TAMING THE COLOURED MULTIZETAS.

Jean Ecalle, Orsay Univ. \& CNRS.

- Part 1: The flexion structure.
- Part 2: Multizeta irreducibles and perinomal analysis.
- Part 3: Bicoloured multizetas and their satellites.
N.B. Spell flexion, not flection!

Key words: uncoloured/bicoloured multizetas, flexions, bimoulds, irreducibles, ari/gari , biari/bigari, swap , bialternal/bisymmetral , perinomal algebra, singulators/singulands/singulates, mould amplification, satellites.

AMS code: 11M32

Part 1. The flexion structure.

1 Basic flexions.
3 Basic flexion operations: the core involution swap.
2 Basic flexion operations: ari, gari.
4 Origin of the flexion structure in perturbation analysis.
5 Origin of the flexion structure in mould algebra.
6 The coloured multizetas wa ${ }^{\bullet}$ and $z e^{\bullet}$.
7 Algebraic constraints on the scalar multizetas.
8 The generating series/functions zag and zig*.
9 Algebraic constraints on the generating series.
10 The centre of GARI.
11 Adequation of the flexion structure to MZ arithmetics.

Part 2. Multizeta irreducibles and perinomal analysis.
12 Dynamical MZs. Reduction of all odd-degree MZs.
13 The palindromy formula.
14 Elimination of all weight indices equal to 1 .
15 The basic polar/trigonometric bisymmetrals.
16 The double symmetry exchanger adari $\left(\mathrm{pa} \mathbf{l}^{\bullet}\right)$.
17 Singulators, singulands, singulates.
18 Symmetry-respecting singularity removal.
19 Constructing /øma* by desingularisation.
20 The basic trifactorisation of zag*.
21 Chief difficulties: infinitude.
22 Chief difficulties: imbrication.
23 Enforcing rigidity. Perinomal analysis.
24 The perinomal realisation luma`.
25 Perinomal reduction of uncoloureds.
26 The arithmetical realisations lamå${ }^{\bullet}$, Ioma ${ }^{\circ}$.
27 Some tantalising arithmetical riddles.

Part 3. Bicoloured multizetas and their satellites.

28 Pausing midway to take stock.
29 Taming the bicoloureds: overall scheme.
30 The extremal algebra: no information loss.
31 The extremal algebra and the second symmetry.
32 Mould amplification.
33 The satellites saza g_{0}°, sazag ${ }_{1}^{\bullet}$ and saløma ${ }_{0}^{\circ}$, saløma ${ }_{1}^{\circ}$.
34 Recovering løma• from saløma ${ }_{0}^{\circ}$, saløma ${ }_{1}^{\circ}$.
35 The satellite algebra structure (for alternals).
36 The satellite GARI structure (for symmetrals).
37 The mischief potential of $\log 2$.
38 Keeping track of the second symmetry.
39 Meromorphy of sazag ${ }_{0}^{*}$ and $\operatorname{saza}_{1} g_{1}^{*}$.
40 Counting our luck.
41 Listing our gains.
42 Concluding remarks.
43 Some references.

1 Basic flexions.

Bimoulds M^{\bullet} have a two-tier indexation $\bullet=\boldsymbol{w}=\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}$ with u_{i} 's and v_{i} 's that interact in a very special way, through four basic flexions \rfloor,\lceil and \rceil, L. Thus, if $w=w^{\prime} \cdot w^{\prime \prime}$ with $\boldsymbol{w}^{\prime}=\binom{u_{1}, u_{2}}{v_{1}, v_{2}}$ and $\boldsymbol{w}^{\prime \prime}=\binom{u_{3}, u_{4}, u_{5}}{v_{3}, v_{4}, v_{5}}$, we set:

$$
\begin{array}{rlrl}
\left.w^{\prime}\right\rfloor & =\binom{u_{1}, u_{2}}{v_{1: 3}, v_{2: 3}} & \left\lceil w^{\prime \prime}=\binom{u_{1,2,3}, u_{4}, u_{5}}{v_{3}, v_{4}, v_{5}}\right. \\
\left.w^{\prime}\right\rceil & =\left(\begin{array}{c}
u_{1}, u_{2,3,4,5} \\
v_{1}, \\
v_{2}
\end{array}\right) & \left\lfloor w^{\prime \prime}=\binom{u_{3}, u_{4}, u_{5}}{v_{3: 2}, v_{4: 2}, v_{5: 2}}\right. \\
u_{i, j, k \ldots}:=u_{i}+u_{j}+u_{k} \ldots & v_{i: j}:=v_{i}-v_{j}
\end{array}
$$

The products of upper and lower indices remain invariant:

$$
\begin{gathered}
\left.\boldsymbol{w}=\boldsymbol{w}^{\prime} \boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{*}=\boldsymbol{w}^{\prime}\right\rfloor\left\lceil\boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{* *}=\boldsymbol{w}^{\prime}\right\rceil\left\lfloor\boldsymbol{w}^{\prime \prime} \Rightarrow\right. \\
\sum u_{i} v_{i} \equiv \sum u_{i}^{*} v_{i}^{*} \equiv \sum u_{i}^{* *} v_{i}^{* *} \\
\sum d u_{i} \wedge d v_{i} \equiv \sum d u_{i}^{*} \wedge d v_{i}^{*} \equiv \sum d u_{i}^{* *} \wedge d v_{i}^{* *}
\end{gathered}
$$

2 Basic flexion operations: the core involution swap.

$$
\begin{aligned}
& B^{\bullet}=\operatorname{swap} A^{\bullet} \\
& \text { I } \\
& \left.B^{\left(\begin{array}{l}
u_{1}, \ldots, u_{r} \\
v_{1}, \ldots, \\
v_{r}
\end{array}\right)}=A^{\left(\begin{array}{c}
v_{r}, \ldots, \\
u_{1}, \ldots, r
\end{array}, \ldots, v_{1: 4}, v_{1,2}, v_{2: 3}, v_{1: 2}, v_{1,2},\right.} u_{1}\right)
\end{aligned}
$$

Once again, the invariance holds: $\quad \sum_{i} u_{i} v_{i}=\sum_{i} v_{i: i+1} u_{1, \ldots, i}$

- The swap transform $\left(s^{2}\right.$ ap $\left.{ }^{2}=i d\right)$ is as central to flexion theory as the Fourier transform $\left(\mathcal{F}^{4}=i d\right)$ is to Analysis.
There are even contexts where the two coincide.
- Interesting bimoulds M^{\bullet} tend to possess a double symmetry: one for M^{\bullet}, another for the swappee (swap. M^{\bullet}).

3 Basic flexion operations: ari, gari.
Lie bracket ari \Longrightarrow Lie algebra $A R I$:

$$
\begin{aligned}
N^{\bullet}= & \operatorname{arit}\left(B^{\bullet}\right) M^{\bullet} \Leftrightarrow N^{w}=\sum^{w=a b c} M^{a\lceil c} B^{\boldsymbol{b}\rfloor}-\sum^{w=a b c} M^{a\rceil c} B^{\lfloor\boldsymbol{b}} \\
& \operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{arit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{arit}\left(A^{\bullet}\right) \cdot B^{\bullet}+\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right)
\end{aligned}
$$

Associative product gari \Longrightarrow Lie group GARI:

$$
\begin{aligned}
N^{\bullet}= & \operatorname{garit}\left(B^{\bullet}\right) M^{\bullet} \Leftrightarrow N^{w}=\sum^{w=a^{i} b^{i} c^{i}} M^{\left[b^{1}\right\rceil . .\left\lceil b^{s}\right\rceil} B^{\left.a^{1}\right\rfloor} . . B^{\left.a^{s}\right\rfloor} B_{*}^{\left\lfloor c^{1}\right.} . . B_{*}^{\left\lfloor c^{s}\right.} \\
& \operatorname{gari}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{mu}\left(\operatorname{garit}\left(B^{\bullet}\right) \cdot A^{\bullet}, B^{\bullet}\right) \quad\left(B_{*}^{\bullet}:=\operatorname{invmu} B^{\bullet}\right)
\end{aligned}
$$

NB: gari $\left(A^{\bullet}, B^{\bullet}\right)$ is linear in A^{\bullet}, highly non-linear in B^{\bullet}.
Main merits: ari/gari respect double symmetries.

3* Basic flexion operations: ari, gari (comments).
Very loosely speaking, the flexion structure is the sum total of all interesting operations that may be constructed from the four afore-mentioned flexions. More specifically: up to isomorphism, there exist exactly seven pairs \{Lie algebra, Lie group $\}$ obtainable in this way. Of these substructures, two have the added distinction of preserving double symmetries. Moreover, when restricted to doubly symmetric bimoulds, these two substructures actually coincide. So we choose to work with the simpler of the two pairs: \{ari, gari\}.

4. Origin of the flexion structure in Analysis.

Singularly perturbed systems (typically, differential systems with a small ϵ in front of the leading derivatives) tend to be divergent-resurgent-resummable in $x=\frac{1}{\epsilon}$, giving rise in the Borel ξ-plane to complex singularities ω constructed, under application of the flexion combinatorics, from two quite distinct ingredients:
(i) additive u_{i}-variables that depend solely on the structure of the equation and its multipliers,
(ii) subtractive v_{i}-variables that reflect the singularities of the equation's coefficients in the multiplicative plane.

4*. Origin of the flexion structure in Analysis (comments).
The corresponding developments, esp. the so-called scramble transform and the tesselation bimould, may be found in
J.E. Weighted products and parametric resurgence.

Travaux en Cours, 471994.
or again, in a much extended context, in
J.E. Singularly Perturbed Systems, Coequational Resurgence, and Flexion Operations. 7 June 2014.
The second paper is accessible on the author's homepage.
5. Origin of the flexion structure in mould algebra.

$$
\begin{aligned}
& C^{\bullet}=\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right)=A^{\bullet} \times B^{\bullet} \Leftrightarrow C^{u}=\sum^{u=u^{\prime} u^{\prime \prime}} A^{u^{\prime}} B^{u^{\prime \prime}} \\
& C^{\bullet}=\operatorname{ko}\left(A^{\bullet}, B^{\bullet}\right)=A^{\bullet} \circ B^{\bullet} \Leftrightarrow C^{u}=\sum_{1 \leq s}^{u=u^{1} . . u^{s}} A^{\left|u^{1}\right|, \ldots,\left|u^{s}\right|} B^{u^{1}} . . B^{u^{s}}
\end{aligned}
$$

Moulds of the form $\mathcal{M}_{A}^{\bullet}=A^{\bullet} \times I d^{\bullet} \times A_{*}^{\bullet}$ with $A^{\bullet} \times A_{*}^{\bullet} \equiv 1^{\bullet}$ are stable under (mould) composition, and the equivalence holds:

$$
\begin{equation*}
\left\{\mathcal{M}_{C}^{\bullet}=\mathcal{M}_{A}^{\bullet} \circ \mathcal{M}_{B}^{\bullet}\right\} \Longleftrightarrow\left\{C^{\bullet}=\operatorname{gari}\left(A^{\bullet}, B^{\bullet}\right)\right\} \tag{1}
\end{equation*}
$$

The ari-bracket is capable of a similar derivation.
R1: From the \boldsymbol{u} - to the $\binom{u}{v}$-indexation: unique extension.
R2: (1) establishes the associativity of the gari-product.
R3: From moulds to bimoulds, and back.

5*. Origin of the flex. str. in mould algebra (comments). There exists a natural path from the basic, non-inflected mould operations (i.e. mould multiplication $m u$ or \times with its Lie bracket $l u$, and mould composition ko or o with a suitably defined Lie bracket $l o$) to the inflected operations ari, gari. Thus, formula (1) shows how to derive gari from $m u$ and $k o$. R1: Strictly speaking, (1) derives gari only for \boldsymbol{u}-dependent bimoulds, but once a flexion operation is defined on the u_{i} 's, it uniquely extends to the v_{i} 's, and vice versa.
R2: The quickest way to check the associativity of gari is actually by using that very same formula (1).
On the correspondence uninflected \longrightarrow inflected (which, incidentally, can be partially reversed), see [E5], §1.
6. The coloured multizetas $w a^{\bullet}$ and $z e^{\bullet}$.

- Polylogarithmic integrals. $\left(\alpha_{j}=0\right.$ or unit root; $\left.\binom{\alpha_{1} \neq 0}{\alpha_{s} \neq 1}\right)$

$$
\underline{\mathrm{wa}}^{\alpha_{1}, \ldots, \alpha_{s}}:=(-1)^{s_{0}} \int_{0}^{1} \frac{d t_{s}}{\alpha_{s}-t_{s}} \cdots \int_{0}^{t_{3}} \frac{d t_{2}}{\alpha_{2}-t_{2}} \int_{0}^{t_{2}} \frac{d t_{1}}{\alpha_{1}-t_{1}}
$$

- Harmonic sums. $\left(e_{j}=e^{2 \pi i \epsilon_{j}}=\right.$ unit root; $\left.s_{j} \in \mathbb{N}^{*} ;\binom{e_{1}}{s_{1}} \neq\binom{ 1}{1}\right)$

$$
\underline{\mathrm{ze}}^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{s_{1}, \ldots, s_{r}}}:=\sum n_{1}^{-s_{1}} e_{1}^{-n_{1}} \ldots n_{r}^{-s_{r}} e_{r}^{-n_{r}} \quad\left(e_{j}=e^{2 \pi i \epsilon_{j}}\right)
$$

- Conditional conversion rule (assuming convergence):

$$
\underline{\mathrm{ze}}^{\binom{\epsilon_{1} \epsilon_{1}, \ldots, \epsilon_{1}}{s_{2}, \ldots, s_{r}}} \equiv \underline{\mathrm{wa}}^{\left.\mathrm{e}_{1} \ldots e_{r}, 0 \mathrm{~s}_{r}-1\right], \ldots, e_{1} e_{2}, 0{ }^{\left[s_{2}-1\right]}, e_{1}, 0\left[s_{1}-1\right]}
$$

- $s=$ weight,$r=$ length (or depth) $, d:=s-r=$ degree.

7 Algebraic constraints on the scalar multizetas.

- First symmetry: wa ${ }^{\bullet}$ is symmetral, with a unique symmetral extension $w a^{\bullet} \rightarrow w a^{\bullet}$ such that $w a^{0}=w a^{1}=0$.
- Second symmetry: $z e^{\bullet}$ is symmetrel, with a unique symmetrel extension ze $e^{\bullet} \rightarrow z e^{\bullet}$ such that $z e^{\binom{0}{1}}=0$.
- Conversion rule: The conversion formula wa$~ \leftrightarrow \underline{z e}{ }^{\bullet}$ has a non-trivial extension $w a^{\bullet} \leftrightarrow z e^{\bullet}$, best expressed in terms of the generating series zag ${ }^{\bullet}$ and $z^{\circ} g^{\bullet}$. Cf infra.
- Colour-consistency: If $p \in \mathbb{N}, \mathbb{Q}_{\infty}:=\mathbb{Q} / \mathbb{Z}, \mathbb{Q}_{p}:=\left(\frac{1}{p} \mathbb{Z}\right) / \mathbb{Z}$
- Conjecture: this set of algebraic constraints is exhaustive.

7* Alg. constraints on the scalar multizetas (comments).

 Attached to each of the two encodings wa a^{\bullet} and $\underline{z e} e^{\bullet}$ there is a specific symmetry type, which amounts to a specific way of multiplying the scalar multizetas. This is the essence of arithmetical dimorphy - a phenomenon that extends far beyond the multizeta landscape, but finds there its most striking manifestion.Dropping the convergence assumption while preserving the symmmetries, i.e. extending $w a^{\bullet}, \underline{z e^{\bullet}}$ to $w a^{\bullet}, z e^{\bullet}$, is a purely formal-algebraic affair, but it comes at the cost of a slight complication in the conversion rule and colour consistency constraints. The modified constraints are best expressed in terms of the generating functions $z a g^{\bullet}$, zig ${ }^{\bullet}$ and of two suitable elements in centre(GARI) : see slides 9,10.

8 The generating series/functions $z a g^{\bullet}$ and $z i g^{\bullet}$.
$\bullet \operatorname{zag}^{\binom{u_{1}, \ldots, u_{r}}{\epsilon_{1}, \ldots, \epsilon_{r}}}:=\sum_{1 \leq s_{j}} \mathrm{wa}^{e_{1}, 0^{\left[s_{1}-1\right]}, \ldots, e_{r}, 0\left[{ }^{\left[s_{r}-1\right]}\right.} u_{1}^{s_{1}-1} u_{1,2}^{s_{2}-1} \ldots u_{1, \ldots, r}^{s_{r}-1}(2)$
$\bullet \operatorname{zig}^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{v_{1}, \ldots, v_{r}}}:=\sum_{1 \leq s_{j}} \mathrm{ze}^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{s_{1}, \ldots, s_{r}}} v_{1}^{s_{1}-1} \ldots v_{r}^{s_{r}-1}$
Meromorphy of zag ${ }^{\bullet}$ and zig ${ }^{\bullet}$. Setting $P(t):=\frac{1}{t}$, we have:

$$
\begin{aligned}
\operatorname{zag}^{\bullet} & =\lim _{k \rightarrow}\left(\operatorname{dozag}_{k}^{\bullet} \times \operatorname{cozag}_{k}^{\bullet}\right) \\
\operatorname{zig}^{\bullet} & =\lim _{k \rightarrow}\left(\operatorname{dozig}_{k}^{\bullet} \times \operatorname{cozig}_{k}^{\bullet}\right) \\
\operatorname{dozag}^{\left(\begin{array}{c}
u_{1}, \ldots, u_{r}, \ldots, \epsilon_{r}
\end{array}\right)} & =\sum_{1 \leq m_{j} \leq k} \prod_{1 \leq j \leq r} e_{j}^{-m_{j}} P\left(m_{1, \ldots, j}-u_{1, \ldots, j}\right) \\
\operatorname{dozig}{ }^{\binom{\epsilon_{1}, \ldots, \epsilon_{r}}{\epsilon_{1}, \ldots, \epsilon_{r}}} & =\sum_{k \geq n_{1}>. .>n_{r}>0} \prod_{1 \leq j \leq r} e_{j}^{-n_{j}} P\left(n_{j}-v_{j}\right)
\end{aligned}
$$

- zag ${ }^{\bullet} \in G A R I^{a s / i s}=$ no group, but right action of GARI $\frac{\text { as }}{} /$ iss.
8^{*} The generating series $z a g^{\bullet}$ and $z^{\bullet \bullet}$ (comments).
There is much to be gained by switching from the scalar multizetas $w a^{\bullet}, z e^{\bullet}$ to the generating series $z a g^{\bullet}, z i g^{\bullet \bullet}$ as defined by (2)-(3). These generating series, crucially, sum to meromorphic functions, which in turn factor into a dominant part dozag ${ }^{\bullet}$ or dozig` that carries 'multivariate simple poles' (recall that $P(t):=1 / t)$, and an elementary (scalar-valued) corrective factor cozag ${ }^{\bullet}$ or cozig ${ }^{\bullet}$.
The sets $G A R I^{a s / a s}, G A R I^{a s} /$ is are no groups, but admit a right action of the groups $G A R I^{a s /} / \frac{a s}{}, G A R I$ Ias/is , the only difference being that elements of the groups have length-1 components even in $w_{1}: S^{w_{1}} \equiv S^{-w_{1}}$.

9. Algebraic constraints on the generating series.

- First symmetry: zag• symmetral.
- Second symmetry: zig• symmetril.
$\mathrm{zig}^{\cdots, w_{i}+w_{j}, \ldots} \rightarrow \mathrm{zig}^{\left(\cdots, \ldots, v_{i j}, \ldots\right)} P\left(v_{i: j}\right)+\mathrm{zig}^{\left(\ldots,{ }^{(\ldots, j, j}, \ldots\right)} P\left(v_{j: i}\right)$
- Conversion rule: For a well-defined $\operatorname{man}^{\bullet} \in G A R I_{\text {centre }}$

$$
\text { swap.zig•• }=\operatorname{gari}\left(z a g^{\bullet}, \operatorname{man} \bullet\right)=\operatorname{mu}\left(\mathrm{zag}^{\bullet}, \operatorname{man} \bullet\right)
$$

- Colour-consistency: For a well-defined $l a g_{p}^{*} \in$ GARI $_{\text {centre }}$ $\mu_{p} \mathrm{zag}^{\bullet}=\operatorname{gari}\left(\delta_{\mathrm{p}} \mathrm{zag}^{\bullet}, \operatorname{lag}_{\mathrm{p}}^{\bullet}\right)=\operatorname{mu}\left(\delta_{\mathrm{p}} \mathrm{zag}^{\bullet}, \operatorname{lag}_{\mathrm{p}}^{\bullet}\right) \quad(\forall p \in \mathbb{N})$

- Pairs $\left\{G A R I^{a s} /\right.$ is,$\left.~ A R I^{a l l} / i \underline{i l}\right\}$ and $\left\{G A R I^{\underline{a s} / \underline{a s}}, A R I^{a l /} / \underline{a l}\right\}$.

10. The centre of GARI.

The elements $c a^{\bullet}$ of GARI $_{\text {centre }}$ are all of the form:

$$
\mathrm{ca}^{\binom{\left(u_{1}, \ldots, \ldots, v_{r}\right)}{v_{r}}} \equiv \mathrm{ca}_{r} \in \mathbb{C} \quad \text { if } \quad\left(v_{1}, \ldots, v_{r}\right)=(0, \ldots, 0) \quad(e / s e \equiv 0)
$$

and verify for all $M a^{\bullet} \in G A R I$:

$$
\operatorname{gari}\left(c a^{\bullet}, M a^{\bullet}\right) \equiv \operatorname{gari}\left(M a^{\bullet}, c a^{\bullet}\right) \equiv \operatorname{mu}\left(M a^{\bullet}, c a^{\bullet}\right)
$$

The central elements $\operatorname{man}^{\bullet}, \operatorname{lag} g_{p}^{\bullet}$ on slide 9 correspond to constants man $_{r}$, lag ${ }_{p, r}$ so defined:

$$
\begin{array}{r}
\sum_{1 \leq r} \operatorname{man}_{r} t^{r} \equiv \exp \left(\sum_{2 \leq s}(-1)^{s-1} \zeta(s) \frac{t^{s}}{s}\right) \\
\operatorname{lag}_{p, r}:=\frac{(-\log p)^{r}}{r!}=\frac{(-1)^{r}}{r!}\left(\sum_{a^{D}=1, a \neq 1} \log (1-a)\right)^{r}
\end{array}
$$

11. Adequation of the flexion structure to multizeta arithmetics.

- Moving from the scalar multizetas $w a^{\bullet} / z e^{\bullet}$ to the generating series zag ${ }^{\bullet} /$ zig $^{\bullet}$ compactifies everything.
- zag ${ }^{\bullet}$ /zig ${ }^{\bullet}$ simplify the expression of the double symmetry, conversion rule ('dimorphy'), colour consistency etc.
- GARI contains, alone of all competing frameworks, such basic and crucially helpful objects as the bimoulds pal $/{ }^{\bullet} / \mathrm{pil}^{\bullet}$.
- The series zag ${ }^{\bullet} / z i g^{\bullet}$ can also be viewed as meromorphic functions resp. in \boldsymbol{u} or \boldsymbol{v}, with simple multivariate poles. This makes them ideally suited for disentangling the algebraic identities between multizetas, which seem to be wholly derivable from (iterated) polar identities of the form:

$$
\frac{1}{n_{1}^{s_{1}} n_{2}^{s_{2}}}=\sum_{\sigma_{1}, \sigma_{2}}\left(\frac{\alpha_{\sigma_{1}, \sigma_{2}}^{s_{1}, s_{2}}}{n_{1}^{\sigma_{1}} n_{1,2}^{\sigma_{2}}}+\frac{\beta_{\sigma_{1}, \sigma_{2}}^{s_{1}, s_{2}}}{n_{2}^{\sigma_{1}} n_{2,1}^{\sigma_{2}}}\right)=\sum_{\sigma_{1}, \sigma_{2}}\left(\frac{\gamma_{\sigma_{1}, \sigma_{2}}^{s_{1}, s_{2}}}{n_{1}^{\sigma_{1}} n_{2: 1}^{\sigma_{2}}}+\frac{\delta_{\sigma_{1}, \sigma_{2}}^{s_{1}, s_{2}}}{n_{2}^{\sigma_{1}} n_{1: 2}^{\sigma_{2}}}\right)
$$

12. Dynamical MZs. Reduction of odd-degree MZs.

- Euler considered MZs of length 2. The general MZs first came up in the late 70s, as dynamical multizetas, i.e. as the transcendental ingredients of the analytic invariants attached to local, identity-tangent diffeomorphisms.
- Dichotomy: the arithmetical MZs, occuring in the Stokes constants and subject to the two symmetries, versus the dynamical MZs, occuring in the invariants and subject only to those (weaker) algebraic relations responsible for making the invariants invariant.
- Any uncoloured dynamical (and, a fortiori, arithmetical) $\zeta\left(s_{1}, \ldots, s_{r}\right)$ of odd degree $d:=-r+\sum s_{i}$ can, via an explicit algorithm, be expressed in terms of $M Z s$ of even degree plus, oddly, the 'odd' odd-degreed $\zeta(2)=\pi^{2} / 6$.

13. The palindromy formula in $A R I \frac{a l}{\text { ent. }} /$.

For any $C \in \operatorname{IHARA} \subset \mathbb{Q}\left[x_{0}, x_{1}\right]$ (corresponding to elements of $A R I$ al $/$ ily $\frac{I}{}$), the right and left decompositions

$$
C=A_{0} x_{0}+A_{1} x_{1}=x_{0} B_{0}+x_{1} B_{1} \quad\left(A_{i}, B_{i} \in \mathbb{Q}\left[x_{0}, x_{1}\right]\right)
$$

yield sums $A_{0}+A_{1}$ and $B_{0}+B_{1}$ that are invariant under the palindromic involution

$$
x_{\epsilon_{1}} x_{\epsilon_{2}} \ldots x_{\epsilon_{s}} \longleftrightarrow(-1)^{s-1} x_{\epsilon_{s}} \ldots x_{\epsilon_{2}} x_{\epsilon_{1}}
$$

Proof: follows from the 'senary relations' which express the invariance of C under the operator pushu $:=\operatorname{adari}\left(p a l^{\bullet}\right)$ push.

14. Elimination of all weight indices equal to 1 .

Every multizeta ze ${ }^{\left(\epsilon_{1}, \ldots, \ldots, s_{r}\right)}$ can be decomposed into a finite sum (over \mathbb{Q}) of multizetas with partial weights $s_{i}>1$.

The solution relies on explicit formulae (it uses a functional projector) and involves delightful combinatorics.
N.B. The statement applies equally to coloured and uncoloured multizetas. In the case of uncoloureds, it can be bettered: see Francis Brown's theorem on the elimination of all partial weights s_{i} other than 2 and 3 (for motivic multizetas).

15 The basic polar/trigonometric bisymmetrals.

Set $P(t):=\frac{1}{t}$ and $Q(t):=\frac{\pi}{\tan (\pi t)}$. Then there exists

- an ess..$^{\text {ly }}$ unique polar pair pal $1^{\bullet} /$ pil $^{\bullet} \in G A R I^{\text {as/as }}$ with pal $\left.\right|^{w_{1}, \ldots, w_{r}} r$-homogeneous in the $P\left(u_{i}\right)$ and $P\left(u_{1, \ldots, 2 i}\right)$.
- an ess. ${ }^{l y}$ unique trigonometric pair tal $l^{\bullet} /$ til $l^{\bullet} \in G A R I^{\text {as/as }}$ with $t a l^{w_{1}, \ldots, w_{r}} r$-homogeneous in π^{2}, the $Q\left(u_{i}\right)$ and $Q\left(u_{1, \ldots, 2 i}\right)$.
These two bisymmetrals pal $/{ }^{\circ} \mathrm{pi} l^{\bullet}$ and $\mathrm{ta} / /^{\bullet} /$ til ${ }^{\bullet}$
(i) admit several equivalent definitions/characterisations,
(ii) possess no end of remarkable properties,
(iii) are key to the understanding of multizetas (thrice over!!!!),
(iv) cannot be defined in any of the alternative frameworks.

- $G A R I^{a s / a s}$ no group, but $G A R I^{a s / a s} \cdot G A R I^{a s / a s}=G A R I^{a s / a s}$.

16 The double symmetry exchanger adari(pa/ $\left./^{\bullet}\right)$.

As multizeta investigators, we are chiefly interested in the double symmetries al/il and as/is, but we must also resort to the double symmetries $\underline{a l} /$ al and $\underline{a s} / \underline{s}$ which have the signal advantage of being iso-length, i.e. of involving only bimould components of the same length. Hence the need for double symmetry exchangers, assembled from the bisymmetral pal ${ }^{\circ}$:

$$
\begin{aligned}
& \mathrm{GARI}^{\text {as/as }} \text { as } \xrightarrow{\text { adgari(pal }}{ }^{\circ} \text {) } \mathrm{GARI}^{\text {as } / \underline{\text { is }}} \\
& \uparrow \text { expari } \\
& \uparrow \text { expari } \\
& \left.\mathrm{ARI}^{\text {al/ } / \underline{a l}} \xrightarrow{\text { adari }(\text { pal }} \cdot \mathrm{C}\right) \mathrm{ARI}^{\text {al/ } / i \underline{l}}
\end{aligned}
$$

and operating through adjoint action:

$$
\begin{aligned}
\operatorname{adgari}\left(A^{\bullet}\right) B^{\bullet} & :=\operatorname{gari}\left(A^{\bullet}, B^{\bullet}, \text { invgari } A^{\bullet}\right) \\
\operatorname{adari}\left(A^{\bullet}\right) & :=\operatorname{logari} \text { adgari }\left(A^{\bullet}\right) \text {.expari }
\end{aligned}
$$

Mark here the first intervention of $\mathrm{pa} \mathrm{l}^{\bullet} / \mathrm{pi} \mathrm{l}^{\bullet}$.

17. Singulators, singulands, singulates.

- Singulator slankr : linear operator, turns S^{\bullet} into Σ^{\bullet}
- Singuland S^{\bullet} : regular, length-1 bimould (parity opp. to r)
- Singulate Σ^{\bullet} : singular bialternal with polarity of order $r-1$

$$
\begin{aligned}
& \text { slank }_{\mathrm{r}}: \quad S^{\bullet} \in \mathrm{BIMU}_{1, \text { regular }} \mapsto \Sigma^{\bullet} \in \mathrm{ARI}_{r, \text { singular }}^{\frac{\text { al }}{} / \mathrm{al}} \\
& 2 \text { slank }_{r} . S^{\bullet}=\text { leng }_{r} \text {.neginvar. }\left(\operatorname{adari}\left(\mathrm{pal}^{\bullet}\right)\right)^{-1} \cdot \operatorname{mut}\left(\mathrm{pal}^{\bullet}\right) . S^{\bullet} \\
& \left.=\text { leng }_{r} \cdot \text { pushinvar.mut(neg.pal }{ }^{\bullet}\right) \cdot \operatorname{garit}^{\left(p a l^{\bullet}\right)} \cdot S^{\bullet} \\
& \operatorname{mut}\left(A^{\bullet}\right) \cdot M^{\bullet} \quad:=\quad \operatorname{mu}\left(\text { invmu } . A^{\bullet}, M^{\bullet}, A^{\bullet}\right) \\
& \text { with } \\
& \text { neginvar } \quad:=\quad \text { id }+ \text { neg } \\
& \text { pushinvar }:=\quad \sum_{0 \leq r}\left(\mathrm{id}+\text { push }+ \text { push }^{2}+\cdots+\text { push }^{\mathrm{r}}\right) \cdot \mathrm{leng}_{\mathrm{r}}
\end{aligned}
$$

N.B. Inadequacy of ari-composition by u_{1}^{-2} for correcting bialternal singularities.

Mark the second intervention of $\mathrm{pa} /^{\circ} / \mathrm{pil}^{\circ}$.

17*. Singulators, singulands, singulates (comments).

For the purpose of singularity compensation ${ }^{1}$ we must be able to remove, at every second induction step, unwanted singular parts of type $\underline{a l} / \underline{a}$. This, however, is easier said than done. It calls for sophisticated operators capable of producing, from regular bimoulds, any given bisymmetral singularity at the origin of the \boldsymbol{u}-multiplane.
The operators are the singulators.
The regular inputs are the singulands.
The singular, bisymmetral outputs are the singulates. Here again, the pair pal ${ }^{\circ} /$ pil ${ }^{\bullet}$ turns out to be the construction's essential ingredient, in combination with the elementary operators lengr, neginvar, pushinvar, mut. For a precise definition of these, see [E2].

[^0]18. Symmetry-respecting singularity removal.
$1 \varnothing \mathrm{ma}{ }^{\bullet} \|_{r}$
$\in \mathrm{ARI}^{\text {al }} /$ il
$\in \mathrm{ARI}^{\mathrm{a} / \text { al }}$
and singular at 0
viløma $\|_{r}$
\downarrow trivial extension
$l \varnothing \mathrm{ma}{ }^{\bullet} \|_{r+1} \quad \in \mathrm{ARI}^{\text {al/ }}$ il
and regular at 0
\downarrow adari $\left(\text { pal }{ }^{\bullet}\right)^{-1}$

```
viløma \({ }^{\bullet} \|_{r+1}\)
\(\downarrow\) adari(pal \({ }^{\bullet}\) )
```

$\in \mathrm{ARI}^{\text {al } / \text { al }}$
and singular at 0
(desingularisation)
with correction if r even
and regular at 0

18*. Singularity removal (comments).

We are now in a position to construct elements $/ \varnothing m a^{\bullet} / / \varnothing m i^{\bullet}$ of $A R I^{\text {al/ }}$ il inductively on the length r (also known as depth). Start from length 1, where the al/il condition reduces to parity in w_{1}. Assume we have already reached some higher odd length r. Apply the double symmetry exchanger adari $\left(p a /^{\bullet}\right)^{-1}$ so as to get into the more congenial environment $A R I$ al/al. Then leave the component of length $r+1$ as it is but add a suitable singulate ${ }^{2}$ to the component of length $r+2$. Lastly, apply adari $\left(p a /^{\bullet}\right)$ to return to $A R I^{\text {ala }} /$ il , where $/ \varnothing m a^{\bullet} / / \varnothing m i^{\bullet}$ is now defined and regular at $\boldsymbol{u}=\mathbf{0}$ up to length $r+2$ inclusively. So much for the general scheme, of which there exist three main specialisations, denoted by the vowels u, o, a in place of the 'zero-vowel' \varnothing.
${ }^{2}$ i.e. a singulate that verifies the desingularisation equations of 19.

19. Constructing $/ \varnothing m a^{\circ}$ by desingularisation.

The first and simplest desingularisation occurs at length $r=3$ with a composite singuland $S_{1,2}^{w_{1}, w_{2}}$:
$\operatorname{slank}_{1,2} \cdot S_{1,2}^{\bullet}=\operatorname{ari}\left(\operatorname{slank}_{1} \cdot S_{1}^{\bullet}\right.$, slank $\left._{2} \cdot S_{2}^{\bullet}\right)$ with $S_{1,2}^{\bullet}=S_{1}^{\bullet} \otimes S_{2}^{\bullet}$
For $S_{1,2}^{\boldsymbol{0}}$, the desingularisation equation reads:

For uncoloureds and with conventional notations, we get:

$$
S_{1,2}^{u_{1}, u_{2}}+S_{1,2}^{u_{2}, u_{1}+u_{2}}-S_{1,2}^{u_{1}, u_{1}+u_{2}}-S_{1,2}^{u_{1}+u_{2}, u_{2}}=\text { earlier terms }
$$

For the general singuland $S_{r_{1}, \ldots, r_{k}}^{u_{1}, \ldots, u_{r}}$, the desingul. eq. reads:
$\sum_{\sigma} \epsilon_{\sigma} S_{r_{1}, ., r_{k}}^{\sigma\left(u_{1}, \ldots, u_{k}\right)}=$ earlier terms $\quad\left(\sigma \in \operatorname{SL}_{k}(\mathbb{Z}), \epsilon_{r} \in\{0, \pm 1\}\right)$
19. Constructing $/ \varnothing m a^{\bullet}$ by desingularisation (comments). To proceed from length r to length $r+2$ (r odd) in the inductive construction of $/ \varnothing m a^{\bullet}$, composite singulands $S_{r_{1}, \ldots, r_{k}}^{\bullet}$ are required, with $2 \leq k \leq r+1,1 \leq r_{i}, \sum r_{i}=r+2$. The corresponding singulates $\sum_{r_{1}, \ldots, r_{k}}^{\bullet}$ are obtained as ari-products of the simple singulates $\Sigma_{r_{i}}^{\bullet}$ and have polarity of order $2+r-k$ at $\boldsymbol{u}=\mathbf{0}$. The step $r \rightarrow r+2$ actually resolves itself into a sub-induction on k, from $k=2$ (polarity of order r) to $k=r+1$ (polarity of order 1).

20. The basic trifactorisation.

We have the π^{2}-isolating, parity-splitting identity:

$$
\mathrm{zag}^{\bullet}=\operatorname{gari}\left(\mathrm{zag}_{\mathrm{I}}^{\bullet}, \mathrm{zag}_{\mathrm{II}}^{\bullet}, \mathrm{zag}_{\mathrm{III}}^{\bullet}\right)
$$

with $\mathrm{zag}_{\mathrm{I}}^{\bullet \bullet} \in G A R I^{a s} /$ is, $\mathrm{zag}_{\mathrm{II}}^{\bullet} \in G A R I \frac{a s}{\text { even }} /$ is, $\mathrm{za}_{\mathrm{III}}^{\bullet} \in G A R I$ Ias $/$ isd.

$$
\begin{aligned}
& \mathrm{zag}_{\mathrm{I}}^{\bullet}=\text { gari }\left(\mathrm{tal}^{\bullet} \text {, invgari } . \text { pal }{ }^{\boldsymbol{\bullet}} \text {, expari .røma }{ }^{\bullet}\right. \text {) } \\
& \operatorname{zag}_{\mathrm{II}}^{\bullet}=\operatorname{expari}\left(\sum \rho_{* I \mathrm{I}}^{s_{1}, \ldots, s_{k}} \operatorname{preari}\left(l \phi m a_{\mathrm{s}_{1}}^{\bullet}, \ldots, l \varnothing \mathrm{ma} \mathrm{~s}_{\mathrm{s}_{\mathrm{k}}}^{\bullet}\right)\right) \\
& \mathrm{zag}_{\text {III }}^{\bullet}=\operatorname{expari}\left(\sum_{k \text { odd }}^{k \text { even }} \rho_{* I I I}^{s_{1}, \ldots, s_{k}} \operatorname{preari}\left(l \phi \mathrm{ma}_{\mathrm{s}_{1}}^{\bullet}, \ldots, l \phi \mathrm{ma}{\underset{\mathrm{~s}}{\mathrm{k}}}_{\bullet}\right)\right)
\end{aligned}
$$

where $\rho_{* \text { *II }}^{\bullet}$ and $\rho_{\text {*III }}^{*}$ denote two alternal moulds with values in the set of multizeta irreducibles.
Mark the third consecutive intervention of pal $/{ }^{\circ} \mathrm{pil}^{\bullet}$ (and first appearance of $\mathrm{ta} /{ }^{\bullet} / \mathrm{til}^{\bullet}$).

20*. The basic trifactorisation (comments).
In the above formulae, preari denotes the pre-Lie product behind ari, and expari the natural exponential from $A R /$ to

$$
\begin{aligned}
& \mathrm{zag}_{\mathrm{II}}^{\bullet}=1^{\bullet}+\sum \rho_{\mathrm{II}}^{s_{1}, \ldots, s_{k}} \operatorname{preari}\left(l \varnothing m \mathrm{~s}_{\mathrm{s}_{1}}^{\bullet}, \ldots, l ø \mathrm{ma} \mathrm{~s}_{\mathrm{s}}^{\bullet}\right)
\end{aligned}
$$

with two symmetral moulds $\rho_{\mathrm{II}}^{\bullet}, \rho_{\mathrm{III}}^{\bullet}$ that are none other than the mould-exponentials of the alternal moulds $\rho_{* \text { III }}^{\bullet} \rho_{* \text { III }}^{\bullet}$. Note that whereas separating zage| from the first two factors is easy (a simple flexion formula takes care of that), disentangling $z^{2} g^{\bullet}{ }^{\bullet}$ from $\mathrm{zag}^{\bullet \bullet}$ is arduous and calls for the construction of an auxiliary bimould $r \varnothing m a^{\bullet} / r \varnothing m i^{\bullet}$ analogous to $/ \varnothing m a^{\bullet} / / \varnothing m i^{\bullet}$.

21. Chief difficulties: infinitude.

For any given length r, the first resp. second symmetry amounts to a set of relations between A^{w} and various $A^{\sigma . w}$ resp. between A^{w} and various $A^{\tau . w}$, where $\sigma \in \mathfrak{S}_{r}$ and $\tau \in \mathfrak{S}_{r}^{*}:=\operatorname{swap} . \mathfrak{S}_{r}$. swap. Combining the two forces us to work with the group $<\mathfrak{S}_{r}, \mathfrak{S}_{r}^{*}>$ generated by \mathfrak{S}_{r} and \mathfrak{S}_{r}^{*}, which group is infinite as soon as $r \geq 3$.
This complicates matters, e.g. by precluding the existence of functional projectors of $A R I$ onto $A R I^{\text {al/al }}$ or $A R I^{\text {al/ }}$ il .
N.B. For $r=2,<\mathfrak{S}_{2}, \mathfrak{S}_{2}^{*}>$ essentially reduces (modulo parity) to the biratio group. This explains why length-2 multizetas are quite elementary and decidedly untypical.

22. Chief difficulties: imbrication.

Meant is the imbrication of all multizetas of weight less than s, irrespective of length r or degree d.

- Uncoloured multizetas. The construction of a generating system $\left\{\mid \varnothing m a_{s}^{\bullet}, s=3,5,7 \ldots\right\}$ of $A R I^{\text {al/ } / \text { il }}$ can be carried out in accordance with the (r, d)-filtration (explain), but the decomposition of an element of $A R I^{\text {al/ } / i l}$ into multibrackets of I \varnothing mas ${ }_{s}^{*}$ cannot (clue: relations between the length-1 bialternals). The solution lies in perinomal analysis.
- Bicoloured multizetas. The decomposition of an element of $A R I^{\underline{\underline{I}} / \text { il }}$ into multibrackets can proceed in accordance with the (r, d)-filtration, given any system of generators $\left\{\mid \varnothing m a_{s}^{*}, s=1,3,5 \ldots\right\}$, but the construction of such a system cannot (explain). The solution lies in satellisation.

23 Enforcing rigidity. Perinomal analysis.

Whereas the length- 1 elementary bimoulds $\lambda_{2 d}^{\bullet}$ with
$\lambda_{2 d}^{\omega_{1}}:=u_{1}^{2 d}$ are not ari-free and do not generate all polynomial bialternals, due to relations like ari $\left(\lambda_{2}^{\circ}, \lambda_{8}^{\circ}\right)-3 \operatorname{ari}\left(\lambda_{4}^{\circ}, \lambda_{6}^{\circ}\right) \equiv 0$, the length- 1 elementary bimoulds ξ_{n}^{\bullet} with $\xi_{n}^{w_{1}}:=P\left(u_{1}-n\right)-P\left(u_{1}+n\right)$ freely generate, under the ari bracket, the algebra of all eupolar bialternals $\bar{\Xi}_{\boldsymbol{n}}$, i.e. of all bialternals of type

$$
\Xi_{n_{1}, \ldots, n_{r}}^{w_{1}, \ldots, n_{r}}:=\sum_{1 \leq k \leq \frac{(2 r)!}{\epsilon_{1}(r+1)!}}^{\epsilon_{1} \in\{ \pm\}} \prod_{1 \leq 1 \leq r} P\left(\sum_{j=j_{k, 1}^{*}}^{j=j_{k, 1}^{* *}}\left(u_{j}+\epsilon_{j} n_{j}\right)\right)
$$

For a precise description of eupolar bimoulds, see [E2] or [E3].

24 The perinomal realisation luma*.

By replacing the polynomial singulands S_{r}^{\bullet} by polar singulands and taking their residues R_{r}^{*} as new unknowns:
$S_{r_{1}, \ldots, r_{k}}^{u_{1}, \ldots, u_{r}}=\sum_{n_{i}} R_{r_{1}, \ldots, r_{k}}^{n_{1}, \ldots, n_{r}} P\left(u_{1}+n_{1}\right) \ldots P\left(u_{k}+n_{k}\right)$
we move from under-determined, multi-solution systems

$$
\sum_{\sigma} \epsilon_{\sigma} S_{r_{1}, \ldots, r_{k}}^{\sigma\left(, u_{k}\right)}=\text { earlier terms } \quad\left(u_{i} \in \mathbb{C}, \sigma \in \mathrm{SL}_{k}(\mathbb{Z})\right)
$$

to well-determined, one-solution systems
$\sum_{\sigma} \eta_{\sigma} R_{r_{1}, \ldots, r_{k}}^{\sigma\left(n_{1}, \ldots, n_{k}\right)}=$ earlier terms

$$
\left(n_{i} \in \mathbb{Z}, \sigma \in \mathrm{SL}_{k}(\mathbb{Z})\right) .
$$

- The new singulands S_{r}^{\bullet} are just 'polar' ; it is the corresponding singulates Σ_{r}^{\bullet} that are 'eupolar'.
- We then expand the meromorphic-valued bimould luma* as a series \sum_{s} lumas of homogeneous polynomial-valued bimoulds.

25. Perinomal reduction of uncoloureds.

The prodedure yields well-defined expansions $\left(s_{i} \in\{3,5,7 \ldots\}\right)$

$$
\begin{aligned}
& \mathrm{zag}_{\mathrm{II} / I I I}^{\bullet}=\operatorname{expari}\left(\sum \rho_{* 1 / / I I}^{\rho_{11}, \ldots, s_{\mathrm{k}}} \cdot \operatorname{preari}\left(\text { luma }_{\mathrm{s}_{1}}^{\bullet}, \ldots, \text { luma }_{\mathrm{s}_{\mathrm{k}}}^{\bullet}\right)\right) \\
& =1^{\bullet}+\sum \rho_{\mathrm{II} / \mathrm{II}}^{s_{1}, \ldots, \boldsymbol{s}_{k}} \cdot \operatorname{preari}\left(\text { luma }_{\mathrm{s}_{1}}^{\bullet}, \ldots, \text { luma }{\underset{\mathrm{s}}{\mathrm{k}}}_{\bullet}^{\bullet}\right) \\
& \mathrm{zig}_{\mathrm{II}^{\bullet} / \text { III }}=\operatorname{expira}\left(\sum \rho_{* I I / I I I}^{s_{1}, \ldots, s_{k}} \cdot \operatorname{preira}\left(\text { lumi }_{\mathrm{s}_{1}}^{\bullet}, \ldots, \text { lumi }_{\mathrm{s}_{\mathrm{k}}}^{\bullet}\right)\right) \\
& \left.=1^{\bullet}+\sum \rho_{I_{11} / \ldots, I I}^{s_{1}, s_{k}} \cdot \text { preira(lumi } \bullet_{\mathrm{s}_{1}}^{\bullet}, \ldots, \text { lumi }_{\mathrm{s}_{\mathrm{k}}}^{\bullet}\right)
\end{aligned}
$$

which in turn, after Taylor expansion in the \boldsymbol{u} - resp. \boldsymbol{v} variables, lead to the so-called perinomal decomposition of multizetas into irreducibles (with a minor transcendental contribution from luma•/lumi• from depth 4 onwards). Moreover, we have explicit expansions for the irreducibles:
 We construct zag ${ }^{\bullet} /$ zig $^{\bullet}$ from ruma ${ }^{\bullet} /$ rumi* ${ }^{\bullet}$ along the same lines. Remarkably, the lone irreducible $\zeta(2)=\pi^{2} / 6$ causes as much trouble as all other irreducibles taken together!

26 The arithmetical realisations loma ${ }^{\circ}$, lama ${ }^{\circ}$.

One may also stick with the polynomial singulands S_{r}^{\bullet} and enforce uniqueness by adding constraints that keep the denominators arithmetically simple. There are two options:

- lamå: rather lax constraints but optimal denominators.
- loma: stricter constr. ${ }^{3}$, fewer coeffs, slightly subopt. denom. Thus, for $\boldsymbol{r}=(1,2)$, take $S a_{1,2}^{0}$ and $S o_{1,2}^{0}$ resp ${ }^{\text {ly }}$ of the form:

$$
\begin{aligned}
& \mathrm{Sa}_{1,2}^{\mathrm{u}_{1}, \mathrm{u}_{2}}=\sum_{1 \leq \delta \leq\left[\frac{s-1}{2}\right]-\left[\frac{s+1}{6}\right]} \mathrm{ca}_{2 \delta} \cdot u_{1}^{2 \delta} u_{2}^{s-2 \delta-2} \\
& \mathrm{So}_{1,2}^{\mathrm{u}_{1}, \mathrm{u}_{2}}=\sum_{1 \leq \delta \leq\left[\frac{s-3}{6}\right]} \mathrm{co}_{2 \delta} \cdot u_{1}^{2} u_{2} \cdot\left(u_{1}^{2 \delta} u_{2}^{s-2 \delta-5}+u_{2}^{2 \delta} u_{1}^{s-2 \delta-5}\right)
\end{aligned}
$$

The largest prime in the denominators is $\leq\left[\frac{5}{3}\right]$ resp. $\leq\left[\frac{2 s-5}{3}\right]$.

[^1]27 Some tantalising arithmetical riddles.
When applied to the 'arithmetical singulands' $S a_{1,2}^{0}, S o_{i, 2}^{\circ}$, the general desingularisation equation

$$
S_{1,2}^{u_{1}, u_{2}}+S_{1,2}^{u_{2}, u_{1}+u_{2}}-S_{1,2}^{u_{1}, u_{1}+u_{2}}-S_{1,2}^{u_{1}+u_{2}, u_{2}}=\text { earlier terms }
$$

produces in the denominators of all the coefficients $\mathrm{ca}_{2 \delta}$ and $\mathrm{CO}_{2 \delta}$ - and, even more unaccountably, in the numerators of some of them - explicitely describable strings of prime numbers (which do not originate in the "earlier terms" !). This generation of prime numbers almost ex nihilo is rather unparalleled. It persists, moreover, for the higher order singulands $S a_{r_{1}, \ldots, r_{k}}^{\bullet}$ and $S o_{r_{1}, \ldots, r_{k}}^{\bullet}$.
28. Pausing midway to take stock.

- We pointed at the outset to the double curse of
(i) infinitude (of the underlying group $<\mathfrak{S}_{r}, \mathfrak{S}_{r}^{*}>$) and
(ii) imbrication (of all multizetas of weight $\leq s$).
- In the case of uncoloured multizetas, we showed how to conquer the curse by imposing polar rigidity, leading to the perinomal decomposition of uncoloureds into irreducibles.
- We shall now deal with the coloured, esp. bicoloured multizetas, and sketch for them a quite distinct way of defeating the curse, again leading to a lot of fascinating new structure (satellisation).

29. Taming the bicoloureds: overall scheme.

Road map: for s fixed, reduce the plethora of data and restore a workable (r, d)-filtration.

$\mathrm{ARI}_{\text {biciolured }}^{\text {al/ }}$		$\begin{gathered} r+d=s \\ \epsilon_{i} \in\left\{0, \frac{1}{2}\right. \end{gathered}$	
$(\uparrow) \downarrow$ restriction	$(\uparrow) \downarrow$		
ARI $\frac{\text { ald } / \text { ili }}{\text { enemal }}$	$z \mathrm{zag}^{\left(\begin{array}{c}\left(c_{1}, \ldots, \ldots, e_{s}\right.\end{array}\right)}$	$d=0, r=s$	$\mathrm{ARI}_{\text {extremal }}^{\text {al }}$
(\uparrow) $\downarrow_{\text {statellisation }}$	$(\uparrow) \downarrow$	amplification	$(\uparrow) \downarrow$ ssatelisation
BIARI ${ }_{\text {uncoloured }}^{\text {al/ }}$	$\operatorname{sazag}_{j}^{\left(u_{1}, \ldots, \ldots, u_{0}\right)}$	$\begin{gathered} r+d=s \\ j \in\{0,1\} \end{gathered}$	BIARI ${ }_{\text {extremal }}^{\text {al }}$
$\downarrow_{\text {specilisation }}$	\downarrow		$\downarrow_{\text {specialisation. }}$
ARI ${ }_{\text {uncoloured }}^{\text {al/ }}$	zag ${ }^{\left(\begin{array}{l}u_{1}, \ldots, u_{r} \\ 0\end{array}, \ldots, r_{0}\right)}$	$r+d=s$	$\mathrm{ARI}_{\text {uncol }}^{\text {a }}$

29*. Taming the bicoloureds: overall scheme (comments). The first step (data reduction) keeps the colours ϵ_{i} but retains only the partial weights $s_{i}=1$. In terms of generating series, this means restricting $\operatorname{zag}^{\binom{u}{\epsilon}}$ to $\operatorname{zag}^{\binom{0}{\epsilon} \text {. Surprisingly, such }}$ massive pruning entails no loss of information, only a partial occultation of it.
The second step (data re-ordering) replaces zag ${ }_{(}^{(0)}{ }_{\epsilon}^{0}$) by a pair of colour-free satellites sazag ${ }_{j}^{\left({ }_{j}^{\mu}\right)}(j=0,1)$ obtained by mould amplification. It then transports the ari, gari action to such pairs, resulting in operations biari, bigari that respect the r-filtration by length.
The third step (data recovery) is about retrieving the full $z a g^{\binom{(U)}{\epsilon}}$ from the satellites. This is particularly easy for the uncoloured part $\operatorname{zag}\left({ }_{0}^{(4)}\right.$), where it ultimaltely amounts to a colour-to-degree transfer $\operatorname{zag}\left({ }_{\epsilon}^{(0)} \rightarrow \operatorname{zag}\left({ }_{0}^{(u)}\right)\right.$.

29**. Taming the bicoloureds: overall scheme (comments).
Remark 1: Although the three steps make most sense when applied to $A R I \frac{a l}{\text { bicioluered }}$, the steps 2 and 3 extend to $A R I$ bicioloured and should first be studied in that context, without the unnecessary assumption (./il).
Remark 2: Step 2 relies on mould amplification. It simply re-orders the data and re-shapes all flexion operations, which henceforth act on satellite couples and acquire the prefix bi. Relative to the extremal algebra $A R I$ elalremal $/$, step 2 doesn't bring about any data compression, but it instaures a precious r-filtration that was clearly absent from $A R I$ exl $/ \mathrm{i} \frac{i}{\text { exmal }}$.
Remark 3: The whole three-stepped construction also extends, mutatis plurimis mutandis and with less compelling usefulness, to all multicoloured (not just bicoloured) multizetas.
30. The extremal algebra: no information loss.

Def. $A^{\bullet \bullet}$ is dubbed weakly alternal if it verifies all alternality relations $\sum_{w \in \operatorname{sha}\left(w^{\prime}, w^{\prime \prime}\right)} A^{\boldsymbol{w}} \equiv 0$ with w^{\prime} of length 1 and $w^{\prime \prime}$ of any length. The same applies for weakly alternil.
L 1: In a double symmetry, either symmetry may be weakened:
$\{\mathrm{al} / \mathrm{al}\} \Longleftrightarrow\left\{\mathrm{al}^{\text {weak }} / \mathrm{al}\right\} \Longleftrightarrow\left\{\mathrm{al} / \mathrm{al}{ }^{\text {weak }}\right\} \nRightarrow\left\{\mathrm{al}^{\text {weak }} / \mathrm{al}{ }^{\text {weak }}\right\}$
$\{\mathrm{al} / \mathrm{il}\} \Longleftrightarrow\left\{\mathrm{al}^{\text {weak }} / \mathrm{il}\right\} \Longleftrightarrow\left\{\mathrm{al} / \mathrm{il}^{\text {weak }}\right\} \nRightarrow\left\{\mathrm{al}^{\text {weak }} / \mathrm{il}^{\text {weak }}\right\}$

 successively determines all components $A^{\left(\frac{u_{1}, \ldots, u_{r}}{\left(\epsilon_{1}, \ldots, \epsilon_{r}\right)}\right.} \in \mathrm{ARI}_{d, r}^{\mathrm{alt/II}}$ of higher degree d and lesser length $r(d+r \equiv s)$.

30*. The extremal algebra (comments).
The colour consistency assumption is essential. Without it, Lemma 2 fails, and there is no retrieval of information. Indeed, for any two elements $A_{1}^{\bullet}, A_{2}^{\bullet}$ in $A R I I_{\text {bicoloured }}^{\text {al }} /$, of weights $s_{1} \neq s_{2}$, set $\operatorname{dec} A_{j}^{\binom{u}{\epsilon}}:=A_{j}^{\binom{\left({ }_{0}^{2}\right)}{0}} \forall \epsilon$. Then $\operatorname{ari}\left(\operatorname{dec} A_{1}^{\bullet}, \operatorname{dec} A_{2}^{\bullet}\right)$ is (al/il) but not colour-consistent, and since its trace in the extremal algebra is nil, it cannot be reconstituted therefrom.

31 The extremal algebra: the second symmetry.

$A^{\bullet}=\sum b^{\epsilon_{1}, \ldots, \epsilon_{s}} \operatorname{lu}\left(\lambda_{0, \epsilon_{1}}^{\bullet}, \lambda_{0, \epsilon_{2}}^{\bullet}, \ldots, \lambda_{0, \epsilon_{s}}^{\bullet}\right)$ if length $(\bullet)=s$
$A^{\bullet}=\sum c^{\epsilon_{1}, \ldots, \epsilon_{s-1}} \overrightarrow{\mathrm{l}}\left(\lambda_{1, \epsilon_{1}}^{\bullet}, \lambda_{0, \epsilon_{2}}^{\bullet}, \ldots, \lambda_{0, \epsilon_{s-1}}^{\bullet}\right)$ if length $(\bullet)=s-1$
(swap.Wil.swap $A)^{\binom{0}{\epsilon_{1}, \ldots, \ldots, \epsilon_{s}}}=\sum^{*} A^{w^{*}}+\sum^{* *} A^{w^{* *}} P\left(u_{* *}\right)$
For ($\epsilon_{1}, \ldots, \epsilon_{s}$) ending with $\epsilon_{s}=0$ resp. $\epsilon_{s}=\frac{1}{2}$, (4) yields:
$0=\sum H_{\epsilon_{1}^{1}, \ldots, \epsilon_{s}^{\prime}}^{\epsilon_{1}, \ldots \epsilon_{s-1}} b^{\epsilon_{1}^{\prime}, \ldots, \epsilon_{s}^{\prime}}+c^{\epsilon_{1}, \ldots, \epsilon_{s}-1} \quad\left(H_{0}^{\bullet}, K_{\mathbf{0}}^{\bullet}, L_{\mathbf{0}}^{0} \in \mathbb{Z}\right)$
$0=\sum K_{\epsilon_{1}^{1}, \ldots, \epsilon_{s}^{\prime}}^{\epsilon_{1}, \ldots, \epsilon_{s-1}} b^{\epsilon_{1}^{\prime}, \ldots, \epsilon_{s}^{\prime}}+\sum L_{\epsilon_{1}^{\prime \prime}, \ldots, \epsilon_{s}^{\prime \prime}}^{\epsilon_{1}, \ldots, \epsilon_{s-1}} c^{\epsilon_{1}^{\prime \prime}, \ldots, \epsilon_{s-1}^{\prime \prime}}$
Eliminating c^{\bullet}, we get 2^{s-1} structure constraints on $A R I^{\text {al/ } / i l}$:

$$
\begin{equation*}
0=\sum R_{\epsilon_{1}, \ldots, \epsilon_{s}^{\prime}}^{\epsilon_{1}, \ldots \epsilon_{s}-1} b_{1}^{\epsilon_{1}^{\prime}, \ldots, \epsilon_{s}^{\prime}} \quad\left(R_{\bullet}^{\bullet} \in \mathbb{Z}\right) \tag{7}
\end{equation*}
$$

31* The second symmetry (comments).

For elements of the extremal algebra $A R I$ al $/ i$ extemal, , we always have $d=0$, hence $r=s$. Since all alternility relations commingle components of various lengths, there seems to be no way of expressing them within $A R I \frac{a l}{\text { extremal }}$. Weak alternility, however, involves only two consecutive lengths, e.g. $r=s, r=s-1$, and that too in such a way as to permit the elimination of the external data $c^{\epsilon_{1}, \ldots, \epsilon_{s-1}}$ between (5) and (6), leading to the constraints (7), which are purely internal to the extremal algebra.
R1: In (4), Wil simply denotes the linearisation (resp. annihilation) operator for symmetril (resp. alternil) bimoulds, relative to the sequence splitting $\left(w_{1}, . ., w_{r}\right) \rightarrow\left(w_{1}\right)\left(w_{2}, . ., w_{r}\right)$. $R 2$: We must take all the multibrackets $\overrightarrow{l u}\left(\lambda_{i, \epsilon_{1}}^{\bullet}, \ldots, \lambda_{0, \epsilon_{s-1}}^{\bullet}\right)$ to get a basis for the degree-1 alternals, but only some of the $\overrightarrow{l u}\left(\lambda_{1, \epsilon_{0}}, \ldots, \lambda_{0, \epsilon_{s}}^{\mathbf{0}}\right)$ to generate the degree-0 alternals.

32 Mould amplification.
We already used mould amplification to go from wa* to zag^{\bullet}.
We shall use it again to construct the satellites of bicoloureds.
Here are the basic facts:
Mould amplification $a m p_{\omega_{*}}$
(i) singles out a special index ω_{*},
(ii) adds a new indexation layer (here, the u_{i} indices),
(iii) preserves (simple) symmetries.
$\left(\operatorname{amp}_{\omega_{*}} M\right)^{\left(\begin{array}{c}u_{1}, \ldots, u_{1} \\ \omega_{1}, \ldots, \omega_{r} \\ \omega_{r}\end{array}\right.}:=\sum_{0 \leq n_{r}} M^{\omega_{1}, \omega_{*}^{\left[n_{1}\right]} \ldots, \omega_{r}, \omega_{*}^{\left[r_{r}\right]}} u_{1}^{n_{1}} u_{1,2}^{n_{2}} \ldots u_{1, \ldots, r}^{n_{r}}$
If M^{\bullet} is alternal or symmetral, so is $\operatorname{amp}_{\omega_{*}} M^{\bullet}$.
N.B. $\omega_{*}^{[n]}:=\overbrace{\omega_{*}, . ., \omega_{*}}^{n \text { times }}$ and $u_{1, . . j}:=u_{1}+. .+u_{j}$ as usual.
33. The satellites sazag ${ }_{0}^{\circ}$, $\operatorname{sazag}_{1}^{\circ}$ and saløma ${ }_{0}^{\circ}$, saløma ${ }_{1}^{\circ}$.

The satellites $\operatorname{sazag}_{0}^{\bullet}$, $\operatorname{sazag}_{1}^{\bullet}$ inherit symmetralness.

The satellites saløma a_{0}°, saløma a_{1}^{\bullet} inherit alternalness,

33*. The satellites (comments).
Each of the two sets of satellites, whether it be the one consisting of 0 -indexed, $\operatorname{amp}{\left.\underset{(}{0} \begin{array}{l}0 \\ 0\end{array}\right) \text {-generated satellites, or the one }}^{0}$ with 1 -indexed, $\left.a m p_{(1 / 2}^{0}\right)$-generated satellites, explicitely carries the whole information present in the extremal algebra, and either set can be deduced from the other, but under a clumsy correspondence that exchanges length and degree. Worse still, if we were to retain only one set of satellites (say, the one with index 0), there would be no natural way of extending the flexion operations to that set. So we find ourselves in one of those not infrequent instances where a slight data redundancy is unavoidable.
34. Recovering $/ \varnothing m a^{\bullet}$ from saløma00 and saløma ${ }_{1}^{\circ}$

For $/ \varnothing m a^{\bullet}$ in $\mathrm{ARI}^{\text {al/ } / i l}$ and $/ \phi m a^{w_{1}}=0$:

$$
\begin{aligned}
& \text { løma }{ }^{\circ} \text { uncoloured } \equiv \text { neg.saløma }{ }_{1}^{\circ}-\text { neg.saløma* }
\end{aligned}
$$

For $s \varnothing m a{ }^{\bullet}$ in GARIas ${ }^{\text {sis }}$ and $s \varnothing m a^{w_{1}}=0$:

$$
\begin{aligned}
& s \varnothing m a^{\bullet}{ }_{\text {bicoloured }} \rightarrow\left(\operatorname{sas} \varnothing m a_{0}^{\circ}, \text { sasøma }{ }_{1}^{\circ}\right)_{\text {uncoloured }} \\
& \text { sømå }{ }_{\text {uncoloured }} \equiv\left(\text { neg.sasøma } a_{0}^{\bullet}\right)^{-1} \times \text { neg.sas } \varnothing m a_{1}^{\circ}
\end{aligned}
$$

Interpretation: The extremal algebra carries the full information and so does each satellite. However, explicitely accessing the occulted information is specially easy for the uncoloured part, provided we use both satellites.
N.B. neg. $A^{w_{1}, \ldots, w_{r}}:=A^{-w_{1}, \ldots,-w_{r}}$.
35. The satellite algebra structure (for alternals).

In the absence of length- 1 components:
bilu: $\quad C_{0}^{\bullet}=\operatorname{lu}\left(A_{0}^{\bullet}, B_{0}^{*}\right), C_{1}^{\bullet}=\operatorname{lu}\left(A_{1}^{\bullet}, B_{1}^{*}\right)$
biari : $\quad D_{0}^{\bullet}=-\operatorname{ari}\left(A_{0}^{\bullet}, B_{0}^{*}\right)+\operatorname{arit}\left(B_{1}^{*}\right) A_{0}^{*}-\operatorname{arit}\left(A_{1}^{*}\right) B_{0}^{*}$

$$
\begin{aligned}
D_{1}^{\bullet}= & +\operatorname{ari}\left(A_{\mathbf{1}}^{\bullet}, B_{1}^{\bullet}\right)-\operatorname{arit}\left(B_{0}^{\bullet}\right) A_{1}^{\bullet}-\operatorname{arit}\left(A_{0}^{\bullet}\right) B_{1}^{\bullet} \\
& -\operatorname{lu}\left(A_{0}^{\bullet}, B_{1}^{\bullet}\right)-\operatorname{lu}\left(A_{1}^{\bullet}, B_{0}^{\bullet}\right)
\end{aligned}
$$

Remark: $\quad D_{1}^{\mathbf{0}}-D_{0}^{\mathbf{0}}=\operatorname{ari}\left(A_{1}^{\mathbf{0}}-A_{0}^{\mathbf{0}}, B_{1}^{\mathbf{0}}-B_{0}^{*}\right)$

35*. The satellite algebra structure (comments).
The slides 35,36 extend the main operations to satellite pairs:
$l u$, mu, ari, gari \rightarrow bilu, bimu, biari, bigari
The bimoulds A^{\bullet}, B^{\bullet} on the preceding slide may be taken in $A R I I_{\text {bicoloured }}^{\text {al }}$ il or in $A R I_{\text {bicoloured }}^{\text {al/. }}$. See Remark 1 on slide $29^{* *}$. Similarly, on the next slide, the bimoulds A^{\bullet}, B^{\bullet} may be taken in GARI $\frac{\text { as }}{\text { bicoloured }}$ is in $G A R I_{\text {bicoloured }}^{\text {as }}$.
In all cases, however, the hypothesis about the vanishing length-1 component is essential. In presence of non-vanishing length-1 components, the satellised operations biari, bigari become notably more complex: see slide 37.

36 The satellite group structure (for symmetrals).

C^{\bullet}	$\stackrel{\text { mu }}{\rightleftarrows}$	$\left(A^{\bullet}, B^{\bullet}\right)$	$\xrightarrow{\text { gari }}$	D^{\bullet}
sa \downarrow		sa \downarrow sa		\downarrow sa
$\left\{C_{0}^{\bullet}, C_{1}^{\bullet}\right\}$	$\stackrel{\text { bimu }}{\longleftarrow}$	$\left(\left\{A_{0}^{\bullet}, A_{1}^{\bullet}\right\},\left\{B_{0}^{\bullet}, B_{1}^{\bullet}\right\}\right)$	$\xrightarrow{\text { bigari }}$	$\left\{D_{0}^{\bullet}, D_{1}^{\bullet}\right\}$

In the absence of length-1 components:

$$
\begin{aligned}
& \text { bimu: } \\
& \text { bigari : } \\
& \\
& C_{0}^{\bullet}
\end{aligned}=\operatorname{mu}\left(A_{0}^{\bullet}, B_{0}^{\bullet}\right), C_{0}^{\bullet} \times\left(\operatorname{garit}\left(B_{0}^{\bullet-1} \times B_{1}^{\bullet}\right) A_{0}^{\bullet}\right) .
$$

Remark: $\quad D_{0}^{\bullet-1} \times D_{1}^{\bullet} \equiv \operatorname{gari}\left(A_{0}^{\bullet-1} \times A_{1}^{\bullet}, B_{0}^{\bullet-1} \times B_{1}^{\bullet}\right)$
37. Mischief potential of $\log 2$.

$$
\left\{C_{0}^{\bullet}, C_{1}^{\bullet}\right\} \stackrel{\text { bilu }}{\leftrightarrows}\left(\left\{A_{0}^{\bullet}, A_{1}^{\mathbf{0}}\right\},\left\{B_{0}^{\bullet}, B_{1}^{\bullet}\right\}\right) \xrightarrow{\text { biari }}\left\{D_{0}^{\mathbf{0}}, D_{1}^{\bullet}\right\}
$$

Length- 1 components (like those stemming from $\log 2$) complicate the satellite structure (see red adjuncts):

$$
\begin{aligned}
C_{0}^{\bullet}= & \operatorname{lu}\left(A_{0}^{\bullet}, B_{0}^{\bullet}\right)-\operatorname{adit}\left(A_{1}\right) \cdot B_{0}+\operatorname{adit}\left(B_{1}\right) \cdot A_{0} \\
C_{1}^{\bullet}= & \operatorname{lu}\left(A_{1}^{\bullet}, B_{1}^{\bullet}\right)-\operatorname{adit}\left(A_{0}\right) \cdot B_{1}+\operatorname{adit}\left(B_{0}\right) \cdot A_{1} \\
D_{0}^{\bullet}= & -\operatorname{ari}\left(A_{0}^{\bullet}, B_{0}^{\bullet}\right)+\operatorname{arit}\left(B_{1}^{\bullet}\right) A_{0}^{\bullet}-\operatorname{arit}\left(A_{1}^{\bullet}\right) B_{0}^{\bullet} \\
& +\operatorname{adit}\left(A_{0}\right) \cdot B_{0}-\operatorname{adit}\left(B_{0}\right) \cdot A_{0} \\
D_{1}^{\bullet}= & +\operatorname{ari}\left(A_{1}^{\bullet}, B_{1}^{\bullet}\right)-\operatorname{arit}\left(B_{0}^{\bullet}\right) A_{1}^{\bullet}-\operatorname{arit}\left(A_{0}^{\bullet}\right) B_{1}^{\bullet} \\
& -\operatorname{lu}\left(A_{0}^{\bullet}, B_{1}^{\bullet}\right)-\operatorname{lu}\left(A_{1}^{\bullet}, B_{0}^{\bullet}\right)+\operatorname{adit}\left(A_{0}\right) \cdot B_{0}-\operatorname{adit}\left(B_{0}\right) \cdot A_{0}
\end{aligned}
$$

37*. Mischief potential of $\log 2$ (comments).
Similar, only marginally more intricate formulae account for the product bigari in the case of symmetral data with non-zero length-1 components.
This water-muddying quality of $\log 2$ (somewhat reminiscent of the nuisance potential of π^{2} in the case of uncoloureds see remark at the bottom of slide 25) obscures the quite remarkable correspondences

and must be the reason why these escaped notice for so long.
38. Keeping track of the second symmetry.

The 2^{s-1} structure constraints on $A R I$ Il/ $/$ II (see slide 31):
$\mathcal{R}^{\epsilon_{1}, \ldots, \epsilon_{s-1}}: 0=\sum R_{\epsilon_{1}^{\prime}, \ldots, \epsilon_{s}^{\prime}}^{\epsilon_{1}, \ldots, \epsilon_{s-1}} b^{\epsilon_{1}^{\prime}, \ldots, \epsilon_{s}^{\prime}} \quad\left(R_{\bullet}^{\bullet} \in \mathbb{Z}\right)$
respect the (r, d)-filtration: if one colour dominates in $\left(\epsilon_{1}, \ldots, \epsilon_{s-1}\right)$, it also dominates in $\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{s}^{\prime}\right)$.
Hence two structure-and-gradation respecting isomorphisms:

$$
\begin{aligned}
& \operatorname{ARI} \frac{\text { bicoloured }}{\text { al } / i l} \longleftrightarrow \mathrm{BIARI}_{\text {uncoloured }}^{\text {al }} \text { iI } \\
& \mathrm{GARI}_{\text {bicoloured }}^{\mathrm{as} / \text { is }} \longleftrightarrow \mathrm{BIGARI}_{\text {uncoloured }}^{\text {as }} / \text { is }^{*}
\end{aligned}
$$

Conjecture: The first ρ_{s} relations $\mathcal{R}^{\epsilon_{1}, \ldots, \epsilon_{s}-1}$ imply all others, with first relative to the order induced by $n(\boldsymbol{\epsilon}):=\sum \epsilon_{i} 2^{i}$ and $\rho_{s}:=1+d_{s}-d_{s}^{*}$, where d_{s} resp. d_{s}^{*} denotes the dimension of the component of weight s in the free Lie algebra $\mathfrak{L}\left[e_{1}, e_{2}, e_{3} \ldots\right]$ resp. $\mathfrak{L}\left[e_{1}, e_{3}, e_{5} \ldots\right]$ (e_{s} is assigned weight $\left.s\right)$.
39. Meromorphy of $\operatorname{sazag}_{0}^{\bullet}$ and $\operatorname{sazag}_{1}^{\bullet}$

Despite being constructed from the \boldsymbol{u}-independent, 0 -degree, colour-only element $\operatorname{zag}^{\binom{0, \ldots, 0}{\epsilon_{1}, \ldots, \epsilon_{s}}}$ of the extremal group $G A R I \frac{a s}{\text { extr. }}$, the satellites saza g_{0}^{\bullet}, sazag ${ }_{1}^{\bullet}$ retain all the essential properties of the full, \boldsymbol{u}-dependent zag ${ }^{\bullet}$, such as
(i) meromorphy in the \boldsymbol{u}-variables
(ii) a modified version of the double symmetry.

Actually, the first symmetry is unchanged ($a l \rightarrow a l^{*}$) and it is the second symmetry that undergoes a slight change: il $\rightarrow i i^{*}$. We already (see $\S 31$) derived the analytical expression for $i i^{*}$ but we are fortunate in that $i i^{*}$ is also capable (like $i l$) of a functional interpretation.

40. Counting our luck \& listing our gains.

Our extremisation-cum-satellisation scheme succeeds only thanks to an improbable string of good luck:
Fluke 1: the restriction to the extremal algebra $(d=0)$ involves no loss of information.
Fluke 2: satellisation turns the subtractive ϵ_{i}-flexions into additive u_{i}-flexions.
Fluke 3: satellisation alters but does not destroy the second symmetry: il $\rightarrow i \|^{*}$.
Fluke 4: satellisation keeps $\operatorname{sazag}_{0^{\circ}}, \operatorname{sazag}_{1}{ }^{\bullet} \boldsymbol{u}$-meromorphic.
Fluke 5: the satellisation formalism absorbs such key facts as
(i) the $(r, d) \leftrightarrow(d, r)$ duality for uncoloureds.
(ii) the conversion rule zag ${ }^{\bullet} \leftrightarrow$ zig$^{\bullet}$
(iii) the colour-consistency constraints.
41. Counting our luck \& listing our gains (Cont-d)

The extremisation-cum-satellisation scheme brings huge rewards:
Gain 1: it brings about a dramatic data reduction, while allowing the algorithmic recovery of information;
Gain 2: it enables one to work entirely within the (r, d)-filtration, thereby dispelling the 'curse of imbrication';
Gain 3: it extends 'perinomal' irreducible analysis (luma*-based) to the coloured case;
Gain 4: it eases 'arithmetical' irreducible analysis (lomaº or lama*-based) in all cases - uncoloured as well as coloured.

42. Concluding remarks.

- 'Arithmetical dimorphy' extends far beyond the multizetas. Ext.1: The \mathbb{Q}-ring of hyperlogarithms with rational 'support'. Ext.2: The \mathbb{Q}-ring of 'naturals', i.e. of all monics associated with transmonomials with finitely many (rational) coefficients.
- Albeit rooted in Analysis, the flexion structure, with its two-tier indexation, its core involution swap, its wealth of operations, and its convenient capaciousness (it makes room for meromorphic functions and poles at the origin), has shown itself ideally suited to the investigation of multizeta dimorphy.
- Part 3 reflects work in progress: bountiful though it is, the present harvest is likely to pale before the yields of future crops...

43 Some references.

Here are two seminal papers:
[B] D.J.Broadhurst, Conjectured Enumeration of irreducible Multiple Zeta Values, from Knots and Feynman Diagrams, preprint, Phys. Dept, Open Univ. Milton Keynes, MK7 6AA, UK, Nov. 1996.
[Z] D.Zagier, Values of Zeta Functions and their Applications.
First European Congress of Mathematics, Vol. 2, 427-512,
Birkhäuser, Boston, 1994.
For guidance on the recent literature, look up the Multiple Zeta Function entry in Wikipedia.
For our own, flexion-based approach, see next page \rightarrow

43* Some references.

[E1] ARI/GARI, la dimorphie et l'arithmétique des multizetas: un premier bilan. J.Th.N. Bordeaux, 15, 2003.
[E2] The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles. Ann.Scuo.Norm.Pisa, 2011
[E3] Eupolars and their bialternality grid. Acta
Math.Vietnamica. 2015.
[E4] Singulators vs Bisingulators. 7 June 2014.
[E5] Combinatorial tidbits from resurgence theory and mould calculus. June 2016.

All these papers and more are accessible on the author's homepage.

[^0]: ${ }^{1}$ as used repeatedly on slide 18 to construct elements of $A R I \frac{a l}{\text { ent }} / \frac{i l}{t}$.

[^1]: ${ }^{3}$ the stricter constraints for So° mimick the a priori symmetries of the perinomal singulands $S u^{\bullet}$, such as $u_{2} S u_{1,2}^{u_{1}, u_{2}} \equiv u_{1} S u_{1,2}^{u_{2}, u_{1}}$.

