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Abstract.

• §1 shows that the flexion structure with all its wealth of bimould op-
erations is already contained in nuce in mould calculus.

• §2 shows on a striking example how even the simplest identities of
Analysis may acquire unsuspected depth after mouldification.

• §3 shows how to decompose any mould, naturally and explicitely, into
a sum of d-alternal moulds.

• §4 concerns itself with the algebraic-combinatorial side of singularity
composition as a tool for characterising/describing/constructing min-
imal convolution domains.

• §5 recalls the notion of iso-differential operators – a sort of hyper-
Schwarzians uniquely suited to functional composition – and asserts
the existence on them of a remarkable positive cone spanned by ex-
tremal basis elements with startling combinatorial properties.
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1 From moulds to bimoulds, and back.

1.1 The mould-bimould nexus.

Our aim is twofold:
• to remove the stigma of artificiality that seems to attach to the construc-
tion of bimoulds and the underlying flexion structure.
• to show that bimoulds arise from moulds with the same inevitability as
complex from real numbers.

moulds ‖ bimoulds (flexion structure)

(mu, lu) ‖ (gami, ami)
↖↖ ↗

(gaxi, axi) → (gari, ari), (gali, ali), . . . , (gawa, awa), (giwi, iwi)
↗↗ ↘

(ko, lo) ‖ (gani, ani)

1.2 Moulds and their uses.

•Mould product mu = ×. The corresponding Lie bracket lu = [. . . ].

C• = mu(A•, B•) = A• ×B• ⇐⇒ Cω =
∑

ω1.ω2 = ω

Aω
1
Bω

2
(1)

C• = lu(A•, B•) = [A• , B•] ⇐⇒ Cω = A• ×B• −B• ×A• (2)

N.B. ω1 or ω2 in (1) may be ∅.

• Mould composition ko = ◦. The corresponding Lie bracket lo.

C• = ko(A•, B•) = A• ◦B•⇐⇒Cω =

1≤ s≤ r(ω)∑
ω1 . . . ωs = ω

A|ω
1|, . . . , |ωs|

∏
1≤i≤s

Bω
i

(3)

C• = lo(A•, B•)⇐⇒Cω =
∑

ω1ω2ω3 = ω

(
Aω

1, |ω2|, ω3
Bω

2 −Bω1, |ω2|, ω3
Aω

2)
(4)

N.B. Each sequence ωi in (3) as well as ω2 in (4) has to be 6= ∅ but ω1 or
ω3 in (4) may be ∅, separately or simultaneously.

• Properties and uses.
Mould multiplication naturally arises whenever we multiply two or several
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sums of type
∑
•A
•B• – i.e. sums resulting from the contraction of scalar-

valued moulds A• and co-moulds B• with values in associative, non commu-
tative algebras. Plus in scores of other contexts.

Mould composition naturally arises whenever we change bases in graded
algebras. Plus in scores of other contexts.

Moreover, most natural moulds happen to possess a definite symmetry
type, which the main mould operations (to wit mu, lu, ko, lo, plus logmu,
expmu, plus logko, expko, plus a whole array of mould derivations1) either
conserve or transmute into other symmetry types. The main, but by no
means only, symmetry types are: symmetral, symmetrel, alternal, alternel.

1.3 Bimoulds and their uses. The flection structure.

• The double ui//vi indexation and the four flexion symbols e, d, c, b.
The action of the four flectors is always relative to a specified sequence
factorisation w = w1w2 . . .ws. The rules, which involve only ui-sums,2

pair-wise vi-differences and preserve
∑
ui vi, are apparent on the following

example. Given the factorisation

w = . . .a.b. . . = . . .(u3
v3

,
,
u4
v4

,
,
u5
v5

)(u6
v6

,
,
u7
v7

,
,
u8
v8

,
,
u9
v9

). . .

the flectors e , d , c , b act as follows :

ae := (u3
v3

,
,
u4
v4

,
,
u5,6,7,8,9

v5
) db := (u3,4,5,6

v6

,
,
u7
v7

,
,
u8
v8

,
,
u9
v9

) (5)

ac := ( u3
v3:6

,
,
u4
v4:6

,
,
u5
v5:6

) bb := ( u6
v6:5

,
,
u7
v7:5

,
,
u8
v8:5

,
,
u9
v9:5

) (6)

with the usual shorthand: ui,j,... := ui + uj + . . . , vi:j := vi − vj .

• The u-pattern determines the v-pattern and vice versa.

• The core involution swap.

B• = swap(A•) ⇐⇒ B
(u1
v1

,
,
...
...
,
,
ur
vr

)
= A

( vr
u1...r

,
,
vr−1:r
u1...r−1

,
,
...
...
,
,
v2:3
u12

,
,
v1:2
u1

)
(7)

Anything definable in terms of the four flexions retains this property even
after undergoing the swap. The most interesting bimoulds are dimorphic
bimoulds, i.e. bimoulds such that A• and swapA• both belong to a definite
symmetry type – often the same one, but not necessarily so. On top of the

1derivations, that is, relative to mould multiplication mu.
2More precisely: sums of consecutive ui’s. The construction of ARRI//GARRI in §1.7

infra shows how essential this restriction is.
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four symmetry types defined on moulds, bimoulds often display symmetry
types sui generis, of a more exotic nature.

•The overarching structure AXI//GAXI and its seven sub-structures
induced by involutions A•R := involAL.
Both the group GAXI and its algebra AXI consist of pairs A• = (A•L,A•R).
The left and right components A•L and A•L are wi-indexed bimoulds, where
wi = (uivi ). The group operation gaxi, the bracket axi and the correspond-
ing exponential-logarithm expaxi, logaxi, are all expressible in terms of the
four flectors. Of special interest are the sub-structures of AXI//GAXI con-
sisting of pairs of the form A•R := involAL, with an involution invol so
chosen as to permit stability under gaxi or axi. Up to isomorphism, there
exist exactly seven such sub-structures,3 to which we must add the two lat-
eral sub-structures AMI//GAMI and ANI//GANI, where the pair (A•L,A•R)
reduces to either A•L or A•R. Moreover, we have full closure under the invo-
lution swap, which transmutes any one of the 4 × 7 + 4 × 2 = 32 bimould
operations into finite sequences of those same 32 operations.

• The core structure ARI//GARI.
Of those magic seven sub-structures, four (and especially two4) stand out –
those namely that preserve dimorphy, e.g. bi-alternality or bi-symmetrality.
Moreover, when restricted to dimorphic objects, those sub-structures actu-
ally coincide, thus sparing us the agony of choosing between them. In prac-
tice, one works most of the time with the sub-structure ARI//GARI, induced
by the involution invol .A• := −A• for the algebra ARI, and invol .A• :=
invmu.A• for the group GARI.

• ‘Accidental’ origin of the flexion structure:
Said structure was first encountered in the early 90ies while investigating the
quite specific resurgence pattern of the divergent solutions of singular and
singularly perturbed differential equations expanded in power series of the
singular parameter. The hybrid make-up of their singularities in the Borel
plane found its natural reflection in a double (ui , vi)-indexation. The basic
notion in this context was the so-called scramble transform, which already
foreshadowed the full-fledged flexion structure.

3They rejoice in the mellifluous names of ARI//GARI, ALI//GALI, ALA//GALA,
ILI//GILI, AWI//GAWI, AWA//GAWA, IWI//GIWI.

4Namely ARI//GARI and ALI//GALI.
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• Other domains of application:
Chief amongst them is the investigation of arithmetical dimorphy, which is
the dominant feature of many Q-rings of transcendental numbers: multize-
tas, hyperlogs, the so-called naturals etc etc.

But even classical elementary moulds tend to go in pairs and, when
viewed as bimoulds (under the suitable adjunction of a second row of mute
indices – i.e. indices on which they do not effectively depend), the two terms
of those pairs get exchanged by the swap.

The swap, in fact, is as central to mould/bimould calculus as the Fourier
transform is to Analysis. The two notions, incidentally, are not altogether
unrelated.

1.4 From moulds to bimoulds.

Under mould composition, any two moulds A• and B•, ui-indexed for con-
venience, and of the form5

A• := A•L × Id• ×A•R , B• := B•L × Id• × B•R (8)

yield a mould C• := A• ◦ B• also of the form C• := C•L × Id• × C•R with

C•L :=
(
A•L ◦ (B•L × Id• × B•R)

)
× B•L (9)

C•R := B•R ×
(
A•R ◦ (B•L × Id• × B•R)

)
(10)

and – lo and behold! – the right-hand terms involve only ‘inflectable’ sum-
mands, leading straightaway to the GAXI-structure.

Thus, at depth r = 5, the left component Cu1,u2,u3,u4,u5L , once expanded,
takes the form of a sum with exactly 89 summands, each one of which
can be inflected (i.e. turned into a bimould component under proper in-
troduction of vi-indices) and that too in a unique way. Here are five such
ui-indexed summands, fairly reprentative of all possible combinations, and
their (uivi )-indexed counterparts, with the usual abbreviations for index sums

5L for left, R for right.
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and differences:

Au1,2,3L Bu2,u3R Bu4,u5L 7→ A
(u1,2,3

v1
)

L B
( u2
v2:1

,
,
u3
v3:1

)

R B
(u4
v4

,
,
u5
v5

)

L

Au1,2,u3L Bu1L B
u4,u5
L 7→ A

(u1,2
v2

u3
v3

)

L B
( u1
v1:2

)

L B
(u4
v4

,
,
u5
v5

)

L

Au1,2,u3,u4,5L Bu2R B
u5
R 7→ A

(u1,2
v1

,
,
u3
v3

,
,
u4,5
v4

)

L B
( u2
v2:1

)

R B
( u5
v5:4

)

R

Au1,2,u3,4L Bu1L B
u3
L B

u5
L 7→ A

(u1,2
v2

,
,
u3,4
v4

)

L B
( u1
v1:2

)

L B
( u3
v3:4

)

L B
(u5
v5

)

L

Au1,u2,3,4L Bu2,u3L Bu5L 7→ A
(u1
v1

,
,
u2,3,4
v4

)

L B
( u2
v2:4

,
,
u3
v3:4

)

L B
(u5
v5

)

L

Another way of putting it would be to say that the mould composition ko,
when restricted to ui-indexed elements of the form (8), yields the subgroup
of GAXI whose elements reduce to Id• unless all vi vanish or, what amounts
to the same, the subgroup of GAXI whose elements do not depend on the
vi-indices:(

moulds• × Id• ×moulds•
)

ko
∼ GAXI ‖v=0 ∼ GAXI ‖v-const .

The same applies for the lo-bracket and the algebra AXI :(
moulds• × Id• ×moulds•

)
lo
∼ AXI ‖v=0 ∼ AXI ‖v-const .

1.5 From bimoulds to moulds.

A bimould A• is said to be internal if, for all r, it verifies two dual properties,
which in short notation read:

{u1 + . . . ur 6= 0} =⇒ {A
(
u1
v1

,...,
,...,

ur
vr

)
≡ 0} (11)

{vi − v′i = const ; ∀i} =⇒ {A
(
u1
v1

,...,
,...,

ur
vr

)
≡ A

(
u1
v′1

,...,
,...,

ur
v′r

)
} (12)

and in long notation assume the more natural form:

{u0 6= 0} =⇒ {A
([

u0
v0

]
,
,
u1
v1

,...,
,...,

ur
vr

)
≡ 0} (13)

{∀ v0 , ∀ v′0} =⇒ {A
(([

u0
v0

]
,
,
u1
v1

,...,
,...,

ur
vr

)
≡ A

(([
u0
v′0

]
,
,
u1
v1

,...,
,...,

ur
vr

)
} (14)

Internals constitute an ideal ARIintern of ARI resp. a normal subgroup
GARIintern of GARI . The elements of the corresponding quotients are re-
ferred to as externals:

ARIextern := ARI/ARIintern (15)

GARIextern := GARI/GARIintern (16)
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Moreover, when restricted to internals, the ari bracket reduces, up to
order, to the simpler lu bracket, and the gari product, again up to order,
reduces to the mu product:

ari(A•, B•) ≡ lu(B•, A•) , ∀A•, B• ∈ ARIintern (17)

gari(A•, B•) ≡ mu(B•, A•) , ∀A•, B• ∈ GARIintern (18)

On the face of it, the identity (18) is highly surprising, since lu(B•, A•) is
bilinear in A• and B•, whereas gari(A•, B•) is violently non-linear in B•

— at least when the factors are general moulds instead of internal ones, as
assumed in (18).

• Subspace of bimoulds:
The above applies in particular to those internal bimoulds that are either

u- or v-constant.
Thus, the highly complex bimould calculus, with its exquisite intricacy

of structure and plethora of inflected operations, and the more elementary,
un-inflected mould calculus reveal themselves to be, in a sense, subcases of
each other!

1.6 How to retrieve the bimoulds’ two-tier indexation
(
u1
v1

...

...
ur
vr

)
along with the core involution swap.

As already pointed out, as far as the flexion operations are concerned, the ui-
pattern wholly determines the complete (uivi )-pattern. But are there natural
incentives (other than the absolutely compelling phenomenon of dimorphy)
for introducing the vi-indices in the first place? Yes, there are – rooted
in simple considerations of notational economy. The swap, too, is an in-
escapable feature of the landscape.

As for the idea of applying mould composition to elements of the form
A• := A•L × Id• × A•R, that too is a very natural step – especially when
A•L×A•R ≡ 1• with A•L, A•R symmetral and, as a consequence, A• alternal.

A case in point is provided by the hyperlogarithmic monics U• and
V •, associated respectively with the ∆- and ∂-friendly canonical resurgence
monomials U•(z) and V•(z). Not only are these monics U• and V • recipro-
cal under mould composition (see (22)), but they are globally homogeneous
in their indices:

U c ω1,...,c ωr ≡ Uω1,...,ωr ; V c ω1,...,c ωr ≡ V ω1,...,ωr (∀c)

This homogeneousness is an invitation to express each monic Uω or V ω of
length r in terms of simpler monics, of strictly lesser depth. The actual
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decomposition takes the form

U• =
(

U •L × Id• ×U •R

)
◦ Rot• (19)

V • = Ret• ◦
(

V •L × Id• ×V •R

)
(20)

with symmetral, mu-inverse, non-homogeneous monics (U•L, U
•
R) and (V •L , V

•
R)

and elementary, locally constant, ko-reciprocal moulds Rot•,Ret•, which in-
cidentally reduce to Id• when all indices ωi are real positive. Altogether, we
get the relations:

Rot• ◦ Ret• = Id• = composition-unit (21)

U• ◦ V • = Id• = composition-unit (22)

V •L × V •R = 1• = multiplication-unit (23)

U•L × U•R = 1• = multiplication-unit (24)

gari(U•L, V
•
L ) = 1• = GARI-unit (25)

The bottom line is that the purely mould-like monics U•L and V •L are mutually
inverse under what is, essentially, the bimould group product gari.

1.7 Cautionary remark: ARRI//GARRI, a deceptive look-alike
of ARI//GARI.

Let alex (“alternal extensor”) be the mould-to-mould operator so defined:

(alexA)u =

1≤ i≤ r(u)∑
u= (u′, ui,u′′)

(−1)r(u
′′)

∑
u∗ ∈ shuffle(u′, ũ′′)

Au
∗

(26)

Here, r = r(u) is the length of u and r′′ = r − i = r(u′′) that of u′′.

Further, ũ′′ denotes the order-reversed sequence u′′. In the two extreme
cases, when i = 1 resp. i = r, the second sum reduces to a single term Au

∗
,

with u∗ = ũ′′ resp. u∗ = u′. As for the operator alex, it owes its name to
the fact that alex A• is automatically alternal (whatever the nature of A•)
and carries depth-r components that are defined as superpositions of the
depth-(r−1) components of A•.

Now, one readily checks that mould composition, whether it be ko ∼ ◦
or the infinitesimal variant lo, preserves moulds of the form alex A•. To be
precise, the relations:

ko(alex A•, alex B•) = alex C • (27)

lo(alex A•∗, alex B•∗ ) = alex C •∗ (28)
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unambiguously define a group operation garri and a Lie bracket arri:

(A•,B•) 7→ C • = garri(A•,B•) (29)

(A•∗,B
•
∗ ) 7→ C •∗ = arri(A•∗,B

•
∗ ) (30)

What’s more, when expanding C• in terms of A•, B• or C•∗ in terms of
A•∗, B

•
∗ , we get a bunch of terms that look deceptively like ‘flexions’: they

can indeed, in a unique way, be supplemented by vi-indices so as to pre-
serve the scalar product

∑
ui vi and involve only pair-wise vi differences

and partial ui-sums. However – and here lies the crux – those ui-sums
don’t always consist of consecutive ui’s. So we aren’t dealing with genuine
flexions here, and this becomes immediately apparent the moment we apply
the involution swap : unlike swap gari(A•,B•), which involves only bona fide
flexions, swap garri(A•,B•) throws up numerous pathological expressions of
type vi − vj + vk and worse.

However, when we restrict ourselves to symmetral (resp. alternal) bi-
moulds, the non-flexion object GARRI (resp. ARRI) can be shown to coin-
cide with the flexion object GARI (resp. ARI), which in turn, again in that
case, happens to coincide with other flexion objects such as GALI, GAWI
etc (resp. ALI, AWI etc). This applies even more when dealing with dimor-
phic bimoulds. Thus, in the situations that really matter we have but one
pair group/algebra to consider, and we choose to take it in its simplest and
most natural incarnation, namely the ARI//GARI incarnation.

2 Mould extensions of classical functions.

2.1 The right way to proceed.

The temptation to resist is to pick classical functions or identities at random
and say “Let us mouldify them; let us come up with some multivariate ex-
tension”. The thing is that there usually exist scores and scores of a priori
possible “multivariate extensions”, most of them useless and highly forget-
table – mere mathematical refuse. So the wise attitude is to let Analysis be
our guide, and introduce only those moulds that genuine problems require
for their solution. Such moulds are abundant enough. Unlike the gratuitous
ones, they are almost guaranteed to be interesting, property-rich, and long-
lived. And oftener than not, they shed unexpected light on the one-variable
starting point, as the following example shows.
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2.2 The Gamma function and Euler’s reflection formula.

∗ Definition of V • (alternal).
The σ-dependent monics V • are derived from the ∂-friendly, σ-dependent
resurgence monomials V(z)•

(∂z + |ω|)V( σ1
ω1

,...,
,...,

σr
ωr

)
(z) = −V( σ1

ω1

,...,
,...,

σr−1
ωr−1

)
(z) zσr−1 (31)

under alien differentiation

∆ω0 V
( σ1
ω1

,...,
,...,

σr
ωr

)
(z) =

∑
ω1+···+ωi=ω0

V
( σ1
ω1

,...,
,...,

σr
ωi

) V( σ1
ωi+1

,...,
,...,

σr
ωr

)
(z) (32)

∗ Definition of W • (symmetral).
The associated monics W • admit a direct definition via the multiple integral:

W( σ1
ω1

,...,
,...,

σr
ωr

)
=

∫
0<yr<···<y1<+∞)

∏
1≤i≤r

(
e−ωi yi yσi−1

i dyi

)
(33)

that converges on {<ωi > 0 , < σ̂i > 0} (with σ̂i := σi+ · · ·+σr) and admits
a meromorphic extension to Cr• × Cr.

∗ Definition of Qe• (alternel).

Qeσ1,...,σr :=
1

2πi

(−1)r−1

r!

∑
ε1,...,εr∈{+,−}

ε1 p! q! exp
(
πi(ε1σ1 + · · ·+ εrσr)

)
(34)

where p (resp. q) is the number of + (resp. −) signs in (ε2, . . . , εr). Notice
that ε1 is omitted, so that p+ q = r − 1.

∗ A multivariate extenstion of Euler’s reflection formula.
Our three moulds happen to be related under mould composition:

V • = Qe• ◦ W • (35)

with V • alternal, V • symmetral, Qe• alternel. At depth r = 1 we have

V
( σ1
ω1

)
=

ω−σ11

Γ(1− σ1)
, W

( σ1
ω1

)
= ω−σ11 Γ(σ1) , Qeσ1 =

sin(πσ1)

π
(36)

so that in this case (35) reduces to Euler’s reflection formula

1

Γ(1− σ1)
≡ sin(πσ1)

π
Γ(σ1) (37)
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Even the trivial re-ordering of the reflection formula:

π

sin(πσ1)

1

Γ(1− σ1)
≡ Γ(σ1) (38)

has a non-trivial mould equivalent, namely

Qo• ◦ V • = W •
(
where Qo• ◦Qe• = Id•

)
(39)

with a symmetral mould Qo•, composition-reciprocal to the alternel Qe• and
expressible by a formula markedly different from, and much more complex
than, formula (34).

The functional equation Γ(σ + 1) = Γ(σ)σ also has its mould extension
– two in fact, one for V • and another for W •.

2.3 Other examples.

They include: multizetas, multigammas, inverse multigammas, multi-Bernoullis,
multifactorials, etc etc etc.

It should be noted that one and the same classical function or notion
may admit several, equally natural mould extensions6(to say nothing of the
unatural ones).

Then the pervasive phenomenon of dimorphy, which is mould-specific (it
manifests only after mouldification) often enters the picture, contributing
new structure, posing new problems, and spicing up everything.

3 Natural projectors.

3.1 Notion of d-projectors. Dual formulation.

Projectors operating on free associative algebras.
Let L be a free Lie algebra and E its enveloping algebra.
Question: Is there a privileged way of turning the filtration

L = E[1] ⊂ E[2] ⊂ E[3] · · · ⊂ E (40)

into a natural gradation

E1 ∪ E2 ∪ E3 ∪ · · · = E (41)

6usually two, but sometimes more, as with the Bernoulli numbers and polynomials.
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More to the point, we ask for a complete system of natural projectors proj d
with explicit formulae for the structure coefficients hd(σ) .

projd : ∆ω1 ∆ω2 . . .∆ωr 7→ hd(σ) ∆ωσ(1) ∆ωσ(2) . . .∆ωσ(r) (42)

and the natural conditions

projd(∆ω1 ∆ω2 . . .∆ωr) ∈ Ed ⊂ E[d] (43)∑
1≤d≤r

projd(∆ω1 ∆ω2 . . .∆ωr) = ∆ω1 ∆ω2 . . .∆ωr (44)

Projectors operating on moulds.
Our main concern is actually with the dual problem: how to decompose any
given mould into a sum of d-alternal components

projd . A
ω1,...,ωr =

∑
σ∈Sr

hd(σ)Aσ(ω1,...,ωr) ∈ Altd (45)

the definition of d-alternal being

{A• d-alternal} ⇔ {
∑

ω∈shuffle(ω1,...,ωd+1)

Aω ≡ 0 , ∀ωi 6= ∅ } (46)

The two notions – degree-d and d-alternal – are indeed dual, since

{A• d-alternal} ⇔ {
∑
•
A•∆• ∈ Ed(∆) } (47)

3.2 Dyn’kin projectors / natural projectors.

Dyn’kin projectors:

They rely on repeated bracketing :

∆ω1 ∆ω2 . . .∆ωr 7→
1

r
[[...[∆ω1 ∆ω2 ] . . . . . . ]∆ωr ] (48)

They are economical (they involve 2r−1 permutations rather than r!) but
unsatisfactory, to the extent that they priviledge multi-bracketing from one
side (here, the left side), and above all because they possess no natural exten-
sion to the higher degrees. The notion of symmetral mould shows a way out.
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Notion of symmetral mould:

{A• symmetral} ⇔ {
∑

ω∈shuffle(ω1,ω2)

Aω ≡ Aω1
Aω

2
, ∀ω1 , ω2 } (49)

{A• symmetral} ⇔ {
∑
•
A•∆• is a formal automorphism} (50)

Natural projectors for symmetral moulds:

The construction is staightforward. It rests entirely on the mould logarithm,
the mould powers of that logarithm, and their symmetral linearisations ac-
cording to formula (49) :

proj1 A
• := logmuA• ∈ (1-alternal) (51)

=
∑
1≤n

(−1)n−1

n

n times︷ ︸︸ ︷
(A• − 1•)× · · · × (A• − 1•) (52)

(after symmetral linearisation)

projd A
• :=

1

d!

d times︷ ︸︸ ︷
logmuA• × · · · × logmuA• (53)

(d-alternal , after symmetral linearisation)

The construction automatically fulfills conditions (43)-(44).

Natural projectors for general moulds:

We extend the above projectors to all moulds A•, irrespective of their sym-
metry type, by treating them as if they were symmetral.

In a way, this completely solves our problem, since it provides an effective
construction for our natural projectors proj d. But we ask for more — we
want explicit formulae for the the structure coefficients hd(σ) attached to
those projectors. That too can be had, but we must first introduce two
auxiliary constructions.

3.3 Permutation algebra and permutation convolution.

Permutation shuffling:

If σ′ ∈ Sr′ , σ
′′ ∈ Sr′′ , and σ ∈ Sr′+r′′ , the relation

σ ∈ sha(σ′,σ′′)
(

read : < σ is a shuffling of σ′ and σ′′ >
)

(54)

14



will be taken to mean

[σ(1), ...,σ(r′+r′′)] ∈ sha
(

[σ′(1), . . . ,σ′(r′)], [r′+σ′′(1), . . . , r′+σ′′(r′′)]
)

(55)

This leads to defining two dual products: a product × acting on the
symbols Zσ and a convolution product × acting on scalar functions of σ:

Zσ
′ ×Zσ′′ :=

∑
σ∈sha(σ′,σ′′)

Zσ (56)

(f × g)(σ) :=
∑

σ∈sha(σ′,σ′′)

f(σ′) g(σ′′) (57)

The × ↔ × duality finds its reflection in the identity:(∑
σ′

f(σ′) Zσ
′
)
×
(∑
σ′′

f(σ′′) Zσ
′′
)
≡

∑
σ

(f × g)(σ) Zσ (58)

× and × are clearly associative and non-commutative.

3.4 Structure coefficients of the natural projectors.

If we set

Z := 1 +
∑
1≤r

Z idr with idr ∈ Sr (59)

then the above definition of the natural projectors translates to∑
1≤r

∑
σ∈Sr

hd(σ)Zσ =
1

d!
(logZ)d (60)

Z is a fairly trivial object, but log .Z and (log .Z)d are not. Fortunately:

Fact: The structure coefficients hd(σ) depend only on the degree d and the
type (p, q) of σ−1.

Here, a permutation τ ∈ Sr is said to be of type (p, q) if there are exactly p
increases and q decreases in the sequence (τ(1), . . . , τ(r)). Thus, p+q = r−1.

3.5 Typal algebra and typal convolution.

Since those symbols Zσ (resp. functions f(σ)) that depend only on the
type of σ−1 do not retain that property under × (resp. ×), there is no
automatic extension of these products to type-dependent objects. However,
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the consideration, for each type (p, q), of the particular substitution σ+
p,q

(resp. σ−p,q) whose inverse is of type (p, q) and first steadily increases, then
steadily decreases (resp. does the opposite) suggests a satisfactory definition
for the product of typal symbols Zp,q and the convolution of typal functions
f(p, q). These definitions read:

Zp1,q1 ∗Zp2,q2 := δ(p1) Zp1+p2,1+q1+q2 + Z1+p1+p2,q1+q2 δ(q2) (61)

(f ∗ g)(p, q) :=

0≤q1,0≤q2∑
q1+q2=p−1

f(0, q1) g(p, q2) +

0≤p1,0≤p2∑
p1+p2=p−1

f(p1, q) g(p2, 0) (62)

with δ denoting the discrete dirac: δ(0) = 1 and δ(t) = 0 if t 6= 0.
Once again, both products ∗ and ∗ are associative and non-commutative,

though this was not a foregone conclusion, in view in the latitude in the pas-
sage (×,×)→ (∗, ∗).

Here are a few useful identities:

r times︷ ︸︸ ︷
Z0,0 ∗Z0,0 ∗ . . .Z0,0 ≡

0≤r1,0≤r2∑
r1+r2=r−1

(r1+r2)!

r1! r2!
Zr1,r2 (63)

p+q+1 times︷ ︸︸ ︷
f ∗ f ∗ . . . f ≡

(
f(0, 0)

)p+q+1
(64)

k times︷ ︸︸ ︷
f ∗ f ∗ . . . f ≡ 0 if k > 1+p+q (65)

The upshot is that we can replace the permutational convolution (57) by the
far simpler typal convolution (62) in the defining identities of the structure
coefficients. Concretely, (59)-(60) gets replaced by (66)-(67):

Z := 1 +
∑
1≤r

Zr−1,0 (66)

∑
1≤r

∑
0≤p,0≤q

hd(p, q) Zp,q =
1

d!
(logZ)d

(
hd(σ) = hd(p(σ

−1), q(σ−1))
)

(67)

and the relative ease of calculation in the typal algebra shall lead us to very
explicit, very convenient formulae for our structure coefficients hd(p, q).
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3.6 The structure coefficients hd(p, q). Main statements.

For each pair (p, q) ≥ (0, 0), consider the Laurent series

Hp,q(t) := t e(p−q) t/2 (et/2 − e−t/2)−p−q−2
=

∑
−p−q−1≤d<+∞

hp,qd tn (68)

Their constant terms vanish: hp,q0 ≡ 0. Their power series part (i.e. the
positive powers of t) is interesting in its own right, but of no direct relevance
to our problem. It is their Laurent part that matters to us, because it carries
the sought-after structure coefficients hd(p, q). One can indeed show that:

hd(p, q) ≡
1

d!
hp,q−d (1 ≤ d ≤ p+ q + 1) (69)

In particular

h1(p, q) = (−1)q
p! q!

(p+ q + 1)!
, hp+q+1(p, q) =

1

(p+ q + 1)!
(70)

For the p↔ q exchange, the obvious symmetry relation holds

hd(p, q) ≡ (−1)1+p+q−d hd(q, p) (71)

3.7 Further properties.

For 1 ≤ d ≤ r let hrd := [hd(r−1, 0), . . . , hd(r−1−i, i), . . . , hd(0, r−1)] and
let Hr be the r × r matrix made up from the the rows hrd. Then the above
symmetry relation becomes

Hr||i,j = (−1)r−iHr‖i,1+r−j (72)

More remarkably:

det(Hr) =
1

1! 2! 3! . . . r!
(73)

Furthermore, the inverse matrix Kr := (Hr)
−1 has only integer entries, so-

called Eulerian numbers in fact, which are explicitly given by

Kr‖i,j =
∑

1≤s≤r
(−1)i−s

(r + s)!

(i− s)!(1 + r + s− i)!
sj (74)

We have a new symmetry relation

Kr‖i,j ≡ Kr‖1+r−j,j (75)
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that follows from the corresponding relation for Hr but isn’t at all obvious
from the formula (74) for Kr‖i,j .

Here are our two matrices for r = 7.

7! H7 =



720 −120 48 −36 48 −120 720
1764 −154 28 0 −28 158 −1764
1624 49 −56 49 −56 49 1624
735 140 −35 0 35 −140 −735
175 70 7 −14 7 70 175
21 14 7 0 −7 −14 −21
1 1 1 1 1 1 1



K7 =



1 1 1 1 1 1 1
−6 −4 0 8 24 56 120
15 5 −9 −19 15 245 1191
−20 0 16 0 −80 0 2416

15 −5 −9 19 15 −245 1191
−6 4 0 −8 24 −56 120

1 1 1 1 1 1 1


Decomposition into pure degree parts.

The tests performed so far suggest that remarkable moulds often (not
always) tend to possess remarkable d-alternal natural projections.

Behaviour of the pure-degree parts under the brackets lu and lo.

The following parity-driven stability properties hold:

lu(Altd1 ,Altd2) ∈ Altd1+d2−1 ⊕Altd1+d2−3 ⊕Altd1+d2−5 ⊕ . . . (76)

lo(Altd1 ,Altd2) ∈ Altd1+d2−1 ⊕Altd1+d2−3 ⊕Altd1+d2−5 ⊕ . . . (77)

When either d1 or d2 (or both) is = 1, the above inclusions simplify to:

lu(Altd1 ,Altd2) ∈ Altd1+d2−1 (78)

lo(Altd1 ,Altd2) ∈ Altd1+d2−1 (79)

3.8 When does a permutation subalgebra reduce to a typal
subalgebra?

If we ask for subalgebras whose elements f(σ) depend only on the type of
σ, then the answer is both simple and uninteresting : f(σ) must depend on
the sole length r := p+ q + 1 of the permutation.
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If on the other hand we ask for subalgebras whose elements f(σ) depend
only on the type of σ−1, then the answer is that all maximal, type-dependent,
permutation subalgebras depend on a single parameter c and their elements
are all of the form:7

f(σ) = a1 h
×1(σ) + a2 h

×2(σ) + a3 h
×3(σ) + . . . (∀an ∈ C) (80)

with h(σ) := (−1)q c p+q+1 p! q!/(p+q+1)! and h×n standing for the nth -
convolution power of h. Thus, the homogeneousness parameter c aside, we
fall back on the typal algebras of §3.5.

3.9 Remarks by J.-Y. Thibon.

J.-Y. Thibon pointed out to us that, in the free algebra setting, the notion
of natural projectors was already known, as well as the indirect analytical
expression of their structure coefficients hd(σ) = hd(p, q) in terms of the Kr

matrices (made up of Eulerian numbers).
However, the direct expression of hd(σ) in terms of the matrices Hr =

(Kr)
−1 (made up of ‘pseudo-Bernoulli’ numbers) appears to be new, and

so too the expression of the Hr-entries hd(p, q) in terms of the generating
function (68)-(69). In our approach, moreover, the emphasis is on the moulds
and their d-alternal components, rather than on the free enveloping algebras
and their d-degree components.

Regarding the typal algebra and typal convolution of §3.5, J.-Y. Thibon
drew our attention to the existence of a more general construction, based
not on the pairs (p, q), but on a finer analysis of the permutations σ that
takes into account the lenghts (p1, q1, p2, q2, ...) of the alternating increasing-
decreasing subsequences inside (σ(1), ..., σ(r)).

4 Minimal convolution domains.

4.1 Motivation. Characterisation and construction of con-
volution domains.

If two germs ϕ̂1 and ϕ̂2 at 0• (ramified origin of C• = C̃− {0}) have the
property of endless analytic continuation over C•, then so does the convo-
lution product ϕ̂ :

ϕ̂ = ϕ̂1 ∗ ϕ̂2 ⇔ ϕ̂(ζ)
locally

:=

∫ ζ

0•

ϕ̂(ζ1) ϕ̂(ζ−ζ1) dζ1 (81)

7No convergence problem in (80), thanks to (65) or rather the analogue of (65) in the
permutation algebra.
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Moreover, two singularities somewhere over ω1 and ω2 respectively for ϕ̂1

and ϕ̂2 will necessarily result in singularities over ω1 + ω2 for ϕ̂. But where
exactly? On which Riemann sheets?

In theory, the notion of SSS-path (self-symmetrical and self-symmetrically
shrinkable path, along which the convolution integral (81) has to be calcu-
lated), provides an answer, but an impractical one, since when a path Γ
grows in length, the shortest SSS-path Γ∗ equivalent to Γ tends to grow
incredibly faster. So an alternative machinery — a transparent algebraic-
combinatorial machinery — is called for.

4.2 Atomic singularities and atomic alien operators.

Alongside the usual alien operators, standard and lateral, which possess con-
venient co-products but only measure averages of singularities, we must con-
sider atomic alien operators, which measure isolated singularities but pos-
sess less transparent co-products. We then introduce three parallel systems
of dual notions – the so-called pseudo-variables or symbolic singularities –
endowed with a product or multiplication (dual to the alien operators’ co-
product) that will adequately reflect, in the atomic case, the composition of
singularities under convolution. So we have to juggle these six systems:

Standard basis Lateral basis Atomic system

Alien operators {∆ω1,...,ωr} {∆+
ω1,...,ωr} {Dω1,...,ωr}

Singularity symbols {Zω1,...,ωr} {Zω1,...,ωr
+ } {Sω1,...,ωr}

with ωi ∈ C• := C̃− {0} , εi ∈ {+,−}. Mark that in the general case, the
indices ωi are in C•, not C∗. In the atomic system, the sequence (ω1, . . . , ωr)
represents the taut (i.e. shortest) broken line8 Γ connecting a given ramifica-
tion point with the origin 0• ∈ C•. Moreover, when two consecutive ωi and
ωi+1 are co-axial or ‘aligned’ (again, on C•, not C), one must interpose a
sign ε ∈ {+,−} between them to specify how the taut broken line Γ bypasses
the singularity — whether to the right or to the left.

So we have two very distinct difficulties here — those that arise from
winding broken lines and their possible self-crossings, and those that stem

8If 1
2π

(argωi+1−argωi) ∈ [n− 1
2
, n+ 1

2
[ resp. ]−n− 1

2
,−n+ 1

2
] with n ∈ N∗, that should

be taken to mean that our broken line Γ turns n times, in the positive resp. negative
direction, round the relevant turning point located somewhere over ωi,∗ := ω̇1+ . . .+ω̇i.
If 1

2π
(argωi+1−argωi) ∈]− 1

2
, 0[∪ ]0, 1

2
[, there is no local self-crossing of Γ at ωi,∗. Lastly,

if argωi+1 = argωi, we must interpose a sign εi between argωi and argωi+1 to specify
whether Γ circumvents ωi,∗ to the right or to the left.
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from the presence of subsequences made up of co-axial ωi’s. The two difficul-
ties neatly separate, and, somewhat counter-intuitively, the first one turns
out to be the more tractable of the two. So here we shall address the main
difficulty, arising from co-axial singularities.

4.3 The axial case.

For convenience, we assume our axis to be R+. Our six systems become:

Standard basis Lateral basis Atomic system

Alien operators {∆ω1,...,ωr} {∆+
ω1,...,ωr} {Dω1,ε1,ω2,...,εr−1,ωr}

Singularity symbols {Zω1,...,ωr} {Zω1,...,ωr
+ } {Sω1,ε1,ω2,...,εr−1,ωr}

with ωi ∈ R+ , εi ∈ {+,−}. We require all six conversion rules. Those
between standard and lateral readily follow from the identities:∑

0<ω

∆ω = log
(
1 +

∑
0<ω

∆+
ω

)
(82)

1 +
∑
0<ω

∆+
ω = exp

(∑
0<ω

∆ω

)
(83)

The conversion rules between lateral to atomic are quite elementary.

That leaves only the case standard ↔ atomic.

• The conversion rule from atomic to standard, expressed for conve-
nience in terms of the singularity symbols, reads:

S( ε
ω

) =

0≤k≤r∑
( ε
ω

)=( ε
s1

ωs1 )εs1 ( ε
s2

ωs2 )εs2 ...(
εsk

ωsk )

εs1 . . . εsk Λε
1
. . .Λε

k
Z |ω

1|,...,|ωk| (84)

with Λε1,...,εn = λp,q =
p! q!

(p+q+1)!

(
p :=

∑
εi=+

1 , q :=
∑
εi=−

1
)

(85)

In formula (84), each ( ε
sk

ωsk ) represents an alternate scalar/sign sequence that
necessarily begins with some scalar ω∗ and ends with some other scalar ω∗∗.
The lower-indexed, intermediary εsk , on the other hand, are single signs,
whereas the upper-indexed, bold-face εsk are sign sequences.
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• The reverse conversion, from standard to atomic, reads:

Zω1,...,ωr =
∑

εi∈{+,−}

1

r!
Ξε1,...,εr−1 Sω1,ε1,ω2,ε2,...,εr−1,ωr (86)

with sign-indexed coefficients Ξ• that reduce to integer-indexed, integer-
valued coefficients ξ•:

Ξε1,...,εn = ε1 . . . εn |Ξε1,...,εn | (87)

|Ξε1,...,εn | = ξn1,...,ns if (ε1, . . . , εn) = (±)n1(∓)n2 . . . (#)ns
(
ni > 0)

The coefficients ξ• in turn are defined by the induction

ξn1 = 1 (88)

ξn1,...,ns =
∑

1≤j≤s
ξ̂ n1,...,nj−1,...,nr (89)

with the convention

ξ̂ n1,...,nj−1,...,nr := ξ n1,...,nj−1,...,nr if nj ≥ 2 (90)

:= ξ n1,...,nj−1+nj+1,...,nr if nj = 1 (91)

Thus we get ξn1 ≡ 1 , ξn1,n2 ≡ (n1+n2)!
n1!n2! , ξn1,...,nr ≡ ξnr,...,n1 and:

ξ2,1,1 = 9 ξ1,2,1 = 11 . . . . . . ξ1,1,1,1 = 16
ξ3,1,1 = 14 ξ2,2,1 = 26 ξ2,1,2 = 19 . . . ξ1,1,1,1,1 = 61
ξ4,1,1 = 20 ξ3,2,1 = 50 ξ2,2,2 = 70 . . . ξ1,1,1,1,1,1 = 272

ξ{1}
7

= 1385 ξ{1}
8

= 7936 ξ{1}
9

= 50520 . . .

4.4 Multiplication of axial singularities.

The algebra Singax of axial singularities is spanned by the symbols

S( ε
ω

) = Sω1 , ε1 , ω2 , ε2 , ω3,...,ωr−1 , εr−1 , ωr
(
ωi ∈ R+ , εi ∈ {+,−}

)
(92)

modulo the equivalence relations

S...,ωi ,+ , ωi+1,... + S...,ωi ,− , ωi+1,... = S...,ωi+ωi+1,... (93)

whose geometric interpretation is self-evident.

22



Lemma: The following multiplication rule on the singularity symbols S•

S( ε
′

ω′ ) . S( ε
′′

ω′′ ) =
∑

ω ∈ shuffle(ω′,ω′′)

(∏
ε′i
∏

ε′′i
∏

εi) S( ε
ω

) (94)

εi := ε′j if (ωi, ωi+1) = (ω′j , ω
′
j+1)

εi := ε′′j if (ωi, ωi+1) = (ω′′j , ω
′′
j+1)

εi := + if (ωi, ωi+1) = (ω′j , ω
′′
k)

εi := − if (ωi, ωi+1) = (ω′′k , ω
′
j)

is compatible9 with the equivalence relation (93) and faithfully reflects the
behaviour of atomic singularities under convolution.

4.5 Three options, none perfect.

Singularity composition is clearly three things:
(i) associative
(ii) commutative
(iii) entire

The last point means that, under convolution, a simple pole with residue 1
somewhere over ω1 composed with a simple pole with residue 1 somewhere
over ω2 can only produce simple poles with residues n(ω) ∈ Z at various
points ω over ω1 + ω2, with n(ω) effectively depending on ω.

The product on Singax, of course, reflects these three properties, but
only modulo the equivalence relations (93). The funny thing is that there
is no way to define the Singax -product so as to make all three properties
simultaneously manifest : turn it or twist it, at least one of the three must
remain hidden. In fact, the choice is between three main options:

(i) Option 1: We define the Singax -product as in (94). Commutativity is
hidden, associativity and entireness manifest.

(ii) Op[tion 2: We define the Singax -product as the half-sum

1

2

(
S( ε

′

ω′ ) . S( ε
′′

ω′′ ) + S( ε
′′

ω′′ ) . S( ε
′

ω′ )
)

(95)

9i.e. the subspace spanned by the elements of the form

S...,ωi,+,ωi+1,... + S...,ωi,−,ωi+1,... − S...,ωi+ωi+1,...

is an ideal relative to the product (94).
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with each product calculated as in (94). That (almost) preserves the entire
character and restores manifest commutativity, but at the cost of associa-
tivity, which on balance matters more.

(ii) Op[tion 3: We define the Singax -product based on the conversion rule
from atomic to standard : see infra. That ensures manifest associativity and
manifest communitativity (and this is indeed the only way of getting both),
but at the cost of entireness and simplicity: not only are the new formulae
ridden with complicated rational coefficients, but they also involve an ab-
surdly large number of summands.

To sum up the three trade-offs:

associativity commutativity entireness
option 1 manifest hidden manifest
option 2 hidden manifest semi -manifest
option 3 manifest manifest hidden

Proofs. Establishing the rules for the Singax -product corresponding to
Option 1 (resp. Option 3) is a three-stepped affair:
(i) changing from the atomic to the lateral (resp. standard) system.
(ii) expressing the product of the singularity symbols in that system.
(iii) reverting to the atomic system.

Option 2, lastly, is entirely derivative on Option 1.

Analytical expression of singlarity composition.
It is encapsulated in a simple matrix identity

S( ε
1

ω1 ).S( ε
2

ω2 ) = Sr1+r2 .M
ε1; ε2 .S ω

1;ω2
(96)

whose interpretation is as follows:

• S( ε
1

ω1 ) and S( ε
2

ω2 ) stand for singularities of depth r1 and r2, with sequences
ω1, ω2 of length r1, r2 and sign sequences ε1, ε2 of length r1−1, r2−1.

• M ε1; ε2 is a matrix with 2r1+r2−1 rows and (r1+r2)!
r1!r2! columns

• The matrices M ε1; ε2

I , M ε1; ε2

II , M ε1; ε2

III relative to option I, II, III have
entries respectively in Z, (1/2)Z, (1/(r1 +r2)!)Z, but the entries in each
row always add up to an integer – the same in all three cases (see the red
columns in the examples below).
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• Sr1+r2 denotes the row with 2 r1+r2−1 entries of the form S
ε

= S
ε1,...,εr1+r2−1 ,

arranged in lexicographic order, with the sign sequences ε assuming all pos-
sible values.

• S ω1;ω2
denotes the column with (r1+r2)!

r1!r2! entries Sω, where ω runs through

all shufflings of ω1 and ω2, taken in lexicographic order.

• When expanding the right-hand side of (96), each product S
ε
.S ω must

be re-interpreted as the singularity symbol S( ε
ω

) = Sω1,ε1,ω2,ε2,...,ωr1+r2 .

Here are two examples, corresponding to the case (r1, r2) = (2, 2), first
for (ε1; ε2) = ((+); (+)), then (ε1; ε2) = ((+); (−)). All three matrices

M ε1; ε2

I , M ε1; ε2

II , M ε1; ε2

III are listed side by side for comparison,
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M
(+);(+)
I =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
0 0 −1 0 0 0
0 −1 0 0 −1 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
−1
−2

0
−1

1
0
0

M
(+);(+)
II = 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 1
0 0 −1 −1 0 0
−1 −1 0 0 −2 0

0 0 0 0 0 0
0 0 −1 −1 0 0
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
−1
−2

0
−1

1
0
0

M
(+);(+)
III = 1

24

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

8 1 3 3 1 8
−2 −3 −7 −7 −3 −2
−16 −5 −3 −3 −5 −16
−2 3 −1 −1 3 −2
−2 −3 −7 −7 −3 −2

0 5 7 7 5 0
−2 3 −1 −1 3 −2

0 −1 1 1 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
−1
−2

0
−1

1
0
0
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M
(+);(−)
I =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
1
1
−1

1
−1
−1

0

M
(+);(−)
II = 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
−1 0 −1 0 0 0

0 0 0 1 0 1
0 −1 0 0 −1 0
0 0 −1 0 0 −1
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
1
1
−1

1
−1
−1

0

M
(+);(−)
III = 1

24

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 1 −3 −1 2
12 3 −1 7 3 0
2 5 7 3 5 2

−12 −3 −7 1 −3 0
0 3 −1 7 3 12
−2 −5 −3 −7 −5 −2

0 −3 −7 1 −3 −12
−2 1 3 −1 1 −2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
1
1
−1

1
−1
−1

0

4.6 Mathematical status of the algebra Singax .

(i) Doesn’t appear to have been ever considered as a tool for modeling
the behaviour of singularities under convolution or for characterising the
minimal convolution domains.
(ii) However, the rule for singularity composition, especially in the simple
form (94) corresponding to Option 1, seems too basic an algebraic object
to have altogether escaped notice. Our hunch is that it must have already
cropped up in other mathematical contexts. But which ones? Suggestive of
what unsuspected linkages?
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4.7 The algebra Sing of general atomic singularities above C•
As pointed out, it is but a short step from understanding the composition of
axial atomic singularities to mastering that of general atomic singularities.
So we shall be content here with a few hints. The symbols for general atomic
singularities are of the form:

Sω1,...,ωr , Dω1,...,ωr ,
(
ωi ∈ C• := C̃− {0}

)
(97)

Consecutive indices ωi, ωi+1 are separated by an εi ∈ {+,−} only if they are
aligned, i.e. if argωi and argωi+1 are equal — as elements of R, not R/(2πZ).

Key to the discussion is the decomposition of the atomic operators in
blocks of standard, higher-order alien derivations and of the rotation10 R:

Dω =
∑

n1≤n≤n2

Rn
∑
∗
cn,ω ∆ω =

∑
n1≤n≤n2

Rn
∑
∗
c+
n,ω ∆+

ω

(
cn,ω ∈ Q

)
(98)

The bounds (n1, n2) are the same in both sums, and n1 ≤ 0 ≤ n2. As
for the number n2−n1− 1 of distinct secondary

∑
∗-blocks in (98) that are

preceded by effective rotations Rn (n 6= 0), that number depends in a rather
interesting way on the self-crossing pattern of the broken line Γ encoded by
the sequence ω.

4.8 Minimal convolution domains.

The above rules for the composition of symbolic atomic singularities are all
we need to characterise/describe/construct all minimal convolution domains,
and this seems to be the only workable approach (except in the relatively
simple case when all singularities lie over a lattice τ1Z or τ1Z + τ2Z).

4.9 Example: the ‘arithmetical axis’ RlnP.

Let P be the set of all prime integers 6= 1 and lnP its image under ln = log.
Let us call ‘arithmetical axis’ and denote by RlnP the minimal convolution

domain generated 11 or spawned 12 by RlnP := C̃− lnP.

This ‘arithmetical axis’RlnP is a highly non-trivial ‘sub-surface’ ofRlnN :=
˜C− lnN. The fact is that RlnP has far more Riemann sheets than RlnP,

10R stands for a one-turn local rotation (round 0•) in the Borel plane.
11a somewhat improper term in this context.
12a mathematically less loaded word.
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but far fewer than RlnN ≡ RlnN. The ‘arithmetical axis’ has indeed singu-
larities over each lnn ∈ lnN but, especially when n is highly divisible, of the
total number 2n−1 of forward paths that connect 0• with lnn on C − lnN,
only slighthly more than half have an actual singularity of RlnP as their
end-point.

For definiteness, let us sort out the case of a quadrat-frei integer n with
prime factoration n = p1 . . . pr. To that end, let us compose the elementary
singularities Sln p1 . . .Sln p1 according to the procedure of Option 1 first,
then of Option 3. We find:

Option 1

Sln p1 . . . Sln pr =
∑
σ∈Sr

εσ1 . . . ε
σ
r−1 Sln pσ(1),ε

σ
1 ,ln pσ(2),ε

σ
2 ,...,ln pσ(r) (99)

with

εσi := + if σ(i) < σ(i+1) (100)

εσi := − if σ(i) > σ(i+1) (101)

Option 3

Sln p1 . . . Sln pr =
1

r!

∑
σ∈Sr

∑
εi∈{+,−}

Ξε1,...,εr−1Sln pσ(1),ε1 ln pσ(2),ε2,...,ln pσ(r) (102)

with the integer-valued coefficients Ξ• defined as in (87).

Next, to accommodate and compare all these summands and register the
effect of possible – in fact, very numerous – cancellations, we must re-write
the sums (99) and (102) in terms of the position-based singularity symbols
S•, which relate to the interval-based symbols S• as follows13:

Sω1,ε1,ω2,ε2,ω3,ε3,... = Sω1,ε1,ω1+ω2,ε2,ω1+ω2+ω3,ε3,... (103)

Sη1,ε1,η2,ε2,η3,ε3,... = Sη1,ε1,η2−η1,ε2,η3−η2,ε3,... (104)

The total configuration of singularity symbols now assumes the form:

Sln p1 . . . Sln pr =

di|n (di 6=1,n)∑
εd1 ,...,εdρ∈{+,−}

Θεd1 ,...,εdρ Sln d1,εd1 ,...,ln dρ,εdρ ,lnn (105)

13It is only in the last stages of singularity analysis, for convenient comparison and to
arrive at the total picture, that one should resort to the position-based symbols S•. By
themselves these S• obey no simple multiplication rule, so that in the early stages one has
to work with the interval-based symbols S•,
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with all ρ := 2r − 2 strict divisors di of n simultaneously coming into play,
so that no further cancellations can take place.14 Here are the values of Θ•,
calculated successively by the first and third method.

Option 1

Θεd1 ,...,εdρ =
∑
σ∈Sr

γ1(σ, εd) γ2(σ, εd) . . . γr−1(σ, εd) (106)

with

γi(σ, εd) =


+1 if εpσ(1)...pσ(i) = + and σ(i) < σ(i+1)

−1 if εpσ(1)...pσ(i) = − and σ(i) > σ(i+1)

0 otherwise

Option 3

Θεd1 ,...,εdρ =
1

r!

∑
σ∈Sr

∑
εdi∈{+,−}

Ξ
εpσ(1) ,εpσ(1)pσ(2) ,...,εpσ(1)...pσ(i−1) (107)

Both formulae (106) and (107) yield the same (integer) value for Θ•.
Though (106) is by far the simpler of the two, formula (107) is not entirely
without merit either. It shows in particular that |Θεd1 ,...,εdρ | reaches its
maximum15 when each sign εd is + or − depending on the parity of the
number of primes pi involved in the factorisation of the divisor d.

14Inside S•, the logatithms ln di of the various divisors must of course appear in their
proper order, which order depends on n, but this is immaterial, since neither the crucial
coefficients Θ• nor the underlying combinatorics depend on that order.

15that maximum is none other than ξ1,...,1, with 1 repeated r−1 times: see towards the
end of §4.3.
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5 Isodifferential operators and their natural basis.

5.1 The bialgebra ISO of iso-differential operators.

An iso-differential operator or iso-differentiation of iso-degree n is an oper-
ator of the form:

Df :=
∑

1≤r≤n

n1+...nr=n∑
1≤ni

an1,...,nr H
(n1) . . . H(nr) with H = log(1/f ′) (108)

:=
∑

1≤r≤n

n1+...nr=n∑
1≤ni

bn1,...,nr

f (1+n1)

f ′
. . .

f (1+nr)

f ′
(109)

These operators are uniquely adapted to functional composition in general,
and more particularly to the description of the so-called ‘universal asymp-
totics’ since they always produce the same asymptotic series when made to
act on ultra-slow germs.

Due to their double homogeneousness (– the iso part of their name al-
ludes to that –) they are essentially invariant under pre- and post-composition
by simulitudes S:

D(S ◦ f) ≡ Df ; D(f ◦ S) ≡ αn (S(z) = αz + β) (110)

They also generate an interesting bialgebra, since they possess
(i) a commutative product ×, distinct from the non-commutative operator
composition and additive with respect to the iso-degree:

(D1 ×D2) f := (D1 f).(D2 f) (111)

ideg(D1 ×D2) = ideg(D1) + ideg(D2) (112)

(ii) a non-commutative coproduct D 7→ σ(D):

σ(D) :=
∑

degD=degD1+degD2

aD1,D2

D D1 ⊗D2 = D1 ⊗ 1 + 1⊗D2 + . . . (113)

that reflects the action of iso-differentiations on composition products:

D(f2 ◦ f1) :=
∑

idegD=idegD1+idegD2

aD1,D2

D (D1f1) (D2f2)◦f1 . (f
′
1)n2 (n2 := idegD2) (114)

(iii) an involution D 7→ D̃:

Dg ≡ (D̃f) ◦ g . (g′)n (n = idegD , f ◦ g = id) (115)
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that reflects the action of iso-differentiations on functional inverses.
But the most arresting feature of ISO is the existence of a doubly stable

positive cone ISO+ with a remarkable system {Dan, n ∈ N} of extremal
generators.

5.2 The stable and co-stable positive cone ISO+ ⊂ ISO .

For reasons that will become clear after a page or two, we must consider the
formal16 expansions è〈•〉(x) defined in this way:

è〈n1,...,nr〉(x) =
∑

1≤p1<p2<...<pr<+∞
(L′p1(x))n1 . . . (L′pr(x))nr (116)

where Lp denotes the pth iterate of L := log. The series è〈•〉(x) consist of
monomials of the form:

λσ = L′q1 . . . L
′
qr (1 ≤ q1 ≤ q2 ≤ ... ≤ qn , n = n1 + ...+ nr) (117)

with an alternative indexation by transfinite ordinals

τ = ωn−1q1 + ωn−2(q2 − q1) + ωn−3(q3 − q2) + · · ·+ (qn − qn−1) (118)

that reflects the natural ordering of the monomials: the larger τ as an
ordinal, the faster the rate of decrease of λσ as a germ.

Next, again for good reasons, we must change from the system è〈•〉 to a
new system à〈•〉, via mould post-composition by two composition-reciprocal
moulds sa• and cosa•:

san1,...,nr :=
1

(n1 + ...+ nr)(n2 + ...+ nr) . . . nr
(119)

cosan1,...,nr := (−1)r−1 n1 (120)

sa• ◦ cosa• := Id• (sa• symmetral , cosa• alternel) (121)

The conversion formulae è〈•〉 ↔ à〈•〉 read:

à〈•〉(x) = è〈•〉(x) ◦ sa• ; è〈•〉(x) = à〈•〉(x) ◦ cosa• (122)

The product rules :

è〈n
′〉 . è〈n

′′〉 =
∑

n∈she(n′,n′′)

è〈n〉
(
she = contracting shuffle

)
(123)

à〈n
′〉 . à〈n

′′〉 =
∑

n∈sha(n′,n′′)

à〈n〉
(
sha = plain shuffle

)
(124)

16formal indeed since there exists no common interval [c,+∞[ on which all Lp(x) are
simultaneously defined.
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simply mean that è〈•〉 (resp. è〈•〉) is symmetrel (resp. symmetral).

The ordinary derivation ∂ := d/dx acts slightly differently on the two
systems è〈•〉 and à〈•〉:

∂ è〈n〉 = −
∑

n′njn′′=n

(nj+|n′′|)
(

è〈n
′,1,nj ,n′′〉 + è〈n

′,1+nj ,n
′′〉
)

(125)

∂ à〈n〉 = −
∑

n′njn′′=n

(nj+|n′′|) à〈n
′,1,nj ,n′′〉 −

∑
n′njn′′=n

nj à〈n
′,1+nj ,n

′′〉 (126)

Roughly speaking, the reason for considering è〈•〉 and à〈•〉 is that any
iso-differential operator D, acting on any smooth germ (i.e. any real germ f
on [. . . ,+∞] that grows more slowly than any finite iterate of log), produces
a (trans)-asymptotic series which does not depend on f and can be analysed
in terms of these è〈•〉 or à〈•〉. However, not all è〈•〉 or à〈•〉 can be obtained
in this way, but only relatively few of them. This is the starting point of
a fascinating theory — the universal asymptotics of slow germs. But our
perspective here is different: we are more interested in the iso-differential
operators per se, and we use è〈•〉 and à〈•〉 merely to define, by duality,
symbolic operators De〈•〉 and Da〈•〉 that will span a bialgebra ISO larger, and
in many ways more convenient, than ISO — even though in the last analysis
the structure that matters remains ISO.

Our symbolic operators De〈•〉 and Da〈•〉 immediately inherit a simple co-
product dual to the products (123)-(124), plus a natural product, plus an
action on them of ∂ := d/dx patterned on (125)-(126):

−∂ De〈n〉 =
∑

n′njn′′=n

(nj+|n′′|)
(
De〈n

′,1,nj ,n′′〉 + De〈n
′,1+nj ,n

′′〉
)

(127)

−∂ Da〈n〉 =
∑

n′njn′′=n

(nj+|n′′|)Da〈n
′,1,nj ,n′′〉 +

∑
n′njn′′=n

nj Da〈n
′,1+nj ,n

′′〉 (128)

The positive cone ISO
+

of ISO generated by the system Da〈•〉 is doubly
stable – under the product and co-product – and the same holds for the
positive cone ISO+ that it induces on ISO . For more information on ISO+,
see §6 of The Natural Growth Scale17. But let us here proceed forthwith to
the exciting part – the extremal basis {Dan, n ∈ N} of ISO+.

17Accessible on our Webpage: < http : //www .math.u-psud .fr/ ∼ ecalle/ >

33



5.3 The extremal basis {Dan, n ∈ N} of ISO+ and its combi-
natorial aspects.

Before stating (some of) the main results, let us get a few definitions and
notations out of the way. For any non-ordered sequence of the form

{n} = {n1, n2, . . . , nr} = {m(r1)
1 ,m

(r2)
2 , . . . ,m(rs)

s } (129)

with n1 ≤ n2 ≤ · · · ≤ nr and m1 < m2 < · · · < ms (130)

the multiplicity correction µ{n} is defined as

µ{n} =
∏

1≤j≤s

1

(1 + rj)!
(131)

and we denote
→
n resp.

←
n the ordered sequence obtained by arranging the

elements of {n} in increasing resp. decreasing order. If n is an ordered
sequence, ñ denotes the same sequence with its order reversed. Lastly, for
any t ∈ R we set:

(t)+ := |t| if t > 0 and (t)+ := 0 if t ≤ 0 (132)

(t)− := |t| if t < 0 and (t)− := 0 if t ≥ 0 (133)

Alonside Da{n} and Da〈n〉 we also require the variants:

Da{n1,...,nr} :=
Da{n1,...,nr}∏

(1+nj)!
; Da〈n1,...,nr〉 :=

Da〈n1,...,nr〉∏
nj (1+nj)

(134)

Proposition: The extremal basis.
For each n1 ≥ 1 there exists a unique iso-operator Da{n1} = (n1+1)! Da{n1}

in the positive cone Da+ ⊂ Da+ verifying the normalisation condition

Da{n1} = (n1 − 1)!Da〈n1〉 + . . . ⇔ Da{n1} = Da〈n1〉 + . . . (135)

and characterised by either of the following properties:
(i) among all iso-operators so normalised, Da{n1} and Da{n1} are least ele-
ments in the cone Da+

(ii) the expression of Da{n1} resp. Da{n1} in the basis Da〈n〉 resp. Da〈n〉 in-
volves no weakly decreasing sequences n = (n1, ..., nr) of length r ≥ 2.

The system Da{•} or Da{•} constitutes the so-called extremal basis of ISO.
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Proposition: Analytical properties of the extremal basis.
The elements of the positive basis are given by Da{1} = 2 Da{1} := Dn{1} and
by an induction rule

Da{n} = −∂Da{n−1} −
∑
|n|=n

ka{n} µ{n}Da{n} (136)

(1+n) Da{n} = −∂Da{n−1} −
∑
|n|=n

ka{n} µ{n}Da{n} (137)

involving non-negative coefficients ka{n} with a clear multiplicative structure:

ka{n} = (r1−1) (−1+n1)− (−1+n1−n2)−
∏

2≤j≤r
(−1+n1+. . .+nj−1−nj)+ (138)

Here r1 denotes the multiplicity of the smallest element in the non-ordered
sequence n. As a consequence, ka{n} is > 0 if and only if

n1 = n2 ≥ 2 and n1 + n2 + · · ·+ nj−1 ≥ 2 + nj (139)

The expansion of the Da{n},Da{n} in the Da〈n〉 basis:

Da{n} =
∑
1≤r

∑
n=n1+...+nr

tan1,...,nr Da〈n1,...,nr〉 (140)

Da{n} =
∑
1≤r

∑
n=n1+...+nr

tan1,...,nr Da〈n1,...,nr〉 (141)

as well as the expression of the involution ∼ : Da{n} 7→ D̃a
{n}

D̃a
{n}

= fa{n} µ{n}Da{n} (142)

D̃a
{n}

= fa{n} µ{n}Da{n} (with fa{n} = (−1)r(n)ta→
n

) (143)

or that the co-product 18 σ : Da{n} 7→ σ(Da{n})

σ(Da{n}) =
∑

|p|+|q|=n

ha{p},{q} µ
{p}Da{p} ⊗ µ{q}Da{q} (144)

σ(Da{n}) =
∑

|p|+|q|=n

ha{p},{q} µ
{p}Da{p} ⊗ µ{q}Da{q} (with ha{p},{q} = ta←

p ,
←
q

)

18Recall that σ is co-associative, but not co-commutative
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also involve non-negative integers19 tan, fa{n}, ha{p},{q}, but the only struc-
ture constants with a transparent factorization are those coefficients ha{p},{q}
for which one of the sequences {p} = {p1 ≤ p2 ≤ ...} or {q} = {q1 ≤ q2 ≤
...} is of length one:

ha{p},{q1} = (q1−p1)+
∏

2≤j≤r
(q1+p1+p2+...+pj−1−pj)+ (145)

ha{p1},{q} = (p1−q1)−
∏

2≤j≤r
(p1+q1+q2+...+qj−1−qj)+ (146)

More information on the iso-differential operators Dan and their combi-
natorial aspects may be found in §7 of The Natural Growth Scale.20 Numer-
ous related tables are also available there, in §14.

19except fa{n} whose sign is that of (−1)r(n)

20Accessible on our Webpage: < http : //www .math.u-psud .fr/ ∼ ecalle/ >
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