation in GARI, with a first
factor Zag•

I
which in turn splits into three subfactors:

Zag• := gari
(
Zag•

I
, Zag•

II
, Zag•

III

)
(9.1)

Zag•
I
:= gari

(
tal• , invgari.pal• , Røma•

)
(9.2)

Zag•
I
:= gari

(
tal• , invgari.pal• , expari.røma•

)
. (9.3)

Here is where the three factors or sub-factors belong:

tal• , pal• ∈ GARIas/as (9.4)

invgari.pal• , Zag• , Zag•
I
∈ GARIas/is (9.5)

Røma• , Zag•
II

, Zag•
III
∈ GARIas/is (9.6)

røma• , logari.Zag•
II

, logari.Zag•
III
∈ ARIal/il (9.7)

109 For the meaning of ⊗̂, see Section 8.3.
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and here is their real meaning in terms of multizeta irreducibles:
(i) the factor Zag•

I
carries only powers of the special irreducibe ζ(2) =

π2/6, of weight 2;
(ii) the factor Zag•

II
carries only irreducibles of even weight s ≥ 4 and

their products;
(iii) the factor Zag•

III
carries only irreducibles of odd weight s ≥ 3 and

their products.
Now, since weight, length, and degree are related by s = r + d, it is

obvious that under the involution neg.pari:
(j) elements of ARI or GARI that carry only even weights remain un-
changed;
(jj) elements of ARI that carry only odd weights change sign, and their
exponentials in GARI change into their gari-inverses.

With respect to our three factors, this yields:

neg.pari.Zag•
I
= Zag•

I
(9.8)

neg.pari.Zag•
II
= Zag•

II
(9.9)

neg.pari.Zag•
III
= invgari.Zag•

III
(9.10)

gari(Zag•
III
, Zag•

III
) = gari(neg.pari.invgari.Zag•, Zag•). (9.11)

Since all elements of GARI have one well-defined square-root,110 the last
identity (9.11) readily yields Zag•

III
. Separating the last factor from the

first two is thus an easy matter (assuming the flexion machinery). But
separating Zag•

I
from Zag•

II
is much trickier, and requires the construction

of a bimould røma• rather analogous to løma• but not quite. More pre-
cisely, the sought-after røma•
– must (like løma•) be of type al/il
– must (unlike løma•) carry multipoles at the origin that are so chosen as
to cancel those of tal• and pal• in the trifactorisation (9.3).

The auxiliary bimoulds løma•, røma•
The building blocks are the elementary singulands sa•s1

∈ BIMU1 and the
corresponding elementary singulates sa•

(
s1
r1

)
∈ ARIal/il :

saw1
s1
:= us1−1

1 ; sa•
(

s1
r1

)
:= slangr1

.sa•s1
. (9.12)

The singulates sa•
(

s1
r1

)
are �= 0 iff s1+r1 is even and s1 ≥ 2.

110 Apply expari. 1
2 .logari.
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We then define løma• and røma• as sums of their homogeneous com-
ponents of weight s:

løma• :=
∑

s odd≥3

løma•s ; røma• :=
∑

s odd≥2

røma•s (9.13)

and proceed to construct these homogeneous components by bracketting
the singulates, in PREARI rather than ARI (– because that is by far the
theoretically cleaner way –), with the multibrackets always defined from
left to right, as in (2.49).

løma•s =
∑
1≤l

{ si+···+sl=s
r1+···+ rl odd }∑
{ 1≤si ,1≤ri

si+ri even }
løm

(
s1
r1

,...,
,...,

sl
rl

)
preari(sa•

(
s1
r1

)
, . . . , sa•

(
sl
rl

)
) (∀s odd) (9.14)

røma•s =
∑
1≤l

{ si+···+sl=s
r1+···+ rl even }∑
{ 1≤si ,1≤ri

si+ri even }
røm

(
s1
r1

,...,
,...,

sl
rl

)
preari(sa•

(
s1
r1

)
, . . . , sa•

(
sl
rl

)
) (∀s even). (9.15)

As for Røma•, it may be sought either in the form expari.røma• or, equiv-
alently but more directly, in the form:

Røma•=1•+
∑
1≤l

{ si+···+sl even
r1+···+ rl even }∑
{ 1≤si ,1≤ri

si+ri even }
Røm

(
s1
r1

,...,
,...,

sl
rl

)
preari(sa•

(
s1
r1

)
, . . . , sa•

(
sl
rl

)
) (∀s even).

Of course, in the above expansions, all summands must be true singu-
lates,111 with a least a pole of order 1 at the origin, so that at least one of
their indices ri must be ≥ 2.

Due to the condition
∑

si = s, the right-hand sides of (9.14) and
(9.15) carry only finitely many summands. Each summand that goes into
the making of løma•s or røma•s is of type al/il and its shortest component
is of even degree d = ∑

(si − ri ), which is compatible with its being of
type al/al.

The moulds løm• or røm• (respectively Røm•) must be alternal (respec-
tively symmetral) and one goes from røm• to Røm• = expmu(røm•) by
the straightforward mould exponential.

At this stage (i.e. provisionally setting aside all considerations of
canonicity) the only additional constraints on the alternal moulds løm•,

111 with the sole exception of the first summand in the expansion (9.14) for løma•s , which is of the

form løm(
s
1 ) sa•

(
s
1 )

with løm(
s
1 ) = 1.
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røm•, and the symmetral mould Røm• are these:
(k) løm• must make løma•s singularity-free;
(kk) røm• (or Røm•) must, within the gari-product:

Zag•I := gari
(
tal• , invgari.pal• , Roma•) (9.16)

:= gari
(
tal• , invgari.pal• , expari.

∑
s

roma•s ) (9.17)

eliminate all the singularities present in gari(tal•, invgari.pal•);
(kkk) the moulds løm• or røm• must be rational-valued.

Explicit decomposition of multizetas into irreducibles
Anticipating on the construction of løma• and its iso-weight parts løma•s ,
the preari-product gives us an extremely elegant and explicit representa-
tion of the multizetas in terms of irreducibles:

Zag•
II
:=1•+

∑
1≤l

l even

∑
3≤si
si odd

Irrø s1,...,sl
II

preari(løma•s1
, . . . , løma•sl

) (9.18)

Zag•
III
=1•+

∑
1≤l
l free

∑
3≤si
si odd

Irrø s1,...,sl
III

preari(løma•s1
, . . . , løma•sl

) (9.19)

logari.Zag•
II
=+

∑
1≤l

l even

∑
3≤si
si odd

irrøs1,...,sl
II

preari(løma•s1
, . . . , løma•sl

) (9.20)

logari.Zag•
III
:=+

∑
1≤l
l odd

∑
3≤si
si odd

irrø s1,...,sl
III

preari(løma•s1
, . . . , løma•sl

). (9.21)

The irreducible carriers Irrø•
III

, Irrø•
III

(respectively irrø•
II
, irrø•

II
) are scalar

moulds of symmetral (respectively alternal) type. They are related under
ordinary mould exponentiation:

Irrø•
II
= expmu.irrø•

II
(9.22)

Irrø•
III
= expmu.irrø•

III
. (9.23)

The pair irrø•
II
, Irrø•

II
has only (non-vanishing) components of even length.

In the pair irrø•
III

, Irrø•
III

, however, irrø•
III

has only (non-vanishing) com-
ponents of odd length, but Irrø•

III
has of course components of any length,

even or odd.
There are two ways of looking at the expansions (9.18)-(9.21).
If we are dealing with formal multizetas, then our four moulds (9.22)-

(9.23) are subject to no other constraints than the above, i.e. symmetrality
or alternality, and a definite length parity. They subsume all multizeta
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irreducibles other than π2 in the theoretically most satisfactory manner,
i.e. without introducing any artificial dissymmetry.112

In practice, to decompose formal multizetas into irreducibles, one may:
– calculate Zag•

I
according to (9.2) or (9.3);

– calculate Zag•
II

and Zag•
III

according to (9.18) and (9.19);
– calculate Zag• according to the trifactorisation (9.1);
– calculate the swappee Zig• of Zag•;
– harvest the Taylor coefficients of Zig•.

Since any given multizeta appears once and only once as Taylor coef-
ficient of Zig•, it can thus be expressed in purely algorithmic manner, via
the flexion machinery, in terms of irrø•

II
and irrø•

III
, or Irrø•

II
and Irrø•

III
.

When dealing with the genuine multizetas, on the other hand, the ir-
reducibles are well-defined numbers and the five-step procedure works
in both directions: it also enables one to express irrø•

II
, irrø•

III
and Irrø•

II
,

Irrø•
III

in terms of the multizetas. This ‘reverse expression’, however, is
not unique. To get a unique, privileged expression of the irreducibles
– not in terms of multizetas, but of perinomal numbers – there is no
(known) alternative to the approach sketched in Section 9.4 infra.

Explicit decomposition of multizetas into canonical irreducibles
To qualify as canonical, the irreducible carriers irrø•II , irrø•III or Irrø•II ,
Irrø•III just defined must correspond to a compellingly natural solution
(løma•s , røma•s ). The constraints (k), (kk), (kkk), however, do not quite
suffice to uniquely determine the solution – due to the existence of wan-
dering bialternals, which was pointed out in Section 6.9.

One cannot stress enough that this residual indeterminacy, compared
with the huge a priori indeterminacy inherent in all other approaches, is
quite negligible, and that too in a precise and measurable sense. Indeed,
let Irr(r, s) be the space of prime irreducibles of length r and total weight
s. Next, let Wander(r, s) be the indeterminacy (i.e. number of free pa-
rameters) in the definition of the irreducibles in Irr(r, s) that comes from
the existence of wandering bialternals. Lastly, let Naive(r, s) be the in-
determinacy that we would be stuck with in the naive approach, i.e. if we
had no criteria for privileging any given irreducible ρr,s in Irr(r, s) over

112 If one wishes for a basis of scalar irreducibles totally free of constraints, one can readily produce
one by picking any minimal system of components of, say, irrø•

II
and irrø•

III
, that is large enough

to determine all other components by alternality. That essentially amounts to selecting a basis in
the Lie algebra freely generated by the symbols ε3, ε5, ε7 . . .. Many such bases exist (Lyndon’s etc)
but none is truly canonical. Thus, while in calculations it may often be convenient to opt for free
i.e. unconstrained systems of irreducibles, from a theoretical viewpoint it is far preferable to stick
with the constrained systems implicit in irrø•

II
and irrø•

III
or their symmetral counterparts Irrø•

II
and

Irrø•
III

.



144 Jean Ecalle

all its variants of the form:

ρr,s+
l≥2∑

s1+...+sl=s

cr1,...,rl
s1,...,sl

∏
1≤i≤l

ρri ,si with cr1,...,rl
s1,...,sl

∈Q; ρri ,si ∈Irr(ri ,si ). (9.24)

One shows that, for each r fixed and s →∞, we have:

Wander(r, s)/Naive(r, s) = O(s−1). (9.25)

So this small residual indeterminacy due to the wandering bialternals is
something we could live with. We can remove it, however, and ensure
both uniqueness and canonicity, by imposing additional conditions – of
arithmetical or function-theoretical nature. As we shall see, there are
three basic choices (two arithmetical options and a function-theoretical
one) but we go with relative ease from the one to the others, so that we
are still justified in speaking, in the singular, of the canonical choice.

9.2 Arithmetical criteria

One way of lifting the residual indeterminacy in the construction of the
pair (løma•s , røma•s ) is to impose additional linear constraints on the Tay-
lor coefficients of the singulates S•r being used in the successive113 in-
ductive steps. As it happens, there are two natural systems of linear con-
straints that do the trick. We mentioned them in Section 6.5 and Sec-
tion 6.6 in the case of løma•s and only at the first occurence (i.e. for r=3)
but they extend to all lengths, and have their exact counterparts for røma•s .
They lead to two distinct pairs (lama•s , rama•s ) and (loma•s , roma•s ), which
stand out on account of their arithmetical properties. Very roughly speak-
ing: with the first pair, both singulators and singulates possess “more”
independent Taylor coefficients but these have “smaller” denominators,
whereas with the second pair the position is exactly reversed. In both
cases, however, the denominators of the Taylor coefficients are always
divisors of simple factorials that depend only on length and degree. That
changes completely with the third pair (luma•s , ruma•s ), which we shall
examine next and which is characterised by its functional properties.

9.3 Functional criteria

To transport entire multipoles, we require dilation operators δn:
(i) that define a group action: δn1 δn2 ≡ δn1n2 ,∀ni ∈ Q+;
(ii) that act as flexion automorphisms;

113 For odd lengths r in the case of løma•s and even lengths in the case of røma•s .
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(iii) that commute with the singulators (simple or composite);
(iv) that conserve multiresidues.

This imposes the definition:

(δn.A)
(

u1
v1

,...,
,...,

ur
vr

) := n−r A(
u1/n
v1 .n

,...,
,...,

ur /n
vr .n )

(∀n ∈ Z) (9.26)

which ensures the required properties:

δn : ARI al/al isom.→ ARI al/al, ARI al/il isom.→ ARI al/il (9.27)

δn slankr1,...,rl S• ≡ slankr1,...,rl δn S• (9.28)

δn slangr1,...,rl
S• ≡ slangr1,...,rl

δn S•. (9.29)

Next, to reflect the change from power series to meromorphic functions,
we must replace:
– the monomial singulands sa•s1

∈BIMU1 of singulates sa•
(

s1
r1

)
∈ARIal/il

r1≤ ;

– by monopolar singulands ta•n1
∈BIMU1 of singulates ta•

(
n1
r1

)
∈ARIal/il

r1≤ .

Concretely, we set:

taw1 :=(1− u1)
−1, taw1,...,wr := 0 if r �= 1 (9.30)

ta•n1
:=δn1 .ta•, ta•

(
n1
r1

)
:= slangr1

.δn1 .ta• = δn1 .slangr1
.ta•. (9.31)

We may now look for bimoulds luma• and ruma• given by expansions of
the form:

luma•=
∑
1≤l

{ ni coprime
r1+···+ rl odd }∑
1≤ni ,1≤ri

lum(
n1
r1

,...,
,...,

nl
rl

) preari(ta•
(

n1
r1

)
, . . . , ta•

(
nl
rl

)
) (9.32)

ruma•=
∑
1≤l

{ ni anything
r1+···+ rl even }∑
1≤ni ,1≤ri

rum(
n1
r1

,...,
,...,

nl
rl

) preari(ta•
(

n1
r1

)
, . . . , ta•

(
nl
rl

)
) (9.33)

that run exactly parallel to (9.14) and (9.15), and may also be rewritten
as:

luma•=
∑
1≤l

{ ni coprime
r1+···+ rl odd }∑
1≤ni , 1≤ri

lum
(

n1
r1

,...,
,...,

nl
rl

)
slangr1,...,rl

.mu(δn1 ta•, . . . ,δnl ta•) (9.34)

ruma•=
∑
1≤l

{ ni anything
r1+···+ rl even }∑
1≤ni , 1≤ri

rum
(

n1
r1

,...,
,...,

nl
rl

)
slangr1,...,rl

.mu(δn1 ta•, . . . ,δnl ta•). (9.35)
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The remarkable fact is that if we impose:114

lum(
1
1 ) = 1, lum(

n1
1 ) = 0 ∀n1 ≥ 2

and

lum(
n1
1

,...,
,...,

nl
1 ) = 0 ∀l ≥ 2, ∀ni (9.36)

rum(
n1
1

,...,
,...,

nl
1 ) = 0 ∀l ≥ 2, ∀ni (9.37)

then there is only one mould lum• (respectively rum•) such that luma• be
free of singularities at the origin (resp that ruma• carry exactly the right
singularities115 there). So the problem now is no longer that of deter-
mining a canonical solution, but of ascertaining the arithmetical nature
of the Taylor coefficients at the origin of the unique luma• and the unique
ruma•. With luma• the problem arises only for lengths r ≥ 5, and with
ruma• only for lengths r ≥ 4. This, however, is not a matter for this
Survey.

But even without addressing this question, we may note that the pair
luma•, ruma• leads to a trifactorisation (9.1) of Zag• exactly as the pair
løma•, røma• did at the end of Section 9.1. Explicitly:

Zag•
I
:=gari

(
tal•, invgari(pal•), expari

(∑
1≤n

δnruma•
))

(9.38)

Zag•
II
:=1•+

∑
1≤r

∑
1≤ni

Urrn1,...,nl
II

preari(δn1 luma•, . . . , δnl luma•) (9.39)

Zag•
III
=1• +

∑
1≤r

∑
1≤ni

Urrn1,...,nl
III

preari(δn1 luma•, . . . , δnl luma•) (9.40)

logari.Zag•
II
=+

∑
1≤r

∑
1≤ni

urrn1,...,nl
II

preari(δn1 luma•, . . . , δnl luma•). (9.41)

logari.Zag•
III
:=+

∑
1≤r

∑
1≤ni

urrn1,...,nl
III

preari(δn1 luma•, . . . , δnl luma•). (9.42)

Instead of the symmetral pair of irreducible carriers Irrø•
I I

, Irrø•
I I I

and
the alternal pair irrø•

I I
, irrø•

I I I
, we now have the symmetral pair Irru•

I I
,

Irru•
I I I

and the alternal pair irru•
I I

, irru•
I I I

, with indices no longer run-
ning through {3, 5, 7 . . .} but through N∗. Moreover, when dealing with

114 No such condition is requires for rum• since it automatically vanishes when the sum r1+. . .+rl
is odd, and in particular when it reduces to r1 = 1.

115 I.e. singularities capable of compensating those of tal• and pal• and of ensuring the regularity
of Zag•

I
at the origin.
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the genuine (rather than formal) multizetas, these four new moulds are
well-determined, rational-valued, and, for any given length r , perinomal
functions of their indices ni . So it is about time to explain what perinomal
functions are, and what they can accomplish.

9.4 Notions of perinomal algebra

A function ρ ∈ C(Zr , C) is said to be perinomal (of arity r and rank r∗)
iff:
(i) there exist S1, . . . , Sr∗ ∈ Slr (Z) such that the functions ρ ◦ S1, . . . , ρ ◦
Sr∗ be linearly independent;
(ii) for any r∗∗ > r∗ and any S1, . . . , Sr∗∗ ∈ Slr (Z), the ρ◦S1, . . . , ρ◦Sr∗∗
are linearly dependent.

We set Sρ := ρ◦S, which defines an anti-action of Slr (Z) on C(Zr , C).
If T ∈ Slr(Z), S := [S1, . . . , Sr∗] ∈ (Slr(Z))r∗ and n ∈ Zr , we also set:

Sρ :=[S1ρ, . . . , Sr∗ρ] =[ρ◦S1, . . . , ρ◦Sr∗]
T Sρ :=[T S1ρ, . . . , T Sdρ] =[ρ◦S1◦T, . . . , ρ◦Sr∗ ◦T ]

T Sρ(n):=[TS1ρ(n),. . .,TSr∗ρ(n)]=[(ρ◦S1◦T )(n),. . . ,(ρ◦Sr∗◦T )(n)].
If the Si are now chosen so as to make S1ρ, . . . , Sr∗ρ linearly indepen-
dent, for each T there must exist scalars M j

i (Sρ ; T ) such that

T Siρ(n)≡
∑

1≤ j≤d

S jρ(n) M j
i (Sρ ; T ) (∀ i,∀n) i.e. in matrix notation:

T Sρ(n)≡(Sρ(n)) . M(S.ρ ; T ). (9.43)

But changing S into another choice S′ would simply subject M to some
T -independent matrix conjugation M → M ′:

M ′(S′ρ ; T ) = C(S′ρ ; Sρ) M(Sρ ; T ) C(Sρ ; S′ρ). (9.44)

Moreover, we clearly have:

M(Sρ ; T1T2) ≡ M(Sρ ; T1)M(Sρ ; T2). (9.45)

The upshot is that the identity (9.43) defines a linear representation of
Slr (Z) into Glr∗(Z) or rather Slr∗(Z):

Slr (Z)→ Slr∗(Z) (9.46)

T �→ M(Sρ; T ) ∼ Mρ(T ). (9.47)
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This representation Mρ in turn splits into irreducible factor representa-
tions Mρ,r∗i :

Mρ = Mρ,r∗1 ⊗ · · · ⊗ Mρ,r∗s with r∗1+. . . r∗s = r∗. (9.48)

Analogy with polynomials and action of slr (Z)

Let ρ be perinomal of type (r, r∗). For T ∈ Slr (Z) of the form id +
nilpotent and with logarithm t = log(T ) ∈ slr (Z), the image Mρ(T ) of
T in Slr∗(Z) is also of the form id + nilpotent. For any n fixed in Zr

the sequence {T kρ(n), k = Z} is therefore polynomial in k and it makes
sense to set:

tρ(n) := [
∂k T k ρ(n)

]
k=0 (∀n, T = exp(t)) (9.49)

as if k were a continuous variable. This defines a coherent anti-action on
Perir (the ring of perinomal functions of arity r ), first of the nilpotent part
of slr(Z), and then, by composition, of slr(Z) in its entirety. This applies
in particular for the elementary operators:

ei, j ∈slr (Z) “=”n j∂ni

Ei, j ∈Slr (Z) Ei, j : n �→ n′ with n′i :=ni + n j and n′k=nk if k �= i.

But despite this analogy with polynomial functions, perinomal functions
as a rule do not admit sensible extensions beyond Zr : they are essentially
discrete creatures.

Perinomal continuation
Even for functions ρ defined only on a “full-measure” cone of Zr , e.g.
on Nr , the above definitions of perinomalness still applies, but under re-
striction to the sub-semigroup of � ⊂ Slr (Z) that sends that cone into
itself. When these conditions of “partial perinomalness” are fulfilled, on
can then pick in � elements of the form id+nilpotent and take advantage
of the polynomial dependence of T kρ(n) in k for k ∈ N to extend, in
unique and coherent manner, the function ρ to the whole of Zr , and then
define, on this extended function, the anti-action not just of � but of the
whole of Slr (Z) ⊃ �.

Stability properties of perinomal functions
Perinomal functions are stable under most common operations, such as:
(i) ordinary addition and multiplication (assuming a common arity r );
(ii) concatenation or, what amounts to the same, mould mutiplication;
(iii) the whole range of flexion operations, and notably ari/gari.

The latter means that bimoulds Aw whose indices wi = (
ui
vi

) assume
only entire values and whose dependence on the sequences u and/or v is
perinomal, are stable under ari, gari etc.
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Basic transforms ρ ↔ ρ∗ ↔ ρ#

The definitions read:

ρ∗(s1, . . . , sr ) :=
∑

ni∈N∗
ρ(n1, . . . , nr ) n−s1

1 . . . n−sr
r (si ∈ C or N) (9.50)

ρ#(x1, . . . , xr )
dom.:=

∑
ni∈N∗

ρ(n1, . . . , nr )

(n1 − x1) . . . (nr − xr )
(xi ∈ C). (9.51)

For si ∈ C and -(si ) > Ci with Ci large enough, the sum (9.50) con-
verges to an analytic function ρ∗ which may or may not possess a mero-
morphic continuation to the whole of Cr . But one usually considers entire
arguments si . The corresponding perinomal numbers ρ∗(s) constitute a
remarkable Q-ring that not only extends the Q-ring of multizetas, but is
also the proper framework for studying the “impartial” multizeta irre-
ducibles.

As for the sum (9.51), it usually converges only if we subtract from the
generic summand suitable corrective monomials (of bounded degrees) in
the xi . Hence the caveat “dom.” i.e. “dominant” over the sign = . The
resulting meromorphic function ρ#(x) is known as a perinomal carrier.
Its Taylor coefficients are clearly related to the perinomal numbers ρ∗(s)
and its multiresidues ρ(n) are perinomal functions of n.

9.5 The all-encoding perinomal mould peri•

Definition of peri•
For any l ≥ 1 and any integers ni , ri ≥ 1 we set:

peri(
n1
r1

,...,
,...,

nl
rl

) :=urr n1,...,nl
III

if ri ≡ 1 ∀i and
∑

ri = l is odd

:=urr n1,...,nl
II

if ri ≡ 1 ∀i and
∑

ri = l is even

:= lum(
n1
r1

,...,
,...,

nl
rl

) if maxi (ri ) > 1 and
∑

ri is odd

:= rum(
n1
r1

,...,
,...,

nl
rl

) if maxi (ri ) > 1 and
∑

ri is even.

The following table recalls the origin and role of the four parts of peri•,
depending on l and r:

peri• ‖ ∑
ri odd ‖ ∑

ri even

ri = 1 ∀i ‖constructs Zag•III from luma•‖constructs Zag•II from luma•
max(ri ) > 1‖constructs luma• from ta• ‖constructs ruma• from ta•.

In view of its definition, this holds-all mould peri• may seem a hopelessly
heterogeneous and ramshackle construct. However, upon closer exami-
nation, its four parts turn out to be so closely interrelated that they cannot
be described or understood in isolation. This amply justifies our welding
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them together into a unique mould peri• which, far from being compos-
ite, is almost “seamless” .

Properties of peri•
(i) As a mould 116 with indices (

ni
ri

), peri• is alternal.117

(ii) For any fixed sequence (r1, . . . , rl), peri(
n1
r1

,...,
,...,

nl
rl

) is a perinomal func-
tion of (n1, . . . , nl).
(iii) Although the above formulas define peri(

n
r ) only for an upper se-

quence n in Nl , perinomal continuation ensures a unique extension to Zl .
(iv) There is another natural way of extending peri• for n ∈ Zl , namely
by parity continuation, according to the formula:

peri(
n1
r1

,...,
,...,

nl
rl

) := (sign(n1))
r1 . . . (sign(nl))

rl peri(
|n1|
r1

,...,
,...,
|nl |
rl

) (9.52)

(v) Whether the perinomal and parity continuations coincide – wholly,
partially, or not at all – depends on the sequence r via simple criteria.
(vi) The perinomal numbers associated with urr•II and urr•III generate a
Q-ring that contains the Q-ring of multizetas.
(vii) The perinomal numbers associated with lum• respectively rum•
“tend” to be in Q respectively Q[π2] (they are definitely there for very
small sequence lengths l) but it is still a moot point whether this holds
true for all l.

9.6 A glimpse of perinomal splendour

As an illustration, we shall mention the remarkable perinomal equations
involving the elementary transformations Ei, j and ei, j relative to neigh-
bouring indices i, j . So let us set:

E+i := Ei,i+1 ∈ Sll(Z); e+i “:=” ni+1∂ni ∈ sll(Z)

E−i := Ei,i−1 ∈ Sll(Z); e−i “:=” ni−1∂ni ∈ sll(Z)

E+i and E−i clearly commute, and so do e+i and e−i .

116 Despite having two-layered indices (
ni
ri

), peri• should be viewed as a mould rather than a bi-
mould, since it would be meaningless to subject the ri -part (as opposed to the ni -part) to the flexion
operations.

117 As a consequence, is is enough to know a rather small subset of all numbers peri
(

n1
r1

,...,
,...,

nl
rl

)
, e.g.

those with r1 = min(ri ), to know them all.
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Given a sequence r = (r1, . . . , rl) and 1 ≤ i ≤ l, we set

r+i :=
∑

i< j≤l

r j ; r−i :=
∑

1≤ j<i

r j (9.53)

(E+i − id)1+r+i (E−i − id)r−i peri(
n1
r1

,...,
,...,

nl
rl

) ≡ 0 (∀r, ∀i) (9.54)

(E+i − id)r+i (E−i − id)1+r−i peri(
n1
r1

,...,
,...,

nl
rl

) ≡ 0 (∀r, ∀i). (9.55)

In particular, for extreme values of i :

(E+1 −id)1+r2+···+rl peri(
n1
r1

,...,
,...,

nl
rl

) ≡ 0 (∀r) (9.56)

(E−l −id)1+r1+···+rl−1 peri(
n1
r1

,...,
,...,

nl
rl

) ≡ 0 (∀r). (9.57)

In the above identities, the discrete difference operators E±i − id may
of course be replaced by the derivations e±i . But the most interesting
identities are these:

(E+1 −id)r2+···+rl peri(
n1
r1

,...,
,...,

nl
rl

) ≡ peri
(

n2
r2

,...,
,...,

nl
rl

)

L (∀r) (9.58)

(E−l −id)r1+···+rl−1 peri(
n1
r1

,...,
,...,

nl
rl

) ≡ peri
(

n1
r1

,...,
,...,

nl−1
rl−1

)

R (∀r) (9.59)

(e+1 )r2+···+rl peri(
n1
r1

,...,
,...,

nl
rl

) ≡ peri
(

n2
r2

,...,
,...,

nl
rl

)

L∗ (∀r) (9.60)

(e−l )r1+···+rl−1 peri(
n1
r1

,...,
,...,

nl
rl

) ≡ peri
(

n1
r1

,...,
,...,

nl−1
rl−1

)

R∗ (∀r) (9.61)

because they yield new, simpler perinomal fonctions peri•L , peri•R (or their
infinitesimal variants peri•L∗, peri•R∗) that are themselves closely related
to the jump functions that measure the differences between the 2l peri-

nomal continuations Cε1,...,εl peri(
n1
r1

,...,
,...,

nl
rl

) of peri(
n1
r1

,...,
,...,

nl
rl

) starting from the
‘multioctant’:

Oε1,...,εl :={(n1, . . . , nl)∈Zl with εi ni ∈N∗, εi ∈{+,−}}. (9.62)

They are also related to the shorter components of peri•.
It is probably no exaggeration to say that this wondrous, double-layered

mould peri• is some sort of algebraic Mandelbrot set – its equal in terms
of complexity and richness of sub-structure at all scales, but much tidier,
because here the structure is algebraic in nature, consisting as it does of:
– the infinite series of perinomal fonctions encoded in peri•;
– their seemingly inexhaustible properties and relations;
– the degrees of the induced representations of Sll(Z) for all l;
– the irreducible factor representations of these induced representations;
– the arithmetic properties of the corresponding perinomal numbers;
etc etc. . .
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10 Provisional conclusion

10.1 Arithmetical and functional dimorphy

The word ‘dimorphy’ points to the parallel existence of two distinct mul-
tiplication rules, but the interpretation differs for functions and for num-
bers. For functions, the two multiplication rules define distinct and inde-
pendent products. For numbers, they are merely distinct and independent
expressions of one and the same product.

• Dimorphy for functions rings
A function space F is said to be dimorphic if it is endowed with, and
stable under, two distinct (bilinear) products – usually, pointwise mul-
tiplication and some form or other of convolution. One often adds the
requirement that both products should have the same unit – usually, the
constant function 1. Moreover, dimorphic function rings often possess
two sets of exotic derivations, i.e. linear operators irreducible to ordinary
differentiation but acting as abstract derivations respective to the first or
second product. (It would be tempting to attach to these dimorphic func-
tion rings the label “bialgebra”, had it not long ago acquired a different
connotation – namely, stability under a product and a coproduct.)

• Dimorphy for numbers rings
A countable Q-ring D ⊂ C is dimorphic if it has two countable pre-
bases118 {αm} and {βn}, with a simple conversion rule linking the two,
and a multiplication rule119 attached to each prebasis:

αm=∑∗H n
m βn , βn=∑∗K m

n αm (H n
m, K m

n ∈Q)

αm1 αm2=
∑∗Am3

m1,m2
αm3 , βn1βn2=

∑∗Bn3
n1,n2

βn3 (An3
n1,n2

, Bn3
n1,n2
∈Q).

All sums �∗ have to be finite. Moreover, the two multiplication rules
must be “independent”, in the precise sense that neither should follow
algebraically from the other under the conversion rule. This in turn im-
plies that neither {αm} nor {βn} can be a Q-basis of D: there have to be
non-trivial, linear Q-relations between the αm , and others between the
βn . The main challenges, when studying a dimorphic Q-ring D ⊂ C, are
therefore:
(i) ascertaining whether D is a polynomial algebra (generated by a count-
able set of irreducibles) or the quotient of a polynomial algebra by some
ideal;

118 See definition at the beginning of Section 1.1.

119 Compatible with D’s natural product, which is induced by that of C.
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(ii) pruning each prebasis {αm} and {βn} of redundant elements, so as to
turn them into true bases;
(iii) whenever possible, constructing an impartial or ‘non-aligned’ basis
{γp}, positioned ‘halfway’ between {αm} and {βn};
(iv) whenever possible, finding for the impartial γp’s a direct expression
that is itself impartial and leans neither towards the αm’s nor the βn’s.

• Kinship and difference between the two types of dimorphy: func-
tional and numerical
The two notions have much in common: indeed, most dimorphic number
rings are derived from dimorphic function rings either via function eval-
uation at some special points, or via function integration, or again via
the application of exotic derivations to the functions and the harvesting
of the constants produced in the process. And yet there is this striking
difference: whereas the notion of dimorphic ring is entirely objective (–
the two products are just there –), that of numerical dimorphy is embar-
rassingly subjective: on any countable Q-ring D ⊂ C, one may always
construct two prebases {αm} and {βn} with the required properties. So
what makes a Q-ring D truly dimorphic is the existence of genuinely
natural prebases, and the – often considerable difficulty – of solving the
four problems (i), (ii), (iii), (iv) listed above. The irony, withal, is that the
notion of numerical dimorphy, despite its conceptual shakiness, is much
more interesting and basic than that of functional dimorphy, and throws
up much harder problems.

• Hyperlogarithmic functions: the dimorphic ring HH
An interesting dimorphic space is the space HH of hyperlogarithmic func-
tions, which is spanned by the Hα

thus defined:120

H α1,...,αr
(ζ ) =

∫ ζ

0
H α1,...,αr−1

(ζr )
dζr

ζr − αr
with H∅(ζ ) ≡ 1 (10.1)

HH is stable under pointwise multiplication and under the unit-preserving
convolution �:

(H1�H2)(ζ )=
∫ ζ

0
dH1(ζ1) H2(ζ−ζ1)=

∫ ζ

0
H1(ζ−ζ2) dH2(ζ2). (10.2)

Side by side with the α-encoding, it is convenient to consider an ω-
encoding via the correspondence:

Hω1,...,ωr := Hω1, ω1+ω2,..., ω1+...+ωr (10.3)

120 First for ζ small, and then in the large by analytic continuation.
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if all αi := ω1 + . . . + ωi are �= 0, and by a slightly modified formula
otherwise.

For this function ring HH, the basic dimorphic stability follows from
the fact that the moulds H• and H• are both symmetral, the former under
pointwise multiplication, the latter under convolution. Moreover, there
exist on HH two rich arrays of exotic derivations: the foreign derivations
∇α0 and the alien derivations �ω0 . These are linear operators that basi-
cally ‘analyse’ the singularities ‘over’121 the points α0 or ω0, but in such
a way as to make the ∇α0 and �ω0 act as derivations on HH relative to,
respectively, multiplication and convolution.

• Hyperlogarithmic numbers: the dimorphic ring H

If we now restrict ourselves to rational-complex sequences α or ω (i.e.
with all indices αi or ωi in Q+i Q) and evaluate the corresponding Hα

or
Hω at or over rational-complex points ζ , the space Q-spanned by these
numbers is in fact a Q-ring: the Q-ring H of so-called hyperlogarith-
mic numbers, which is in fact dimorphic, since it possesses two natural
prebases {Hα} and {Hω}, each with its own, independent multiplication
rule.122

Clearly, HH contains the space of polylogarithms with singularities over
the unit roots. Likewise, H contains the dimorphic Q-ring of all (colour-
less or coloured) multizetas, but it also contains much more: in fact, the
structure of H is still farther from a complete elucidation than that of the
ring of multizetas.

10.2 Moulds and bimoulds. The flexion structure

•Moulds have their origin in alien calculus
Alien calculus deals with the totally non-commutative derivations �ω and
with the Hopf algebra �� freely generated by them. Let A be any com-
mutative algebra. Multiplying several elements Bi ∈ A⊗��:

Bi =
∑
•

A•i �• =
∑
r≥0

∑
ωi

Aω1,...,ωr
i �ω1 . . . �ωr (10.4)

reduces to multiplying the corresponding moulds A•i , which in many con-
texts (e.g. in formal computation) is much more convenient.

121 Since we are dealing here with highly ramified functions, we have to consider various leaves
over any given point.

122 Their origin, roughly, is as follows: when we subject some ‘monomial’ Hα
(respectively Hω)

to an exotic derivation ∇α0 (respectively �ω0 ), what we get is a linear combination of simpler

monomials Hα′
(respectively Hω′

) with constant coefficients H
α′′

(respectively Hω′′
), which are

precisely the elements of our two prebases.
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Alien calculus led straightaway to the four hyperlogarithmic moulds:

U•(z), V•(z) (resurgent-valued); U •, V • (scalar-valued) (10.5)

with their many properties and symmetries, and this is what really got the
whole subject of mould calculus started.

One way of looking at moulds is to think of them as permitting the
handling of non-commutative objects by means of commutative opera-
tions.

Another is to view them as permitting the explicit calculation of ob-
jects (like the Taylor coefficients of the power series expansions of the
solutions of very complex, non-linear equations) that would otherwise
resist explicitation.

•Moulds have found their second largest application in local differ-
ential geometry
Expansions of type (10.4) but with scalar- or function-valued moulds A•i
and with homogeneous (ordinary) differential operators in place of the
�ω, are very useful in local differential geometry (especially when all
data are analytic) for expressing and investigating normal forms, normal-
ising transformations, fractional iterates etc. Here again, moulds make
it possible to render explicit the seemingly inexplicitable – with all the
advantages that accrue from transparency.

•Mould operations and mould symmetries
Moulds of natural origin usually come with a definite symmetry type –
symmetral or symmetrel, alternal or alternel – and most mould opera-
tions either preserve these symmetries or transmute them in a predictable
manner.

•Moulds and arborification
When natural mould-comould expansions such as (10.4) display nor-
mal divergence and yet “ought to converge” (because they stand for re-
ally existing function germs or ‘local’ geometric objects), a general and
very effective remedy is at hand: the transform known as arborification-
coarborification nearly always suffices to restore normal convergence.
Roughly speaking, the transform in question replaces, dually in A• and
�•, the totally ordered sequences ω by sequences carrying a weaker, ar-
borescent order, and it does so in such a way as to leave the global series
formally unchanged, while effecting the proper internal reordering that
restores convergence.

• Bimoulds
There is much more to being a bimould than just carrying double-layered
indices wi := (

ui
vi

). On top of being subject to the usual mould opera-
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tions, like mu and lu, and being eligible for the four basic mould symme-
tries (see above), bimoulds can also display new symmetries sui generis,
and can be subjected to numerous (unary or binary) operations without
‘classical’ equivalents. These are the so-called flexion operations, under
which the ui get added bunch-wise, and the vi subtracted pair-wise, in
such a way as to preserve

∑
uivi and

∑
dui ∧ dvi .

• The flexion structure
A non-pedantic, if slightly cavalier, way of defining the flexion struc-
ture is to characterise it as the collection of all interesting objects (unary
or binary operations, symmetry types, algebras, groups etc) that may be
constructed on bimoulds from the sole flexions. It turns out that, up to
isomorphy, the flexion structure consists of exactly:
(i) seven algebras, notably ARI and ALI;
(ii) seven groups, notably GARI and GALI;
(iii) five super-algebras, notably SUARI and SUALI.

• Recovering most classical moulds from bimoulds
Many classical moulds (especially when, as is often the case, their analyt-
ical expression involves partial sums or pairwise differences of their in-
dices ωi ) can be recovered, and their properties better understood, when
viewed as special bimoulds with one vanishing row of indices (either
v = 0 or u = 0).

•Monogenous substructures
These are the spaces Flex(E) = ⊕0≤r Flexr (E) generated by a single
length-one bimould E• under all flexion operations. The most natural
monogenous structures correspond to the case when Ew1 is totally ‘ran-
dom’ (i.e. when there are no unexpected relations in its flexion offspring)
or possesses a given parity in u1 and v1 (four possibilities).

• Flexion units and their offspring
In terms of applications the most important monogenous structures
Flex(E) correspond to special generators E• that verify the so-called tri-
partite identity (3.9). These E• are known as flexion units and admit var-
ious realisations as concrete functions of w1: polar, trigonometric, ‘flat’
etc.

• Algebraisation of the substructures
Each type of abstract generator E• subject to a given set of constraints123

may admit several realisations (as a function or distribution etc.), or just

123 Like (3.9) or (3.28) or (3.29) etc.
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one, or none at all. But in all cases the flexion structure Flex(E) =
⊕0≤r Flexr (E) generated by E• is a well-defined algebraic object, with an
integer sequence dr = dim(Flexr (E)) that reflects the strength of the con-
straints on E•. Moreover, in most cases, the length-r component Flexr (E)

of Flex(E) possesses one (or several) natural bases {e•t } = {ew1,...,wr
t },

with basis elements naturally indexed by r -node trees t of a well-defined
sort – like for instance binary trees if E• is a flexion unit or ternary trees if
E• is ‘random’.124 This automatically endows the abstract space spanned
by those trees with the full flexion structure and all its wealth of oper-
ations, opening the way for fascinating (and as yet largely unexplored)
developments in combinatorics.125

• Origins of the flexion structure
The flexion structure arose in the early 1990s in an analysis context, as
a tool for describing a very specific type of resurgence, variously known
as quantum resurgence126 or parametric resurgence127 or co-equational
resurgence.128

• Present and future of the flexion structure
In the early 2000s, the flexion structure began to be used, to great effect,
in the investigation of multizeta arithmetics and numerical dimorphy, and
this is likely to remain the theory’s main area of application for quite
some time to come. However, the algebraisation of monogenous (respec-
tively polygenous) structures like Flex(E) (respectively Flex(E1, . . . ,En))
also suggests promising applications in algebra and combinatorics. We
can even discern the outlines of a future ‘flexion Galois theory’ that
would concern itself with the way in which a given type of constraints
on E• or on the E•i impacts the structure, dimensions, etc, of such objects
as Flexr (E) or Flexr (E1, . . . , En).

124 But with a given parity in u1 and v1.

125 There exists of course an abundant botanical literature on trees of various descriptions, their
enumeration, generation, classification etc. But so far these trees have not been studied, generated,
classified etc from the angle of the flexion operations, for the obvious reason that these operations
are new.

126 Because often encountered in the ‘semi-classical’ mechanics – i.e. when expanding formal
solutions of the Schrödinger equation in power series of the Planck constant h̄. See Section 11.1,
Section 11.2, Section 11.3 infra.

127 Since it is typically encountered in power series of a (singular perturbation) parameter.

128 Because it is loosely dual to ‘equational resurgence’, that is to say, to the type of resurgence
encountered in power series of the equation’s proper variable.
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10.3 ARI/GARI and the handling of double symmetries

• Simple symmetries or subsymmetries at home in LU/MU
The uninflected mould bracket lu preserves alternality and its two sub-
symmetries: mantar-invariance and pus-neutrality.129 Similarly, the un-
inflected mould product mu preserves symmetrality and its two subsym-
metries: gantar-invariance and gus-neutrality.130 And that’s about all.
Even when lu or mu are made to act on bimoulds, they preserve none of
the double symmetries131 and none of the induced subsymmetries132 –
not even the so crucial push- or gush-invariance.

• Double symmetries or subsymmetries at home in ARI/GARI
Things change when we go over to the inflected operations, or rather to
the right ones, since of all seven pairs consisting of a flexion Lie alge-
bra and its group, only ARI//GARI and ALI//GALI are capable of pre-
serving double symmetries and subsymmetries. In the case of ARI (re-
spectively GARI) the full picture has been summarised on the table of
Section 2.5 (respectively Section 2.6). Things differ slightly with ALI
(respectively GALI), but we need not bother with these differences since,
when restricted to bimoulds of type al/al (respectively as/as), the Lie
brackets ari and ali (respectively the group laws gari and gali) exactly
coincide.

All the above, it should be noted, applies to straight (i.e. uninflected)
double symmetries, but similar results hold for the twisted133 double sym-
metries that really matter, beginning with al/il and as/is.

• Ubiquity of poles at the origin: associator
In the canonical trifactorisation of Zag•, the leftmost factor Zag•I which,
we recall, encodes all the information about the canonical-rational asso-
ciator, admits in its turn a trifactorisation of the form

Zag•I = gari(tal•, invgari.pal•, Roma•) (10.6)

129 As defined in Section 2.4.

130 As defined in Section 2.4.

131 I.e. symmetries affecting simultaneously a bimould M• and its swappee swap.M•.
132 Meaning of course the strictly double subsymmetries – i.e. those that don’t follow from a single
symmetry.

133 Or, should we say, half-twisted, since it is not the bimould M• itself, but only its swappee
swap.M•, that may display a twisted symmetry. No other combination would be stable under the
flexion operations.
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and the strange thing is that, although Zag•I , as a function of the ui vari-
ables, is of course free of poles at the origin, all three factors are replete
with them.
(i) The (polar) mid-factor pal• contains nothing but multipoles at the ori-
gin, and so does its gari-inverse.
(ii) The (trigonometric) first factor tal•, which is a periodised variant of
pal•, carries multipoles at and off the origin, and those at the origin are
roughly the same as those of pal•.
(iii) Since the multipoles of pal• and tal• very nearly, but not exactly,
cancel out at the origin, a (highly transcendental) third factor Roma• is
called for to remove the remaining singularities, and the construction of
that third factor involves at every step special operators, the so-called sin-
gulators, whose function it is to introduce, in a systematic and controlled
way, all the required corrective singularities at the origin.

• Ubiquity of poles at the origin: singulators and generation of
ALIL ⊂ ARIal/il

To construct any of the three alternative bases {luma•s }, {loma•s }, {lama•s }
of ALIL, we start from the arch-elementary bimoulds ekmas, purely of
length-1 and trivially of type al/al, and then apply adari(pal•) to pro-
duce new bimoulds, this time of the right type al/il but ridden with un-
wanted singularities at the origin. To remove these without losing the
property al/il, we must then engage in a double process of singular-
ity destruction and singularity re-introduction (at higher lengths), which
is painstakingly described in Section 6. The operators behind the con-
struction, the so-called singulators, are themselves built from the purely
singular, polar bimould pal•. Poles, therefore, completely dominate the
process – first as obstacles, then as remedies.

• Ubiquity of poles at the origin: singulators and generation of
ALAL ⊂ ARIal/al . The exceptional bialternals
That the construction of pole-free bases for ALIL should involve poles
at all intermediary steps, is surprising enough, but still halfway under-
standable, since the very definition of alternility involves (mutually can-
celling) polar terms. But the really weird thing is that poles should
also be required to construct bases of ALAL, since the double symme-
try here is completely straight. Nevertheless, such is the case: to the
elementary ekma bialternals, one must adjoin the exceptional and very
complex carma bialternals, whose construction cannot bypass the in-
troduction of poles, since it requires the prior knowledge of an ALIL-
basis up to length r = 3 (but, thankfully, no farther), as shown in Sec-
tion 7.
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• Ubiquity of poles away from the origin: perinomal analysis
Perinomal analysis deals with meromorphic functions that possess mul-
tipoles all over the place: their location admits a natural indexation over
Zr , their multiresidues are also defined on Zr and are of perinomal na-
ture. So, here again, multipoles have a way of inviting themselves into
all calculations.

• ARI and the Ihara algebra
The fact that the Ihara algebra is isomorphic to a twee tiny little sub-
algebra of ARI 134 – namely, the subalgebra of bimoulds of type al/il,
polynomial in u and constant in v – is no reason for ‘equating’ the two
structures, or even their Lie bracket. But since there still reigns much
confusion around this fraught issue, a short clarification is in order.
(i) To begin with, none of the dozens of pole-carrying bimoulds such as
pal• or tal• or røma•, which are key to the understanding of Zag•, possess
any counterpart in the Ihara algebra. As a consequence, neither can the
carma bialternals be constructed in that framework, nor can the reason
behind their presence be understood, nor can anything even remotely re-
sembling løma• be constructed.
(ii) Second, unlike the Ihara algebra, the ARI approach puts both symme-
tries – alternal and alternil – on exactly the same footing and does full
justice to the duality that underpins multizeta (and general arithmetical)
dimorphy. Indeed, with its involution swap, its built-in duality between
upper and lower indices, and all the main bimoulds like pal•/pil•, tal•/til•
etc that always occur in pairs, ARI is itself ‘dimorphic’ to the marrow.
(iii) Third, the whole subject of perinomal algebra and of canonical irre-
ducibles is beyond not just the computational reach of the Ihara algebra,
but even its means of conception.
(iv) Fourth, unlike the Ihara algebra, ARI, with its double row of indices,
lends itself effortlessly to the passage from uncoloured to coloured mul-
tizetas.
(v) Lastly, ARI arose independently of the Ihara algebra, in direct answer
to a problem of analysis and resurgence. In fact, unlike the Ihara algebra,
ARI is serviceable in analysis no less than in algebra.

10.4 What has already been achieved

Finding the proper setting was the first and arguably main step. The rest
followed rather naturally.

134 Though it houses the multizetas themselves (in a formalised version), the subalgebra in ques-
tion is too cramped a framework for their complete elucidation, since most auxiliary constructions
required in the process lie outside.
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• Correction formula
Moving from the scalar multizetas Wa•/Ze• to the generating functions
Zag•/Zig• makes it much easier to understand the reason for the correc-
tive terms Mana•/Mini• in (1.27), (1.23). As meromorphic functions,
Zag• and Zig• are both given by semi-convergent series of multipoles.
Formally, the involution swap exchanges both series exactly, but alters
their summation order, leading to simple corrective terms constructed
from monozetas.

• Meromorphic continuation of multizetas and arithmetical nature
at negative points
When taken in the Ze encoding, the scalar multizetas Ze(

ε1
s1

,...,
,...,

εr
sr

) possess
a meromorphic extension to the whole of Cr , with all their multipoles
on Zr .
(i) The density of multipoles decreases with the ‘coloration’ of the mul-
tizetas, i.e. with the number of non-vanishing εi ’s.
(ii) The values (respectively residues) found at the regular (respectively
irregular) places s ∈ Zr

.− Nr are themselves rational combinations of
simpler multizetas.135

(iii) The symmetrelity relations verified by Ze•, which hold for positive
si ’s, extend by meromorphic continuation to the whole of Cr , including
to the points of Zr where, in view of (ii), they might – but in fact do not –
generate new multizeta relations.136

• Unit-cleansing

Any ‘uncoloured’ multizeta Ze(
0
s1

,...,
,...,

0
sr

) with si ∈ (N∗)r can in fact be
expressed (in non-unique manner) as a rational-linear combinations of
analogous but unit-free multizetas (i.e. with si ≥ 2). The proof rests on
a reformulation of the problem in terms of bialternals, and then on the
so-called redistribution identities (of rich combinatorial content) which

make it possible to recover any bialternal polynomial Mi(
0
v1

,...,
,...,

0
vr

) from its
essential part, i.e. from the collection of its constituant monomials that
are divisible by v1 . . . vr .

• Parity reduction

Any ‘uncoloured’ multizeta Ze(
0
s1

,...,
,...,

0
sr

) with si ∈ (N∗)r can in fact be
expressed as a rational-linear combinations of analogous multizetas of

135 I.e. of multizetas of length r ′ < r . The more ‘negative’ si ’s there are, the smaller the number r ′
becomes.

136 For details, see [4].
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even degree.137 While this follows from the general result on the de-
composition of multizetas into irreducibles (these correspond here to
uncoloured bialternal polynomials, which are necessarily of even de-
gree d), there exists a more elementary derivation, based on the prop-
erties of the symmetrel bimould Tig•(z), or “multitangent bimould”, thus
defined:138

Tig
(

ε1
v1

,...,
,...,

εr
vr

)
(z) :=

∑
si≥1

Te
(

ε1
s1

,...,
,...,

εr
sr

)
(z) v

s1−1
1 . . . vsr−1

r (10.7)

Te
(

ε1
s1

,...,
,...,

εr
sr

)
(z) :=

∑
+∞>n1>...>nr >−∞

e−n1
1 . . . e−nr

r (n1+z)−s1 . . . (nr+z)−sr (10.8)

and on the two different ways of expressing each uncoloured multitangent

Tig(
0
s )(z) as sums of uncoloured monotangents Tig(

0
s1

)
(z) with uncoloured

multizeta coefficients. See Section 11.7.

• The senary relation and palindromy formula
The senary relations on bimoulds of type al/il are the only double sub-
symmetries of finite arity – they involve exactly six terms. In polar (re-
spectively universal) mode, they assume the form (3.64) (respectively
(3.58)). They result from the double symmetry al/il of a bimould M•,
more precisely from the mantar-invariance of M• (consequence of its
alternality) and the mantir-invariance of swap.M• (consequence of its al-
ternility).

The palindromy relations, on the other hand, apply to homogeneous
elements C ∈ IHARA ⊂ Q[x0, x1] of the Ihara algebra (x0 and x1 don’t
commute), or more precisely to their left or right decompositions:

C = A0 x0 + A1 x1 = x0 B0 + x1 B1 (Ai , Bi ∈ Q[x0, x1]) (10.9)

and state that the sums A0 + A1 and B0 + B1 are invariant under the
palindromic involution:

xε1 xε2 . . . xεs �→ (−1)s xεs . . . xε2 xε1 . (10.10)

137 Recall that d := s− r : the degree d of a scalar multizeta (in the Ze encoding) is equal to its total
weight s minus its length r .

138 In the second sum, e j := exp(2π iε j ) as usual, and we apply standard symmetrel renormalisa-
tion to get a finite result when either s1 or sr is = 1.
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The palindromy relations139, which according to the above involve four
clusters of terms, can easily be shown to be equivalent to a special case
of the senary relations140, which involve six.

• Coloured multizetas. Bicolours and tricolours
The statement about the eliminability of unit weights141 in uncoloured
multizetas still applies in the coloured case, but here another, almost op-
posite results holds: every bicoloured or tricoloured multizeta142 with
arbitrary weights can be (in non-unique manner) expressed as a rational-
linear combination of multizetas with unit-weights only.

• Canonical-rational associator and explicit decomposition into ca-
nonical irreducibles
We would rate this as the second-most encouraging result obtained so
far with the flexion apparatus. The existence of a truly canonical de-
composition143 was by no means a foregone conclusion – in fact, it had
gone completely unsuspected. Moreover, since everything rests on the
construction of an explicit basis of ALIL ⊂ ARIal/il , which in turn re-
quires the repeated introduction and elimination of singularities at the
origin,144 the construction cannot be duplicated in any other framework
than the flexion structure.

• The impartial expression of irreducibles as perinomal numbers
We would, in all humility, regard this as the crowning achievement of
the flexion method so far. The two circumstances which made it possible
are: the exact adequation of ARI//GARI to dimorphy; and the ‘vastness’
of the structure, which accommodates not just polynomials in the u or v

variables, but also meromorphic functions (and much else).

• The first forays into perinomal territory
Though we only stand at the beginning of what looks like an open-ended
exploration, we can already rely on two firm facts to guide the search: one

139 They were empirically observed by followers of the Ihara approach, and pointed out to me, as
conjectures, by L. Schneps in March 2010.

140 Namely for u-polynomial and v-constant bimoulds. The senary relations first appeared, among
many similar consequences of double symmetries, in a 2002 paper by us and were mentioned, the
next year, during a series of Orsay lectures.

141 I.e. of all indices si that are equal to 1.

142 I.e. with εi ∈ 1
2 Z/Z or εi ∈ 1

3 Z/Z

143 The existence of three closely related variants (see Section 9.1 and Section 9.3) in no way
detracts from the canonicity.

144 The infinite process is described in Section 6.
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is the perinomal nature of the multiresidues ‘hidden’ in the constituent
parts of Zag•/Zig•; the other is the existence, attached to each integer
sequence r := (r1, . . . , rl), of a specific linear representation of Sll(Z).

10.5 Looking ahead: what is within reach and what beckons from
afar

• Arithmetical and analytic properties of lama•/lami•
Of all three ‘co-canonical’ pairs, this is the simplest, arithmetically speak-
ing. As power series of u or v, these bimoulds carry Taylor coefficients
that have, globally, the smallest possible denominators. But the series
themselves are divergent-resurgent – with a resurgence pattern that is still
poorly understood.145

• Arithmetical and analytic properties of loma•/lomi•
Arithmetically, this second pair is less simple (the Taylor coefficients
have slightly larger denominators) but the associated power series are
convergent, with a finite multiradius of convergence. At the moment,
however, it is unclear whether the corresponding functions admit endless
analytic continuation and, if so, what the exact nature of their isolated
singularities might be.

• Arithmetical and analytic properties of luma•/lumi•
This last pair, being defined by semi-convergent series of multipoles, has
a completely transparent meromorphic structure. The difficulty, here, is
with the arithmetics of the Taylor coefficients: up to length r = 4, they
are all rational, but (for 3 ≤ r ≤ 4) with very irregular denominators.146

Beyond that ( for 5 ≥ r ), it is not even known whether the coefficients
are rational.147

Needless to say, analogous questions arise for the three parallel pairs
rama•/rami•, roma•/romi•, and ruma•/rumi•.
• Perinomal algebra. Ranks of Slr(Z) representations
As repeatedly noted, to each integer sequence r := (r1, . . . , rl), our ap-
proach to multizeta algebra attaches a perinomal function n �→ peri(

n
r ),

which in turn induces a linear representation Rr of Sll(Z). The (clearly
fast increasing) ranks of these Rr are unknown except in a few special
cases, and their structure (e.g. their decomposition into irreducible repre-
sentations) is equally unknown.

145 For any given length r , the resulting resurgence algebra is probably finite dimensional, which
would be an additional incentive for unravelling its structure.

146 See Section 6.7.

147 See Section 9.3.
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• Links between the four series of perinomal functions
To each perinomal function carried by peri•, identities such as (9.58) or
(9.59) attach simpler but related perinomal functions, but a clear overall
picture is probably still a long way off. For aught we know, the two-
layered mould peri• may turn out to be as complex (though more tidy)
than the Mandelbrot set, with algebraic (rather than fractal-geometric)
detail “as far as the sight reaches”.

• Arithmetical nature of all perinomal numbers
The Q-ring PERI of all perinomal numbers (see Section 8.4) exceeds the
Q-ring Zeta of multizetas (even if we allow colour) but the range and
structure of the difference remains unexplored.

• The quest for numerical derivations.
Does there exist on PERI an algebra DERI of direct numerical deriva-
tions, that is to say, of linear operators D verifying:

D(x .y)≡Dx .y+x .Dy (∀x, y∈PERI, ∀D∈DERI) (10.11)

D.Q={0}, {0} �=D.PERI⊂PERI (∀D∈DERI). (10.12)

The emphasis here is on direct, meaning that the action of D on any
x ∈ PERI ought to be defined in universal terms, i.e. based on a universal
expansion (decimal, continued fraction, etc) of x , and not on its mode of
construction. This at the moment is little more than a dream, but if it
came true, it would give us a key – possibly, the only workable key –
to unlock the exact, as opposed to formal, arithmetics148 of PERI and its
subring Zeta. But this is purest terra incognita and, as it said on ancient
maps where unchartered territory began, ibi sunt leones. . .

11 Complements

11.1 Origin of the flexion structure

The flexion structure has its origin (ca 1990) in the investigation of para-
metric resurgence – typically, the sort of resurgence associated with for-
mal expansions in series of a singular perturbation parameter ε.149 Set

148 No one would seriously expect the two arithmetics – exact and formal – to differ, but proving
their identity is another matter.

149 Think for definiteness of a differential equation with a small ε sitting in front of the highest order
derivative.
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x = ε−1 (x large, ε small) and consider the standard system:

((u1+. . .+ur ) x+∂z)W (
u1
v1

,...,
,...,

ur
vr

)
(z, x)=W (

u1
v1

,...,
,...,

ur−1
vr−1

)
(z, x)

1

z − vr
(11.1)

with W (
∅
∅ )(z, x) := 1 to start the induction.

We may fix x and expand the solutions as formal power series of z−1.
These turn out to be divergent, Borel-summable, and resurgent, with a
simple resurgence locus150 consisting of the sums of ui indices.

We may also fix z and expand the solutions as formal power series of
x−1. These are again divergent, Borel-summable, and resurgent, but with
a much more intricate resurgence locus generated (bi-linearly) by the two
sets of indices, the ui and vi , under ‘flexion operations’.

As functions of z, the W (
u
v )(z, x) do not differ significantly151 from

the standard resurgence monomials Vω(z) := W (
ω
0 )(z, 1) defined by the

induction:

(ω1+. . .+ωr+∂z)Vω1,...,ωr (z)=Vω1,...,ωr−1(z)
1

z
with V∅(z) :=1. (11.2)

As functions of x , on the other hand, the W (
u
v )(z, x) can be expressed

as linear combinations152 of standard resurgence monomials Vω(x) =
Vω1,...,ωr (x), with indices ω j that depend bilinearly on the indices ui and
vi (to which one must add z itself). Formally, the u j ’s and v j ’s contribute
in much the same way to the ω j ’s, although the natural way of expressing
the ω j ’s is via sums of (several consecutive) u j ’s and differences of (two
non-necessarily consecutive) v j ’s or of v j ’s and z.

As to their origin, however, the u j ’s and v j ’s could not differ more.
In all natural problems, the u j ’s depend only on the principal part of
the differential equation or system and tend to be generated by a finite
number of scalars (such as the system’s multipliers, i.e. the eigenvalues
of its linear part). There is thus considerable rigidity about the u j ’s. With
the v j ’s, on the other hand, we have complete flexibility: they reflect pre-
existing singularities in the (multiplicative) z-plane and can be anything.

150 The resurgence locus of a resurgent function f is the set � ⊂ C• := (̃C−̇0) of all ω0 that give
rise to non-vanishing alien derivatives �ω0 f or �ω0�ω1 . . . �ωr f .

151 In terms of their resurgence properties.

152 The number of summands is exactly r !! := 1.3.5 . . . (2 r−1) and all coefficients are of the form
±1.
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11.2 From simple to double symmetries. The scramble transform

Originally, the scramble transform arose during the search for a system-
atic expression of the complex W• of (11.1) in terms of the simpler V•
of (11.2). Our reason for mentioning it here is because the transform in
question led:
(i) to the first systematic use of flexions;
(ii) to the first systematic production of double symmetries.

The scramble is a linear transform on BIMU:

M• → S• = scram.M• with Sw :=
∑
w∗

ε(w, w∗) Mw∗
(11.3)

which not only preserves simple symmetries (alternal or symmetral) but,
in the case of all-even bimoulds153 M•, turns simple into double symme-
tries (alternal into bialternal and symmetral into bisymmetral).

scramble : M• �→ S•
scramble : LUal → ARIal ‖ LUal

all-even → ARIal/al

scramble : MUas → GARIas ‖ MUas
all-even → GARIas/as.

To define the sums Sw in (11.3) we have the choice between a forward
and backward induction, quite dissimilar in outward form but equivalent
nonetheless. They involve respectively the ‘mutilation’ operators cut and
drop:

(cutw0 M)w1,...,wr := Mw2,...,wr if w0 = w1

:= 0 if w0 �= w1

(dropw0
M)w1,...,wr := Mw1,...,wr−1 if w0 = wr

:= 0 if w0 �= wr .

We get each induction started by setting Sw1 := Mw1 and then apply the
following rules.

Forward induction rule
We set (cutw0 .S)w := 0 unless w0 be of the form �wi� with respect to
some sequence factorisation w = awi bc, in which case we set:

(cut�wi �S)w := (−1)r(b)
∑

w′∈sha
(

a�, �b̃, c
) S w′ (if w = awi bc) (11.4)

with b̃ denoting the sequence b in reverse order. If M• is symmetral,
so is S• (see below). In that important case the forward induction rules

153 I.e. in the case of bimoulds Mw that are even separately in each double index wi .
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assumes the much simpler form:

(cut�wi �S)w := Sa�(invmu.S)�bSc (if w = awi bc) (11.5)

Backward induction rule
We set (dropw0

.S)w := 0 unless w0 be of the form �wi or wi�with respect
to some sequence factorisation w = awi b, in which case we set:

(drop�wi
.S)w := −Sa�b (if w = awi b) (11.6)

(dropwi �.S)w := +Sa�b (if w = awi b). (11.7)

Remark 1: mu is bilinear whereas gari is heavily non-linear in its second
argument. So how can the scramble inject MUas into GARIas? The an-
swer is that under the above algebra morphism, the non-linearity of gari
gets “absorbed” by the bimoulds’ symmetrality. This is easy to check up
to length 3, on the formulas:

S(
u1
v1 ) = +M (

u1
v1 )

S(
u1
v1

,
,

u2
v2

) = +M (
u1
v1

,
,

u2
v2

) + M (
u12
v2

,
,

u1
v1:2 ) − M (

u12
v1

,
,

u2
v2:1 )

S(
u1
v1

,
,

u2
v2

,
,

u3
v3

) = +M (
u1
v1

,
,

u2
v2

,
,

u3
v3

) + M (
u1
v1

,
,

u23
v3

,
,

u2
v2:3 ) − M (

u1
v1

,
,

u23
v2

,
,

u3
v3:2 )

+M (
u12
v2

,
,

u1
v1:2

,
,

u3
v3

) − M (
u12
v1

,
,

u2
v2:1

,
,

u3
v3

)

+M (
u12
v2

,
,

u3
v3

,
,

u1
v1:2 ) − M (

u12
v1

,
,

u3
v3

,
,

u2
v2:1 )

+M (
u123
v1

,
,

u23
v2:1

,
,

u3
v3:2 ) − M (

u123
v1

,
,

u23
v3:1

,
,

u2
v2:3 ) + M (

u123
v1

,
,

u3
v3:1

,
,

u2
v2:1 )

−M (
u123
v2

,
,

u1
v1:2

,
,

u3
v3:2 ) − M (

u123
v2

,
,

u3
v3:2

,
,

u1
v1:2 )

+M (
u123
v3

,
,

u1
v1:3

,
,

u2
v2:3 ) − M (

u123
v3

,
,

u12
v1:3

,
,

u2
v2:3 ) + M (

u123
v3

,
,

u12
v2:3

,
,

u1
v1:2 )

.

The number of summands Mw∗
in the expression of Sw1,...,wr is exactly

r !! := 1.3.5 . . . (2 r−1)

Remark 2: Extending the scramble to ordinary moulds.
We must often let the scramble act on moulds M• by first ‘lifting’ these

into bimoulds M• according to the rule: M (
u1
v1

,...,
,...,

ur
vr

) = Mu1 v1+...+ur vr .
Of course, the scramble of a mould is a bimould – not a mould. Thus,
the bimould W• of (11.1) is essentially the scramble of the mould V•
of (11.2).

11.3 The bialternal tesselation bimould

Let V • be the classical scalar mould produced under alien derivation from
the equally classical resurgent mould V•(z):

�ω0Vω(z) =
‖ω′‖=ω0∑
ω=ω′ω′′

V ω′ Vω′′
(z) (11.8)

V•(z) is symmetral; V • is alternal.
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If we now apply the scramble transform to the alternal mould V • (see
Remark 2 supra about the lift V • �→ V • ), we get a bialternal bimould
tes•:154

tes• = scram.V • with tesw :=
∑
w∗

ε(w, w∗) V w∗
(11.9)

which (surprisingly) turns out to be piecewise constant in each ui and
vi , despite being a sum of hyperlogarithmic summands V w∗

. This begs
for an alternative, simpler expression of tes•. The following induction
formula provides such an elementary alternative:

tesw =
∑

0≤n≤r(w)

pushn
∑

w′w′′=w

sigw′,w′′ tesw∗ tesw∗∗ . (11.10)

The notations are as follows.
We fix θ ∈ R/2πZ and set -θ : z ∈ C �→ -(eiθ z) ∈ R. Then we

define:

f w′
w :=<u′, v′><u, v>−1, gw′

w :=<u′,-θv′><u,-θv>−1 (11.11)

f w′′
w :=<u′′, v′′><u, v>−1, gw′′

w :=<u′′,-θv′′><u,-θv>−1. (11.12)

From these scalars we construct the crucial sign factor sig which takes its
values in {−1, 0, 1}. Here, the abbreviation si(.) stands for sign(0(.)).

sigw′,w′′ = sigw′,w′′
θ := 1

8

(
si( f w′

w − f w′′
w )− si(gw′

w −gw′′
w )

)
×

(
1+ si( f w′

w /gw′
w ) si( f w′

w −gw′
w )

)
×

(
1+ si( f w′′

w /gw′′
w ) si( f w′′

w −gw′′
w )

)
.

(11.13)

Lastly, the pair (w∗, w∗∗) is constructed from the pair (w′, w′′) according
to:

u∗ :=u′, v∗ :=v′<u, v>−1 0gw′
w −-θv′<u,-θv>−1 0gw′

w (11.14)

u∗∗ :=u′′, v∗∗ :=v′′<u, v>−1 0gw′′
w −-θv′′<u,-θv>−1 0gw′′

w . (11.15)

Remark 1: The above induction for tes• is elementary in the sense of
being non-transcendental: it depends only on the sign function. But on
the face of it, it looks non-intrinsical. Indeed, the partial sum:

urtesw
θ :=

∑
w′w′′=w

sigw′,w′′ tesw∗ tesw∗∗ =
∑

w′w′′=w

sigw′,w′′
θ tesw∗θ tesw∗∗θ (11.16)

154 Its proper place is in resurgence theory – in the description of the “geometry” of co-equational
resurgence.
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is polarised, i.e. θ -dependent. However, its push-invariant offshoot:

tes• :=
∑

0≤n≤r(w)

pushn urtes•θ (11.17)

is duly unpolarised. We might of course remove the polarisation in urtes•θ
itself by replacing it by this isotropic variant:

urtes•iso :=
1

2 π

∫ 2π

0
urtes•θ dθ (11.18)

but at the cost of rendering it less elementary, since urtes•iso would assume
its value in R rather than {−1, 0, 1}. It would also depend hyperlogarith-
mically on its indices, and thus take us back to something rather like
formula (11.9), which we wanted to get away from. So the alternative for
tes• is: either an intrinsical but heavily transcendental expression or an
elementary but heavily polarised one!

Remark 2: In the induction (11.10) we might exchange everywhere
the role of u and v and still get the correct answer tes•, but via a dif-
ferent polarised intermediary urtes•θ . The natural setting for studying
tes• is the biprojective space Pr,r equal to C2r quotiented by the relation
{w1 ∼ w2} ⇔ {u1 = λu2 , v1 = µ v2 (λ, µ ∈ C∗)}. But rather than us-
ing biprojectivity to get rid of two coordinates (ui , vi ), it is often useful,
on the contrary, to resort to the augmented or long notation, by adding
two redundant coordinates (u0, v0). The long coordinates (u∗i , v

∗
i ) relate

to the short ones (ui , vi ) under the rules:

ui = u∗i , vi = v∗i − v∗0 (1 ≤ i ≤ r). (11.19)

The long u∗i are constrained by u∗0 + · · · + u∗r = 0 while the long v∗i are,
dually, regarded as defined up to a common additive constant. Thus we
have <u∗, v∗>=<u, v>.The indices i of the long coordinates are viewed
as elements of Zr+1 = Z/(r+1)Z with the natural circular ordering on
triplets circ(i1 < i2 < i3) that goes with it. Lastly, we require r2−1 basic
“homographies” Hi, j on Pr,r , defined by:

Hi, j (w) := Qi, j (w)/Q∗i, j (w) (i − j �= 0; i, j ∈ Zr+1) (11.20)

Qi, j (w) :=
∑

circ( j≤q<i)

u∗q (v∗q − v∗j ) (11.21)

Q∗i, j (w) :=
∑

circ(i≤q< j)

u∗q (v∗q − v∗j ) �= Q j,i (w). (11.22)
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Main properties of tes•
P1: the bimould tes• is bialternal, i.e. alternal and of alternal swappee;
P2: in fact swap tes• = tes•;
P3: tes• is push-invariant;
P4: tes• is pus-variant, i.e. of zero pus-average;
P5: tes• assumes the sole values -1,0,1;
P6: for r fixed but large, the sets S± ⊂ Pr,r where tesw is ±1, have
positive but incredibly small Lebesgue measure;
P7: for r fixed, all three sets S−, S0, S+ are path-connected;
P8: for r fixed, the hypersurfaces 0(Hi, j (w)) = 0 limit 155 but do not
separate 156 the sets S−, S0, S+;
P9: tesw = 0 whenever w is semi-real, i.e. whenever one of its two
components u or v is real.157

11.4 Polar, trigonometric, bitrigonometric symmetries

The trigonometric symmetries iil and uul coincide modulo c with the po-
lar symmetries il and ul, but their exact expression is much more com-
plex. So let us first restate the polar symmetries in terms that lend them-
selves to the extension to the trigonometric case.

Polar symmetries: symmetril/alternil

A bimould M• is symmetril (respectively alternil) iff for all pairs w′,w′′ �=
∅ the identity holds:∑

w∈shi(w′,w′′)
Mw

∏
1≤k≤r(w)

liwk ≡ Mw′ Mw′′ (respectively ≡ 0) (11.23)

with a sum ranging over all sequences w that are order-compatible with
(w′, w′′) and whose indices wk are of the form:
(i) either w′i or w′′j , in which case liwk := 1;

(ii) or (
u′i+u′′j

v′i
), in which case liwk := −P(v′′j − v′i );

(iii) or (
u′i+u′′j

v′′j
), in which case liwk := −P(v′i − v′′j ).

155 That is to say, the boundaries of these sets lie on the hypersurfaces.

156 That is to say, none of the three sets can be defined in terms of the sole signs si(Hi, j (w)) :=
sign(0(Hi, j (w))), at least for r ≥ 3. For r = 1, tes• ≡ 1 and for r = 2, tes• = ±1 iff
si(H0,1(w)) = si(H1,2(w)) = si(H2,0(w)) = ± and 0 otherwise.

157 Or purely imaginary, since under biprojectivity this amounts to the same. Of course, tesw

vanishes in many more cases. In fact it vanishes most of the time: see P6 above.
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Polar symmetries: symmetrul/alternul

A bimould M• is symmetrul(respectively alternul) iff for all pairs w′,w′′ �=
∅ the identity holds:∑

w∈shu(w′,w′′)
Mw

∏
1≤k≤r(w)

luwk ≡ Mw′ Mw′′ (respectively ≡ 0) (11.24)

with a sum ranging over all sequences w that are order-compatible with
(w′, w′′) and whose indices wk are of the form:
(i) either w′i or w′′j , in which case luwk := 1;

(ii) or (
u′i+u′′j

v′i
), in which case luwk := −P(u′′j );

(iii) or (
u′i+u′′j

v′′j
), in which case luwk := −P(u′i ).

Trigonometric symmetries: auxiliary functions
To handle the trigonometric case, we require four series of rational coef-
ficients:
(*) xiip,q , ziip,q , xuup,q , zuup,q ;
which are best defined as Taylor coefficients of the following functions:
(**) Xii(x, y) , Zii(x, y) , Xuu(x, y) , Zuu(x, y).

Here are the definitions:

Q(t) := 1

tan(t)
‖R(t) := 1

arctan(t)
(11.25)

Xii(x, y) := x−1 + y−1

Q(x)+ Q(y)
‖Xuu(x, y) := x−1 + y−1

R(x)+ R(y)
(11.26)

Zii(x, y) := x−1 Q(x)−y−1 Q(y)

Q(x)+Q(y)
‖Zuu(x, y) := x−1 R(x)−y−1 R(y)

R(x)+R(y)
. (11.27)

Thus:

Xii(x, y)=1+ 1

3
xy + 1

45
y3 + 4

45
x2 y2 + 1

45
x3 y

+ 2

945
x y5+ 4

315
x2 y4+ 23

945
x3 y3+ 4

315
x4 y2+ 2

945
x5 y+. . .

Xuu(x, y)=1− 1

3
xy + 4

45
x y3 + 1

45
x2 y2 + 4

45
x3 y

− 44

945
x y5− 4

315
x2 y4− 23

945
x3 y3− 4

315
x4 y2− 44

945
x5 y+. . .
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Zii(x, y)= x−1 − y−1 − 1

3
x + 1

3
y − 1

45
x3 − 4

45
x2 y + 4

45
xy2 + 1

45
y3

− 2

945
x5− 4

315
x4 y− 16

945
x3 y2+ 16

945
x2 y3

+ 4

315
xy4+ 2

945
y5+. . .

Zuu(x, y)= x−1 − y−1 + 1

3
x − 1

3
y − 4

45
x3 − 1

45
x2 y + 1

45
xy2 + 4

45
y3

+ 44

945
x5+ 4

315
x4 y− 1

189
x3 y2+ 1

189
x2 y3

− 4

315
xy4− 44

945
y5+. . .

Trigonometric symmetries: symmetriil/alterniil

A bimould M• is symmetriil (respectively alterniil) iff for all pairs w′,w′′ �=
∅ the identity holds:∑

w∈shii(w′,w′′)
Mw

∏
1≤k≤r(w)

liiwk ≡ Mw′ Mw′′ (respectively ≡ 0) (11.28)

with a sum ranging over all sequences w that are order-compatible with
(w′, w′′) and whose indices wk are of the form:
(i) either w′i or w′′j , in which case liiwk := 1;

(ii) or (
u′i+...u′i+p + u′′j+...u′′j+q

v′i
) with p, q ≥ 0, in which case

liiwk := −cp+q xiip,q Qc(v
′′
j−v′i )− cp+q+1 ziip,q; (11.29)

(iii) or (
u′i+...u′i+p + u′′j+...u′′j+q

v′′j
) with p, q ≥ 0, in which case

liiwk := +cp+q xiip,q Qc(v
′
i−v′′j )+ cp+q+1 ziip,q . (11.30)

Trigonometric symmetries: symmetruul/alternuul

A bimould M• is symmetruul (respectively alternuul) iff for all pairs
w′, w′′ �= ∅ the identity holds:∑

w∈shuu(w′,w′′)
Mw

∏
1≤k≤r(w)

luuwk ≡Mw′Mw′′ (respectively≡0) (11.31)
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with a sum ranging over all sequences w that are order-compatible with
(w′, w′′) and whose indices wk are of the form:
(i) either w′i or w′′j , in which case luuwk := 1;

(ii) or (
u′i+u′′j

v′i
), in which case luuwk := −Qc(u′′j );

(iii) or (
u′i+u′′j

v′′j
), in which case luuwk := −Qc(u′i );

(iv) or (
u′i+...u′i+p + u′′j+...u′′j+q

v′i
) with p, q ≥ 0 and p+q ≥ 1, in which case

luuwk:=−
∑

0≤p1≤p
0≤q1≤q

cp+q+1zuup1,q1 Symp−p1

( ⋃
i<s<i+p

Qc(u
′
s)

)
Symq−q1

( ⋃
j<s< j+q

Qc(u
′′
s )

)
;

(v) or (
u′i+...u′i+p + u′′j+...u′′j+q

v′′j
) with p, q ≥ 0 and p+q ≥ 1, in which case

luuwk:=+
∑

0≤p1≤p
0≤q1≤q

cp+q+1zuup1,q1Symp−p1

( ⋃
i<s<i+p

Qc(u
′
s)

)
Symq−q1

( ⋃
j<s< j+q

Qc(u
′′
s )

)

with Syms(x1, . . . , xr ) standing for the s-th symmetric function of the xi :

Syms(x1, . . . , xr ) :=
∑

1≤i1<···<is≤r

xi1 . . . xis . (11.32)

However, to get the formula for luuwk right, we must observe the follow-
ing convention:

Sym0(x1, . . . , xr ) := 1 (even if r = 0)

Syms(x1, . . . , xr ) := 0 if 1 ≤ r < s (but Sym0(∅) := 1).

We may also note the complete absence, from the expression of luuwk , of
the four extreme terms Qc(u′i ), Qc(u′i+p), Qc(u′′j ), Qc(u′′j+q).

Dimorphic transport
As in the polar case, the adjoint action of the bisymmetrals tal•c and til•c
exchanges double symmetries, but without respecting entireness.

GARI as/as adgari(tal•c)−→ GARI as/iis

logari ↓↑ expari logari ↓↑ expari

ARI al/al adari(tal•c)−→ ARI al/iil

GARI as/as adgari(til•c)−→ GARI as/uus

logari ↓↑ expari logari ↓↑ expari

ARI al/al adari(til•c)−→ ARI al/uul.
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Bitrigonometric symmetries

As usual, the trigonometric case fully determines the bitrigonmetric ex-
tension.

Symmetries associated with other approximate units E•

E• of course replaces Qc in the expressions of liiwk and luuwk but the
structure coefficients xii p,q, zii p,q, xuu p,q, zuu p,q do not change, and
must still be calculated from Q and the related R (see (11.25)) even in
the case of the flat approximate units Sa• or Si• of (3.25).

Remark 1. While bimoulds polynomial or entire in the ui and vi vari-
ables may be alternil or symmetril or alterniil or symmetriil, they can
never be alternul nor symmetrul nor alternuul nor symmetruul.

Remark 2. Of course, just as with the straight symmetries (see Sec-
tion 2.4), when expressing the new, twisted symmetries, one should take
care to allow only sequences w that are order-compatible with w′ and w′′,
i.e. that never carry pairs u′i , v

′
i or u′′j , v

′′
j (whether in isolation or within

sums or differences) in an order that clashes with their relative position
within the parent sequences w′ or w′′.

11.5 The separative algebras Inter(Qic) and Exter(Qic)

Introduction
The subalgebra Exter(Qic) of Flex(Qic) is the trigonometric equivalent
of the polar subalgebra ARI<pi> of Flex(Pi) which itself is but the spe-
cialisation, for E = Pi, of the subalgebra ARI<re> of Flex(E) which
was investigated in Section 3.6. Both Exter(Qic) and ARI<pi> consist of
u-constant, v-dependent, alternal bimoulds, and both are indispensable
to an in-depth understanding of the fundamental bialternals pil• and til•c
since they house their ari-logarithms logari.pil• and logari.til•c .

However, due to Pi• being an exact flexion unit, the algebra ARI<pi>

has a very simple structure: it is spanned by the bimoulds pi•r (1 ≤ r ),
which self-reproduce under the ari-bracket:ari(pi•r1

,pi•r2
)≡(r1−r2)pi•r1+r2

.
Its trigonometric counterpart Exter(Qic), on the other hand, is vaster

and much more complex: it does indeed contain a series of bimoulds
qi•r defined in the same way as the pi•r or the re•r of (4.5), but these qi•r
no longer self-reproduce under the ari-bracket: they do so only modu-
lo c2.

Nonetheless, the structure of Exter(Qic) is highly interesting, and can
be exhaustively described by decomposing Exter(Qic) into a direct sum
of subspaces gn.Inter(Qic) (0 ≤ n) which are all derived from a subalge-
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bra Inter(Qic) ⊂ Exter(Qic) consisting of all alternals in Flex(Qic) that
depend only on the differences vi −v j .158 The algebra Inter(Qic) and
its elements shall be called internal, whereas elements of Exter(Qic)

.−
Inter(Qic) shall be called external. The internal algebra is quite elemen-
tary: on it, most flexion operations reduce to non-inflected operations.
Thus, the ari-bracket of two internals coincides (up to a sign change)
with their lu-bracket.

The external and internal algebras are also called separative, since un-
der the action of the operator separ, which is to ARI what the operator
gepar of Section 4.1. was to GARI:

separ.M• := anti.swap.M• + swap.M• (11.33)

gepar.M• := mu(anti.swap.M•, swap.M•) (11.34)

their bimoulds experience a separation of their variables159 and assume
the elementary form:

{M• ∈ Exter(Qic)} ⇒ {(separ.M)w1,...,wr ∈ C[c2, Qc(u1), . . . , Qc(ur )]}

Remark: strictly speaking, elements of Flex(Qic) can involve only even
powers of c, but it is convenient to enlarge Exter(Qic) and Inter(Qic)
with odd powers of c, so as to make room for the bimoulds qin•r and the
operators hn (defined infra). Ultimately, however, we shall end up with
structure formulas where these qin•r and hn appear only in pairs, thus
ensuring that there is no violation of c-parity.

The external qi•r and the internal qin•r
They are the first ingredients of the ‘separative’ structure. These alternal
bimoulds of BIMUr are defined by the induction:

qiw1
1 :=Qiw1

c = Qc(v1) = c
tan (c v1)

‖ qi•r :=arit(qi•r−1).qi•1 ∀(r ≥ 2)

qinw1
1 :=c ‖ qin•r :=ari(qin•1, qi•r−1) ∀(r ≥ 2)

158 In the short notation, of course. In the long notation (with the additional variable v0), this is
automatic and implies no constraint at all.

159 Due to the swap which is implicit in the definition of separ and gepar, the new variables are no
longer vi ’s but ui ’s.
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The auxiliary mould har•
Our second ingredient is a scalar mould whose only non-vanishing com-
ponents have odd length. Here again, the definition is by induction:

harn1,...,nr :=0 ∀ r even ≥ 0 (11.35)

harn1 := 1

n1
(11.36)

harn1,...,nr := 1

n1+. . .+nr

∑
1<i<r

har n1,...,ni−1har ni+1,...,nr ∀ r odd≥3. (11.37)

Thus:

harn1,n2,n3 = 1

n1n3n123
(11.38)

harn1,n2,n3,n4,n5 = 1

n1n3n5n12345

(
1

n123
+ 1

n345

)
. (11.39)

The operators gn , hn

These linear operators of BIMUr into BIMUr+n are our third ingredient.
The first are mere powers of a single operator g defined by:

g : A• → B• := arit(A•) qi•1 = arit(A•) Qi•c (11.40)

which, since Qi•c ∈ BIMU1 , may be rewritten as:

B(
u1
v1

,...,
,...,

ur
vr

) = A(
u1

v1:r
,...,
,...,

ur−1
vr−1:r )

Qc(vr )−A(
u2

v2:1
,...,
,...,

ur
vr :1 ) Qc(v1). (11.41)

The operators hn , on the other hand, must be defined singly:

hn A• :=
∑
1≤s

∑
1≤ni

n1+...ns=n

harn1,...,nr [qin•n1
[qin•n2

. . . [qin•ns
, A•]..]]lu . (11.42)

Due to the imparity of har•, the hn too are strictly odd in c.

The operators of G and H

If we set:
G := id+

∑
1≤n

g
n; H := +

∑
1≤n

hn (11.43)

the operators of G and H so defined verify the identities:

Gmu(A•,B•) ≡ mu(GA•, GB•)+Gmu(HA•, HB•) (11.44)

Hmu(A•, B•) ≡ mu(HA•, B•)
+mu(A•, HB•)+ Hmu(HA•, HB•) (11.45)
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and of course analogous identities with lu in place of mu. The only re-
striction is that in (11.44) the inputs A•, B• must be internal.

If we now ‘iterate’ these identites so as to rid their right-hand sides of
all terms G.mu(. . . , . . .) and H.mu(. . . , . . .), we find that G and H verify
the co-products:

G→ G⊗G+
∑
1≤s

GH
s ⊗GH

s (11.46)

H→ H⊗ 1+ 1⊗ H+
∑
1≤s

(Hs+1 ⊗ H
s + H

s ⊗ H
s+1). (11.47)

Again, the coproducts (11.45), (11.47) for H hold on the full algebra of
bimoulds, whereas the coproducts (11.44), (11.46) for G hold only on the
algebra of internals.

The rectified operators G∗ and H∗.
As the above coproducts show, H is an ‘approximate’ derivation and G

an ‘approximate’ automorphism. However, if we set:

H∗ := arctan(H) = H− 1

3
H

3 + 1

5
H

5 . . . (11.48)

G∗ := G(id+ H)−
1
2 = G− 1

2
GH

2 + 3

8
GH

4 . . . (11.49)

= G cos(H∗) = G− 1

2
GH

2
∗ +

1

24
GH

4
∗ . . . (11.50)

we get an operator H∗ that is an exact derivation and an operator G∗ that
is an exact automorphism.

The chain Inter(Qic) ⊂ Exter(Qic) ⊂ Flex(Qic).
The space Inter(Qic) is separative, and so is the space Exter(Qic) defined
as the (direct) sum of all the g-translates of Inter(Qic).

Exter(Qi•c) :=
⊕
0≤n

g
n.Inter(Qi•c). (11.51)

In fact, both spaces are stable under the ari-bracket, and we shall now
give a complete description of their structure with the help of our two
series of operators gn and hn .

Full structure of the ari-algebra Inter(Qic).
The space Inter(Qi•c) is obviously stable under the lu-bracket, and also
under the ari-bracket, due to the elementary identities:

ari(A•, B•) = −lu(A•, B•) ∀ A•, B• ∈ Inter(Qic) (11.52)

arit(A•).B• = +lu(A•, B•) ∀ A•, B• ∈ Inter(Qic). (11.53)



179 The flexion structure and dimorphy . . .

Full structure of the ari-algebra Exter(Qic).
The space Exter(Qic), though not closed under the lu-bracket, is stable
under the ari-bracket and the arit-operation. Its full structure is given by
the three following identities, where A•, B• stand for arbitrary elements
of Inter(Qic):

ari(gp A•, gq B•) ≡ −g
q arit(gp A•)B• + g

p arit(gq B•)A•

+ g
p+q lu(A•, B•) (11.54)

−
∑

1≤p1≤p
1≤q1≤q

g
p+q−p1−q1 lu(hp1 A•, hq1 B•)

arit(gp A•) g
q B• ≡ +g

q arit(gp A•)B•

−
∑

0≤q1≤q−1

lu(gp+q−q1 A•, gq1 B•)r (11.55)

−
∑

1≤q1≤q−1
p+1≤p1≤p+q−q1

g
p+q−p1−q1 lu(hp1 A•, hq1 B•)

arit(gp A•) tin•q ≡ hp,q A•. (11.56)

Since the above identities are linear in each internal argument A• or B•
and since any external bimould M• uniquely decomposes into a sum∑

gn.M•(n) of g-tanslates of internal M•(n), one readily sees that the above
identities do indeed encapsulate the whole structure of Exter(Qic), pro-
vided one adds to Inter(Qic) a symbolic bimould �• ∈ BIMU0 subject to
the following rules:160

qi•n := +g
n �• (11.57)

qin•n := −hn �• (11.58)

lu(A•, �•) := −r(•) A• (11.59)

ari(A•, �•) := +r(•) A• (11.60)

arit(A•) �• := −r(•) A• (11.61)

arit(�•) A• := +r(•) A• (11.62)

and of course

lu(�•, �•) = ari(�•, �•) = arit(�•) �• = 0•. (11.63)

160 One should beware of applying to �• any other rules than these, and never forget than �• is
just a convenient symbol rather than a true bimould. Indeed, the only bona fide bimould of BIMU0
is (up to a scalar factor) the multiplication unit 1• with 1∅ := 1.
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11.6 Multizeta cleansing: elimination of unit weights

Main statement
The present section is devoted to proving the following:
P0 : (Unit cleansing)

Every uncoloured multizeta ζ(s1, . . . , sr ) can be expressed as a finite
sum, with rational coefficients, of unit-free multizetas.161 The result ex-
tends to all coloured multizetas, but it is less relevant there.162

Weshallprovideaneffectivealgorithm for achieving the unit-cleansing.
Along the way, we shall also come across some really fine combinatorics
about bialternals, and construct a new infinitary subalgebra of ARI larger
than ALAL.

Some heuristics
As is natural with heuristics, we proceed backwards:

Step 4: restriction of the problem to bialternals.
Since scalar irreducibles accompany homogeneous bialternals, it will be
both necessary and sufficient to express the latter without recourse to unit
weights.

Step 3: the need for “reconstitution identities”.
Since in the vi -encoding, unit weights correspond to monomials not di-
visible by v1 . . . vr , the challenge it to reconstitute any homogeneous bial-
ternal from its “essential part”, i.e. the part that is divisible by v1 . . . vr .

Step 2: the need for “redistribution identities”.
To do this, it is more or less clear beforehand that we shall have to find a
means of expressing any homogeneous bialternal Mw with one or several
vanishing vi ’s as a superpositions of Mw∗

, with new v∗i ’s formed from the
sole non-vanishing vi ’s.

Step 1: the need for “pairing identities”.
To be able to extend the procedure to coloured multizetas (and also to
respect the spirit of dimorphy), we must find a way of restating the redis-
tribution identities for arbitrary bialternals that effectively depend on the
ui ’s as well as on the vi ’s.

161 I.e. of multizetas ζ(s′1, . . . , s′r∗ ) with partial weights s′i ≥ 2.

162 For two reasons: first, because the removal of the unit-weights necessitates a remixing of the
colours; and second, because one may on the contrary play on the colours to express everything in
terms of multizetas with nothing but unit-weights!
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Step 1: The pairing identities
An endoflexion (of length r ) is any self-mapping of BIMUr of the form

flex.Mw1,...,wr = Mw∗1 ,...,w∗r
(

wi =
(

ui

vi

)
, w∗i =

(
u∗i
v∗i

))
(11.64)

with

u∗i :=
circular︷ ︸︸ ︷

umi + . . .+ uni =
(mi≤k≤ni )Zr+1∑

uk

v∗i := vpi − vqi and pi ∈ P+, qi ∈ P−∑
1≤i≤r

ui
∗v∗i ≡

∑
1≤i≤r

uivi .

Here, all indices mi , ni , pi , qi are in the set {0, 1, . . . , r} ∼ Zr+1 and
P = (P+,P−) is any given (strict) partition of {0, 1, . . . , r}. We say
that flex is P-compatible. Whereas flex determines P if we impose (as
we shall do) that 0 be in P−, there are usually many endoflexions flex
compatible with a given partition P .

P1 : (Existence and uniqueness of the pairing identities.)
For any strict partition P of {0, 1, . . . , r} into P+ (“white indices”) and
P− (“black indices”) there exists a self-mapping flexP of BIMUr of the
form:

flexP =
∑

flexn P-compatible

εn flexn (εn ∈ {0, 1,−1}) (11.65)

whose restriction to the bialternals is the identity:

flexP .M• ≡ M• ∀M• ∈ ARIal/al
r . (11.66)

Furthermore, flexP is unique modulo the alternality (not bialternality!)
relations on ARIal/al

r .
Let us now return to the graph pairs g = (ga, gi) defined in Sec-

tion 3.1 (see also the examples and pictures infra). We say that such a
pair g is P-compatible if all edges of gi connect a “white” vertex Spi

with a “black” vertex Sqi . Now, both gi and ga have r edges each, and
every edge of gi intersects exactly one edge of ga at exactly one point x ,
and there clearly exists a (topologically) unique graph gai with those r
intersection points x as vertices, and with edges that intersect neither the
unit circle nor the edges of ga nor those of gi . To each vertex x∗ of gai
there corresponds one unique coherent orientation Og,x∗ of the edges of
gai or, what amounts to the same, one coherent arborescent order, also
noted Og,x∗ , on the vertices x of gai , with x∗ as the lowest vertex.
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Next, for any g that is P-compatible and for any vertex x∗ of the cor-
responding gai , let γ be a total order on the vertices of gai that is com-
patible with the arborescent order Og,x∗ . We write γ ∈ Og,x∗ to denote
this compatibility and associate with γ the following endoflexion:

flexγ .Mw1,...,wr =Mw∗1 (γ ),...,w∗r (γ )

(
wi=

(
ui

vi

)
,w∗i (γ )=

(
u∗i (γ )

v∗i (γ )

))
(11.67)

with

u∗i (γ ) :=
circular︷ ︸︸ ︷

umi + . . .+ uni =
(mi≤k≤ni )Zr+1∑

uk

v∗i (γ ) := vpi − vqi and pi ∈ P+, qi ∈ P−∑
1≤i≤r

ui
∗(γ ) v∗i (γ ) ≡

∑
1≤i≤r

ui vi

and with the following notations:
– xi (γ ) is the i-th vertex of gai in the total order γ ;
– gai (γ ) is the unique edge of ga passing through xi (γ );
– gii (γ ) is the unique edge of gi passing through xi (γ );
– u∗i (γ ) is the sum of all uk with Sik on the ‘correct’ side of gai (γ ), i.e.
on the side that contains the “white” vertex Sipi of gii (γ );
– v∗i (γ ) is the difference vpi − vqi with Sipi and Siqi being the “white”
and “black” vertices joined by gii (γ ).

Next, we set:

flexg,x∗ :=
∑

γ∈Og,x∗

εγ flexγ with (11.68)

εγ :=
∏

gaik∈Edge(gai)

ε(gaik) ∈ {1,−1} (11.69)

with a product in (11.69) extending to all r−1 edges gaik of gai , and with
factor signs ε(gaik) defined as follows. Each edge gaik of gai touches
two edges gik′ and gik′′ of gi , which in turn meet at a vertex Sik∗ of gi .
What counts is the colour of that vertex Sik∗ , and the position of the tri-
angle {gaik, gik′, gik′′ } respective to the oriented vertex 1gaik . Concretely,
we set:
(i) ε(gaik) := +1 if 1gaik sees a white Sik∗ to its right or a black Sik∗ to its
left;
(ii) ε(gaik) := −1 if 1gaik sees a white Sik∗ to its left or a black Sik∗ to its
right.
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It is readily seen that the operator flexg,x∗ , when applied to alternal bi-
moulds, is independent of the choice of the base vertex: indeed, replacing
x∗ by a neighbouring vertex x∗∗ simultaneously changes the signs of ε(γ )

and flexγ .M•, for any alternal M•. We shall therefore drop x∗ and write
simply flexg whenever the operator flexg,x∗ is made to act on alternals (or
a fortiori on bialternals).

Remark: each one of the graphs ga or gi completely determines the
other as well as gai . It also determines the only partitionP of{0,1, . . . ,r}
with which it is compatible, since 0 is automatically black, and so Si0 is
declared black too, and the colouring then extends to all Sik by following
gi . On the other hand, the number of graph pairs g = {ga, gi} compati-
ble with a given partition P is on average equal to (3 r)!

(2 r+1)!r !2r and therefore
tends to be very large.

P2 : (Explicit formula for the pairing identities.)
For each partition P of {0,1, . . . ,r}, the pairing operator flexP of (11.65)
is explicitely given by:

flexP :=
∑

g P-compatible

flexg with εg ∈ {1,−1} (11.70)

with a sum extending to all graph pairs g = (ga, gi) compatible with
the white-black partition P .

P3 : (Unitary criterion for bialternality.)
A bimould M• ∈ BIMUr is bialternal if and only if it verifies all pair-
ing identities flexP .M• ≡ M•, for all partitions P = P+ 2 P− of
{0, 1, . . . , r}.

This is the only known characterisation of bialternality that is unitary
– by which we mean that, unlike all the others, it does not split into two
distinct sets of conditions, one bearing on M• and another on swap.M•.

Step 2: The redistribution identities.
P4 : (Redistribution identity on ARIal/al and swap.ALAL.)
If we take a bialternal M• ∈ ARIal/al

r and a partition P = P+ 2 P− of
{0, 1, . . . , r} and then turn all ui ’s into 0 and also turn all black vi ’s (i.e.
all vi ’s with black indices) into 0 but leave all white vi ’s unchanged, the
pairing identity of Proposition P2 becomes a redistribution identity:

{flexP .M• = M•} �⇒ {redisP .M• = M•} (11.71)
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so-called because it has the effect of ‘spreading’ or ‘redistributing’ the
total multiplicity µ0 of the vanishing black vi ’s163 among the multiplic-
ities µi of the remaining white vi ’s, with µ0−1 = ∑

(µi−1). The re-
distribution identities apply in particular to all bimoulds of swap.ALAL,
since they are bialternal, u-constant and polynomial in v.

P5 : (The infinitary redistribution algebra.)
The set of all “redistributive” bimoulds, i.e, of all bimoulds that are:
– u-constant;
– alternal;
– and verify all redistribution identities;
constitutes a subalgebra of ARI that is:
– much larger than that of the u-constant bialternals;
– not subject to neg-invariance (unlike the bialternals);
– and yet defined by an infinitary group of constraints (like the bialter-
nals).

Although the redistribution identities have a more elementary appear-
ance than the pairing identities, they are in fact:
– theoretically derivative;
– distinctly weaker (since they do not imply bialternality);
– and less transparent (since the terms on the right-hand side are compos-
ite164 and preceded by general integers rather than by ± signs.)

Step 3: The reconstitution identities.
For any bimould M•, we denote by essen.M• the “essential part” of M•,
i.e. the “part” of M• that is “divisible” by each vi . In precise terms:

(essen.M)
(

u1
v1

, ... ,
, ... ,

ur
vr

) =
∑

εi∈{0,1}

( ∏
1≤i≤r

(−1)1+εi

)
M (

u1
ε1v1

, ... ,
, ... ,

ur
εr vr

)
. (11.72)

Likewise, to each partition P that makes 0 black, we associate the “slice”
of M• that is “divisible” by all white vi ’s and constant in all black vi ’s:165

(sliceP .M)
(

u1
v1

, ... ,
, ... ,

ur
vr

)=
0∈P−∑

{ εi∈{0,1} if i∈P+
εi=0 if i∈P− }

( ∏
i∈P+

(−1)1+εi

)
M (

u1
ε1v1

,...,
,...,

ur
εr vr

) (11.73)

163 In the augmented notation, i.e. considering {v0, v1, . . . , vr }, with v0 automatically regarded as
black. When v0 is the only black variable, i.e. when P− = {0} and P+ = {1, . . . , r}, then µ0 = 1
and both flexP and redisP reduce to the identity, so that in this case the pairing and redistribution
identities become trivial.

164 In the sense that they often conflate several contributions, which were clearly distinct in the
pairing identities.

165 If P+ = {1, . . . , r} and P− := {0}, the slice sliceP .M• coincides with essen.M•.
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M• is clearly the sum of all its slices:

M• =
∑

P with 0∈P−
sliceP .M• (11.74)

and if M• happens to be bialternal, each slice may be separately recov-
ered from essen.M• by means of the redistribution identites, since:

sliceP .M• ≡ redisP . essen.M• (11.75)

as we can see by applying the P-related redistribution identity separately
to each summand on the right-hand side of (11.72). Therefore:

P6 : (Reconstitution identity on ARIal/al.)
For each bialternal bimould M• (purely of length r), the identity holds:

M• ≡ induc.essen.M• (11.76)

with the linear operator

induc :=
∑

P with 0∈P−
redisP . (11.77)

This applies in particular to all elements of swap.ALAL, i.e. to all u-
constant, v-polynomial, and bialternal bimoulds. For such bialternals,
the possiblity of recovering M• from essen.M• was by no means a fore-
gone conclusion, since for a not too large ratio d/r := degree/length166

the essential part essen.M• carries but a minute fraction of the total data
of M•.

P7 : (Involutive nature of induc.)
While essen is (trivially) a projector, induc becomes (non-trivially) an
involution when restricted to the space of u-constant bialternals.

Step 4: The unit-cleansing algorithm.
The algorithm applies to all multizetas, coloured or uncoloured, but let
us focus on the uncoloured case for simplicity.

Fix any basis {løma•s ; s = 3, 5, 7 . . .} of ALIL. That automatically
fixes a system of irreducibles {irrø•

I I
, irrø•

I I I
} and provides a way of ex-

pressing all multizetas in terms of these.
Now, reason inductively. Assume that all irreducibles of length r < r0

have already been expressed in terms of unit-free multizetas ζ(s1, . . . ,sr ).

166 Say, for 2 < d/r < 3. (Recall that d/r can in no case be ≤ 2).
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The machinery of Section 6 makes it possible to exactly determine the
contribution that these “earlier” irreducibles (including π2) are going to
make to Zig• := swap.Zag•, at all higher lengths, including at length
r0. Next, subtract from lengr0 .Zig• (i.e. from the length-r0 component of
Zig•) all these contributions from the “earlier” irreducibles. What is left
is a superposition M• of independent bialternals M•j of length r0:

M•=
∑

irrø j M•j with M•j ∈ swap.ALALr and irrø j ∈C (11.78)

with scalar coefficients irrø j that are irreducibles of length r0. But, as we
just saw, M•, and therefore all M•j and all irrø j , can be recovered from
essen.M•, and as a consequence expressed in terms of unit-free multizetas
ζ(s1, . . . , sr ). By induction, this applies to all irreducibles subsumed in
the moulds irrø•

I I
, irrø•

I I I
and of course also to the exceptional irreducible

π2 = 6 ζ(2).
But since every multizeta ζ(s1, . . . , sr ) can be (algorithmically) ex-

pressed in terms of irreducibles, this means that every multizeta can be
expressed as a polynomial of unit-free multizetas ζ(s1, . . . , sr ), with ra-
tional coefficients. After symmetrel linearisation, this polynomial be-
comes a linear combination of multizetas, still unit-free and still with
rational coefficients. �
Example of pairing identities
For r = 5, P+ = {1, 2, 4}, P− = {0, 3, 5}, the pairing identity M• ≡
flexP .M• takes the form:

M
(

u1,
v1,

u2,
v2,

u3,
v3,

u4,
v4,

u5,
v5,

) ≡ (∗ ∗ ∗)
−M

(
u5∗0,
v1:0,

u4∗5,
v1:5,

u1∗4,
v1:3,

u4∗3,
v4:3,

u2∗1
v2:3 )−M

(
u5∗0,
v1:0,

u4∗5,
v1:5,

u1∗4,
v1:3,

u2∗1,
v2:3,

u4∗3
v4:3 )−M

(
u1∗0,
v1:0,

u5∗1,
v2:0,

u4∗5,
v2:5,

u2∗4,
v2:3,

u4∗3
v4:3 )

−M
(

u5∗0,
v1:0,

u1∗5,
v1:5,

u4∗1,
v2:5,

u2∗4,
v2:3,

u4∗3
v4:3 )−M

(
u4∗5,
v4:5,

u5∗3,
v4:0,

u3∗1,
v2:0,

u1∗0,
v1:0,

u2∗3
v2:3 )−M

(
u4∗5,
v4:5,

u5∗3,
v4:0,

u3∗1,
v2:0,

u2∗3,
v2:3,

u1∗0
v1:0 )

+M
(

u2∗1,
v2:3,

u1∗3,
v1:3,

u3∗0,
v4:0,

u5∗3,
v1:0,

u4∗5
v4:5 )−M

(
u1∗0,
v1:0,

u2∗1,
v2:0,

u5∗2,
v4:0,

u4∗5,
v4:5,

u2∗3
v4:3 )−M

(
u1∗0,
v1:0,

u2∗1,
v2:0,

u5∗2,
v4:0,

u2∗3,
v4:3,

u4∗5
v4:5 )

+M
(

u2∗1,
v2:3,

u1∗3,
v4:3,

u5∗1,
v4:0,

u1∗0,
v1:0,

u4∗5
v4:5 )+M

(
u2∗1,
v2:3,

u1∗3,
v4:3,

u5∗1,
v4:0,

u4∗5,
v4:5,

u1∗0
v1:0 )+M

(
u2∗1,
v2:3,

u1∗0,
v1:3,

u0∗3,
v4:3,

u5∗0,
v4:0,

u4∗5
v4:5 )

−M
(

u1∗0,
v1:0,

u5∗1,
v2:0,

u2∗5,
v2:3,

u5∗3,
v4:3,

u4∗5
v4:5 )+M

(
u4∗5,
v4:5,

u5∗3,
v4:3,

u1∗5,
v1:3,

u5∗0,
v1:0,

u2∗1
v2:3 )+M

(
u4∗5,
v4:5,

u5∗3,
v4:3,

u1∗5,
v1:3,

u2∗1,
v2:3,

u5∗0
v1:0 )

−M
(

u5∗0,
v1:0,

u1∗5,
v1:5,

u4∗1,
v4:5,

u1∗3,
v4:3,

u2∗1
v2:3 )−M

(
u1∗0,
v1:0,

u5∗1,
v2:0,

u2∗5,
v2:5,

u4∗2,
v4:5,

u2∗3
v4:3 )−M

(
u2∗1,
v2:3,

u1∗3,
v1:3,

u3∗5,
v1:5,

u5∗0,
v1:0,

u4∗3
v4:5 )

−M
(

u2∗1,
v2:3,

u1∗3,
v1:3,

u3∗5,
v1:5,

u4∗3,
v4:5,

u5∗0
v1:0 )−M

(
u5∗0,
v1:0,

u1∗5,
v1:5,

u2∗1,
v2:5,

u4∗2,
v4:5,

u2∗3
v4:3 )+M

(
u1∗0,
v1:0,

u5∗1,
v2:0,

u3∗5,
v2:5,

u4∗3,
v4:5,

u2∗3
v2:3 )

+M
(

u1∗0,
v1:0,

u5∗1,
v2:0,

u3∗5,
v2:5,

u2∗3,
v2:3,

u4∗3
v4:5 )+M

(
u5∗0,
v1:0,

u1∗5,
v1:5,

u3∗1,
v2;5,

u4∗3,
v4:5,

u2∗3
v2:3 )+M

(
u5∗0,
v1:0,

u1∗5,
v1:5,

u3∗1,
v2:5,

u2∗3,
v2:3,

u4∗3
v4:5 )

with the usual convention u0 := −(u1 + · · · + ur ), v0 := 0 and the
convenient abbreviations:

ui∗ j :=sui − su j with suk :=u0+ u1+ . . .+ uk=−uk+1 − uk+2 . . .− ur

vi : j :=vi − v j

To arrive at the pairing identity (∗ ∗ ∗), we form all graph triples g =
{ga, gi, gai} compatible with the partition P . There exist exactly 16
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such triples. They are pictured on Figure 11.1, with split lines for the
edges of ga, plain lines for those of gi , and large plain lines for those of
gai . Next, on each gai , we pick a vertex x∗ so chosen as to minimise
the number ν(gai, x∗) of total orders γ on gai compatible with the par-
tial order induced by x∗. In each case, x∗ has to be at the extremity of
the longest branch of gai . For eight graphs gai , this minimal number
νmin(gai) is 1; for the remaining eight graphs, νmin(gai) is 2. Altogether,
this yields the 24 elementary flexions flexγ that contribute to the pairing
identity (∗ ∗ ∗).

Figure 11.1. The 16 graph triads g = {ga, gi, gai} compatible with the parti-
tion P of {0, 1, 2, 3, 4, 5} defined by P+ = {1, 2, 4}, P− = {0, 3, 5}.

Lastly, to show how to calculate each flexg , we focus on the first graph
triple (the one in top-left position on Figure 11.1) and reproduce it, en-
larged, in Figure 11.2.

Applying the rules just after (11.67), we see that the flexion indices
w∗i = (

u∗i
v∗i

) corresponding to the five vertices of gai are given by:

u∗1=u1,2,3,4,5 ‖ v∗1=v1 − v0=v1

u∗2=u0,1 =−u2,3,4,5 ‖ v∗2=v1 − v5

u∗3=u2,3 ‖ v∗3=v2 − v5

u∗4=u4,5,0,1,2=−u3 ‖ v∗4=v2 − v3

u∗5=u4 ‖ v∗5=v4 − v5
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4

Figure 11.2. Flexion flexg associated with a graph triad g = {ga, gi, gai}.

with the expected identity
∑

1≤i≤5 u∗i v∗i ≡
∑

1≤i≤5 ui vi . There are three
possible roots, w∗1, w

∗
4, w

∗
5 , with three corresponding flexions:

(flexg,w∗1 .M)w1,w2,w3,w4,w5 =+Mw∗1 ,w∗2 ,w∗3 ,w∗4 ,w∗5 + Mw∗1 ,w∗2 ,w∗3 ,w∗5 ,w∗4

(flexg,w∗4 .M)w1,w2,w3,w4,w5 =−Mw∗4 ,w∗3 ,w∗2 ,w∗1 ,w∗5 − Mw∗4 ,w∗3 ,w∗2 ,w∗5 ,w∗1 − Mw∗4 ,w∗3 ,w∗5 ,w∗2 ,w∗1

(flexg,w∗5 .M)w1,w2,w3,w4,w5 =−Mw∗5 ,w∗3 ,w∗2 ,w∗1 ,w∗4 − Mw∗5 ,w∗3 ,w∗2 ,w∗4 ,w∗1 − Mw∗5 ,w∗3 ,w∗4 ,w∗2 ,w∗1

which coincide modulo the alternality relations:

flexg,w∗1 .M
• ≡ flexg,w∗4 .M

• ≡ flexg,w∗5 .M
• ∀M• alternal.

One might also take flexg,w∗2 .M
• and flexg,w∗3 .M

•, but here the number of
summands would be much larger: 8 and 12 respectively.

Example of redistribution identity
For r = 5, P+ = {1, 2, 4} and P− = {0, 3, 5}, we have a black multi-
plicity µ0 = 3, and the redistribution identity M• ≡ redisP .M• follows
from the preceding pairing identity M• ≡ flexP .M• by setting all black
vi ’s equal to zero in (∗ ∗ ∗). For simplicity, we write the redistribution
identity only for u-constant bilaternals, and since for them the ui ’s don’t
matter, we don’t mention them.

Mv1,v2,0,v4,0≡−Mv1,v1,v1,v4,v2−Mv1,v1,v1,v2,v4 −Mv4,v4,v2,v1,v2−Mv4,v4,v2,v2,v1

+Mv2,v1,v1,v4,v4 −2Mv1,v2,v4,v4,v4+Mv2,v4,v4,v1,v4+Mv2,v4,v4,v4,v1

+Mv2,v1,v4,v4,v4 −2Mv1,v2,v2,v4,v4+Mv4,v4,v1,v1,v2+Mv4,v4,v1,v2,v1

−Mv1,v1,v4,v4,v2 −Mv2,v1,v1,v1,v4 −Mv2,v1,v1,v4,v1−Mv1,v1,v2,v4,v4

+Mv1,v2,v2,v4,v2 +Mv1,v1,v2,v4,v2 .
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Examples of reconstitution identities
Up to length 2, the operator induc is trivial, but the number Nr of terms
involved increases sharply thereafter. Thus:167

N1=1,N2=2,N3∼7,N4∼38,N5∼273,N6∼1837,N7∼15199,etc . . .

Here are the formulas up to length 4, for the case of u-constant bimoulds
(and after removal of the ui ’s):

(induc.M)v1 := Mv1; (induc.M)v1,v2 := Mv1,v2

(induc.M)v1,v2,v3 :=+ Mv1,v2,v3 + Mv1,v1,v2 + Mv1,v2,v2 + Mv1,v3,v1

+ Mv3,v1,v3 + Mv2,v2,v3 + Mv2,v3,v3

(induc.M)v1,v2,v3,v4:=+Mv1,v2,v3,v4+Mv1,v1,v2,v3+Mv1,v2,v2,v3+Mv1,v2,v3,v3

+Mv1,v4,v1,v2+Mv1,v2,v4,v2+Mv1,v4,v2,v4+Mv4,v1,v4,v2

+Mv4,v1,v2,v4+Mv3,v4,v1,v4+Mv3,v1,v3,v4+Mv1,v3,v1,v4

+Mv3,v1,v4,v1+Mv1,v3,v4,v1+Mv2,v3,v4,v4+Mv2,v3,v3,v4

+Mv2,v2,v3,v4+Mv1,v1,v1,v2+Mv1,v1,v3,v1+Mv1,v4,v1,v1

+Mv1,v2,v2,v2+Mv2,v2,v2,v3+Mv2,v2,v4,v2+Mv3,v1,v3,v3

+Mv2,v3,v3,v3+Mv3,v3,v3,v4+Mv4,v4,v1,v4+Mv4,v2,v4,v4

+Mv3,v4,v4,v4+Mv1,v1,v2,v2+Mv3,v3,v1,v1+Mv1,v3,v1,v3

+Mv1,v1,v4,v4+Mv4,v1,v4,v1+Mv2,v2v,v3,v3+Mv4,v4,v2v,v2

+Mv2,v4,v2,v4+Mv3,v3,v4,v4 .

11.7 Multizeta cleansing: elimination of odd degrees

We shall now construct a simple algorithm for expressing every multizeta
of odd degree as a finite sum, with rational coefficients, of multizetas of
even degree.168

We take as our starting point the symmetrel multitangent mould Te•(z)
and its generating function, the symmetril mould Tig•(z), with definitions

167 Recall that the expression of induc is unique only modulo the alternality relations. Hence the
sign ∼ to caution that there is at least one expression of induc with the number Nr of summands
mentioned. In any case, the minimal number N min

r cannot be significantly less.

168 Recall that the degree d := s − r of a multizeta is defined as its total weight s minus its length
(or depth) r .
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transparently patterned on those of Ze• and Zig•:

Te(
ε1
s1

,...,
,...,

εr
sr

)
(z) :=

∑
+∞>n1>...>nr >−∞

i=r∏
i=1

(
e−ni

i (ni+z)−s1

)
(11.79)

Tig(
ε1
v1

,...,
,...,

εr
v1

)
(z) :=

∑
si≥1

Te(
ε1
s1

,...,
,...,

εr
sr

)
(z) v

s1−1
1 . . . vsr−1

r . (11.80)

The next step is to express the multitangents in terms of multizetas. Here,
we have the choice between an uninflected formula which leaves z spread
over all terms, and an inflected formula which concentrates z in a few
elementary central terms:

Tigw(z)=
∑

w=w+w−
Zigw+

(z)viZigw−
(z)−

∑
w=w+w0w

−
Zigw+

(z)Piw0(z)viZigw−
(z)

Tigw(z)=Rigw −
∑

w=w+w0w
−

Zigw+� Qii�w0�(z) viZig�w−
.

The ingredient Rig• in the above formulas is defined as follows:

Rigw1,...,wr := 0 for r = 0 or r odd

Rigw1,...,wr := (π i)r

r ! δ(u1) . . . δ(ur ) for r even > 0

with δ denoting as usual the discrete dirac.169 The length-1 bimoulds
Pi• and Qii• := Qii•π denote the polar and bitrigonometric flexion units
of Section 3.2, and vi Zig• := neg.pari.anti.Zig•. Lastly, the bimoulds
Pi•(z), Qii•(z), Zig•(z), vi Zig•(z) are deduced from Pi•, Qii•, Zig•,
vi Zig• under the change vi → vi − z (∀i).

By equating our uninflected and inflected expressions of Tig•(z) and
then setting z = 0, we get the remarkable identity:∑

w=w+w−
Zigw+

viZigw− −
∑

w=w+w0w
−

Zigw+
Piw0 viZigw−

= Rigw −
∑

w=w+w0w
−

Zigw+� Qii�w0� viZig�w−
(∀w)

(11.81)

where the factor sequences w± can be ∅. As a consequence, (11.81) is of
the form:

Zigw1,...,wr + (−1)r Zig−wr ,...,−w1 = “shorter terms”. (11.82)

169 δ(0) := 1 and δ(t) := 0 for t �= 0.
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But Zig• is symmetril and therefore mantir-invariant (see Section 3.4),
which again yields an identity of the form:

Zig−w1,...,−wr + (−1)r Zig−wr ,...,−w1 = “shorter terms”. (11.83)

If we now take ‘colourless’ indices wi , i.e. indices wi := (
0
vi

), then
subtract (11.83) from (11.82), and calculate therein the coefficient of∏

v
si−1
i , we find:

(1− (−1)d)Ze(
0
s1

,...,
,...,

0
sr

)=“shorter terms”
(

d :=
∑

si − r
)

(11.84)

with quite explicit ‘shorter terms’.
We have here a very effective algorithm for the ‘elimination’ of all un-

coloured multizetas ζ(s1, . . . , sr ) of odd degree d. The argument extends

to the case of bicoloured multizetas Ze(
ε1
s1

,...,
,...,

εr
sr

) with εi ∈ 1
2Z/Z, since

we then have εi ≡ −εi . In the case of more than two colours, how-
ever, equation (11.84) becomes a singular linear system, which allows
the elimination of most, but not all, multizetas of odd degree.

Remark 1: elimination of irreducibles other than π2.
A simple argument shows that identity (11.81) still holds if we neglect all
irreducibles other than π2, i.e. if we retain only the first factor ZigI

• in the
trifactorisation (9.1) of Zig•. But since Zig•I is invariant under pari.neg,
we clearly have viZigI = anti.ZigI

•, so that (11.81) becomes:

mu(ZigI
•, 1•−Pi•, anti.ZigI

•) = Rig• − giwat(ZigI
•).Qi•. (11.85)

Remark 2: separation of π2 from the rationals.
Actually, we may retain in (11.85) only the first two factors of ZigI

• (see
(9.2)) namely gira(til•, sripil•) with sripil• := invgira(pil•). Further-
more, since in (11.85) the ‘trigometric’ part (which carries π2 ) and the
‘polar’ part (which carries only rationals) do not mix, (11.85) leads to
two distinct identities, to wit:

mu(sripil•, anti.sripil•) = mu(sripil•, Pi•, anti.sripil•) (11.86)

mu(til•, anti.til•) = Rig• − giwat(til•).Qi•. (11.87)

Remark 3: universalisation.
Identity (11.86) admits an automatic extension to all exact units, namely:

mu(esz•, anti.esz•) = mu(esz•, E
•, anti.esz•). (11.88)
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Identity (11.87), which involves the approximate unit Qi•, does not admit
extensions to all approximate units,170 but it does possess a restriction to
the polar unit Pi• 171 and hence an extension to all exact units:

mu(ess• , anti.ess•) = −giwat(ess•).E•. (11.89)

11.8 GARIse and the two separation lemmas

Let E be an exact flexion unit and O its conjugate unit. Reverting to the
notations of Section 4.1, with any f (x) := x +∑

1≤r xr+1 in the group
GIFF, we associate its image Se

•
f in the group GARI<se> ⊂ GARIas.

Being the exponential of an alternal bimould of ARI, Se
•
f is automatically

symmetral but its swappee Sö
•
f := swap.Se

•
f is only exceptionnally so.

It does possess, however, two remarkable separation properties, which
may be viewed as weakened forms of symmetrality. Indeed, if we set

gepar.Se
•
f := mu(anti.swap.Se

•
f , swap.Se

•
f ) (11.90)

hepar.Se
•
f :=

∑
1≤r≤r(•)

pusk .logmu.swap.Se
•
f (11.91)

then both gepar.Se
•
f and hepar.Se

•
f turn out to be expressible as simple,

uninflected products of the conjugate unit O. More precisely:

gepar.Se
w1,...,wr
f :=a∗r O

w1 . . . Owr with a∗r := (r+1)ar (11.92)

hepar.Se
w1,...,wr
f :=a∗∗r O

w1 . . . Owr with
∑
1≤r

a∗∗r xr := x

2

f ′′(x)

f ′(x)
. (11.93)

Remark 1: The definition of hepar involves logmu, which is of course
the logarithm relative to the mu-product. It should be noted, however,
that after simplification all rational coefficients disappear from the right-
hand side of (11.91) and the only coefficients left are ±1. In fact, the
right-hand side of (11.91) is none other than the left-hand side of (2.75).

Remark 2: If Sö f were exactly symmetral, it would verify the two
subsymmetries implied by symmetrality, namely gantar-invariance (see
(2.74)) and gus-neutrality (see (2.75)) and we would have

mu(pari.anti.Sö
•
f , Sö

•
f ) ≡ 1•

and
∑

1≤r≤r(•)
pusk .logmu.Sö

•
f ≡ 0•mod BIMU1.

170 It has no simple counterpart with (Qa•, tal•) in place of (Qi• , til•).
171 After automatic elimination of the Rig• part.
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As it is, we merely have the separation properties (11.92) and (11.93),
with the addded twist that separ involves mu(anti.Sö

•
f , Sö

•
f ) rather than

mu(pari.anti.Sö
•
f , Sö

•
f ).

Remark 3: The simplest way to prove the separation identities is to con-
sider the infinitesimal dilator f#(x) = ∑

1≤r ηr xr+1 of f and to form its
image Te

•
f =

∑
1≤r ηrre

•
r in ARI. One of the defining identities for Se

•
f

then reads:

r(•) Se
•
f = preari(Se

•
f , Te

•
f ) = preawi(Se

•
f , Te

•
f ). (11.94)

Under the swap transform this becomes:172

r(•) Sö
•
f = preira(Sö

•
f , Tö

•
f ) = preiwa(Sö

•
f , Tö

•
f ). (11.95)

If we then set:

Ö
w1,...,wr∗ := a∗r O

w1 . . . O
wr ; Ö

w1,...,wr∗∗ := a∗∗r O
w1 . . . O

wr (11.96)

we readily sees that (11.92) is equivalent to the rather elementary identity:

r(•) Ö
•
∗= iwat(Tö

•
f ).Ö

•
∗ +mu(Ö•∗, Tö

•
f )+mu(anti.Tö

•
f , Ö

•
∗). (11.97)

The proof of the (11.93) follows the same pattern, with Ö∗ replaced by
Ö∗∗, but is less direct.

Remark 4: In view of these two separation identities (11.92),(11.93),
which involve respectively the coefficients a∗r and a∗∗r of f ′ and f ′′/ f ′,
i.e. of the differential operators of first and second order that give rise
to simple composition laws, one may speculate about the existence of a
third separation identity that would involve the coefficients a∗∗∗r of the
Schwarzian derivative of f . At the moment no such identity is known,
but it may be pointed out that the formulas in Table 3 below also fall into
the broad category of separation identities: see Remark 1 in Section 12.3.

11.9 Bisymmetrality of ess•: conceptual proof

The bimould ess• of Section 4.2 is a special element Se
•
f of GARI<se>

whose preimage f and dilator f# are given by:

f (x) := 1− e−x , f#(x) := 1+ x − ex ,
x

2

f ′′(x)

f ′(x)
:= − x

2
. (11.98)

172 The reasons why in this particular instance one may replace the pair ari/ira by the more conve-
nient pair awi/iwa were explained in Section 4.1.
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As a consequence, the two separation lemmas of Section 11.8 yield:

mu(anti.öss•, öss
•) = expmu(−O

•) (11.99)∑
1≤k≤r

pusk .logmu.öss• = −1

2
O
•. (11.100)

Both relations exhibit the only possibly form compatible with öss
• being

symmetral, but we aren’t quite there yet. To collect more information, let
us harken back to the relation that defines öss

• in terms of its dilator ött
•.

It reads:
r(•) öss

• = preiwa(öss•, ött•) (11.101)

with

ött
• := −

∑
1≤r

1

(2 r+1)! rö
•
2r = −

∑
1≤r

1

(2 r+1)! swap.re•2r . (11.102)

Let us further mu-factorise öss
• as in (4.46), with the same elementary

right factor öss
•
� but with a left factor öss

•
�� whose properties are a priori

unknown:

öss
•
� = mu(öss•��, öss

•
�) with öss

•
� := expmu

(
−1

2
O
•
)

. (11.103)

Elementary calculations show that (11.101) transforms into:

r(•) öss
•
�� = preiwa(öss•��, ött

•
��)+

1

2
mu(öss•��, ött

•
�) (11.104)

with

ött
•
� := +

∑
1≤r

1

(2 r)! mu(

2 r times︷ ︸︸ ︷
O
•, . . . , O•) = coshmu(O•) (11.105)

ött
•
�� := −

∑
1≤r

1

(2 r+1)! rö
•
2r . (11.106)

But since ött
•
� and ött

•
�� have only non-vanishing components of even

length, (11.104) shows that the same must hold for öss
•
��. Reverting to

the factorisation (11.101) and the separation identity (11.99) and using
the invariance of öss

•, we deduce from all this:

mu(pari.anti.öss• , öss
•) = 1• (11.107)



195 The flexion structure and dimorphy . . .

(11.107) expresses the gantar-invariance of öss
• and (11.100) expresses

its gus-neutrality. In other words, öss
• possesses the two fundamental

subsymmetries implied by symmetrality. Yet this still doesn’t imply full
symmetrality. Fortunately, two crucial facts save the situation:
(i) since öss

• has a swappee ess• that is obviously symmetral, and there-
fore gantar-invariant, the gantar-invariance of öss

•, in view of the fac-
torisation (4.46), also implies its invariance under neg.gush or, what here
amounts to the same, pari.gush;
(ii) between themselves, the neg.gush-invariance and gus-neutrality of
öss
• ensure its symmetrality.173

This fact is akin to the analogous implication valid in the algebras:

{pus-neutrality + push- or neg-push-invariance} ⇒ {alternality}.

Ultimately, it rests on the fact that pus and push, interpreted in the
short and long notations,174 amount to circular permutations of order r
and r+1 respectively, which together generate the full symmetric group
Sr+1. More precisely, each σ ∈ Sr+1 can be written as a product
αm1βn1 . . . αmr−1βnr−1 with α = pus and β = push.

11.10 Bisymmetrality of ess•: combinatorial proof

This alternative proof uses the inductive expression of öss
• in terms of its

dilators ött
• (direct) and ödd

• (inverse). Explicitely:

r(•) öss
• = +preiwa(öss•, ött•) (11.108)

r(•) öss
• = −giwa(ödd•, öss•) (11.109)

with

ött
• := swap.ett• and ett

• := −
∑
1≤r

1

(r+1)! re
•
r (11.110)

ödd
• := swap.edd• and edd

• := +
∑
1≤r

1

r (r+1)
re
•
r . (11.111)

173 Which gantar-invariance + gus-neutrality do not!

174 See at the beginning of Section 5.1, right before (5.2).
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These identities flow from the fact that the preimage of ess• in GIFF is the
diffeo f (x) := 1− e−x with a reciprocal diffeo f −1(x) = − log(1− x).
The corresponding dilators therefore admit the expansions

f#(x) = 1+ x − ex = −
∑
1≤r

1

(r+1)! x
r+1 (11.112)

( f −1)#(x) = x + (1− x) log(1− x) = +
∑
1≤r

1

r (r+1)
xr+1 (11.113)

which provide us with the defining coefficients of ett• and edd•.
On the face of it, relation (11.108), being linear in öss

•, would seem
a more promising starting point than relation (11.109), whose right-hand
side is heavily non-linear in öss

•. This appearance is deceptive, though,
because the bimould ett• possesses only a simple symmetry (alternal),
unlike the bimould edd•, which possesses a double one: it is alternal,
with an O-alternal swappee, as already observed in Section 4.1. Indeed,
edd• coincides with the bimould sre• of (4.6). We shall therefore take
our stand on (11.109) rather than (11.108). But first we require a general
bimould identity.

For any two bimoulds S•, D• in BIMU∗×BIMU∗, i.e. such that S∅ = 1
and D∅ = 0, we introduce the following abbreviations

S{{w
1;w2}} := −Sw1

Sw2 +
∑

w∈sha(w1;w2)

Sw (11.114)

D[[w
1;w2]] :=

[ ∑
w∈sho(w1;w2)

Dw

]
O•=−2 S•1

(11.115)

S{w} :=
[

mu(S•, anti.S•)+ giwat(S•).O•
]

O•=−2 S•1

. (11.116)

In all the above, S•1 denotes the projection of S• onto BIMU1, and the
interpretation of the three symbols is as follows:
(i) S{{• ; •}} measures the failure of S• to be symmetral;
(ii) D[[• ; •]]measures the failure of D• to be O-alternal, with O-alternality
defined as in Section 3.4, but after replacement of the flexion unit O• by
−2S•1 , which is not required to be a unit!;
(iii) S{•} measure the failure of S• to verify a property closely related to
gantar-invariance, which is a subsymmetry of symmetrality.
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Thus, for r(w1) = r(w2) = 1 and for any w, we get (mark the signs
and the position of anti):

S{{(w1) ; (w2)}} =−Sw1 Sw2 + Sw1,w2 + Sw2,w1

D[[(w1) ; (w2)]] =Dw1,w2 + Dw2,w1 + 2 Dw1� S�w2 + 2 Dw2� S�w1

S{w} =
∑

w1.w2 = w

Sw1
(anti.S)w2 − 2

∑
w1.w0.w

2 = w

Sw1�S�w0�(anti.S)�w2
.

We now require the following lemma:

If the bimoulds S•, D• are related under the identity:175

−r(•) S• = giwa(D•, S•) (11.117)

then for any two w1, w2 the identity holds:

0 = (r1 + r2) S{{w
1;w2}} + D[[w

1;w2]] +�1 +�2 + �3 (11.118)

(i) with a sum �1 linear in earlier terms D[[w
′;w′′]] and multilinear in

earlier terms Sw∗
, “earlier” meaning that r ′ + r ′′ and r∗ are always

< r1 + r2;
(ii) with a sum �2 bilinear in earlier terms S{{w

′;w′′}}, Dw′′′
and multilinear

in earlier terms Sw∗
;

(iii) with a sum �3 bilinear in earlier terms S{w
′}, Dw′′

and multilinear in
earlier terms Sw∗

.
Moreover, in all three sums, the coefficients in front of the monomials
made up of ‘earlier’ terms are always equal to +1.

The way to prove (11.118) is:
(i) to start from the identity

(r1+r2) S{{w
1 ;w2}} = −(r1 Sw1

) Sw2 − Sw1
(r2 Sw2

)+
∑

w1.w2 = w

(r1+r2) Sw;

(ii) to replace therein all terms of the form r(•) S• by −giwa(D•, S•);
(iii) to replace (- this clearly is the crucial step -) the usual definition of
giwa for totally ordered sequences w by an analogous expression valid

175 We recall that GIWA is the unary subgroup of GAXI relative to the involution MR = anti.ML .
Under normal circumstances, giwa(A•, B•) has its two arguments A•, B• in BIMU∗. Here, how-
ever, we have to consider giwa(D•, S•), with a first argument in BIMU∗, but we can take recourse
to the usual definition giwa(D•, S•) := mu(giwat(S•).D•, S•), which still makes perfect sense.
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for sequences w carrying a weaker, arborescent order176 – in the present
instance, for sequences w consisting of two totally ordered, but mutually
non comparable branches w1, w2.

Thus, in the (very elementary) case r1 = 1, r2 = 2, we find

0 = (1+ 2) S{{(
u1
v1

);( u2
v2

,
,

u3
v3

)}} + D[[(
u1
v1

);( u2
v2

,
,

u3
v3

)]] +�1 +�2 +�3

with

�1= D[[(
u1
v1

);( u2
v2

)]] S(
u3
v3

) + D[[(
u1
v1

);( u23
v3

)]] S(
u2

v2:3 ) + D[[(
u1
v1

);( u23
v2

)]] S(
u3

v3:2 )

�2= S{{(
u1
v1

);( u3
v3

)}} S(
u2
v2

) + S{{(
u1

v1:3 );( u2
v2:3 )}} S(

u123
v3

) + S{{(
u1

v1:2 );( u3
v3:2 )}} S(

u123
v2

)

�3= S{
u2

v2:1
,
,

u3
v3:1 } T (

u123
v1

)
.

At this point, all we have to do is:
(i) replace S• by öss

• and D• by ödd
• in (11.118);

(ii) observe that since in this case O• = −2 ödd
•
1, all terms D[[• , •]] auto-

matically vanish, since D• ≡ ödd
• is indeed O-alternal;

(iii) observe that the identities S{•} = 0 (up to length r−1) are an easy
consequence of the symmetrality of S• ≡ öss

• (up to length r−1) and
of the factorisation (4.46). Besides, these identities S{•} = 0 are also ca-
pable of an elementary, direct derivation, as we saw towards the end of
Section 11.7: see (11.89).

Altogether, the identity (11.118) shows that if öss
• is symmetral up to

length r−1, it is automatically symmetral up to length r . �
There exist several other strategies for establishing the symmetrality

of öss
•, all of more or less equal length,177 but apparently no completely

elementary proof.

12 Tables, index, references

12.1 Table 1: basis for Flex(E)

Here are the bases of the first cells of the free monogenous structure
⊕Flexr (E) generated by a general E subject only to one of the four pos-
sible parity constraints (3.1): it doesn’t matter which. By retaining only

176 This, of course, does not apply for giwa alone: all flexion operations without exception extend
to the case of arborescent sequences w, provided we suitably redefine the product mu and the four
flexions �, �, �, � in accordance with the new order.

177 Thus, there exists a heavily calculational proof based on formula (12.6) of Section 12.3.
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the first (2 r)!
(r+1)!r ! elements, one also obtains bases for the eumonogenous

structure ⊕Flexr (E) generated by an exact flexion unit E.

e
w1
1,1 := E

(
u1
v1

) ‖
e
w1,w2
2,1 := E

(
u12
v2

)
E

(
u1

v1:2 ) ‖ e
w1,w2
2,3 := E

(
u1
v1

)
E

(
u2
v2

)

e
w1,w2
2,2 := E

(
u12
v1

)
E

(
u2

v2:1 ) ‖
e
w1,w2,w3
3,1 := E

(
u123
v3

)
E

(
u12
v2:3 )

E
(

u1
v1:2 ) ‖ e

w1,w2,w3
3,6 := E

(
u123
v1

)
E

(
u2

v2:1 )
E

(
u3

v3:1 )

e
w1,w2,w3
3,2 := E

(
u123
v3

)
E

(
u12
v1:3 )

E
(

u2
v2:1 ) ‖ e

w1,w2,w3
3,7 := E

(
u123
v3

)
E

(
u1

v1:3 )
E

(
u2

v2:3 )

e
w1,w2,w3
3,3 := E

(
u123
v2

)
E

(
u1

v1:2 )
E

(
u3

v3:2 ) ‖ e
w1,w2,w3
3,8 := E

(
u23
v2

)
E

(
u1
v1

)
E

(
u3

v3:2 )

e
w1,w2,w3
3,4 := E

(
u123
v1

)
E

(
u23
v3:1 )

E
(

u2
v2:3 ) ‖ e

w1,w2,w3
3,9 := E

(
u23
v3

)
E

(
u1
v1

)
E

(
u2

v2:3 )

e
w1,w2,w3
3,5 := E

(
u123
v1

)
E

(
u23
v2:1 )

E
(

u3
v3:2 ) ‖ e

w1,w2,w3
3,10 := E

(
u12
v2

)
E

(
u1

v1:2 )
E

(
u3
v3

)

‖ e
w1,w2,w3
3,11 := E

(
u12
v1

)
E

(
u2

v2:1 )
E

(
u3
v3

)

‖ e
w1,w2,w3
3,12 := E

(
u1
v1

)
E

(
u2
v2

)
E

(
u3
v3

)
.

Here follows the graphic interpretation of the bases, with full lines for the
graphs gi and broken lines for the graphs ga (see Section 3.3).

Figure 12.1. Length r = 1, 2 . Basis vectors {e•1,1} and {e•2,1, e
•
2,2} ∪ {e•2,3} .

Figure 12.2. Length r = 3. Basis vectors {e•3,1, . . . , e
•
3,5} ∪ {e•3,6, . . . , e

•
3,12} .
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e
w1..w4
4,1 =E

(
u1
v1:2)

E
(

u12
v2:3)

E
(

u123
v3:4 )

E
(

u1234
v4

)‖ew1..w4
4,8 =E

(
u1
v1:2)

E
(

u1234
v2

)
E

(
u3
v3:4)

E
(

u34
v4:2)

e
w1..w4
4,2 =E

(
u12
v1:3)

E
(

u2
v2:1)

E
(

u123
v3:4 )

E
(

u1234
v4

)‖ew1..w4
4,9 =E

(
u1
v1:2)

E
(

u1234
v2

)
E

(
u34
v3:2)

E
(

u4
v4:3)

e
w1..w4
4,3 =E

(
u1
v1:2)

E
(

u123
v2:4 )

E
(

u3
v3:2)

E
(

u1234
v4

)‖ew1..w4
4,10 =E

(
u1234

v1
)
E

(
u2
v2:3)

E
(

u23
v3:4)

E
(

u234
v4:1 )

e
w1..w4
4,4 =E

(
u123
v1:4 )

E
(

u2
v2:3)

E
(

u23
v3:1)

E
(

u1234
v4

)‖ew1..w4
4,11 =E

(
u1234

v1
)
E

(
u23
v2:4)

E
(

u3
v3:2)

E
(

u234
v4:1 )

e
w1..w4
4,5 =E

(
u123
v1:4 )

E
(

u23
v2:1)

E
(

u3
v3:2)

E
(

u1234
v4

)‖ew1..w4
4,12 =E

(
u1234

v1
)
E

(
u2
v2:3)

E
(

u234
v3:1 )

E
(

u4
v4:3)

e
w1..w4
4,6 =E

(
u1
v1:2)

E
(

u12
v2:3)

E
(

u1234
v3

)
E

(
u4
v4:3) ‖ew1..w4

4,13 =E
(

u1234
v1

)
E

(
u234
v2:1 )

E
(

u3
v3:4)

E
(

u34
v4:2)

e
w1..w4
4,7 =E

(
u12
v1:3)

E
(

u2
v2:1)

E
(

u1234
v3

)
E

(
u4
v4:3) ‖ew1..w4

4,14 =E
(

u1234
v1

)
E

(
u234
v2:1 )

E
(

u34
v3:2)

E
(

u4
v4:3)

e
w1..w4
4,15 =E

(
u1
v1:2)

E
(

u12
v2

)
E

(
u3
v3

)
E

(
u4
v4

) ‖ew1..w4
4,36 =E

(
u12
v1:3)

E
(

u2
v2:1)

E
(

u123
v3

)
E

(
u4
v4

)

e
w1..w4
4,16 =E

(
u12
v1

)
E

(
u2
v2:1)

E
(

u34
v3

)
E

(
u4
v4:3) ‖ew1..w4

4,37 =E
(

u1
v1:2)

E
(

u123
v2

)
E

(
u3
v3:2)

E
(

u4
v4

)

e
w1..w4
4,17 =E

(
u12
v1

)
E

(
u2
v2:1)

E
(

u3
v3

)
E

(
u4
v4

) ‖ew1..w4
4,38 =E

(
u123

v1
)
E

(
u2
v2:1)

E
(

u3
v3:1)

E
(

u4
v4

)

e
w1..w4
4,18 =E

(
u1
v1:2)

E
(

u12
v2

)
E

(
u34
v3

)
E

(
u4
v4:3) ‖ew1..w4

4,39 =E
(

u123
v1

)
E

(
u2
v2:3)

E
(

u23
v3:1)

E
(

u4
v4

)

e
w1..w4
4,19 =E

(
u1
v1:2)

E
(

u12
v2

)
E

(
u3
v3:4)

E
(

u34
v4

) ‖ew1..w4
4,40 =E

(
u1234

v1
)
E

(
u2
v2:1)

E
(

u3
v3:1)

E
(

u4
v4:1)

e
w1..w4
4,20 =E

(
u1
v1

)
E

(
u234

v2
)
E

(
u3
v3:4)

E
(

u34
v4:2) ‖ew1..w4

4,41 =E
(

u1
v1:2)

E
(

u1234
v2

)
E

(
u3
v3:2)

E
(

u4
v4:2)

e
w1..w4
4,21 =E

(
u123

v1
)
E

(
u23
v2:1)

E
(

u3
v3:2)

E
(

u4
v4

) ‖ew1..w4
4,42 =E

(
u1
v1:3)

E
(

u2
v2:3)

E
(

u1234
v3

)
E

(
u4
v4:3)

e
w1..w4
4,22 =E

(
u12
v1

)
E

(
u2
v2:1)

E
(

u3
v3:4)

E
(

u34
v4

) ‖ew1..w4
4,43 =E

(
u1234

v1
)
E

(
u234
v2:1 )

E
(

u3
v3:2)

E
(

u4
v4:2)

e
w1..w4
4,23 =E

(
u1
v1

)
E

(
u2
v2

)
E

(
u3
v3:4)

E
(

u34
v4

) ‖ew1..w4
4,44 =E

(
u1234

v1
)
E

(
u23
v2:1)

E
(

u3
v3:2)

E
(

u4
v4:1)

e
w1..w4
4,24 =E

(
u1
v1

)
E

(
u2
v2

)
E

(
u3
v3

)
E

(
u4
v4

) ‖ew1..w4
4,45 =E

(
u1234

v1
)
E

(
u2
v2:3)

E
(

u23
v3:1)

E
(

u4
v4:1)

e
w1..w4
4,25 =E

(
u1
v1

)
E

(
u2
v2

)
E

(
u34
v3

)
E

(
u4
v4:3) ‖ew1..w4

4,46 =E
(

u1234
v1

)
E

(
u2
v2:4)

E
(

u3
v3:4)

E
(

u234
v4:1 )

e
w1..w4
4,26 =E

(
u1
v1

)
E

(
u2
v2:4)

E
(

u3
v3:4)

E
(

u234
v4

)‖ew1..w4
4,47 =E

(
u1234

v1
)
E

(
u2
v2:1)

E
(

u34
v3:1)

E
(

u4
v4:3)

e
w1..w4
4,27 =E

(
u1
v1

)
E

(
u2
v2:3)

E
(

u23
v3

)
E

(
u4
v4

) ‖ew1..w4
4,48 =E

(
u1234

v1
)
E

(
u2
v2:1)

E
(

u3
v3:4)

E
(

u34
v4:1)

e
w1..w4
4,28 =E

(
u1
v1

)
E

(
u23
v2

)
E

(
u3
v3:2)

E
(

u4
v4

) ‖ew1..w4
4,49 =E

(
u1
v1:4)

E
(

u2
v2:4)

E
(

u3
v3:4)

E
(

u1234
v4

)

e
w1..w4
4,29 =E

(
u1
v1

)
E

(
u2
v2:3)

E
(

u23
v3:4)

E
(

u234
v4

)‖ew1..w4
4,50 =E

(
u123
v1:4 )

E
(

u2
v2:1)

E
(

u3
v3:1)

E
(

u1234
v4

)

e
w1..w4
4,30 =E

(
u1
v1

)
E

(
u23
v2:4)

E
(

u3
v3:2)

E
(

u234
v4

)‖ew1..w4
4,51 =E

(
u1
v1:3)

E
(

u2
v2:3)

E
(

u123
v3:4 )

E
(

u1234
v4

)

e
w1..w4
4,31 =E

(
u1
v1

)
E

(
u2
v2:3)

E
(

u234
v3

)
E

(
u4
v4:3) ‖ew1..w4

4,52 =E
(

u1
v1:4)

E
(

u23
v2:4)

E
(

u3
v3:2)

E
(

u1234
v4

)

e
w1..w4
4,32 =E

(
u1
v1

)
E

(
u234

v2
)
E

(
u3
v3:2)

E
(

u4
v4:2) ‖ew1..w4

4,53 =E
(

u1
v1:4)

E
(

u2
v2:3)

E
(

u23
v3:4)

E
(

u1234
v4

)

e
w1..w4
4,33 =E

(
u1
v1

)
E

(
u234

v2
)
E

(
u34
v3:2)

E
(

u4
v4:3) ‖ew1..w4

4,54 =E
(

u12
v1:4)

E
(

u2
v2:1)

E
(

u3
v3:4)

E
(

u1234
v4

)

e
w1..w4
4,34 =E

(
u1
v1:3)

E
(

u2
v2:3)

E
(

u123
v3

)
E

(
u4
v4

) ‖ew1..w4
4,55 =E

(
u1
v1:2)

E
(

u12
v2:4)

E
(

u3
v3:4)

E
(

u1234
v4

)

e
w1..w4
4,35 =E

(
u1
v1:2)

E
(

u12
v2:3)

E
(

u123
v3

)
E

(
u4
v4

) ‖.
We end with bases for the first cells of the structures ⊕Flexr (E) and
⊕Flexr (O) for an approximate flexion unit E verifying the same tripartite
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equation (3.30) as Qaac and an approximate flexion unit O verifying the
same tripartite equation (3.31) as Qiic. Here, d denotes the discrete dirac
multiplied by c. In other words: dt := c δ(t).

ed
w1
1 =E

(
u1
v1

) ‖odw1
1 =O

(
u1
v1

)

ed
w1,w2
1 =E

(
u1
v1:2)

E
(

u12
v2

) ‖odw1,w2
1 =O

(
u1
v1:2)

O
(

u12
v2

)

ed
w1,w2
2 =E

(
u12
v1

)
E

(
u2
v2:1) ‖odw1,w2

2 =O
(

u12
v1

)
O

(
u2
v2:1)

ed
w1,w2
3 =dv1 dv2 ‖odw1,w2

3 =du1 du2

ed
w1..w3
1 =E

(
u1
v1:2)

E
(

u12
v2:3)

E
(

u123
v3

) ‖odw1..w3
1 =O

(
u1
v1:2)

O
(

u12
v2:3)

O
(

u123
v3

)

. . . . . . . = . . . . . . . . . . . . . . . . . . ‖ . . . . . . . = . . . . . . . . . . . . . . . . . . .

ed
w1..w3
5 =E

(
u123

v1
)
E

(
u23
v2:1)

E
(

u3
v3:2) ‖odw1..w3

5 =O
(

u123
v1

)
O

(
u23
v2:1)

O
(

u3
v3:2)

ed
w1..w3
6 =E

(
u1
v1

)
dv2 dv3 ‖odw1..w3

6 =O
(

u1
v1

)
du2 du3

ed
w1..w3
7 =E

(
u2
v2

)
dv1 dv3 ‖odw1..w3

7 =O
(

u1
v1:2)

du12 du3

ed
w1..w3
8 =E

(
u3
v3

)
dv1 dv2 ‖odw1..w3

8 =O
(

u3
v3:2)

du1 du23

ed
w1..w3
9 =E

(
u123

v1
)
dv2:1 dv3:1 ‖odw1..w3

9 =O
(

u3
v3

)
du1 du2

ed
w1..w4
1 =E

(
u1
v1:2)

E
(

u12
v2:3)

E
(

u123
v3:4)E

(
u1234

v4
)‖odw1..w4

1 =D
(

u1
v1:2)

D
(

u12
v2:3)

D
(

u123
v3:4 )

D
(

u1234
v4

)

. . . . . . . = . . . . . . . . . . . . . . . . . . . . . . . . ‖ . . . . . . . = . . . . . . . . . . . . . . . . . . . . . . . . . .

ed
w1..w4
14 =E

(
u1234

v1
)
E

(
u234
v2:1 )

E
(

u34
v3:2)

E
(

u4
v4:3) ‖odw1..w4

14 =O
(

u1234
v1

)
O

(
u234
v2:1 )

O
(

u34
v3:2)

O
(

u4
v4:3)

ed
w1..w4
15 =E

(
u1
v1

)
E

(
u3
v3

)
dv2 dv4 ‖odw1..w4

15 =O
(

u1
v1

)
O

(
u3
v3:2)

du23 du4

ed
w1..w4
16 =E

(
u1
v1

)
E

(
u4
v4

)
dv2 dv3 ‖odw1..w4

16 =O
(

u1
v1

)
O

(
u4
v4:3)

du34 du2

ed
w1..w4
17 =E

(
u2
v2

)
E

(
u4
v4

)
dv1 dv3 ‖odw1..w4

17 =O
(

u2
v2:3)

O
(

u4
v4

)
du23 du1

ed
w1..w4
18 =E

(
u12
v2

)
E

(
u1
v1:2)

dv3 dv4 ‖odw1..w4
18 =O

(
u1
v1:2)

O
(

u4
v4

)
du12 du3

ed
w1..w4
19 =E

(
u12
v1

)
E

(
u2
v2:1)

dv3 dv4 ‖odw1..w4
19 =O

(
u2
v2:1)

O
(

u12
v1

)
du3 du4

ed
w1..w4
20 =E

(
u23
v3

)
E

(
u2
v2:3)

dv1 dv4 ‖odw1..w4
20 =O

(
u1
v1:2)

O
(

u12
v2

)
du3 du4

ed
w1..w4
21 =E

(
u23
v2

)
E

(
u3
v3:2)

dv1 dv4 ‖odw1..w4
21 =O

(
u4
v4:3)

O
(

u34
v3

)
du1 du2

ed
w1..w4
22 =E

(
u34
v4

)
E

(
u3
v3:4)

dv1 dv2 ‖odw1..w4
22 =O

(
u3
v3:4)

O
(

u34
v4

)
du1 du2

ed
w1..w4
23 =E

(
u34
v3

)
E

(
u4
v4:3)

dv1 dv2 ‖odw1..w4
23 =O

(
u1
v1:2)

O
(

u3
v3:4)

du12 du34

ed
w1..w4
24 =E

(
u1234

v4
)
E

(
u1
v1:4)

vdv2:4 dv3:4 ‖odw1..w4
24 =O

(
u1
v1:4)

O
(

u1234
v4

)
du2 du3

ed
w1..w4
25 =E

(
u1234

v3
)
E

(
u2
v2:3)

dv1:3 dv4:3 ‖odw1..w4
25 =O

(
u4
v4:1)

O
(

u1234
v1

)
du2 du3

ed
w1..w4
26 =E

(
u1234

v2
)
E

(
u3
v3:2)

dv4:2 dv1:2 ‖odw1..w4
26 =O

(
u2
v2:1)

O
(

u12
v1:3)

du123 du4

ed
w1..w4
27 =E

(
u1234

v1
)
E

(
u4
v4:1)

dv3:1 dv2:1 ‖odw1..w4
27 =O

(
u1
v1:2)

O
(

u12
v2:3)

du123 du4

ed
w1..w4
28 =E

(
u1234

v4
)
E

(
u123
v1:4 )

dv2:1 dv3:1 ‖odw1..w4
28 =O

(
u34
v4:2)

O
(

u3
v3:4)

du234 du1

ed
w1..w4
29 =E

(
u1234

v1
)
E

(
u234
v4:1 )

dv3:4 dv2:4 ‖odw1..w4
29 =O

(
u34
v3:2)

O
(

u4
v4:3)

du234 du1

od
w1..w4
30 =dv1 dv2 dv3 dv4 ‖odw1..w4

30 =du1 du2 du3 du4 .
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12.2 Table 2: basis for Flexin(E)

In Section 4.1 we introduced three series of bimoulds {me•r }, {ne•r }, {re•r },
each of which, under mu-multiplication, produces a linear basis for
Flexin(E). For the first two series, the inductive definitions me•r :=
amit(me•r−1).E

• and ne•r := anit(ne•r−1).E
• straightaway generate atoms

me
(

u1
v1

,...,
,...,

ur
vr

)

r = E
(

u1
v1:2 )

E
(

u1,2
v2:3 )

. . . E
(

u1,..,r
vr

) (12.1)

ne
(

u1
v1

,...,
,...,

ur
vr

)

r = E
(

u1,...,r
v1

)
E

(
u2,...,r
v2:1 )

. . . E
(

ur
vr :r−1

)
(12.2)

in all cases, i.e. whether E is a flexion unit or not. Not so with the
more important – because alternal – third series. Here, the inductive rule
re•r := arit(re•r−1).E

• produces 2r−1 summands. If E is a flexion unit, this
far exceeds the minimal number of atoms required, which is always r .
Moreover, in the polar realisation E = Pi, the mechanical application of
the induction rule produces illusory poles. To remedy these drawbacks,
we may use any one of these three alternative expressions:

re
•
r =

0≤r1∑
r1+r2=r

(−1)r1 r2 mu(ne
•
r1
, me

•
r2
) (12.3)

re
•
r =

0≤r2∑
r1+r2=r

−(−1)r1 r1 mu(ne
•
r1
, me

•
r2
) (12.4)

re
•
r =

0≤r1,r2∑
r1+r2=r

(−1)r1
r2 − r1

2
mu(ne

•
r1
, me

•
r2
) (12.5)

with the convention me•0 = ne•0 := 1. These sums produce indeed the
minimal number of atoms178 and do away with illusory poles, but they
are of course valid only if E is a flexion unit. Only the last expression
is left-right symmetric, and renders the alternality of the re•r ‘visually’
obvious.

12.3 Table 3: basis for Flexinn(E)

To produce an explicit basis, we must first express the iterated preari
products Re

•
r of the basic alternal bimoulds re•r , calculated as usual from

left to right:

Re
•
r1
:= re

•
r1

and Re
•
r1,...,rs

:= preari(Re
•
r1,...,rs−1

, re•rs
).

178 Strictly speaking, this applies only to the first two sums. For r odd, the last sum produces a
supererogatory atom.
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Technically, however, it is more convenient to consider the swappees
Rö
•
r := swap.Re

•
r . The formula for expressing them as minimal sums

of inflected atoms may seem forbiddingly complex, but it is still very
useful, and in some contexts even indispensable. It reads:

Rö
•
r1,...,rs

:=
∑

Po
•
(

n1
r1

,...,
,...,

nt
r t )

H r1

n1,n1
. . . H r t

nt ,nt
(12.6)

(i) with a sum extending to all partitions of r = (r1, . . . , rs) into any
number of partial sequences r i , and to all choices of integers ni , subject
only to the following constraints: the internal order of each r i must be
compatible with that of r , whereas the various r i may be positioned in
any order; and the integers ni need only verify r∗i−1 < ni ≤ r∗i with
r∗i := ||r1|| + . . .+ ||r i ||;
(ii) with half-integers ni and integers ni defined by

ni := ni − r∗i − 1
2 with r∗i := ||r1|| + . . .+ ||r i ||

ni := 1+ r∗ − ni with r∗ := ||r1|| + . . .+ ||r t || = r1 + . . .+ rs;
(iii) with inflected atoms of type:179

Po
•
(

n1
r1

,...,
,...,

nt
r t )
:=

∏
1≤i≤t

O

( u1+...+ur∗i
vni −vni+1

) ∏
(

n∗i−1<n≤n∗i
n �= ni

)

O

(
un

vn−vni

) ; (12.7)

(iv) with coefficients H r
n,n given by the sums

H r
n,n :=

∑
r+∪ r−=r

sign(||r+||−n) Fr+(n) Fr−(n) (12.8)

ranging over all partitions r+ ∪ r− of r .
If r+ = (r+1 , . . . , r+p ) and r− = (r−1 , . . . , r−q ), the two factors Fr± are

defined as follows:

Fr+(n) :=(n) (r+2 + r+3 + ..+ r+p − n)(r+3 + ..+ r+p − n) . . . (r+p − n)

Fr−(n) :=(n) (r−2 + r−3 + ..+ r−q + n)(r−3 + ..+ r−q + n) . . . (r−p + n).

If p (respectively q) is 1, then Fr+(n) (resp Fr−(n)) reduces to n.

179 For extreme values of the index i , we must of course set n∗0 := 0 and vnt+1 := 0.
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Lastly, for the extreme partitions (r+, r−) = (r, ∅) or (∅, r), we must
replace the product Fr+(n) Fr−(n) respectively by

Fr,∅(n) :=+n (r2 + r3 + ..+ rp − n)(r3 + ..+ rp − n) . . . (rp − n)

F∅,r(n) :=−n (r2 + r3 + ..+ rq + n)(r3 + ..+ rq + n) . . . (rq + n).

Remark 1: massive pole cancellations.
From formula (12.6) and the shape (12.7) of the atoms involved, we im-
mediately infer a huge difference between the specialisations (E, O) =
(Pa, Pi) and (E, O) = (Pi, Pa). In the first case, the Re

•
r and Rö

•
r are

saddled with a maximal number of poles, namely r (r + 1)/2. In the
second case, they possess far fewer – as little as 2 r − 1. This results
from massive and rather extraordinary compensations that occur during
the iteration of the preari product when applied to the reri . Were we,
however, to subject the separate components of the reri (as given for in-
stance by (12.5)) to preari-iteration, no such compensations would take
place.

Remark 2: bases of Flexinn(E).
On their own, the Re

•
r span, not Flexinn(E), but the larger Flexin(E). If

however we restrict ourselves to combinations of the form180

�
Re
•
{r1,...,rs } :=

∑
{r ′}={r}

�r ′1,...,r ′s Re
•
r ′1,...,r ′s

(� symmetral) (12.9)

then the new �Re
•
{r} do constitute a basis of Flexinn(E), and that too

irrespective of the choice of the symmetral mould �, provided �r1 be �= 0
for all indices r1. Three choices stand out:

�
r1,...,rs
1 := 1/s! (12.10)

�
r1,...,rs
2 :=

∏
1≤i≤s

1

r1 + . . .+ ri
(12.11)

�
r1,...,rs
3 := (−1)s

∏
1≤i≤s

1

ri + . . .+ rs
(12.12)

180 With a sum ranging over all permutations r ′ of the sequence r .)
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(i) The basis �1Re
•
{r} permits the expression of the elements Se

•
f of

GARI<se> in terms of the coefficients εr of the infinitesimal generator
f∗ of f .
(ii) The basis �2Re

•
{r} permits the expression of the elements Se

•
f of

GARI<se> in terms of the coefficients γr of the (direct) infinitesimal dila-
tor f# of f .
(iii) The basis �3Re

•
{r} permits the expression of the elements Se

•
f of

GARI<se> in terms of the coefficients δr of the inverse infinitesimal dila-
tor ( f −1)#.

12.4 Table 4: the universal bimould ess•

essw1 = − 1
2 E

(
u1
v1

)

essw1,w2 = + 1
12 E

(
u1

v1:2 )
E

(
u12
v2

)

+ 1
12 E

(
u1
v1

)
E

(
u2
v2

)

essw1,w2,w3 = − 1
24 E

(
u1

v1:2 )
E

(
u12
v2

)
E

(
u3
v3

)

essw1,w2,w3,w4 = − 1
720 E

(
u1

v1:2 )
E

(
u12
v2:3 )

E
(

u123
v3:4 )

E
(

u1234
v4

)

− 1
240 E

(
u1
v1

)
E

(
u2

v2:3 )
E

(
u23
v3:4 )

E
(

u234
v4

)

− 1
240 E

(
u12
v1

)
E

(
u2

v2:1 )
E

(
u3

v3:4 )
E

(
u34
v4

)

+ 1
180 E

(
u1

v1:2 )
E

(
u12
v2:3 )

E
(

u123
v3

)
E

(
u4
v4

)

+ 1
120 E

(
u1
v1

)
E

(
u2

v2:3 )
E

(
u23
v3

)
E

(
u4
v4

)

− 1
720 E

(
u12
v1

)
E

(
u2

v2:1 )
E

(
u3
v3

)
E

(
u4
v4

)

essw1,w2,w3,w4,w5 = − 1
240 E

(
u1

v1:2 )
E

(
u12
v2

)
E

(
u3

v3:4 )
E

(
u34
v4

)
E

(
u5
v5

)

+ 1
480 E

(
u1

v1:2 )
E

(
u12
v2

)
E

(
u3

v3:4 )
E

(
u34
v4:5 )

E
(

u345
v5

)

+ 1
480 E

(
u1

v1:2 )
E

(
u123
v2

)
E

(
u3

v3:2 )
E

(
u4

v4:5 )
E

(
u45
v5

)

+ 1
1440 E

(
u1

v1:2 )
E

(
u12
v2:3 )

E
(

u123
v3:4 )

E
(

u1234
v4

)
E

(
u5
v5

)

+ 1
1440 E

(
u1

v1:2 )
E

(
u123
v2

)
E

(
u3

v3:2 )
E

(
u4
v4

)
E

(
u5
v5

)
.

For r = 6 or larger, the number of summands increases dramatically.
However, one gets markedly simpler expressions when expanding ess• in
the bases {me•r1,...,rs

}, {ne•r1,...,rs
}, {re•r1,...,rs

} of Flexin(E) ⊂ Flex(E): see
Section 4.1.
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12.5 Table 5: the universal bimould esz•σ
eszw1

σ =
+σ × E

(
u 1
v1 )

eszw1,w2
σ =

+ 1
3 σ (1+ 2 σ) × E

(
u12
v2

)
E

(
u1

v1:2 )

− 1
3 σ (1−σ) × E

(
u12
v1

)
E

(
u2

v2:1 )

eszw1,w2,w3
σ =

+ 1
6 σ (1+ 2 σ) (1+σ) × E

(
u123
v3

)
E

(
u12
v2:3 )

E
(

u1
v1:2 )

− 1
6 σ (1−σ) × E

(
u123
v3

)
E

(
u12
v1:3 )

E
(

u2
v2:1 )

− 1
3 (1−σ) σ 2 × E

(
u123
v2

)
E

(
u1

v1:2 )
E

(
u3

v3:2 )

− 1
6 σ (1−σ) × E

(
u123
v1

)
E

(
u23
v3:1 )

E
(

u2
v2:3 )

+ 1
6 σ (1−σ) × E

(
u123
v1

)
E

(
u23
v2:1 )

E
(

u3
v3:2 )

eszw1,w2,w3,w4
σ =

+ 1
30 σ (1+ 2 σ) (1+σ) (3+ 2 σ) × E

(
u1234

v4
)

E
(

u123
v3:4 )

E
(

u12
v2:3 )

E
(

u1
v1:2 )

− 1
90 σ (1−σ) (9+ 2 σ − 2 σ 2) × E

(
u1234

v4
)

E
(

u123
v3:4 )

E
(

u12
v1:3 )

E
(

u2
v2:1 )

− 1
6 (1−σ) σ 2 × E

(
u1234

v4
)

E
(

u123
v2:4 )

E
(

u1
v1:2 )

E
(

u3
v3:2 )

− 1
90 σ (1−σ) (9+ 2 σ − 2 σ 2) × E

(
u1234

v4
)

E
(

u123
v1:4 )

E
(

u23
v3:1 )

E
(

u2
v2:3 )

+ 1
90 σ (1−σ) (9− 8 σ + 8 σ 2) × E

(
u1234

v4
)

E
(

u123
v1:4 )

E
(

u23
v2:1 )

E
(

u3
v3:2 )

− 1
9 (1−σ) (1+ 2 σ) σ 2 × E

(
u1234

v3
)

E
(

u12
v2:3 )

E
(

u1
v1:2 )

E
(

u4
v4:3 )

+ 1
9 σ 2 (1−σ)2 × E

(
u1234

v3
)

E
(

u12
v1:3 )

E
(

u2
v2:1 )

E
(

u4
v4:3 )

− 1
6 (1−σ) σ 2 × E

(
u1234

v2
)

E
(

u1
v1:2 )

E
(

u34
v4:2 )

E
(

u3
v3:4 )

+ 1
6 (1−σ) σ 2 × E

(
u1234

v2
)

E
(

u1
v1:2 )

E
(

u34
v3:2 )

E
(

u4
v4:3 )

− 1
90 σ (1−σ) (9+ 2 σ − 2 σ 2) × E

(
u1234

v1
)

E
(

u234
v4:1 )

E
(

u23
v3:4 )

E
(

u2
v2:3 )

+ 1
90 σ (1−σ) (9− 8 σ + 8 σ 2) × E

(
u1234

v1
)

E
(

u234
v4:1 )

E
(

u23
v2:4 )

E
(

u3
v3:2 )

+ 1
9 σ 2 (1−σ)2 × E

(
u1234

v1
)

E
(

u234
v3:1 )

E
(

u2
v2:3 )

E
(

u4
v4:3 )

+ 1
90 σ (1−σ) (9− 8 σ + 8 σ 2) × E

(
u1234

v1
)

E
(

u234
v2:1 )

E
(

u34
v4:2 )

E
(

u3
v3:4 )

− 1
90 σ (1−σ) (9+ 2 σ − 2 σ 2) × E

(
u1234

v1
)

E
(

u234
v2:1 )

E
(

u34
v3:2 )

E
(

u4
v4:3 )

.
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12.6 Table 6: the bitrigonometric bimould taal•/tiil•

For simplicity, we drop the c in Qaac and Qiic.

taalw1 = − 1
2 Qaa

(
u1
v1

) ‖ tiilw1 = − 1
2 Qii

(
u1
v1

)

taalw1,w2 = ‖ tiilw1,w2 =
+ 1

12 Qaa
(

u12
v1

)
Qaa

(
u2

v2:1 ) ‖+ 1
6 Qii(

u12
v2 ) Qii

(
u1

v1:2 )

+ 1
6 Qaa

(
u12
v2

)
Qaa

(
u1

v1:2 ) ‖+ 1
12 Qii(

u12
v1 ) Qii

(
u2

v2:1 )

+ 1
8 c2 δv1 δv2 ‖− 1

8 c2 δu1 δu2

taalw1,w2,w3 = ‖ tiilw1,w2,w3 =
− 1

24 Qaa
(

u1
v1:2 )

Qaa
(

u12
v2

)
Qaa

(
u3
v3

) ‖− 1
24 Qii

(
u1

v1:2 )
Qii

(
u12
v2

)
Qii

(
u3
v3

)

− 1
48 c2 Qaa

(
u1
v1

)
δv2δv3 ‖− 1

24 c2 Qii
(

u1
v1:2 )

δu12 δu3

+ 1
24 c2 Qaa

(
u2
v2

)
δv1 δv3 ‖+ 1

24 c2 Qii
(

u2
v2:3 )

δu1δu23

− 1
24 c2 Qaa

(
u3
v3

)
δv1 δv2 ‖+ 1

48 c2 Qii
(

u3
v3

)
δu1 δu2

taalw1,w2,w3,w4 = ‖ tiilw1,w2,w3,w4 =
− 1

720 Qaa
(

u1
v1

)
Qaa

(
u2
v2

)
Qaa

(
u3
v3

)
Qaa

(
u4
v4

) ‖− 1
720 Qii

(
u1

v1:2 )
Qii

(
u12
v2:3 )

Qii
(

u123
v3:4 )

Qii
(

u1234
v4

)

− 1
240 Qaa

(
u1

v1:4 )
Qaa

(
u2

v2:4 )
Qaa

(
u3

v3:4 )
Qaa

(
u1234

v4
) ‖− 1

240 Qii
(

u1
v1

)
Qii

(
u2

v2:3 )
Qii

(
u23
v3:4 )

Qii
(

u234
v4

)

+ 1
240 Qaa

(
u1

v1:3 )
Qaa

(
u2

v2:3 )
Qaa

(
u4

v4:3 )
Qaa

(
u1234

v3
) ‖− 1

240 Qii
(

u12
v1

)
Qii

(
u2

v2:1 )
Qii

(
u3

v3:4 )
Qii

(
u34
v4

)

+ 1
180 Qaa

(
u1

v1:2 )
Qaa

(
u12
v2

)
Qaa

(
u3
v3

)
Qaa

(
u4
v4

) ‖+ 1
180 Qii

(
u1

v1:2 )
Qii

(
u12
v2:3 )

Qii
(

u123
v3

)
Qii

(
u4
v4

)

+ 1
120 Qaa

(
u1

v1:2 )
Qaa

(
u12
v2:4 )

Qaa
(

u3
v3:4 )

Qaa
(

u1234
v4

) ‖+ 1
120 Qii

(
u1
v1

)
Qii

(
u2

v2:3 )
Qii

(
u23
v3

)
Qii

(
u4
v4

)

+ 1
720 Qaa

(
u1

v1:2 )
Qaa

(
u12
v2:3 )

Qaa
(

u4
v4:3 )

Qaa
(

u1234
v3

) ‖− 1
720 Qii

(
u2

v2:1 )
Qii

(
u12
v1

)
Qii

(
u3
v3

)
Qii

(
u4
v4

)

+ 7
720 c2 Qaa

(
u1
v1

)
Qaa

(
u2
v2

)
δv3δv4 ‖− 1

480 Qii
(

u1
v1

)
Qii

(
u4
v4

)
δu2 δu3

+ 7
1440 c2 Qaa

(
u1

v1:2 )
Qaa

(
u12
v2

)
δv3 δv4 ‖− 1

480 Qii
(

u3
v3

)
Qii

(
u4
v4

)
δu1 δu2

− 5
288 c2 Qaa

(
u1
v1

)
Qaa

(
u3
v3

)
δv2 δv4 ‖− 5

288 c2 Qii
(

u2
v2:3 )

Qii
(

u4
v4

)
δu1 δu23

+ 19
1440 c2 Qaa

(
u1
v1

)
Qaa

(
u4
v4

)
δv2 δv3 ‖+ 1

360 c2 Qii
(

u3
v3:4 )

Qii
(

u34
v4

)
δu1 δu2

− 1
480 c2 Qaa

(
u2
v2

)
Qaa

(
u3
v3

)
δv1 δv4 ‖+ 19

1440 c2 Qii
(

u1
v1:2 )

Qii
(

u4
v4

)
δu12 δu3

+ 1
1440 c2 Qaa

(
u2
v2

)
Qaa

(
u4
v4

)
δv1 δv3 ‖− 1

288 c2 Qii
(

u1
v1

)
Qii

(
u3

v3:4 )
δu2 δu34

+ 1
288 c2 Qaa(

u3
v3 ) Qaa(

u4
v4 ) δv1 δv2 ‖− 11

1440 c2 Qii
(

u1
v1

)
Qii

(
u3

v3:2 )
δu23 δu4

− 1
480 c2 Qaa

(
u1234

v2
)

Qaa
(

u1
v1:2 )

δv2:4 δv2:3 ‖+ 1
480 c2 Qii

(
u12
v1

)
Qii

(
u2

v2:1 )
δu3 δu4

− 1
288 c2 Qaa

(
u1234

v1
)

Qaa
(

u2
v2:1 )

δv1:4 δv1:3 ‖+ 1
1440 c2 Qii

(
u1

v1:2 )
Qii

(
u3

v3:4 )
δu12 δu34

+ 11
1440 c2 Qaa

(
u1234

v1
)

Qaa
(

u3
v3:1 )

δv1:4 δv1:2 ‖+ 1
288 c2 Qii

(
u1

v1:2 )
Qii

(
u12
v2:3 )

δu123 δu4

− 1
480 c2 Qaa

(
u1234

v1
)

Qaa
(

u4
v4:1 )

δv1:3 δv1:2 ‖− 1
480 c2 Qii

(
u2

v2:3 )
Qii

(
u23
v3:4 )

δu1 δu234

+ 7
5760 c4 δv1 δv2 δv3 δv4 ‖− 1

640 c4 δu1 δu2 δu3 δu4

12.7 Index of terms and notations

Slight liberties have been taken with the alphabetical order, so as to re-
group similar objects or notions.

ALAL: Section 2.4, Section 5.7, Section 7, Section 8.4.
ASAS: Section 2.8.
al/al, al/al: Section 2.7.
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as/as, as/as: Section 2.8.
ALIL: Section 4.7 Section 5.7.
ASIS: Section 4.7.
ALIIL, ASIIS: Section 4.7
al/il, al/il: Section 5.7.
as/is, as/is: Section 4.7.
alternal: Section 2.4, (2.72).
alternil: Section 3.4.
anti: Section 2.1, (2.6).
ami, amit, ani, anit, ari, arit: Section 2.2.
axi, axit: Section 2.1.
approximate flexion unit: Section 3.2 (towards the end).
bialternal: Section 2.7, Section 7, Section 8.
bisymmetral: Section 2.8, Section 9.1.
carma•/carmi•, corma•/cormi•, curma•/curmi•: Sections 7.3,
Section 7.7.
conjugate flexion units: Section 3.2.
dilator (infinitesimal): Sections 4.1, 11.8, 11.10, 12.3.
dimorphy, dimorphic: Section 1.1, Section 2, Section 10.1.
doma•/domi•: Section 7.2.
ekma•/ekmi•: Section 7.3.
E•: Section 3.1, Section 3.2.
E•-alternal: Section 3.4.
E•-symmetral: Section 3.4.
E•-mantar: Section 3.4, (3.46).
E•-gantar: Section 3.4, (3.49).
E•-push: Section 3.4, (3.53), (3.54).
E•-gush: Section 3.4, (3.60).
E•-neg: Section 3.4, (3.52).
E•-geg: Section 3.4, (3.59).
es•, ez•: Section 4.3, (4.70), (4.71).
ess•, esz•: Section 4.2, (4.35), (4.36), Sections 11.9, 11.10, 12.4, 12.5.
expari: Section 2.2, (2.50).
Exter(Qic): Section 11.5.
flexion: Section 2.1.
flexion unit: Section 3.2.
flexion structure: Section 2.
gami, gamit, gani, ganit, gari, garit: Section 2.2.
gantar, gantir: Section 2.3, (2.74), (2.75), Section 3.4.
gepar: Section 4.1, (4.10), Section 11.8.
hepar: Section 11.8, (4.10).
gegu, gegi: Section 3.5, (3.65).
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gus: Section 2.4, (2.74), (2.75).
gusi, gusu: Section 3.4.
gush: Section 2.4, (2.76).
gushi, gushu: Section 3.4.
invmu: Section 2.1, (2.2).
invgami, invgani, invgari: Section 2.2, (2.58).
Inter(Qic): Section 11.5.
lama•/lami•: Section 6.5.
loma•/lomi•: Section 6.6.
luma•/lumi•: Section 6.7.
O•: Section 3.2.
me•r : Section 4.1, Section 12.2.
ne•r : Section 4.1, Section 12.2.
mantar, mantir: Section 2.1, (2.7), Section 3.4.
minu: Section 2.1, (2.4).
neg: Section 2.1, (2.8).
negi, negu: Section 3.4, (3.61).
pari: Section 2.1, (2.5).
P: P(t) := 1/t .
pac•/pic•, paj•/pij•: Section 4.3.
pal•/pil•, par•/pir•: Section 4.2 (last but one para).
perinomal: Section 9.4, Section 9.5, Section 9.6.
preami, preani, preari: Section 2.2.
predoma: Section 7.5.
precarma: Section 7.6.
pus: Section 2.1, (2.10).
pusi, pusu: Section 3.4.
push: Section 2.1, (2.11), (2.12).
pushi, pushu: Section 3.4, (3.62), (3.63).
Q, Qc: Q(t) := 1/ tan(t), Qc(t) := c/ tan(c t).
re•r : Section 4.1, Section 12.2.
Re
•
f , Rö

•
f : Section 12.3.

sap, swap, syap: Section 2.2, (2.9), Section 3.3, (4.37), (4.38), (4.70),
(4.71).
separ: Section 10.9.
se•r : Section 4.1.
sse•12: Section 4.2.
Se
•
f , Sö

•
f : Section 4.1, Section 11.8.

slank, srank, sang: Section 5.4, Section 5.5.
sen: Section 5.1.
senk, seng: Section 5.3.
singulator, singuland, singulate etc: Section 5.
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symmetral: Section 2.4 (2.72).
symmetril: Section 3.5.
symmetry types (straight): Section 2.4.
symmetry types (twisted): Section 3.5.
subsymmetries (simple or double, straight): Section 2.4.
subsymmetries (simple or double, twisted): Section 3.5.
tac•/tic•, taj•/tij•: Section 4.2.
tal•/til•, taal•/tiil•: Section 12.6.
tripartite relation: Section 3.2, (3.9).
wandering bialternals: Section 6.9, Section 9.1.
Wa•: Section 1.1.
Za•: Section 1.2 (after (1.8)).
Ze•: Section 1.1.
Zag•/Zig•: Section 1.2, Section 9.
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N.B.: There exists of course a vast literature on multizetas and related
lore: polylogarithms, associators, knots, Feynman diagrams, etc. Ample
references are readily available at the end of papers dealing with any of
these topics. The present article, however, is not primarily about multi-
zetas, but about the flexion structure, which happens to be a new subject.
Hence the paucity of our bibliographical references.


