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In his course Nombre de rotation en dimension 1 et 2, François Béguin has introduced the
rotation set for annulus or torus homeomorphisms that are isotopic to the identity. Roughly
speaking, it is the set of all the rotations whose dynamics can be compared to the dynamics of
the homeomorphism. In particular, it was shown that a torus homeomorphism whose rotation
set is large has a rich dynamics (infinitely many periodic orbits, positive topological entropy. . . )
In these notes, we take the opposite viewpoint and consider homeomorphisms (later called ir-
rational pseudo-rotations) whose rotation set is very small (it is a singleton {α}) and we try to
answer the following questions: To what extend is the dynamics of an irrational pseudo-rotation
the same as the dynamics of the corresponding rotation Rα? Does an irrational pseudo-rotation
have a poor dynamics?

We will give some general answers (in parts 1 and 2) and also build some exotic examples
(in parts 3, 4 and 5), which will in general have one of the following type:

- either the homeomorphism h is a C∞-diffeomorphism but the construction only holds for
irrational rotation numbers α satisfying a Diophantine condition,

- or the construction holds for any irrational number α but the dynamics h is only contin-
uous.

Other interesting examples will be constructed in a more systematic way in the courses of Bassam
Fayad and Tobias Jäger.

2



1 Towards a dynamical characterization of the rotations

In dynamical systems, we usually do not distinguish the dynamics of a homeomorphism R on a
compact space X from its conjugates h = g ◦R ◦ g−1 by the homeomorphisms g of X. On some
spaces (for instance on the circle T1) one can consider the rotations R: these are the isometries,
their dynamics is quite simple, well understood and have an interesting combinatorics. It is
natural to use them as models for the dynamics of the other homeomorphisms. Is it possible to
decide if a homeomorphism h which is isotopic to the identity is conjugate to a rotation?

1.1 The dynamics on the circle

The case of the circle is classical: to any orientation preserving homeomorphism h of T1 = R/Z,
H. Poincaré has associated [47] a rotation number ρ(h) ∈ T1 which has the following properties:

• If ρ(h) ∈ Q/Z, then h has a periodic orbit. Moreover, h is conjugate to a rotation if and
only if hq = Id for some integer q ≥ 1. This is the periodic or the rational case.

• If ρ(h) /∈ Q/Z then h is semi-conjugate to the irrational rotation R of angle ρ(h): there
exists a surjective and increasing continuous map g : T1 → T1 such that R ◦ g = g ◦ h. In
particular, the cyclic order of the orbits of h is the same as the cyclic order of the orbits
of R.

If h is not smooth, it can happen that g is not injective and there exist some wandering
dynamics: there is a non-trivial interval I ⊂ T1 which is disjoint from all its iterates hk(I),
for k 6= 0. One says that h is a Denjoy counterexample.

• When ρ(h) /∈ Q/Z and h is a C2-diffeomorphism, A. Denjoy has shown [11] that h is
always conjugate to the rotation.

• When ρ(h) /∈ Q/Z satisfies an arithmetic (Diophantine) condition and h is a C∞-diffeomorphism,
M. Herman has shown [28] that the conjugacy g is also C∞.

The following remark is less known:

• If ρ(h) /∈ Q/Z, then h and R are “almost conjugate”: there exist conjugates of R that are
arbitrarily close to h and conjugates of h that are arbitrarily close to R, for the usual C 0

topology on the set of homeomorphisms.
In other terms:
The closure of the conjugacy classes of homeomorphisms having an irrational rotation
number is classified by the rotation number.

Exercise. Prove that any homeomorphism h whose rotation number α is irrational may be
conjugate to a homeomorphism close to the rotation Rα.
Indication: choose two long segments of orbit (x, h(x), . . . , hn(x)) and (y,R(y), . . . , Rn(y)) for h
and for the rotation R = Rα and consider a homeomorphism which satisfies g(hk(x)) = Rk(y) for
each 0 ≤ k ≤ n.

3



1.2 The dynamics on the sphere

Let us now consider a homeomorphism h of the two-sphere S2 that is isotopic to the identity
(equivalently, h preserves the orientations) and let us wonder if h is conjugate to a rotation:
there is no more any natural metric on the sphere and we will not try to characterize rotations
as isometries but by some dynamical properties.

We will first describe several cases where this is not true.

a) First obstruction: the dissipation

S

N

Figure 1: The North-South dynamics on the sphere.

Some easy counterexamples to the conjugacy problem occur if some regions of the plane
are attracting. For example, one can consider the North-South dynamics where two points
are fixed, one is repelling the other one is attracting and all the other points are wandering
(see figure 1).

In order to forbid the existence of attracting regions, we will need a hypothesis.

Conservation. There exists a probability measure µ that is invariant by h and whose support
is the whole sphere S2.

Note that this hypothesis is preserved by conjugacy. For the rotations it is satisfied since
the Lebesgue measure is invariant.

One gets the following consequence (see also the courses by Marc Bonino and Frédéric Le
Roux).

Proposition 1.1. A conservative homeomorphism of the sphere S2 which is isotopic to the
identity has at least two fixed points.

Proof. Any homeomorphism of the sphere S2 and isotopic to the identity has at least one fixed
point (this is the Poincaré-Lefschetz formula). If h has only one fixed point P , the dynamics of
h on S2 \ {P} is a Brouwer homeomorphism of the plane. In particular, any point is wandering:
it has a neighborhood U which is disjoint from its iterates hk(U), k 6= 0. This contradicts the
Conservation Hypothesis.
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There are other possibles assumptions for the conservation:

- One could require that h preserves a smooth volume form. For this case, it is more natural
to only consider smooth dynamics and conjugacies.

- A weaker and more topological property is to assume that h is non-wandering : any non-
empty open set intersects one of its forward iterates. Proposition 1.1 still holds.

- If one considers a homeomorphism that fixes at least two points, N and S, one can con-
sider the Intersection Property (relative to N and S): any simple curve γ contained in
S2 \ {N,S} intersects its image h(γ). Many properties are still satisfied in this setting.

Exercise. Prove that the Conservation Hypothesis implies that h is non-wandering.

b) Second obstruction: the rational case

Let us first assume that h has at least three periodic points. Note that if h is a rotation,
it is periodic. This case is thus similar to the rational case on the circle: the dynamics
may “degenerate” and be far from the rotations.

- B. Kerékjártó has proven [35] that h is conjugate to a rational rotation if and only
if hq = Id for some q ≥ 1. (In fact, we don’t need to assume that h preserves the
orientation nor that it is conservative, see [10].)

- There are many examples that are not conjugate to a rotation: for instance, one can
start with the identity on S2 and modify the homeomorphism in a small disc. The
obtained dynamics can be very rich and very different from the initial rotation.

Exercise. Build a (smooth) example having periodic orbits with arbitrarily large period,
with positive topological entropy.

J. Franks [21] and P. Le Calvez [39] have shown that such a homeomorphism has always
an infinite number of periodic points. (See the course by Patrice Le Calvez.)

If one fixes two fixed points N,S of h, one can study how the dynamics rotates around
these points. The obtained rotation set can be large in this case.

In these notes we will always assume that we are not in the rational case.

Definition 1.2. An irrational pseudo-rotation of S2 is a conservative homeomorphism which is
isotopic to the identity and has at most two periodic points.

As we explain above, it has exactly two fixed points, that will be marked and denoted byN and S.

Since an irrational pseudo-rotation has exactly two periodic points, the measure µ has at
most two atoms. By removing them, one can assume that µ is non-atomic and gives a positive
measure to all the open sets. A result of J. Oxtoby and S. Ulam [46] thus shows that the
following property is equivalent to the Conservation hypothesis: h can be C 0 conjugate to a
homeomorphism that preserves the Lebesgue measure.
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Theorem 1.3 (Oxtoby-Ulam). Let µ and ν be two probability measures on a closed manifold
M , that have no atom and give positive measure to any non-empty open set. Then, there exists
a homeomorphism g of M such that g∗µ = ν.

By removing the fixed points of an irrational pseudo-rotation, one gets a homeomorphism
of the (open) annulus. It is then possible to build a rotation set theory (see [38]), generalizing
the case of the compact annulus, described in the course by François Béguin. Since there are no
periodic orbit in the annulus, one obtains the following result (see [3]):

Proposition 1.4. Let h be an irrational pseudo-rotation of the sphere S2 with two marked fixed
points N,S. Then, h has a unique rotation number α ∈ T1, which is irrational.

Proof in the C1 case. This case is much more simpler since one can easily reduce to a dynamics
on the closed annulus. Then, one applies several variations on the Poincaré-Birkhoff theorem.

Blowing up the fixed points. Since h is C1, one can remove the fixed point N and replace it by
its unitary tangent space UN : if one considers polar coordinates (θ, r) ∈ T1 × [0, ε) in a
neighborhood of N in S2, the point N is represented by all the coordinates (θ, 0). After
blowing up the point N , the coordinates (θ, 0) parameterize the unitary tangent circle UN

that has replaced N .
The dynamics of h on S2 \ {N} extends continuously to UN by the action of the differen-
tial DNh: a point in UN is a unitary vector u at N . Its image will be the unitary vector
DNh.u/‖DNh.u‖.
By blowing up both fixed points N and S one gets a homeomorphism h̄ of the compact
annulus A = T1 × [0, 1]. Since h preserved a probability measure with full support, h̄
also preserves a probability measure with full support, which can be assumed to be the
Lebesgue measure after topological conjugacy.
This Blowing up trick also appears in the course of Frédéric Le Roux.

The proposition 1.4 is now a consequence of the following lemma.

Lemma 1.5. Let h be a conservative homeomorphism of the compact annulus A whose rotation
interval is not reduced to an irrational number α. Then h has a periodic point in the interior of
the annulus.

The proof uses the following generalization of Poincaré-Birkhoff theorem (see the course of
Francois Béguin):

Franks generalization of Poincaré-Birkhoff theorem. Let us consider

- the open annulus T1 × (0, 1), which is the quotient of the plane by a translation T ,

- a conservative homeomorphism h of the open annulus that is isotopic to the identity
and a lift h̃ of h to the plane.

Let D be an open disk in the open annulus and D̃ a disk in the plane that lifts D. We
say that D̃ is free if it is disjoint from its image by h̃. It is positively (resp. negatively)
returning for h̃ if there exist some integers n ≥ 1 and p ≥ 0 (resp. p ≤ 0) such that h̃n(D̃)
intersects T p(D̃).
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Then, Franks has proven [20]:
It there exist a free disk that is positively returning for h̃ and a free disk that is negatively
returning for h̃, then h has a fixed point.

The proof of lemma 1.5 has two steps.

Reduction: the rotation set is the singleton {0}. This is a corollary of Franks argument (see the
course of Francois Béguin): for any conservative homeomorphism h of the compact annulus
A, the rational numbers contained in the interior of the rotation set (which is an interval)
are realized by periodic orbits contained in the interior of A. It thus remains to consider
the case where the rotation interval of h is a singleton {α} and α is a rational number.
For simplification, one will assume that p

q
= 0.

Conclusion: h has a periodic point in the interior of A. We will work in the universal covering
of the open annulus A \ ∂A. One can take the lift h̃ of h to the plane, which has rotation
number 0. By Franks argument, if there both exist positively and negatively returning free
disks for h̃, we are done. Hence, we will consider the case there are no negatively returning
disks for h̃. We will argue by contradiction and assume that there are no periodic point
in the open annulus.

Claim: there exist some positive integers k, n and a disk D̃ in the plane which lifts a disk
in A \ ∂A such that

- D̃ is free by T−1 ◦ h̃n,

- h̃n(D̃) meets T̃ k+1(D).

Proof. Let us consider any small disk D0 in A\∂A and a lift D̃0 in the plane. The disk D0

is free by h. But since the dynamics is non-wandering, there exists an integer m ≥ 1 such
that hm(D0) ∩D0 6= ∅. On the universal covering, this means that there exists an integer
p ∈ Z such that h̃m(D̃0) meets T p(D̃0). We choose the smallest p with this property. Since
there are no negatively returning disks for h̃, we have p ≥ 1. Note that if p > 1, the claim
follows with D = D0, n = m and k = p− 1. So we assume in the following that p = 1.

Let us choose a smaller disk D ⊂ D0 such that h̃m(D̃) ⊂ T (D̃0) and such that hm(D) is
disjoint from D (this is possible since there are no periodic orbit of period m in the open
annulus). Using again that the dynamics is non-wandering, we get another integer n > m
such that hn(D) meets D. Hence, there exists an integer k ∈ Z such that h̃n(D̃) meets
T k+1(D̃). We consider the smallest one.

By construction, the image of T (D̃0) by h̃n−m meets T k+1(D0). Since there are no nega-
tively returning disk, this implies that k ≥ 1. The disk D̃ is free for h̃n ◦ T−1: otherwise k
is not the smaller integer such that h̃n(D̃) meets T k+1(D̃). The proof is now complete.

We thus have shown that the free disk D̃ is positively returning for g̃ = T−1 ◦ h̃n. The
rotation number on the boundary of A is 0, hence there exists some fixed point x0 in ∂A.
Let us consider a disk D′ which is a small neighborhood of the fixed point x0 in A\∂A: D̃′

meets his image by h̃n but not by T−p◦h̃n. Hence, D̃′ is a free disk by g̃ which is negatively
returning. Franks argument implies that hn has a fixed point in A\∂A, finishing the proof
of the lemma.
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Exercise. Using the results in the course by Frédéric Le Roux, show that the Lefschetz index of the
fixed points of an irrational pseudo-rotation is 1.

c) Third obstruction: the non-smooth dynamics

It is possible to build an irrational pseudo-rotation which is not conjugate to a rotation as
a variation of the Denjoy counterexamples: using the ideas of section 1.1 (see exercise 1.1),
one can get a continuous family (ft)t∈[−1,1] of homeomorphisms of the circle with a same
irrational rotation number α such that for t 6= 0 the map ft is conjugate to the rotation
Rα and f0 is a Denjoy counterexample.

f0

f 1

2

Figure 2: A Denjoy irrational pseudo-rotation.

We now consider the homeomorphism of the sphere x2 + y2 + z2 = 1 that preserves each
circle z = t for each t ∈ [−1, 1] and induces the dynamics of ft on it (see figure 2). One
easily check that this is a non-smooth irrational pseudo-rotation with rotation number α.
It is not conjugate to the rotation since it contains a Denjoy counterexample.

Exercise. Fill the details in the construction of this example.

From the dynamical point of view, there exists different kinds of irrational numbers. Some are
not too strongly approximated by the rational numbers: one says that they satisfy a Diophantine
condition. Let us recall the classical Diophantine condition: we say that α is Diophantine if
there exist some constants C > 0 and τ ≥ 0 such that for any rational number p/q we have

|qα− p| >
C

q1+τ
.

The other irrational numbers are said to be Liouvillean.
The next example shows that the irrational pseudo-rotations whose rotation number is Li-

ouvillean may be reminiscent from the degenerated dynamics of the rational case, even if the
diffeomorphism is smooth.

d) Fourth obstruction: the Liouvillean dynamics
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Figure 3: A hairy germ of diffeomorphism.

For some Liouvillean rotation numbers α, there exists a C∞ irrational pseudo-rotation
whose dynamics at the fixed point N is “hairy” (see figure 3): there exists a curve γ
attached at N and a sequence of iterates hnk(γ) that converges to {N}. Hence, the
dynamics is not conjugate to the rotation. See [19]. The construction uses the so-called
“Anosov-Katok technique” that will be described in part 3.

1.3 The Birkhoff conjecture

G. Birkhoff proposed [9] a conjecture that characterizes dynamically the rotations. The previous
discussion motivates the following variation on his conjecture (see [32, Problem 3]).

Conjecture (Birkhoff1). Any Lebesgue measure preserving C∞ irrational pseudo-rotation on
S2 whose rotation number satisfies a Diophantine condition is conjugate to a rotation.

The same question can be asked on other manifolds:
In the closed annulus A = T1× [0, 1], an irrational pseudo-rotation is a conservative homeomor-
phism that is isotopic to the identity and that has no fixed point. As it was explained in the
proof of proposition 1.4, the conjecture on the annulus would imply the conjecture on the sphere.

Exercise. Show that on the closed disc D = {(x, y) ∈ R2, x2+y2 ≤ 1}, any conservative homeomorphism
that is isotopic to the identity has a fixed point in the interior of D.
Define the irrational pseudo-rotations of D and propose a conjecture in this case.

Some local versions of the conjecture are known and were shown by Herman (see [15]),
using Kolmogorov-Arnold-Moser theory: the conjecture holds locally around the fixed points
and globally for diffeomorphisms that are close to the rotations. This will be detailed in the
course by Bassam Fayad.

1There was no Diophantine condition in the initial conjecture given by Birkhoff, but it was stated in the
analytic category and his question is still open:
Does there exists a R-analytic irrational pseudo-rotation of S2 which has a dense orbit?
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Theorem 1.6 (Herman). Any C∞ irrational pseudo-rotation h of the sphere S2 whose rotation
number α is Diophantine is C∞-conjugated to the rotation Rα in a neighborhood of its fixed
points N,S.
If moreover h is C∞ close to the rotation Rα, it is globally C∞-conjugated to the rotation Rα.

Remark 1.7. The Conservation Hypothesis can be replaced here by the Intersection Property.

1.4 Dynamics on the torus

Let us now discuss the case of the torus: an irrational pseudo-rotation2 is a conservative home-
omorphism that is isotopic to the identity and whose rotation set is reduced to a unique ro-
tation vector (α, α′) which is not rational: for any triple (p, p′, q) 6= 0 of integers we have
q(α, α′) + (p, p′) 6= 0.

We can consider several cases:

- The semi-irrational case. there exits a triple (p, q, q ′) 6= 0 of integers such that

qα+ q′α′ + p = 0.

The closure of the orbits of the rotation of angle (α, α′) are finite unions of circles: by
changing the base of H1(T

2,Z) = Z2, the rotation vector of the irrational pseudo-rotation
becomes of the form ( p

q
, ω) with p

q
∈ Q and ω /∈ Q. Moreover, the dynamics has invariant

circles if and only if there exists a pair of integers (q, q ′) 6= 0 such that qα + q′α′ = 0 (or
equivalently the rotation vector after changing the basis is (0, ω)).

- The totally irrational case. All the orbits for the rotation of angle (α, α ′) are dense in T2. In
this case, we say that (α, α′) is Diophantine if there exist some constants C > 0 and τ ≥ 0
such that for each triple (p, q, q′) 6= 0 of integers we have

|qα+ q′α+ p| >
C

(q + q′)2+τ
.

A local version of the conjecture has been proven by A. Kolmogorov, V. Arnold and J. Moser
(see [2, 44] and [28])

Theorem 1.8 (Kolmogorov-Arnold-Moser). Let us consider a C∞-diffeomorphism h of the torus
T2 which preserves the Lebesgue measure and whose rotation set is reduced to a Diophantine
vector (α, α′). If h is C∞-close to the rotation R = R(α,α′), then h is C∞-conjugate to R.

Remark 1.9. In this case, the proof uses the assumption that the Lebesgue measure is preserved.
One could ask if this hypothesis can be relaxed.

One could propose some versions of the Birkhoff conjecture on T2 but few results are known.

2We would prefer to consider the a priori more general class of conservative homeomorphisms that are isotopic to
the identity and have no periodic orbit. With this definition the rotation set is either a segment with rational slope
that does not contain any rational point or a segment with irrational slope and whose endpoints are not rational.
M. Misiurewicz and K. Ziemian have conjectured [43] that the rotation set of such a torus homeomorphism is
reduced to a unique rotation vector, justifying our definition of irrational pseudo-rotation.
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2 Topological dynamics of the irrational pseudo-rotations

We now study the dynamics of the irrational rotations of the annulus or of the torus, introduced
in the last part.

From the topological viewpoints, one may ask the following questions:

- Is the dynamics semi-conjugate to a rotation?
This is false, even if the dynamics is smooth. We will describe counter-examples in parts
3 and 4.

- What are the invariant compact sets?
For the rotation, the minimal invariant compact sets are either finite sets, circle or the
torus. Many examples will be given in the following parts.

- Is the topological entropy positive?
The topological entropy already appeared in the course by François Béguin. In the home-
omorphism is a C2 diffeomorphism, the theorem of A. Katok [34], which will be stated
in the course of Jérome Buzzi, implies that an irrational pseudo-rotation has always zero
entropy. This theorem also implies another feature of the elliptic dynamics: the norm of
the derivative ‖Dhn‖ of the iterates does not increase exponentially.

The question in the continuous case will be addressed in part 5.

One may also be interested by the probability measures that are invariant by the dynamics
(see section 4.1 for the basic definitions in ergodic theory). By Oxtoby-Ulam theorem given at
section 1.2, one can assume (by conjugating the dynamics) that the standard Lebesgue measure
is invariant. The following questions will be illustrated by many examples in the next parts.

- Is the Lebesgue measure ergodic?

- How many ergodic measures has an irrational pseudo-rotation?

- What are the ergodic properties satisfied by the invariant measures? What are the mea-
surable dynamics that can be realized by an irrational pseudo-rotation?

In this part we will not discuss the asymptotic properties of the dynamics: we will show
that the combinatorics of the irrational pseudo-rotations and the conjugates of the irrational
rotations can not be distinguished by only a finite number of their iterates.

2.1 The arc translation theorem

2.1.1 Statement

The following theorem shows that the orbits of an irrational pseudo-rotation rotate uniformly
in the annulus. An essential simple arc in the compact annulus A = T1 × [0, 1] is a simple arc
joining one of the boundary component to the other one.
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Theorem 2.1 (Kwapisz). Let h be an irrational pseudo-rotation of the compact annulus of
angle α. Then, for any n ≥ 1, there exists an essential simple arc γ = γn such that the arcs
γ, . . . , hn(γ) are disjoint .

Moreover, these arcs are cyclically ordered as the orbits of the rotation of angle α on the
circle.

The property on cyclic order may be restated in the universal cover: the compact annulus
is the quotient of Ã = R× [0, 1] by the translation T : (x, y) 7→ (x+ 1, y).
First, one defines the essential simple arcs in R × [0, 1] as the simple arcs connecting the two
lines R × 0 and R × 1. Two disjoint essential simple arcs γ̃, γ̃ ′ are ordered by the order on R:
we will denote γ̃ < γ̃ ′ if γ̃ is “on the left” of γ̃ ′.
Let us now consider a lift h̃ of h to the universal cover of the annulus and denote by α̃ its
translation number. We have the following property: if one fixes any curve γ̃ that lifts γ, then,
all the curves h̃k ◦ T `(γ̃) with k ∈ {0, . . . , n} and ` ∈ Z are pairwise disjoint and satisfies

h̃k ◦ T `(γ) < h̃k′

◦ T `′(γ) ⇔ (k − k′)α̃+ (`− `′) < 0. (2.1)

This result was proved by J. Kwapisz [36] in the torus T2: an essential simple curve in T2

is a simple closed path in T2 that is homotopic to the circle {0} × T1. In the closed annulus,
we refer to [24, 6]. The same theorem also holds in the sphere but the proof is much more
difficult [26, 3] due to the lack of compactness: an essential simple arc in S2 \ {N,S} for an
irrational pseudo-rotation of the sphere is a simple arc joining the two fixed points N and S.

In general, there is no essential simple arc γ which is disjoint from all its iterates (we will
give examples at section 3.3 remark 3.5.1) and at section 4.2.c)).

2.1.2 Proof of the arc translation theorem

Suppose we are given a family of k pairwise commuting maps of Ã, and consider sequences
obtained by starting with any point in the closed band Ã and iterating each time by one of
the maps of the family (that is, we are considering a positive orbit of the Zk-action generated
by the family). We prove that if the rotation sets of the k maps are all positive, then all the
sequences obtained this way have a universally bounded leftward displacement. Moreover, by
continuity, this remains true if we consider pseudo-orbits instead of orbits, i.e. if we allow a
little “jump” (or “error”) takes place at each step. Then we construct the essential simple arc
γ̃ using a brick decomposition. Brick decompositions were already considered in the course by
Patrice Le Calvez. In this text, we only need the easy version, without the maximality property.

The arc translation theorem will be a consequence of the following proposition.

Proposition 2.2. Let Φ1, Φ2,. . . , Φs be a family of homeomorphisms of Ã, isotopic to the iden-
tity, which commute and commute with the translation T , and whose rotation sets are included
in (0,+∞). Then there exists an essential simple arc γ̃ such that γ̃ < Φk(γ̃) for each 1 ≤ k ≤ s.

Proof of the Arc Translation theorem. For each k ∈ {−n, . . . , n}, there exists a unique integer
`k such that the rotation number of h̃k ◦ T `k belongs to (0, 1]. If one applies proposition 2.2
to the family of homeomorphisms h̃k ◦ T `k , one gets a simple essential arc γ̃ in Ã that satisfies
γ̃ < h̃k ◦ T `k(γ̃) for each k. Let γ be its image in A. One gets the following properties:

12



• γ̃ < T (γ̃). Hence, γ is a simple essential arc in A.

• γ̃ < h̃k ◦ T `k(γ̃) < T (γ̃). Hence, γ is disjoint from its image in A. This also gives the
property (2.1).

This concludes the proof of the theorem.

The two next sections are devoted to the proof of proposition 2.2. In order to simplify the
proof we will only consider two commuting maps Φ1 and Φ2. We denote by p1 the projection
Ã→ R on the first coordinate.

2.1.3 Pseudo-orbits for commuting homeomorphisms with positive rotation sets

A sequence (xn)n≥0 of points in Ã is called a (Φ1,Φ2)-orbit if for all n, we have xn+1 = Φ1(xn)

or Φ2(xn). Let d denote the Euclidean distance on Ã = R× [0, 1] and ε a positive real number.
An ε-(Φ1,Φ2)-pseudo-orbit is a sequence (xn)n≥0 of points in Ã such that for all n, we have
d(Φ1(xn), xn+1) < ε or d(Φ2(xn), xn+1) < ε. The main result that makes this definition useful
is that we can choose ε > 0 such that the leftward displacement of any ε-(Φ1,Φ2)-pseudo-orbit
is universally bounded.

Proposition 2.3. There exists ε > 0 and M > 0 such that for any ε-(Φ1,Φ2)-pseudo-orbit
(xn)n≥0, for any n ≥ 0,

p1(xn) ≥ p1(x0)−M.

Proof. This is done in three steps.

a) Long segments of orbits: There exists an integer N > 0 with the following property.
For every (Φ1,Φ2)-orbit (x0, . . . , xN ) of length N , we have p1(xN )− p1(x0) ≥ 2.

We first note that p1(xN )−p1(x0) can be written as p1(Φ
N1

1 ΦN2

2 (x0))−p1(Φ
N2

2 (x0))+ p1(Φ
N2

2 (x0))−
p1(x0) for some N1, N2 ≥ 0 satisfying N1 + N2 = N . If our claim does not hold, then there
exists a constant C > 0 and for arbitrarily large integer n, there exists a point x such that
p1(Φ

n
1 (x))− p1(x) ≤ C or p1(Φ

n
2 (x))− p1(x) ≤ C. This implies that the rotation set of Φ1 or Φ2

is not contained in (0,+∞) and contradicts the assumptions of the proposition.

b) Long segments of pseudo-orbits: There exists a constant ε > 0 with the following property.
For every ε-(Φ1,Φ2)-pseudo-orbit (x0, . . . , xN ) of length N , we have p1(xN )− p1(x0) ≥ 2.

For ε > 0 small, any ε-(Φ1,Φ2)-pseudo-orbit of length N stays close to a (Φ1,Φ2)-orbit of length
N (just by continuity). Hence, step a) implies step b).

c) Any segment of pseudo-orbit: Let us divide the ε-(Φ1,Φ2)-pseudo-orbit (x0, . . . , xn) into
blocks xkN , . . . , x(k+1)N of size N . Each of these block (but maybe the last one which could
be smaller) has a leftward displacement which is positive. The last block has length smaller
or equal to N and has displacement bounded from below by some uniform constant M . This
proves proposition 2.3.
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2.2 Brick decomposition

We consider a brick decomposition of A, as shown on figure 4. Essentially, this amounts to taking
an embedded triadic graph F in Ã (triadic meaning that each vertex belongs to exactly three
edges). We demand that F contains the boundary of Ã. A brick is defined to be the closure of
a complementary domain of F in Ã ; it is a topological closed disk. The last requirement in the
definition of F is the following key feature: every brick is of diameter less than the number ε
given by proposition 2.3 (for the Euclidean metric on A = S1 × [0, 1]).

Γ0

A

Γ

Figure 4: A brick decomposition

Remark 2.4. 1. Since F is triadic, the topological boundary of the union of any family of
bricks is a 1-submanifold in Ã, with boundary included in the boundary of Ã.

2. We deduce from the definitions the following key property:
Any subset of Ã is included in the interior of the union of the bricks that it meets.
Note that it is crucial that the bricks are defined to be topological closed disks.

A brick chain (from the brick D to the brick D ′) is a sequence (D0 = D, . . . Dn = D′) of
bricks in Ã such that Φ1(Di) ∪Φ2(Di) meets Di+1 for every 0 ≤ i < n.

Take γ0 = {0} × [0, 1]; we can suppose that γ0 is included in F (as on figure 4). We define a
subset A of Ã in the following way:

- to any brick D, we associate the union D(D) of all the bricks D ′ of the decomposition such
that there exists a brick chain from D to D ′;

- the set A is the union of all the sets D(D), where D ranges over the set of all the bricks
lying on the right of the arc γ0 (the brick D may meet γ0).

Lemma 2.5. The set A contains all the bricks on the right of Γ0 and is bounded on the left:
there exists a constant M such that A is included in [−M,+∞[×[0, 1].

Proof. Indeed, if (D0, . . . Dn) is a brick chain, and x is any point in Dn, then there exists an
ε-(Φ1,Φ2)- pseudo-orbit (x0, . . . , xn) such that x0 is in D0 and xn = x. Remember that ε is
given by proposition 2.3; let M be the other constant given by this proposition. Then we have
p1(xn) ≥ p1(x0)−M , so that if D0 is on the right of γ0, then p1(x0) ≥ 0, and consequently Dn

is included in [−M,+∞[×[0, 1]. We conclude that A is included in [−M,+∞[×[0, 1]. The fact
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that A contains all the bricks on the right of γ0 follows from the definition of A (considering
chains made of only one brick).

Lemma 2.6. The set A is a strict attractor for Φ1 and Φ2, i.e.

Φ1(A) ⊂ Int(A) and Φ2(A) ⊂ Int(A).

Proof. Indeed, let D be included in A. By definition, there exists a brick chain (D0, . . . , D) with
D0 on the right of γ0. Then for any brick D′ meeting Φ1(D), the sequence (D0, . . . , D,D

′) is
again a brick chain, so D′ is also included in A. Then the lemma follows from remark 2.4.2):
the set Φ1(D) is included in the interior of the union of the bricks that it meets. Of course, the
same argument can be applied to the homeomorphism Φ2.

We now finish the proof of proposition 2.2.

Proof of proposition 2.2. Consider the essential arc γ “bounding A on the left” (see figure 4);
more precisely, using lemma 2.5 and remark 2.4.1), this can be defined as the boundary of the
connected component of Ã \A containing ]−∞,−M [×[0, 1]. From lemma 2.6 it follows that γ
is disjoint from its images Φ1(γ) and Φ2(γ). This ends the proof of proposition 2.2.

2.2.1 Combinatorics of the rotation of the circle

The order of the iterates of the curve γ in the arc translation theorem is described by the
following classical result about the irrational rotations on the circle (see also figure 5):

1

2

3
4

5

6

7

8

9

0

I2

I1

Figure 5: The two intervals I1 and I2 for a rotation whose angle α̃ belongs to ( 2
3 ,

5
7): we have

q1 = 3 and q2 = 7.
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Proposition 2.7. Let r be an irrational rotation of the circle. Then, there exists arbitrarily
large integers q1, q2 ≥ 1 and two closed intervals I1, I2 in T1 such that:

• The family I = {I1, r(I1), . . . , r
q1−1(I1), I2, r(I2), . . . , r

q2−1(I2)} covers the circle and its
elements have pairwise disjoint interiors.

• The union I1 ∪ I2 is an interval.

• The intervals rq1(I1) and rq2(I2) have disjoint interior and their union coincides with
I1 ∪ I2.

Remark 2.8. The integers q1, q2 and the intervals I1, I2 are chosen in the following way:

- First, one fixes a large integer Q > 0 and a point x0 in the circle.

- Among the iterates rk(x0) with 0 < k ≤ Q, one is the closest to x0 and will be denoted
by rq1(x0). One will assume that for instance it is on the right to x0 and define I2 =
[x0, r

q1(x0)].
By definition, the Q first iterates of x0 do not intersect the interior of the interval J =
[r−q1(x0), r

q1(x0].

- Let us consider the first iterate rq2(x0) that belongs to the interior of J. It can not inter-
sect I2 since this would imply that rq2−q1(x0) belongs to r−q1(I2) ⊂ J and contradict the
minimality of q2. We now define I1 = [rq2(x0), x0].
Note that if one replaces the point x0 by another point on T1, the integers q1, q2 remain
the same.

This combinatorics allows to define a renormalization of the dynamics: one can identify the
two endpoints of the interval I1∪I2 and obtain a circle CI1,I2 . The return map from I1∪I2 into it-
self (which is rq1 on I1 and rq2 on I2) induces a homeomorphism of CI1,I2 which is a new rotation.

From proposition 2.7 and theorem 2.1, one immediately deduces a same result for the irra-
tional pseudo-rotations of the compact annulus, the sphere or the torus.

Corollary 2.9. The irrational pseudo-rotations of the compact annulus, the sphere or the torus
can be renormalized in the same way as the irrational rotations of the circle.

Proof of the proposition. Let us introduce two integers q1 < q2 and the intervals I1 = [rq2(x0), x0]
and I2 = [x0, r

q1(x0)].

Fact 1. The intervals rk(I1) and r`(I2) with 0 ≤ k < q1 and 0 ≤ ` < q2 cover the circle T1.
Proof. It suffices to check that each iterate ri(x0) with 0 ≤ i < q1 + q2 is the left point and the
right point of some of these intervals. There are three cases:

• If 0 ≤ i < q1, then ri(x0) belongs to ri(I1) ∪ r
i(I2).

• If q1 ≤ i < q2, then ri(x0) belongs to ri−q1(I2) and ri(I2).
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• If q2 ≤ i < q1 + q2, then ri(x0) belongs to ri−q1(I2) and ri−q2(I1).

Let us assume furthermore that the integers q1, q2 have been chosen as in remark 2.8.

Fact 2. The interior of the interval I1∪I2 does not contain any iterate rk(x0) with 0 < k < q1+q2.
Proof. Let us assume that rk(x0) belongs to I1 ∪ I2. (Note that k > q2 by the choice of q2.)

- If it belongs to I2, then the length of [rk(x0), r
q1(x0)] is smaller than the distance from

rq1(x0) to x0. The same is true for the length of [rk−q1(x0), x0] but since 0 < k − q1 < q2,
this contradicts the minimality of q2.

- If rk(x0) belongs to I2 one also gets a contradiction by the same argument.

Fact 3 : The interior of the intervals rk(I1) and r`(I2) with 0 ≤ k < q1 and 0 ≤ ` < q2 are
pairwise disjoint.
Proof. Otherwise, the interior of some interval rj(I1) or rj(I2) contains some iterate r`(x0) with
j < ` < q1 + q2. This implies that the point r`−j(x0) belongs to the interior of I1 or I2 and this
contradicts the Fact 3.

To finish, one notes that rq1(I1) and rq2(I2) are adjacent at the point rq1+q2(x0). Hence,
they have disjoint interior and rq1(I1) ∪ r

q2(I2) is an interval whose endpoints are rq1(x0) and
rq2(x0). One deduces that it is equal to I2 ∪ I1.

One can characterize the integers q1, q2 that satisfy proposition 2.7.

Proposition 2.10. Let r̃ be a lift of r to the universal cover Ã and let α̃ be its rotation number.
Then, the integers q1, q2 ≥ 1 satisfy proposition 2.7 if and only if there exist two integers p1, p2 ∈
Z such that p1

q1
< α̃ < p2

q2
and q1p2 − p1q2 = 1.

A pair of rational numbers (p1/q1, p2/q2) with q1, q2 > 0 is said to be a Farey interval if and

only if

[
p1 q1
p2 q2

]
belongs to GL(2,Z).

Proof. Let us consider two integers q1, q2 ≥ 1. Let us introduce the largest integer p1 ∈ Z

such that q1α̃ − p1 > 0 and the smallest integer p2 ∈ Z such that q2α̃ − p2 < 0. The intervals
I2 = [x0, r

q1(x0)] and I1 = [rq2(x0), x0] have length q1α̃ − p1 and p2 − q2α̃ respectively. The q1
first iterates of I1 and the q2 first iterates of I2 cover the circle T1 by the fact 1 of the proof of
proposition 2.7. Hence, the properties of proposition 2.7 are satisfied if and only if

1 = q2(q1α̃− p1) + q1(p2 − q2α̃) = q1p2 − p1q2.

Remark 2.11. If (p1/q1, p2/q2) is a Farey interval, the order of the iterates rk(x0) with 0 ≤ k <
q1 + q2 does not depend on the angle of the rotation α̃ ∈ (p1/q1, p2/q2).
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2.3 The tiling theorem

2.3.1 Statement

Kwapisz also gave a generalization [37] of the arc translation theorem 2.1 and of the tiling pro-
vided by proposition 2.7 to totally irrational pseudo-rotations of the torus T2.

A triple of rational vectors {(pi/qi, p
′
i/qi), i = 1, 2, 3} with q1, q2, q3 > 0 is a Farey triple if



p1 p′1 q1
p2 p′2 q2
p3 p′3 q3


 ∈ GL(3,Z).

Let us consider an irrational vector (α̃, α̃′) in R2. A Farey triple for (α̃, α̃′) is a Farey triple
containing (α̃, α̃′) in the interior of its convex hull.

Remark 2.12. The vector (α̃, α̃′) belongs to the convex hull of the rational vectors (pi/qi, p
′
i/qi),

i = 1, 2, 3 if and only if 0 belongs to the interior of its convex hull of the vectors qi(α̃, α̃
′)−(pi, p

′
i).

In dimension 2, there is no canonical combinatorial way to find Farey triples for totally
irrational vectors as in dimension 1 (see the remark 2.8). The next proposition shows however
that it always exist, but the construction depends on the choice of a metric ‖.‖ on T2 that is
invariant by the rotations.

Proposition 2.13. For any totally irrational vector (α̃, α̃′), there exist Farey triples {(pi/qi, p
′
i/qi), i =

1, 2, 3} such that the following quantity is arbitrarily small.

max
i∈{1,2,3}

‖qi(α̃, α̃
′)− (pi, p

′
i)‖.

Proof. One first notice that there always exists a Farey triple for (α̃, α̃′): by translation by a
vector in Z2, one can always assume that 0 < α,α′ < 1. Note that 0 belongs to the interior of
the triangle whose vertices are (α, α′), (α, α′)− (1, 1) and either (α, α′)− (0, 1) or (α, α′)− (1, 0).
Hence, one can set q1 = q2 = q3, p1 = p′1 = 1, p3 = p′3 = 0 and (p2, p

′
2) = (1, 0) or (0, 1).

We now explain how to build a new Farey triple (Pi/Qi, P
′
i/Qi), i = 1, 2, 3 such that for

some constant γ ∈ (0, 1) we have

∑

i∈{1,2,3}

‖Qi(α̃, α̃
′)− (Pi, P

′
i )‖

2 ≤ γ
∑

i∈{1,2,3}

‖qi(α̃, α̃
′)− (pi, p

′
i)‖

2.

Let us define the return vectors vi = qi(α̃, α̃
′) − (pi, p

′
i). One chooses the vector whose length

is maximal (we will assume that it is v3) and one chooses two integers n,m such that V3 =
nv1 +mv2 + v3 belongs to the domain

{w = a.v1 + b.v2, |a| ≤
1

2
, | < w, v2 > | ≤

1

2
‖v2‖

2}

which is a fundamental domain of the plane for the translations by v1 and v2.
Note that V3 = a.v1 + b.v2 can be decomposed as

V3 = a < v1, v
⊥
2 > v⊥2 + c.v2,
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where v⊥2 is a unitary vector that is orthogonal to v2 and |c| ≤ 1
2 . This gives

‖V3‖
2 ≤

1

4
(‖v1‖

2 + ‖v2‖
2).

Let us define V1 = ±v1 and V2 = ±v2 so that V3 = −A.V1 − B.V2 with A,B > 0. One
deduces that 0 belongs to the convex hull of V1, V2 and V3 and that

‖V1‖
2 + ‖V2‖

2 + ‖V3‖
2 ≤

5

4
(‖v1‖

2 + ‖v2‖
2) ≤

5

6
(‖v1‖

2 + ‖v2‖
2 + ‖v3‖

2).

Moreover, V1, V2, V3 are the image of v1, v2, v3 by some matrix



±1 0 0
0 ±1 0
n m 1


 ∈ GL(3,Z)

Hence, they are the return vectors of some Farey triple (Pi/Qi, P
′
i/Qi), i = 1, 2, 3 for (α̃, α̃′).

Here is the tiling theorem (see also figure 6):

Theorem 2.14 (Kwapisz). Let h be an irrational pseudo-rotation of the torus of angles (α, α ′)
and a Farey triple {(pi/qi, p

′
i/qi), i = 1, 2, 3} for some lift (α̃, α̃′) of (α, α′). Then, there exists

three topological rectangles A1, A2, A3 in T2 such that:

• The family I = {hk(Ai), i = 1, 2, 3, 0 ≤ k < qi} covers the torus and its elements have
pairwise disjoint interiors.

• The union A1 ∪A2 ∪A3 is a topological hexagon.

• The rectangles hqi(Ai), with i=1,2,3 have disjoint interior and their union coincides with
A1 ∪A2 ∪A3.

Similarly for the rotation R by (α, α′) on the torus, one can choose three affine rectangles
Ā1, Ā2, Ā3 with the same property and there exists a homeomorphism Φ of T2 that is homo-
topic to the identity and satisfies Φ(hk(Ai)) = Rk(Āi).

The vertices of the rectangles of the family I are the q1 +q2 +q3−1 first iterates of the point
x0 which belongs to the boundary of the three rectangles A1, A2 and A3. By identification, the
hexagon A1 ∪ A2 ∪ A3 is mapped on a torus T . The return map from A1 ∪ A2 ∪ A3 into itself
(which is hqi on Ai for each i = 1, 2, 3) induces a homeomorphism of T which is a new irrational
pseudo-rotation: this is a renormalized dynamics of h (see figure 7).

Remark 2.15. As for remark 2.11, if one chooses a Farey triple F = {(pi/qi, p
′
i/qi), i = 1, 2, 3},

the tilings obtained for any two irrational pseudo-rotations h̃ and g̃ having rotations vectors
(α̃, α̃′) and (β̃, β̃′) in the interior of the convex hull of F .

Remark 2.16. The tiling for the irrational rotation can be found in the following way in R3: Let
us denote by P the plane R2 × 0 and by T, S,H the three translations (x, y, z) 7→ (x + 1, y, z)
(x, y, z) 7→ (x, y + 1, z) and (x, y, z) 7→ (x, y, z + 1). One considers the lattice L of R3 generated
by the three translations Fi = Hi ◦ S−pi ◦ T−p′i . The family of cubes of the lattice L that are
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(a) (b)

Figure 6: Dynamical tilings: a) for a standard map h, b) for a rotation Rα,α′ .
The standard map h is the composition Rα,α′ ◦ Vb ◦Ha with

Ha(x, y) = (x+ a
2π

sin(2πy), y), a = 0.45,

Vb(x, y) = (x, y + b
2π

sin(2πx)), b = 1.8.

The rotation vector (α, α′) is the same for h and Rα,α′ and satisfies α3−α2−α−1 = 0, α′ = α−1−1.
The Farey triple is (927, 778, 504), (504, 423, 274), (274, 230, 149).

The picture has been realized by J. Kwapisz (see [37]).

q2

q3

q1 + q3 q2 + q3
0

q1

q1 + q3

q1 + q2

q2 + q3

q1q2

q3

q1 + q2

q1 + q2 + q3

Figure 7: The tiles A1, A2, A3 and their image by the return map.

contained in the closed upper half space z ≥ 0 defines a region bounded by a surface S: this
surface is an approximation of the plane P by squares of the lattice. One can projects S on P
by a linear projection which maps the points Hn(0) = (0, 0, n) on the points (nα̃, nα̃′, 0). It can
be shown that the decomposition of S into squares is mapped on a tiling of P , satisfying the
theorem 2.14 for the irrational rotation R of angle (α, α′). (See figure 6 b).)
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2.3.2 Proof for the irrational rotations of the torus

We will assume that q1 ≤ q2 ≤ q3. Let us consider the lift h̃ of h to the universal cover R2 of
the torus, having (α̃, α̃′) as a translation vector and the two standard translations S : (x, y) 7→
(x+ 1, y) and T : (x, y) 7→ (x, y+ 1). We then define the commuting maps fi = h̃i ◦ S−pi ◦ T−p′i .

Tilings of R2. We introduce the vertex set

X = {h̃k(0, 0) + (n,m), (n,m) ∈ Z2, 0 ≤ k < q1 + q2 + q3}.

An edge (of type i ∈ {1, 2, 3}) is a segment whose vertices are in X and can be written as
{P, fi(P )}. A tile (of type (i, j) with i 6= j in {1, 2, 3}) is a parallelogram whose vertices are in
X and can be written as {P, fi(P ), fj(P ), fi ◦ fj(P )}. For instance, the point O = (0, 0) is the
vertex of three tiles, A1, A2, A3, one of each type, given by:

Ak = {O, fi(O), fj(O), fi ◦ fj(O)}, with i 6= j 6= k.

A tiling is a covering of R2 by tiles whose interior are pairwise disjoint.

Lemma 2.17. The tiles A1, A2, A3 cover a neighborhood of O and have disjoint interior.

Proof. This is equivalent to the assumption that O belongs to the convex hull of the vectors
qi(α̃, α̃

′)− (pi, p
′
i).

Lemma 2.18. For any point x ∈ X , all the tiles whose vertex set contains x have disjoint
interior and cover a neighborhood of x. For any edge e, there are exactly two tiles whose edge
set contains e and they have disjoint interior

Proof. Each point x ∈ X can be written as h̃k(O) + (n,m). The proof is done by induction on
k. The case k = 0 is a consequence of the previous lemma.

Let us assume that it has been proven for some integer k < q1 + q2 + q3 − 1 and consider
a point x = h̃k+1(O) + (n,m). By induction, a neighborhood of h̃−1(x) is covered by tiles
T1, T2, . . . , Ts whose interior are disjoint. Moreover, any edge or tile whose vertex set contains
h̃−1(x) is one of these tiles Ti. Taking the image by h̃, one deduces the same property at x,
unless k + 1 is equal to one of the following values: q1, q2, q3, q1 + q2, q1 + q3, q2 + q3. In these
last case, the edges at x are not all images of edges at h̃−1(x) and these situations should be
considered more carefully. The local picture at any of these points is represented on figure 8
(these are the vertices of the central hexagon).

If for instance k + 1 = q1, the point h̃k(O) is surrounded by the tiles h̃q1−1(A1), h̃
q1−1(A2)

and h̃q1−1(A3). The image of the tile A1 by h̃q1 is no more a tile, but if q1 < q2, one can replace
it by the union T p1 ◦Sp′

1(A2 ∪A3) and with the tiles h̃q1(A2) and h̃q1(A3), a neighborhood of O
is still covered. Moreover, the point x does not belong to any other edge since the points f −1

2 (x)
and f−1

3 (x) do not belong to X . (N.b.: The situation is different in the three degenerate cases
0 < q1 = q2 < q3, 0 = q1 = q2 < q3 and 0 < q1 = q2 = q3.)

The other cases can be described in a similar way.

Corollary 2.19. Any point x ∈ X belongs to a unique tiling of R2. Any edge belongs to a
unique tiling of R2.
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q3 − q2 − q1

2q1 + q2

q3 − q2

q1 + q3

q3 − q1

q2 + q3

q2 − q1

2q1 + 2q2

2q1 + q3

q1 + q3 − q2

q1 + 2q2

2q2 − q1

q2 + q3 − q1

2q1 + q3 − q2

0

q2q1

2q3

q3

2q3 − q1

q3 − q1

q1 + q3

2q1

2q1 + q2 − q3

q1 + 2q2

q2 − q1

q2 + q3 − q1

2q2 − q1

2q2

q1 + 2q2 − q3

q1 + q2 − q3

2q1 + q2

q1 + q2

2q1 + q3

2q1 + q3 − q2

q1 + q3 − q2

q3 − q2

2q3 − q2

q2 + q3

Figure 8: The tiling at the point (0, 0): at each vertex, we give the number of iterations.
We assumed q1 < q2 < q3. The two pictures represent the cases q1 + q2 is less (first picture) or
larger or equal (second picture) than q3.
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Let us denote by T the partition of X by points having the same tiling.

Action of Z3 on the tilings. The maps S and T act on X and preserve the edges, the tiles and
the tilings. Hence they also act on T . Note that h̃ does not preserve the set X : the points
h̃k(0, 0) + (n,m) have no image in X by h̃ if k = q1 + q2 + q3 − 1 or by h̃−1 if k = 0. One thus
define a bijection H : X → X such that

- H(h̃k(0, 0) + (n,m)) = h̃k+1(0, 0) + (n,m) if 0 ≤ k < q1 + q2 + q3 − 1

- H(h̃q1+q2+q3−1(0, 0) + (n,m)) = (p1, p
′
1) + (p2, p

′
2) + (p3, p

′
3) + (n,m).

Note that the tile are preserved unless they contain one of the points h̃q1+q2+q3−1(0, 0) + (n,m)
as a vertex. This point is surrounded by three tiles f q1−1

1 (A1), f
q2−1
2 (A2) and f q3−1

1 (A3) that
define an hexagon. This hexagon is mapped by h̃ on the hexagon which is the union of the three
tiles A1, A2, A3 translated by (p1, p

′
1) + (p2, p

′
2) + (p3, p

′
3). This shows that the map H preserve

however the tilings. One gets three commuting maps S, T , H, hence an action of Z3 which is
transitive on the sets X and T .

There is only one tiling. Let us denote by P the tiling that contains the point (0, 0) as a vertex
and define the maps Fi = Hqi ◦ S−pi ◦ T−p′i for i ∈ {1, 2, 3}. These maps send (0, 0) on other
vertices of P. This implies that the tiling P is invariant by the maps F1, F2, F3. Since the matrix

p1 p′1 q1
p2 p′2 q2
p3 p′3 q3


 belongs to GL(3Z), one deduces that the groups < S, T,H > and < F1, F2, F3 >

coincide. This implies that the group < S, T,H > fix the tiling P. It also acts transitively on
the tilings, hence, P = X and there is only one tiling.

Conclusion. By iterating the point (0, 0) underH, one checks that for any point P in X , the tiles
that contain P as a vertex are the image by some map Hk ◦S−n ◦T−m with 0 ≤ k < q1, q2 + q3,
(n,m) ∈ Z2 of the tiles A1,A2, A3. Since P is invariant by S and T , it projects on a tiling of T2

by parallelograms.

2.3.3 Restatement

Let h̃ be the lift of h to the plane whose rotation vector is (α̃, α̃′), let S and T be the translations
S : (x, y) 7→ (x + 1, y) and T : (x, y) 7→ (x, y + 1) and let us define the plane homeomorphisms
h̃i = h̃qi ◦ S−pi ◦ T−p′i . Note that they have no fixed point: they are Brouwer homeomorphisms,
see the course by Marc Bonino for a presentation of Brouwer’s theory.

Then, the tiling theorem is equivalent to the following property:

Under these notations, there exist three topological lines ∆1,∆2,∆3 ⊂ R2 that are properly
embedded in the plane and that satisfy the following properties:

- There exists a point x0 such that the intersection of any two distinct lines ∆i and ∆j is
reduced to x0.

- The line ∆i is invariant by h̃i for each i.
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- For each i 6= j 6= k, one component of R2 \∆i contains h̃j(∆i) and h̃−1
k (∆i), the other one

contains h̃−1
j (∆i) and h̃k(∆i).

The third property says that ∆i is a Brouwer line for h̃j and h̃k which is pushed by these two
maps on different sides of ∆i. The tile A1 (for instance) may be obtained as the disk bounded
by ∆2, ∆3, h̃3(∆2) and h̃2(∆3).

It would be interesting to prove the tiling theorem by constructing the lines ∆1,∆2,∆3 (the
proof by J. Kwapisz uses flows in T3).

2.4 An application to the closure of the conjugacy classes

The arc translation theorem and the tiling theorem have the following consequences that gen-
eralize a property we already gave in section 1.1 for circle homeomorphisms.

Corollary 2.20. Let h be an irrational pseudo-rotation of M which is the sphere S2 or the
compact annulus A and denote by α its rotation number. Then, there exist conjugates of h that
are arbitrarily close to the rotation Rα in the space of homeomorphisms of M .

Corollary 2.21. Let h be a totally irrational pseudo-rotation of the torus T2 and denote by
(α, α′) its rotation vector. Then, there exist conjugates of h that are arbitrarily close to the
rotation Rα,α′ in the space of homeomorphisms of T2.

This shows that the closure of the conjugacy class of a pseudo-rotation contains the closure
of the conjugacy class of the corresponding rotation. We do not know if the converse is true.
However Patrice Le Calvez has shown [40] that if h is a diffeomorphism of T2 whose orbits
are all dense in T2 (i.e. if h is a minimal torus diffeomorphism), then it is the limit (for the
C0-topology) of homeomorphisms that are conjugate to the rotation.
N.b.: Because of the semi-continuity properties on the rotation set (see the course of François
Béguin), if a sequence of pseudo-rotations hn converges towards a pseudo-rotation h,then the
sequence of the rotation numbers of hn converges towards the rotation number of h.

We give the proof of the second corollary (which is simpler than the proof of the first one).

Proof of the corollary 2.21. Let h be a totally irrational pseudo-rotation of the torus and fix a
Farey triple for its rotation vector (α̃, α̃′).

Consider a dynamical tiling T provided by theorem 2.14 (it is generated by three tiles
A1, A2, A3) and a dynamical tiling T0 for the rotation R = Rα,α′ (it is generated by three tiles
B1, B2, B3). If the Farey triple has small returns (as in proposition 2.13), then the tiles of T0

have arbitrarily small diameters.
We will define an “almost” conjugacy Θ, that is a homeomorphism of T2 that sends the tiles

Ai of T on the tiles Bi of T0 and that satisfies Θ◦h = R◦Θ everywhere but maybe on the union
h−1(A1 ∪ A2 ∪ A3). This implies that R and the conjugate g = Θ ◦ h ◦ Θ−1 coincide outside
R−1(B1 ∪ B2 ∪ B3). Since the diameter of B1 ∪B2 ∪ B3 can be chosen small, this implies that
R and g are arbitrarily close for the C0-distance on the space of homeomorphisms of T2.

Let us define x0 as the point which is the intersection of the tiles Ai and y0 as the point
which is the intersection of the tiles Bi. The map Θ should send the point hi(x0) on the point
hi(y0) for each 0 ≤ i < q1 + q2 + q3. The map Θ is then defined on the 1-skeleton of T : one
chooses any homeomorphism that sends the edge of T between the points x0 and f qi(x0) on the
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corresponding edge of T0 between the points y0 and f qi(y0). Any edge e of T is the image by
some iterate hk of some edge e0 between the point x0 and f qi(x0). The map Θ on e is defined
by the formula Rk ◦Θ ◦ h−k.

Now the homeomorphism Θ has been defined on the boundary of each tile. One extends it
arbitrarily on the interior of the tiles A1, A2, A3 (by using Schoenfliess theorem, see the courses
by Marc Bonino and Frédéric Le Roux). On any tile A = hk(Ai), the map Θ is now defined by
the formula Rk ◦Θ ◦ h−k.
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3 Smooth Liouvillean examples

This part is devoted to the construction of smooth irrational pseudo-rotations having patho-
logical dynamical properties. Its ancestors are examples by L. Shnirelman [50] and A. Besicov-
itch [7] of dynamics on the sphere having a dense orbit. The method was developed later on by
D. Anosov and Katok in [1] and many generalizations were given recently. A modern exposition
of the subject can be found in [14].

In this introduction, we will only consider dynamics on the sphere S2 and build two different
examples (that are obviously not conjugate to a rotation):

• A C∞ irrational pseudo-rotation of S2 having a dense orbit. (The dynamics is then said
to be topologically transitive.)

• A C∞ irrational pseudo-rotation of S2 having a minimal invariant compact set with positive
Lebesgue measure and which is connected but not locally connected at any point. (This
set will be a pseudo-circle.)

Other examples will be presented in part 4. The control of finer ergodic properties will be pre-
sented by Bassam Fayad in his course (see also [16]).

One feature of this construction is that it produces irrational pseudo-rotations h with Liou-
villean rotation number. The reason is that it uses the action of a whole one-parameter group
of rotations (Rt)t∈T1 . The dynamics h is obtained as the limit of “trivial dynamics” hn that
are conjugates ϕn ◦R pn

qn
◦ ϕ−1

n to rational rotations. As n goes to infinity, the rational rotation

numbers pn

qn
converge toward the rotation number α of h but the conjugacies ϕn become more

and more intricate and prevent h from beeing conjugate to the rotation Rα. One can however
ensure that h is also the limit of the conjugates ϕn ◦Rα ◦ ϕ

−1
n of the rotation Rα: this provides

us with an example of rotation Rα whose (smooth) conjugacy class contains in its closure some
wild dynamics h.

3.1 General presentation of the method

We introduce the standard sphere S2 = {x2 + y2 + z2 = 1}, the points N = (0, 0, 1) and
S = (0, 0,−1) and the equator C = S2 ∩

(
R2 × {0}

)
.

Let us consider the standard action R : T1 → Diff∞(S2) by the group of the rotations of the
sphere S2 that fixes each point N and S. The method consists in building inductively

- a sequence of rational numbers
(

pn

qn

)
n≥0

,

- a sequence of C∞ diffeomorphisms (ϕn)n≥0 that are isotopic to the identity, preserve the
Lebesgue measure and coincide with the identity in (non-uniform) neighborhoods of the
fixed points N,S,

so that the sequence of diffeomorphisms

hn = ϕn ◦R pn
qn
◦ ϕ−1

n
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converges towards a diffeomorphism h for the C∞-topology. Clearly, h preserves the points N ,
S, the Lebesgue measure and is isotopic to the identity.

Each conjugacy ϕn is obtained from the previous one ϕn−1 by pre-composition with a dif-
feomorphism Mn that is isotopic to the identity, preserves the Lebesgue measure and coincide
with the identity in neighborhoods of the fixed points N,S, so that we have

ϕ0 = M0 = IdS2 and ϕn = M1 ◦ · · · ◦Mn.

A key property is the following.

Commutation. The diffeomorphism Mn+1 commutes with the rotation R pn
qn

for each n ≥ 0.

As a consequence hn also coincides with ϕn+1 ◦ R pn
qn
◦ ϕ−1

n+1.

The convergence is ensured by the following assumption.

Convergence. The angle pn+1

qn+1
is chosen after ϕn+1 and arbitrarily close to pn

qn
.

In this way, one immediately deduces that hn+1 = ϕn+1 ◦R pn+1

qn+1

◦ϕ−1
n+1 can be chosen arbitrarily

close to the previous diffeomorphism hn = ϕn+1◦R pn
qn
◦ϕ−1

n+1 so that the sequence (hn) converges

towards a diffeomorphism h.

Note that we did not assume that the sequence of the conjugacies (ϕn) converges: usually
this is not the case. However, the map hn+1 is close to the map hn and during many iterates
their orbits look like very similar. However, for big iterates of the form k.qn, precisethe rotations
Rk.qn

pn
qn

= Id and Rk.qn
pn+1

qn+1

can be very different and the huge distortion of ϕn appears.

Also, it is difficult to control how close are pn+1

qn+1
and pn

qn
: in general, the convergence is rather

strong. In particular, the sequence
(

pn

qn

)
converges toward an angle α which is well approximated

by the rationals; hence α is irrational and Liouvillean. We would however need estimations if
one wanted to give an explicit class of Liouvillean numbers that can be obtained by this method.

For each construction that follows the Anosov-Katok technique, two points should be ex-
plained:

- How close should be pn+1

qn+1
from pn

qn
?

- What are the properties satisfied by Mn+1 and ϕn+1?

Choice of the angle pn+1

qn+1
. Let us illustrate some properties that can be obtained from the

Convergence Hypothesis by requiring a strong enough convergence of the sequence (hn).

Properties. - The diffeomorphism h is arbitrarily close to the identity.

- The diffeomorphism h is contained in the closure of the C∞-conjugacy class of Rα.

- The sequence of iterates (hqn) goes to the identity. (One sometimes says that the dynamics
is quasiperiodic.)
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- The diffeomorphism h is an irrational pseudo-rotation.

Proof. One can choose h0 = IdS2 and h arbitrarily close to h0, giving the first property. One can
require that hn is εn-close to ϕn ◦Rα ◦ϕ

−1
n for some sequence (εn) that goes to zero, proving the

second property. Similarly, the diffeomorphism hqn can be chosen δn-close to the diffeomorphism
hqn

n = IdS2 for some sequence (δn) that goes to zero, showing the third property.
There exists some constants Cn, ηn >0 such that the distance between hk

n(x) and x is larger
than ηn for each point x outside the Cn-neighborhood of N,P and any integer |k| < qn. This
property is still satisfied by the diffeomorphisms close, hence by h. One deduces that N and S
are the only periodic points of h. This implies that h is an irrational pseudo-rotation

Construction of the diffeomorphism Mn+1. Let us finish this general description of the Anosov-
Katok technique by discussing the choice of the diffeomorphism Mn+1. Note that since Mn+1

commutes with hn and since hn is conjugate to a periodic rotation, it is easier to first define
a map Mn+1 on the quotient space

(
S2 \ {N,S}

)
/hn and then to consider the lift Mn+1 on

S2 \ {N,S} which coincides with the identity in a neighborhood of N and S.
The quotient

(
S2 \ {N,S}

)
/hn is an open annulus which is diffeomorphic to the annulus

An =
(
S2 \ {N,S}

)
/R pn

qn
, through the quotient map ϕn. It is usually on the annulus An that

we will define Mn+1.
The diffeomorphism Mn+1 will be chosen accordingly to the property of h one wants to

obtain. One delicate point is to ensure that the Lebesgue measure is preserved. The following
consequence of Moser’s argument [45] is a “smooth version” of Oxtoby-Ulam theorem.

Theorem 3.1 (Moser). Let us consider a compact manifoldM (with boundary) and two smooth
volume forms ω and ω′ with the same total volume (i.e.

∫
M
ω =

∫
M
ω′) and which coincide in a

neighborhood of ∂M.
Then, there exists a smooth diffeomorphism ψ of M which is equal to the identity in a

neighborhood of ∂M and which sends ω on ω ′: we have ψ∗ω = ω′.

3.2 Transitivity

Up to here we did not prove that the limit diffeomorphism may not be conjugate to a rotation.
A first example is ensured by the following property: a homeomorphism h of a topological space
X is transitive if it has a dense orbit.

Theorem 3.2. There exists a (Lebesgue measure preserving) C∞ irrational pseudo-rotation of
S2 which is transitive.

One may wonders what is the size of the set D of points whose orbit is dense in S2: we will
see that it is a dense Gδ subset of S2. Anosov and Katok have shown that D may be chosen with
full Lebesgue measure (the Lebesgue measure can be chosen ergodic). On the other hand, Le
Calvez and J.-C. Yoccoz [41] have shown that D ( S2 \ {N,S} (the dynamics is never minimal).

Let us begin with a criterion for the transitivity:

Proposition 3.3. Let h be a homeomorphism of a compact space X. There exists a positive
orbit {hn(x), n ≥ 0} which is dense in X if and only if for any non-empty open sets U, V ⊂ X,
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there exists an integer n ≥ 1 such that hn(U) ∩ V is non-empty.
In this case, the set of points whose orbit is dense in X is a dense Gδ subset of X.

Exercise. The direct implication in the proposition is immediate, prove the reverse one.
Indication: Let (Ui) be a countable basis of open sets in X . Prove that for each i, the set of points x ∈ X
having a positive iterate in Ui is a dense open set of X .

The former criterion motivates the following assumption:

Transitivity. The image of the equator C by ϕn is 1
n

dense in S2.

We now explain the construction.

a) Construction of the angle pn+1

qn+1
. Let us see how the Transitivity Hypothesis implies the

transitivity provided that the convergence of the sequence (hn) is chosen strong enough. We
will assume that in the induction the angle pn

qn
and the map ϕn+1 have already been build. Note

that for any choice of pn+1

qn+1
, the circle ϕn+1(C) will be preserved by hn+1.

By choosing the angle pn+1

qn+1
close enough to pn

qn
, one ensures that qn+1 is arbitrarily large and

that the orbits contained in the circle ϕn+1(C) are 1
n+1 -dense in the circle. One deduce that

there exists a point x ∈ S2 whose qn+1 first iterates by hn+1 are 2
n+1 -dense in the sphere. If the

convergence of (hn) is strong enough, this is also true for h. As a consequence, the diffeomor-
phism h satisfies the criterion stated in proposition 3.3 and h is transitive.

b) Construction of the diffeomorphism Mn+1. The Transitivity Hypothesis will obtained by a
suitable choice of the diffeomorphism Mn+1: it has to send the circle ϕn(C) on a closed curve
which is 1

n
-dense in S2. As we explained in section 3.1, we define the quotient diffeomorphism

Mn+1 on the quotient space (S2 \ {N, s})/hn so that the circle Cn = ϕn(C)/hn is mapped
on a curve which is εn-dense for a constant εn > 0 arbitrarily small. Such a conservative
diffeomorphism Mn+1 is easy to define since one needs to control only a finite number of points
in Cn (of course one can apply Moser’s argument).

3.3 Pathological minimal sets

We now describe a second example which is not transitive but which shows that for irrational
pseudo-rotations, the minimal separating sets are not necessary invariant closed curves. M.
Handel was the first to observe [27] how pathological invariant sets can appear in dynamics and
Herman adapted [31] his construction to the Anosov-Katok technique. The positive Lebesgue
measure of the minimal set is written in [14].

An invariant non-empty compact set K of a homeomorphism h on X is minimal if it does not
contain any proper invariant compact set: equivalently, all the orbits of points in K are dense
in K. Zorn lemma implies that if X is compact, it always contains a minimal set (consider the
family of non-empty invariant compact sets, ordered by the inclusion).

Let us also recall that a set K is locally connected at some point x ∈ K if there exists a basis
of neighborhood of x in K which are connected.
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Theorem 3.4. There exists a (Lebesgue measure preserving) C∞ irrational pseudo-rotation h
of S2 which has a minimal invariant set Λ which is connected, not locally connected at any point
and has positive Lebesgue measure.

We consider a belt obtained by thickening the equator C: this is a diffeomorphism between
the annulus C0 = T1 × [−1, 1] and a neighborhood of C which preserves the Lebesgue measure
(up to a multiplicative constant for the normalization) so that the action of the rotations Rt

on the sphere is identified with the action of the rotations (x, y) 7→ (x + t, y) on C0. All the
construction will take place in the annulus C0.

We fix a constant s ∈ (0, 1) and consider a nested sequence of annuli

Cn = T1 ×
[
−(1 + n−1) ·

s

2
, (1 + n−1) ·

s

2

]
.

The definition the compact set Λ uses the following assumption.

Support of Mn. The map Mn coincides with the identity outside Cn−1.

This assumption implies that ϕn coincides with all the maps ϕn+k, k ≥ 0 outside Cn. In
particular, the diffeomorphism h coincides with ϕn ◦Rα ◦ϕ

−1
n outside ϕn(Cn). We thus obtain a

decreasing sequence (ϕn(Cn)) of annuli and the intersection is a connected compact set Λ which
is invariant by h. One deduces the following property:

Property. The set Λ is a connected invariant compact set whose Lebesgue measure is s. The
open set S2 \ Λ has two connected components, invariant by h. The induced dynamics is conju-
gate to the rotation Rα.

We now come to the minimality property.

Minimality. The image of each circle Cy = T1×{y} ⊂ Cn+1 by ϕn+1 is 1
n
-dense in ϕn+1(Cn+1).

Let us explain the construction.

a) Construction of the angle pn+1

qn+1
. Let us see how the Minimality Hypothesis implies the

minimality of the dynamics of h on Λ, provided that the convergence of the sequence (hn) is
chosen strong enough. We will assume that in the induction the angle pn

qn
and the map ϕn+1

have been build. Note that for any choice of pn+1

qn+1
, the circle ϕn+1(Cy) will be preserved by hn+1.

By choosing the angle pn+1

qn+1
close enough to pn

qn
, one ensures that qn+1 is arbitrarily large and

that all the orbits contained in the circle ϕn+1(Ct) are 1
n
-dense in the circle. One deduces that

there exists for any point x ∈ ϕn+1(Cn+1), the qn+1 first iterates are 2
n
-dense in ϕn+1(Cn+1). If

the convergence of (hn) is strong enough, this is also true for h. As a consequence, all the orbit
of points of Λ ⊂ ϕn+1(Cn+1) are 2

n
-dense in Λ giving the minimality.

b) Construction of the diffeomorphism Mn+1.
In order to prove the Minimality Hypothesis, one needs to show that the annulus ϕn+1(Cn+1)
is thin; since its measure is larger than s, it should also be very long and twisted in the sphere.
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Hence, one should carefully choose the embedding ϕn+1(Cn+1) inside ϕn(Cn). Let us consider
the partition of Cn+1 into qn+1 rectangles Cn+1,i of the form

Cn+1,i =

[
i

qn+1
,
i+ 1

qn+1

]
×
[
−(1 + (n+ 1)−1) ·

s

2
, (1 + (n+ 1)−1) ·

s

2

]
.

Each rectangle Cn+1,i has a diameter bounded from below but has a small area. One can
thus expect that the diameters of the images ϕn+1(Cn+1,i) are small, implying the Minimality
Hypothesis.

Rn+1,1 Sn+1,1

CnCn+1/R pn

qn

Figure 9: The covering of Cn+1/R pn
qn

by vertical rectangles and separating strips.

We will now work inside the quotient annulus Cn = Cn/R pn
qn

. Let us consider a large odd

integer 2`n+1, a small positive constant εn � (2`n+1)−1 and introduce a covering (see figure 9)
of the quotient annulus Cn+1/R pn

qn
⊂ Cn by

- 2`n + 1 disjoint isometric vertical rectangles Rn,k of size Ln × (1 + (n+ 1)−1).s,

- 2`n + 1 separating strips Sn,k of of size ε2n × (1 + (n+ 1)−1).s.

The map Mn+1 defined on Cn sends (see figure 10)

- the vertical rectangles Rn,k on disjoint horizontal rectangles R′
n,k of size (q−1

n − 2εn)× L′
n

having the same area as the rectangles Rn,k. One can assume that the interior of the image
rectangles are disjoint from a vertical gap ∆n which is a rectangle of size 2εn×(1+(n+1)−1).
Also the vertical distance between two consecutive rectangles is εn. Moreover, the map
Mn+1 : Rn,k → R′

n,k can be chosen affine.

- the separating strips Sn,k on loops S ′
n,k having the same area and contained in the gap ∆n.

The vertical rectangles Rn,k are labeled by k ∈ Z/(2`n +1)Z according to their circular ordering
in the annulus but we do not assume that this ordering matches with the vertical ordering of
the rectangles R′

k,n: for each integer k, the rectangle R′
n,k+1 could be any of the three rectangles
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Cn

R′

n+1,1 S′

n+1,1

Figure 10: The image of Cn+1/R pn
qn

by Mn+1 contains horizontal rectangles and loops.

above or below R′
n,k. The way one chooses this ordering will be detailed later. However, this

shows that one can choose each loop S ′
n+k (whose area is bounded by ε2n) in a rectangle of size

2εn × (3Ln + 2εn).
To complete the construction, on has to extend the map M n+1 to the whole annulus Cn by

using Moser’s theorem 3.1. This is possible if the areas of the two components of Cn \Cn+1 coin-
cide with the area of the components of Cn \Mn+1(Cn+1). Note that Mn+1(Cn+1) is contained
in an annulus of height close to (1 + (n+ 1)−1) whereas the height of Cn is (1 + n−1). Hence,
it is possible to compose by a vertical construction in order to adjust the areas. One then lifts
the map Mn as a diffeomorphism Mn.

Note that by this construction, if the integer qn+1 is chosen large enough, then the image
Mn+1(Cn+1,i) of each rectangle Cn+1,i of the partition of Cn+1 will have a diameter bounded by
4Ln which can be assumed arbitrarily small if the integer `n has been chosen large enough. In
this way, one gets the following properties:

Property. - The rectangles ϕn+1(Cn+1,i) have arbitrarily small diameter.

- The Minimality Hypothesis is satisfied.

- Each rectangle ϕn+1(Cn+1,i) meets at most two rectangles ϕn(Cn,j).

c) Combinatorics of the loops S ′
n,i. Let us add one more hypothesis:

Winding. For any rectangle Cn,i0, there exists two rectangles Cn+1,j and Cn+1,k such that

- both rectangles ϕn+1(Cn+1,j) and ϕn+1(Cn+1,k) are contained in ϕn(Cn,i0);

- the image by ϕn+1 of each component of Cn+1 \ (Cn+1,j ∪ Cn+1,k) meets all the rect-
angles ϕn(Cn,i).
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This assumption implies that the minimal set Λ is wild:

Property. The minimal set Λ is not locally connected at any point.

Proof. Let us consider any point x ∈ Λ and an arbitrarily small neighborhood K of x in Λ which
is connected. It contains the rectangle ϕn(Cn,i0) of some partition. By the Winding Hypothesis,
there should exist two rectangles Cn+1,j and Cn+1,k such that ϕn+1(Cn+1,j) and ϕn+1(Cn+1,k) are
contained in K and such that the image by ϕn+1 of each component of Cn+1 \ (Cn+1,j ∪ Cn+1,k)
meets all the rectangles ϕnCn,i. Since K is connected and contained in the annulus ϕn+1(Cn+1),
this implies that K meets the image of all the rectangles Cn+1,` that belongs to one of the
components of Cn+1 \ (Cn+1,j ∪ Cn+1,k). Since the rectangles ϕn+1(Cn+1,`) have a diameter
bounded by some small constant δn+1, this shows that K is δn+1-dense in ϕn+1(Cn+1). In
particular, K = Λ which is a contradiction.

Exercise. Prove that Λ is indecomposable: it is not the union of two proper connected compact subsets.

Figure 11: The combinatorics of the loops S ′
n+1,i.

It remains to explain how to connect the horizontal rectangles R ′
n+1,k by small loops in order

to satisfy the Winding Hypothesis. Let us order the horizontal rectangles accordingly to their
vertical position: R′

n+1(1) will be the rectangle at the top and R′
n+1(2`n + 1) the rectangle at

the bottom. Let us connect

- the left side of R′
n+1(1) to the left side of R′

n+1(2) and the right side of R′
n+1(1) to the left

side of R′
n+1(3),

- the right sides of R′
n+1(2i) and R′

n+1(2i+1) to the left sides of R′
n+1(2i+2) andR′

n+1(2i+3),
for 1 ≤ i < `n,

- the right sides of R′
n+1(2`n) and R′

n+1(2`n + 1) together.

In this way (see figure 11), the union of the rectangles R′
n+1,k with the loops S ′

n+1,k is an annulus

essentially embedded in Cn.
Moreover, each rectangle Cn,i0 is a fundamental domain of Cn. Hence, one can choose two

rectangles Cn+1,j and Cn+1,k whose images by ϕn+1 are contained in ϕn(Cn) and whose images
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by Mn are contained in R′
n+1(1) and in R′

n+1(2`n + 1) respectively. Since each component of
Mn(Cn+1) \

(
R′

n+1(1) ∪R
′
n+1(2`n + 1)

)
spirals `n times around Cn, the images of the two com-

ponents of Cn+1\(Cn+1,j ∪ Cn+1,k) by ϕn+1 intersect `n successive rectangles Cn,i. If `n is larger
than qn, one gets the Winding Hypothesis.

Remark 3.5. 1. For the irrational pseudo-rotation h we have built, there does not exist any
curve γ which satisfies the arc translation theorem 2.1 for any integer n ∈ N.

Proof. Let us consider the components of S2 \ Λ: these are two open disks DN and DS .
The map h is conjugate to Rα on each of these disks. Thus, each disk is a union of invariant
circles C that are the closure of each orbit by h.

If there exists a curve γ that is disjoint from all its iterates, it intersects each circle C in
exactly one point (otherwise the iterates of γ would not be disjoint and cyclically ordered
as for the rotation Rα. Consequently, γ can be decomposed into three connected curves
γN ⊂ DN , γΛ ⊂ Λ and γS ⊂ DS .

Let γ′ be an iterate of γ. For n large enough, the rectangles Cn,j, j ∈ Z/qnZ, that intersect
γ (resp. γ ′) are consecutive rectangles Cn,k, Cn,k+1,. . . , Cn,` (resp. Cn,r, Cn,r+1,. . . , Cn,s).
The intersection of the rectangles Cn,k∪Cn,k+1∪ . . . Cn,s (resp. Cn,s∪Cn,s+1∪ . . . Cn,`) as n
goes to +∞ define a connected compact set Λ1 (resp. Λ2) and by construction Λ = Λ1∪Λ2.

Since γ and γ ′ are disjoint, Jordan’s theorem implies that S2 \ (γ ∪ γ′) has two connected
components. Both intersect Λ. Moreover, Λ1 is disjoint from one of them and Λ2 from
the other. Hence, both sets Λi are proper subset of Λ. This shows that Λ is decomposable
and contradicts the exercise above.

2. It is possible to strengthen the Winding Hypothesis so that Λ is hereditarily indecompos-
able: any connected compact subset Λ′ ⊂ Λ is indecomposable (see exercise 3.3). Under
this additional property, all the limit sets Λ are homeomorphic to a universal set, called
the pseudo-circle, see [8, 18].

3. One can replace the Winding Hypothesis by a very different one:
For any rectangle Cn,i0, and any two rectangles ϕn+1(Cn+1,j) and ϕn+1(Cn+1,k) that are
contained in ϕn(Cn,i0), the image by ϕn+1 of one of the components of Cn+1\(Cn+1,j ∪ Cn+1,k)
is contained in ϕn(Cn,i0−1 ∪ Cn,i0 ∪ Cn,i0+1).
Under this assumption, the set Λ is a simple closed curve with positive Lebesgue measure.

3.4 Hairy germs

Exercise. With the same technique, it is possible to build the example d) described at section 1.2: we
identify a neighborhood of N is identified with the disk D0 of radius 1 and we consider a sequence of
disks Dn of radius (1 + n−1).s, for some constant s > 0. The map Mn will coincide with the identity
outside Dn−1.

Imagine an hypothesis on ϕn which implies that the germ of the diffeomorphism h at N is hairy.
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4 Fibered examples

In this part, we introduce another class of examples on the torus which use the product decom-
position T2 = T1 × T1. These are the skew products over an irrational rotation of the circle:
one considers the maps of the form

h : (x, y) 7→ (x+ α, h2(x, y)).

These skew products have a more rigid dynamics than the general diffeomorphisms of T2 that
are isotopic to the identity but exhibit interesting properties that will be discussed in the course
by Tobias Jaeger (see also [33]). In particular, they have a unique rotation vector, of the form
(α̃, β̃) and β̃ is called the fibrewise rotation number (see [30]).

Two classes of examples will be defined:

• The Lebesgue-measure preserving homeomorphisms were first studied by H. Fursten-
berg [22]. They are or the form

h : (x, y) 7→ (x+ α, y + β + ϕ(x)),

with
∫

T1 ϕ(x)dm = 0 for the Haar measure m on T1. The rotation vector in this case may

be computed by integrating the displacement h̃(x, y)− (x, y) and is equal to (α̃, β̃).

• Another class of examples is induced by the projective action of cocycles in SL(2,R).

This allows to produce irrational pseudo-rotations that are not conjugate to a rotation. Due to
the fibered structure, we will not be able to build strongly exotic topological properties. What
we will show however is that the measurable dynamics can be pathological. As explained in
the introduction of these notes, many examples of irrational pseudo-rotations either are not
differentiable or have a Liouvillean rotation vector.

4.1 Background in ergodic theory

We will study measurable dynamical systems, i.e. bijective bimeasurable maps T on a set X
with a σ algebra A. A measured dynamical system is a measurable dynamical system endowed
with an invariant probability measure µ. If X is a compact set, A the Borel σ algebra and T is
a homeomorphism, such a measure always exists (this is the Bogoliouboff-Kryloff theorem).

When there exists only one invariant measure, one says that the dynamics is uniquely ergodic.
Otherwise, any invariant measure can be decomposed into “elementary” measures, called ergodic
measures: these are the invariant measures µ such that for any invariant measurable set A ⊂ X
the measure µ(A) equals 0 or 1.

For example th eirrational rotation son the circle are uniquely ergodic.

Two measured dynamics (X,µ, S) and (Y, ν, T ) are metrically isomorphic if there exist two
measurables sets X0 ⊂ X and Y0 ⊂ Y such that µ(X0) = ν(Y0) = 1 and a bimeasurable
bijection Θ: X0 → Y0 such that Θ ◦ S = T ◦ Θ. If Θ is only surjective, one says that (X,µ, S)
is an extension of (Y, ν, T ) (and that (Y, ν, T ) is a factor of (X,µ, S)). A measured dynamics
which does not have any factor which is a (non-trivial) rotation is said to be weakly mixing.
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More generally, two measurable dynamical systems (X,A, S) and (Y,B, T ) are isomorphic
if there exist two measurables sets X0 ⊂ X and Y0 ⊂ Y such that µ(X0) = ν(Y0) = 1 for any
S-invariant measure ν and any T -invariant measure S and a bimeasurable bijection Θ: X0 → Y0

such that Θ ◦ S = T ◦Θ.

4.2 The Furstenberg examples

Let us consider a continuous map ϕ : T1 → R1 such that
∫

T1 ϕ(x)dm = 0 (for the Haar measure
m on T1) and define a homeomorphism of T2 isotopic to the identity by

h : (x, y) 7→ (x+ α, y + β + ϕ(x)).

First remarks.

1. The map h preserves the Lebesgue measure and has a unique rotation vector, equal to
(α, β). Hence it is an irrational pseudo-rotation.

2. h commutes with the vertical translations

Id×Rω : (x, y) 7→ (x, y + ω).

For this section, the reader should remember the definition of minimal sets defined in sec-
tion 3.3.

a) Conjugacy to the rotation
One may want to conjugate h by a homeomorphism of the form (x, y) 7→ (x, y − ψ(x)). One
obtains the map: (x, y) 7→ (x+α, y+β+ϕ(x) +ψ(x)−ψ(x+α)). Hence, in order to conjugate
to the rotation Rα,β, one has to solve the following (additive) cohomological equation:

ϕ(x) = ψ(x+ α)− ψ(x). (4.1)

W. Gottschalk and G. Hedlund have shown [23] the following criterion. It uses the Birkhoff
sums of ϕ which are the functions Snϕ : T1 → R, n ≥ 0 defined by

Snϕ : x 7→
n−1∑

k=0

ϕ(x+ kα).

Theorem 4.1. Let ϕ : T1 → R be a continuous map.
The cohomological equation (4.1) has a continuous solution ψ : T1 → R if and only if the Birkhoff
sums Snϕ are uniformly bounded.

Proof. If ψ is a solution of (4.1), the Birkhoff sum Snϕ(x) is equal to ψ(x+ nα)− ψ(x). Hence
the Birkhoff sums are uniformly bounded by 2‖ψ‖∞.

For the other implication, one considers the lifted homeomorphism H on T1 ×R defined by
(x, y) 7→ (x + α, y + ϕ(x)). Note that Hn(x, y) = (x + nα, y + Snϕ(x)). Since the Birkhoff
sums are uniformly bounded, each orbit by H is bounded. Hence there exists some non-empty
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invariant compact set K by H. By taking K smaller, one can assume that K is a minimal set.

Claim. If (x0, y0) and (x0, y0 + ω) belong to K, then K is invariant by Tω : (x, y) 7→ (x, y+ ω).

Proof. Let us consider the points (x, y) such that Tω(x, y) also belongs to K. Since H and Tω

commute, this set is invariant by H. Moreover, it is non-empty and closed. Hence, this is K.

If K is invariant by some map Tω : (x, y) 7→ (x, y + ω), with ω 6= 0, then it is not bounded.
So, the claim implies that each line {x}×R meets K in at most one point. One the other hand,
since the orbits of the rotation Rα are dense in T1, Each line {x} × R meets K. Hence K is a
graph of some map ψ : T1 → R. Since K is closed, ψ is continuous.

Corollary 4.2. The map h is conjugate to Rα,β if and only if the lifted dynamics satisfies

sup
n≥0
‖h̃n − n(α̃, β̃)‖∞ < +∞. (4.2)

A (general) irrational pseudo-rotations h that satisfies (4.2) is said to be regular.

Proof. If h = g ◦ Rα,β ◦ g
−1, we have ‖h̃n − n(α̃, β̃)‖ ≤ ‖g̃‖∞ + ‖g̃−1‖∞ < +∞.

In order to prove the other implication, one first notes that

h̃n − n(α̃, β̃)(x, y) = (x, y + Snϕ(x)).

Hence (4.2) implies that the Birkhoff sums of ϕ are uniformly bounded. Theorem 4.1 now implies
that h is conjugate to the rotation by a map of the form (x, y) 7→ (x, y + ψ(x)).

b) Minimality

Proposition 4.3. If h is not conjugate to the rotation, it is minimal.

Proof. Let K be a minimal invariant compact set of h. One introduces the closed subgroup
Ω ⊂ T1 of angles ω such that K is invariant by the vertical rotation Id×Rω. As for the claim in
the proof of theorem 4.1, one can show that if K contains two points (x, y) and (x, y+ω), then
ω belongs to Ω.

If Ω = T1, we have K = T2 and the dynamics on T2 is minimal. If Ω is a finite group, each
set K ∩

(
x× T1

)
has the same cardinal as Ω. Since K is closed, one deduces that K is a finite

union of closed curves that are locally continuous graphs. One will prove that h is regular. By
corollary 4.2 this will imply that h is conjugate to the rotation. Note that in order to show that
h is regular, it is enough to replace h by any positive iterate. Hence, one can assume that h
preserves a closed curve γ.

Let us consider a lift γ̃ of γ in the plane R2. It is the graph of a map θ : R→ R that satisfies
θ(x+ k) = θ(x) + ` for some integers k, ` with k ≥ 1. One chooses a lift h̃ of h that fixes θ.

Let us consider a point (x0, y0) in the fundamental domain

{(x, y), x ∈ [0, 1], θ(x) ≤ y ≤ θ(x) + 1}.

The point (xn, yn) = h̃n(x0, y0) satisfies θ(x0+nα) ≤ yn ≤ θ(x0+nα)+1. Let us decompose nα =
Nk + α0 with |α0| < k. One gets |yn −N`| ≤ 2 sup|x|<k |θ(x)|. Hence, yn − nα`/k is bounded.
One deduces that β = α`/k (so we are in the semi-irrational case) and ‖(xn, yn) − n(α, β)‖ is
uniformly bounded: the dynamics is regular, as claimed.
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c) Construction of examples

Proposition 4.4. There exist an irrational angle α and an analytic map ϕ : T1 → R such that
the cohomological equation (4.1) has no continuous solution.

Proof. Let us define

α =
∑

k≥0

10−k2

,

ϕ(x) =
∑

n∈Z

an.e
2iπn.x, with an = 2−|n|.

The map ϕ is analytic.
Let us assume that there exists a continuous solution ψ. One can write its Fourier expansion

ψ(x) =
∑

n∈Z
bn.e

2iπn.x in L2(T2). The uniqueness of the Fourier coefficients implies that for
each n ∈ Z \ {0} we have

bn =
an

1− e2iπnα
.

We have to control the small denominators: |1− e2iπnα| is smaller than the distance of nα to Z.
For n = 10k0 we have

nα =
∑

k≤k0

10k2
0−k2

+
∑

k>k0

10−(k2−k2
0)

and
∑

k>k0
10−(k2−k2

0
) ≤

∑
j>0 10−(2jk0) ≤ 10−k0 so that |bn| ≥ 5k0 which is impossible if ψ is

continuous.

Corollary 4.5. Let α be the angle given by proposition 4.4. Then, for any β, there exists an
analytic irrational pseudo-rotation h which has rotation vector (α, β), is minimal, irregular, and
hence, not conjugate to the rotation.

Remarks.

1. We will see in exercise that the angle α has to be Liouvillean.

2. In section 4.3 b), we will give a method for constructing for each irrational α a continuous
map ϕ such that the cohomological equation has no solution.

3. When β is irrational, for each integer n the arc translation theorem 2.1 provides us with
a simple curve γ isotopic to T1 × 0 that is disjoint from its n first iterates. The curve γ
can not be disjoint from all its iterates: otherwise, one can consider the covering T1 × R

of the torus, a lift γ̃ of γ and any point (x, y) in the fundamental domain bounded by γ̃
and γ̃ + (0, 1). Let h̃ be a lift of h. The iterate h̃n(x, y) of (x, y) belongs to the annulus
bounded by h̃n(γ̃) and h̃n(γ̃ + (0, 1)). If γ is disjoint from all its iterates, this annulus is
contained in the annulus bounded by two curves γ̃ + (0, k − 1) and γ̃ + (0, k + 2). This
implies that the dynamics is regular, which is a contradiction.

Exercise. (Baby KAM)
a) Recall the characterization of C∞ functions T1 → R by their Fourier coefficient.
b) Prove that if α is Diophantine, then, there exist constants C > 0 and τ ≥ 0 such that

|1− e2iπnα| >
C

n1+τ
.
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c) Prove that if α is Diophantine and if ϕ is a C∞ function that satisfies
∫
ϕdm = 0, then the cohomo-

logical equation (4.1) has a C∞ solution.

Exercise. (Alternative proof) By using Anosov-Katok method, build a Liouvillean irrational angle α
and a C∞ map ϕ such that the cohomological equation 4.1 has no continuous solution.

d) Ergodic properties
It is interesting to study the invariant probability measures. For instance if there exists measur-
able function ψ : T1 → R that satisfies the cohomological equation (4.1), then its graph carries
an invariant measure which is ergodic and the measured dynamics is metrically isomorphic to
(T1,m,Rα). In particular, Furstenberg gave an example such that the equation (4.1) has no
continuous solution but has a measurable solution. This implies that the corresponding pseudo-
rotation (with β = 0) is minimal (hence irreducible from the topological viewpoint) but not
uniquely ergodic (it has many invariant measurable graphs, hence it is not irreducible from the
measurable viewpoint).

Furstenberg has also shown that a dichotomy occurs:

- Either the dynamics preserves a subset that is locally a measurable graph over T1. In this
case, the dynamics preserves many ergodic measures, supported by this set and its images
by the vertical translations.

- Or the dynamics is uniquely ergodic (the Lebesgue measure is the unique invariant mea-
sure).

Since we are in T2, it is better to work with maps χ : T1 → T1 instead of the maps ψ : T1 → R.
Let us identify the circle T1 with the unitary complex circle U ⊂ C. For any γ, one introduces
the multiplicative cohomological equation

e2iπϕ(x)−γχ(x) = χ(x+ α). (4.3)

If this equation is satisfied, then the dynamics is isomorphic to the rotation Rα,β+γ by the map
Θ: (x, y)→ (x, χ(x).y).

It should be noticed that this equations could have solutions even for β 6= 0 (see [17, 25]).
This shows that the corresponding irrational pseudo-rotation h can be isomorphic (from the
measurable viewpoint) to a rotation whose angle is different from the rotation vector of h.
For some function ϕ, this equation may have no solution for any β and the dynamics is not
isomorphic to any rotation.

4.3 Linear cocycles

Let us consider an irrational angle α and a map A : T1 → SL(2,R) that is homotopic to the
identity and define a homeomorphism H : T1 × R2 by

H(x, t, s) = (x+ α,A(x).(t, s)).

By identification of non-zero collinear vectors in R2, one gets a homeomorphism h on T1×P 1R =
T2 that is a skew product isotopic to the identity over the rotation Rα. If for instance the values
of A are in SO(2,R), we just find the Furstenberg examples: we have A(x) = R2ϕ(x).

a) Non-standard realizations
The examples we are aimed to study here have the following features:
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- They are not conjugate to the rotation: their topological dynamics is “wild”.

- Their measurable dynamics is isomorphic to the rotation Rα. (The dynamics of the ro-
tation on T1 has been realized on T2. For this reason, one says that h is a non-standard
realization of Rα.)

In [5], we build the following example:

Proposition 4.6. For any irrational α, there exists a continuous map A : T1 → SL(2,R) whose
associated homeomorphism h has the following properties:

• The dynamics is minimal. Hence, h is an irrational pseudo-rotation. Its rotation vector
is (α, 0).

• The dynamics is uniquely ergodic. Let µ be the (unique) invariant probability measure.
The measurable dynamics (T2, µ, h) is isomorphic to the rotation (T1,m,Rα).

Exercise. Using the Anosov-Katok technique, adapt the previous construction and build an example
which is C∞ for some (Liouvillean) α.

4.4 Reparametrization of irrational flows

Note that for a fibered dynamics h over a rotation Rα on T1, any measure dynamics (T2, µ, h)
projects on a measured dynamics of T1, Rα. Since the irrational rotations of T1 ar euniquely
ergodic, this shows that the dynamics (T1,m,Rα) is a factor of (T2, µ, h). In particular, a weakly
mixing measured dynamics will never appear in fibered systems.

We will give a slightly different construction which produces weakly mixing dynamics: let
us consider on T2 the foliation by lines whose slope is irrational and equal to η and let us
consider a continuous function φ : T2 → (0,+∞). One then defines the reparametrized irrational
translation flow to be the flow along the irrational foliation which is associated to the vector
field φ(x, y)−1.(1, α). The flow preserves a unique measure, which is φ.m. One then introduces
the time-one map h of this flow. One easily check that it is an irrational pseudo-rotation whose
rotation vector is

1∫
T2 φ(x)dm(x)

.(1, α).

Sklover has shown [51] that by this construction, it is possible to build analytic pseudo-rotations
which are weakly mixing. We refer to the course by Bassam Fayad for a more detailed exposition
of this subject.
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5 Continuous Denjoy examples

There are not known obtruction to realize a measured dynamical system (X,µ, T ) as a uniquely
ergodic irrational pseudo-rotation. In this section we will show that it is indeed possible in
general to build such a pseudo-rotation: we proved [4] this with F. Béguin and F. Le Roux by
adapting a previous construction by Mary Rees of a minimal homeomorphism of the 2-torus with
positive topological entropy. Her technique can be viewed as a generalization of Denjoy’s counter
examples on the circle and it produces homeomorphisms that are in general only continuous.

5.1 Denjoy-Rees technique

Twenty-five years ago, M. Rees has constructed a homeomorphism of the torus Td (d ≥ 2) which
is minimal and has positive topological entropy (see [48]). The existence of such an example is
surprising for several reasons:

– classical examples of minimal homeomorphisms (irrational rotations, time t maps of horo-
cyclic flows, etc.) are also typical examples of zero entropy maps.

– a classical way for proving that a map f has positive topological entropy is to show that
the number of periodic orbits of period ≤ n for f grows exponentially fast when n→∞.
So, in many situations, “positive topological entropy” is synonymous of “many periodic
orbits”. But a minimal homeomorphism do not have any periodic orbit.

– a beautiful theorem of A. Katok states that, if f is a C 1+α diffeomorphism of a compact
surface S with positive topological entropy, then there exists an f -invariant compact set
Λ ⊂ S such that some power of f|Λ is conjugate to a full shift (see [34, corollary 4.3] and
the course by Jérome Buzzi). In particular, a C 1+α diffeomorphism of a compact surface
with positive topological entropy cannot be minimal.

Beyond the mere existence of minimal homeomorphisms of Td with positive topological
entropy, the technique used by Rees to construct such a homeomorphism is very interesting.
This technique can be seen as a very sophisticated generalization of the one used by A. Denjoy
to construct his famous counter-example (a periodic orbit free homeomorphism of S1 which is
not conjugate to a rotation, [11]). Indeed, the basic idea of Rees construction is to start with an
irrational rotation of Td, and to “blow-up” some orbits, just as in Denjoy counter-example. Of
course, the construction of Rees is much more complicated and delicate than the one of Denjoy;
for example, to get a homeomorphism with positive topological entropy, one has to blow up a
set of orbits of positive Lebesgue measure.

The aim of the present paper is to describe a general setting for what we call the Denjoy-Rees
technique. This general setting includes as particular cases the construction of various “Denjoy
counter-examples” in any dimension, and Rees construction of a minimal homeomorphism of Td

with positive topological entropy. Moreover, we will develop a new technique which allows to
control that the homeomorphisms we obtain “do not contain too much dynamics”. This yields
new results such as the existence of minimal uniquely ergodic homeomorphisms with positive
topological entropy, or the possibility to realize many measurable dynamical systems as minimal
homeomorphisms on manifolds.
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5.2 Strictly ergodic homeomorphisms with positive topological entropy

A homeomorphism is said to be strictly ergodic if it is minimal and uniquely ergodic. As an
application of Denjoy-Rees technique, we will prove the following theorem.

Theorem 5.1. Any compact manifold of dimension d ≥ 2 which carries a strictly ergodic
homeomorphism also carries a strictly ergodic homeomorphism with positive topological entropy.

A. Fathi and M. Herman have proved that every compact manifold of dimension d ≥ 2
admitting a locally free action of the circle3 carries a strictly ergodic homeomorphism (see [13]).
Putting theorem 5.1 together with Fathi-Herman result yields many examples. In particular,
the torus Td for d ≥ 2, the sphere S2n+1 for n ≥ 1, any Seifert manifold, any manifold obtained
as a quotient of a compact connected Lie group, etc., carry strictly ergodic homeomorphisms
with positive topological entropy (see the discussion in [13]).

Theorem 5.1 (as well as Rees example and Katok theorem cited above) can be seen as a piece
of answer to a general question of Herman asking “whether, for diffeomorphisms, positive topo-
logical entropy is compatible with minimality, or strict ergodicity” (see [34, page 141]). Katok
answered negatively to Herman question in the case of C 1+α diffeomorphisms of surfaces. Then,
Herman himself constructed an analytic minimal diffeomorphism with positive topological en-
tropy on a 4-manifold (see [29]), and Rees constructed a minimal homeomorphism with positive
topological entropy on Td. But neither Herman, nor Rees managed to make their examples
strictly ergodic (see the introductions of [48] and [34]). Theorem 5.1 shows that positive topo-
logical entropy is compatible with strict ergodicity for homeomorphisms (in any dimension). To
complete the answer to Herman question, it essentially remains to determine what is the best
possible regularity for a minimal (resp. strictly ergodic) homeomorphism on T2 with positive
entropy (Hölder? C1?). We do not have any idea of the best regularity one can obtain for a
homeomorphism constructed via Denjoy-Rees technique.

Note that, by Oxtoby-Ulam theorem [46], one can assume that the unique measure preserved
by the homeomorphism provided by theorem 5.1 is a Lebesgue measure.

5.3 Realizing measurable dynamical systems as homeomorphisms on mani-

folds

The main difference between Rees result and our theorem 5.1 is the fact that the homeomor-
phisms we construct are uniquely ergodic. More generally, we develop a technique which allows
us to control the number of invariant measures of the homeomorphisms obtained by construc-
tions à la Denjoy-Rees. What is the point of controlling the invariant measures? In short:

– the Denjoy-Rees technique by itself is a way for constructing examples of “curious” minimal
homeomorphisms,

– the Denjoy-Rees technique combined with the possibility of controlling the invariant mea-
sures is not only a way for constructing examples, but also a way for realizing measurable
dynamical systems as homeomorphisms on manifolds.

Let us explain this. In her paper, Rees constructed a homeomorphism f on Td which is
minimal and possesses an invariant probability measure µ such that f has a rich dynamics

3An action of the circle is said to be locally free if no orbit of this action is reduced to a point.
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from the point of view of the measure µ: in particular, the metric entropy hµ(f) is positive.
By the variational principle, this implies that the topological entropy htop(f) is also positive.
Nevertheless, f might possess some dynamics that is not detected by the measure µ (for example,
htop(f) might be much bigger than hµ(f)). So, roughly speaking, Rees constructed a minimal
homeomorphism which has a rich dynamics, but without being able to control how rich this
dynamics is. Now, if we can control what are the invariant measures of f , then we know exactly
what f looks like from the measurable point of view.

An interesting general question is:

Question. Given any measurable dynamical system (X,A, S), does there exist a homeomor-
phism on a manifold which is isomorphic to (X,A, S)?

In this direction, using Denjoy-Rees technique together with our technique for controlling the
invariant measures, we obtained the following “realization theorem” (which implies theorem 5.1,
see below).

Theorem 5.2. Let R be a uniquely ergodic aperiodic homeomorphism of a compact manifoldM
of dimension d ≥ 2. Let hC be a homeomorphism on some Cantor space C. Then there exists a
homeomorphism f :M→M isomorphic to R× hC :M× C →M× C.

Furthermore, the homeomorphism f is a topological extension of R: there exists a continuous
map Φ : M →M such that Φ ◦ f = R ◦ Φ. If R is minimal (resp. transitive), then f can be
chosen minimal (resp. transitive).

Remark 5.3. In [48], Rees considered the case where R is an irrational rotation of Td and hC is
a full shift. She constructed a minimal homeomorphism g which had a subsystem isomorphic to
R× hC , but was not isomorphic to R× hC .

Let us recall that the problem of realizing measurable dynamical systems as topological
dynamical systems admits many alternative versions. One possibility is to prescribe the invariant
measure, that is, to deal with measured systems instead of measurable systems. In this context,
the realizability problem consists in finding homeomorphisms f on a manifold M and an f -
invariant measure ν such that (M, f, ν) is metrically isomorphic to a given dynamical system
(X,T, µ). In this direction, D. Lind and J.-P. Thouvenot proved that every finite entropy
measured dynamical system is metrically conjugate to some shift map on a finite alphabet, and
thus also to a Lebesgue measure-preserving homeomorphism of the two-torus (see [42]).

Then, one can consider the same problem but with the additional requirement that the
realizing homeomorphism is uniquely ergodic. In this direction (but not on manifolds), one has
the celebrated Jewett-Krieger theorem: any ergodic system is metrically conjugate to a uniquely
ergodic homeomorphism on a Cantor space (see e.g. [12]).

Observe that, if one applies theorem 5.2 with the homeomorphism R being an irrational
rotation of the torus T2 (and hC being any homeomorphism of a Cantor set), then it is easy
to see that the resulting homeomorphism f is also an irrational pseudo-rotation. Varying the
homeomorphism hC , one gets lots of examples of “exotic” irrational pseudo-rotations on the
torus T2. We point out that with this method the angle of the rotation R may be any irrational
point of R2/Z2 (but the pseudo-rotation we obtained are just homeomorphisms). If one seeks
realizations of measurable (or measured) dynamical systems by smooth maps then the Denjoy-
Rees technique seems to be useless.

43



Let us try to give a brief idea of what the homeomorphism f provided by theorem 5.2 looks
like (see also section 5.5). On the one hand, from the topological point of view, f looks very
much like the initial homeomorphism R (which typically can be a very simple homeomorphism,
like an irrational rotation of the torus T2). Indeed, the continuous map Φ :M→M realizing
the topological semi-conjugacy between f and R is an “almost conjugacy”: there exists an f -
invariant Gδ-dense set X on which Φ is one-to-one. This implies that f is minimal. On the
other hand, from the measurable point of view, f is isomorphic to the product R × hC (which
might exhibit a very rich dynamics since hC is an arbitrary homeomorphism on a Cantor set).
As often, the paradox comes from the fact that the set X is big from the topological viewpoint
(it is a Gδ dense set), but small from the measurable viewpoint (it has zero measure for every
f -invariant measure).

We end this section by explaining how theorem 5.2 implies theorem 5.1. LetM be a manifold
of dimension d ≥ 2, and assume that there exists a strictly ergodic homeomorphism R on M.
We have to construct a strictly ergodic homeomorphism with positive entropy on M. For this
purpose, we may assume that the topological entropy of R is equal to zero, otherwise there is
nothing to do.

Let σ be the shift map on {0, 1}Z, and µ be the usual Bernoulli measure on {0, 1}Z. By
Jewett-Krieger theorem (see e.g. [12]), there exists a uniquely ergodic homeomorphism hC of a
Cantor set C which is metrically conjugate to ({0, 1}Z, σ, µ). Since the shift map is a K-system,
and since R is uniquely ergodic and has zero topological entropy, the product map R × hC is
also uniquely ergodic (see [52, proposition 4.6.(1)]). Denote by ν the unique invariant measure
of R × hC . Then the metric entropy hν(R × hC) is equal to hµ(σ) = log 2. Now theorem 5.2
provides us with a minimal homeomorphism f onM, which is isomorphic to R×hC . Denote by
Θ the map realizing the isomorphism between R×hC and f . Since R×hC is uniquely ergodic, f
is also uniquely ergodic: Θ∗ν is the unique f -invariant measure). Moreover, the metric entropy
hΘ∗ν(f) is equal to hν(R×hC), which is positive. The variational principle then implies that the
topological entropy of f is positive. Hence, f is a strictly ergodic homeomorphism with positive
topological entropy.

5.4 A more general statement

Theorem 5.2 is only a particular case of a more general statement: theorem 5.5 below will allow
to consider a homeomorphism R that is not uniquely ergodic, and to replace the product map
R× hC by any map that fibers over R.

To be more precise, let R be a homeomorphism of a manifoldM and A be any measurable
subset ofM. Let C be a Cantor set. We consider a bijective bi-measurable map which is fibered
over R:

h :
⋃

i∈Z

Ri(A)× C −→
⋃

i∈Z

Ri(A)× C

(x, c) 7−→ (R(x), hx(c))

where (hx)x∈∪Ri(A) is a family of homeomorphisms of C. We make the following continuity

assumption: for every integer i, the map hi is continuous on A× C.

Remark 5.4. In the case A =M, the continuity assumption implies that h is a homeomorphism
of M× C; if M is connected, then h has to be a product as in theorem 5.2. Thus we do not
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restrict ourselves to the case where A =M; we rather think of A as a Cantor set in M. Also
note that the continuity assumption amounts to requiring that h is continuous on R i(A)×C for
every i. Note that this does not imply that h is continuous on

⋃
i∈Z

Ri(A)× C.

We will prove the following general statement.

Theorem 5.5. Let R be a homeomorphism on a compact manifold M of dimension d ≥ 2. Let
µ be an aperiodic4 ergodic measure for R, and A ⊂ M be a set which has positive measure for
µ and has zero-measure for every other ergodic R-invariant measure. Let h be a bijective map
which is fibered over R and satisfies the continuity assumption as above. Then there exists a
homeomorphism f :M→M such that (M, f) is isomorphic to the disjoint union

(
⋃

i∈Z

Ri(A)× C, h

)
⊔
(
M\

⋃

i∈Z

Ri(A), R

)
.

Furthermore, f is a topological extension of R: there exists a continuous map Φ : M → M,
which is one-to-one outside the set Φ−1(Suppµ), such that Φ ◦ f = R ◦Φ. If R is minimal (resp.
transitive), then f can be chosen to be minimal (resp. transitive).

The case where R is not minimal onM is considered in the following addendum.

Addendum 5.6. In any case, the dynamics f is transitive on Φ−1(Suppµ). Moreover, if R is
minimal on Suppµ, then f can be chosen to be minimal on Φ−1(Suppµ).

In the case where R is uniquely ergodic, theorem 5.5 asserts that there exists a homeomor-
phism f : M → M which is isomorphic to the fibered map h. In the general case, it roughly
says that there exists a homeomorphism f :M→M which, from the measurable point of view,
“looks like” R outside Φ−1

(⋃
i∈Z

Ri(A)
)

and like h on Φ−1
(⋃

i∈Z
Ri(A)

)
. In other words, it

allows to replace the dynamics of R on the iterates of A by the dynamics of h.

5.5 Outline of Denjoy-Rees technique

In this section, we give an idea of the Denjoy-Rees technique. For this purpose, we first recall one
particular construction of the famous Denjoy homeomorphism on the circle. Many features of
Rees construction already appear in this presentation of Denjoy construction, especially the use
of microscopic perturbations (allowing the convergence of the construction) with macroscopic
effects on the dynamics.

General method for constructing Denjoy counter-examples. To construct a Denjoy
counter-example on the circle, one starts with an irrational rotation and blows up the orbit
of some point to get an orbit of wandering intervals. There are several ways to carry out the
construction, let us outline the one that suits our needs. We first choose an irrational rotation
R. The homeomorphism f is obtained as a limit of conjugates of R,

f = lim fn with fn = Φ−1
n RΦn

4An invariant measure µ is aperiodic if the set of periodic points of R has measure 0 for µ. When µ is ergodic,
this just says that µ is not supported by a periodic orbit of R.
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where the sequence of homeomorphisms (Φn) will converge towards a non-invertible continuous
map Φ that will provide a semi-conjugacy between f and R. To construct this sequence, we
pick some interval I0 (that will become a wandering interval). The map Φn will map I0 to some
interval In which is getting smaller and smaller as n increases, so that I0 is “more and more
wandering”; more precisely, I0 is disjoint from its n first iterates under fn.

In order to make the sequence (fn) converge, the construction is done recursively. The map
Φn+1 is obtained by post-composing Φn with some homeomorphism Mn+1 that maps In on
In+1, and whose support is the disjoint union of the n backward and forward iterates, under the
rotation R, of an interval În which is slightly bigger than In. Thus the uniform distance from
Φn to Φn+1 is roughly equal to the size of In. This guarantees the convergence of the sequence
(Φn) if the size of In tends to 0 quickly enough.

f1 f1
f2 f2

f1 = f2 f1 = f2

I0

f1 = f2 except on

the two shaded areas

Figure 12: Denjoy construction on the circle: the interval I0 has four consecutive disjoint iterates
under f1, and six consecutive disjoint iterates under f2.

Clearly, this is not enough for the convergence of (fn) (for example, if Φn was the identity
outside a little neighborhood of I0, then (fn) could converge to a map that crashes I0 onto a
point). We also demand that Mn+1 commutes with the rotation R except on the union of two
small intervals I in

n and Iout
n (namely, I in

n = R−(n+1)(În) and Iout
n = Rn(În)). Then an immediate

computation shows that the map fn+1 coincides with fn except on the set Φ−1
n (I in

n ∪I
out
n ), which

happens to be equal to Φ−1
n−1(I

in
n ∪ I

out
n ) (due to the condition on the support of Mn, see figure

12). Note that the interval În is chosen after the map Φn−1 has been designed, and thus we
see that this set Φ−1

n−1(I
in
n ∪ I

out
n ) can have been made arbitrarily small (by choosing În small

enough), so that fn+1 is arbitrarily close to fn.

The Denjoy-Rees technique. We now turn to the generalization of the Denjoy construction
developed by Rees. We have in mind the easiest setting: the map R is an irrational rotation of
the two-torus M = T2, we are given some homeomorphism hC on some abstract Cantor space
C, and we want to construct a minimal homeomorphism f of T2 which is isomorphic to R×hC .
In some sense, we aim to blow up the dynamics of R and to “embed the dynamics of hC” into
the blown-up homeomorphism f . The main difference with the Denjoy construction is that we
have to blow up the orbits of all the points of a positive measure Cantor set K. Whereas for
the previous construction the point to be blown up was disjoint from all its iterates under the
rotation R, obviously K will meet some of its iterates: one has to deal with the recurrence of
K, which adds considerable difficulty.
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At step k, we will know an approximation E0
k of K by a union of small rectangles. The key

property of these rectangles, that enables the construction in spite of the recurrence, is that
they are dynamically coherent : if X1, X2 are two connected components of E0

k , if −k ≤ l, l′ ≤ k,
then the rectangles Rl(X1) and Rl′(X2) are either disjoint or equal.

The final map f will again be a limit of conjugates of R,

f = lim fk with fk = Φ−1
k RΦk and Φ = limΦk.

We fix an embedding of the abstract product Cantor set K×C in the manifoldM (see figure 13);
in some sense, this set K × C will play for the Rees map the same role as the interval I0 for
the Denjoy map. Indeed, each point x of K will be blown-up by Φ−1, so that the fiber Φ−1(x)
contains the “vertical” Cantor set {x} × C embedded in M. Furthermore, the first return
map of f in K̃ := Φ−1(K) will leave the embedded product Cantor space K × C invariant: in
other words, for each point x ∈ K and each (return time) p such that Rp(x) belongs to K,
the homeomorphism f p will map the vertical Cantor set {x} × C onto the vertical Cantor set
{Rp(x)}×C. When both vertical Cantor sets are identified to C by way of the second coordinate
on K×C, the map f p induces a homeomorphism of C, which will be equal to hp

C . This is the way
one embeds the dynamics of hC into the dynamics of f , and gets an isomorphism between the
product R×hC and the restriction of the map f to the set

⋃
i f

i(K×C). Note that theorem 5.2
requires more, namely an isomorphism between R × hC and the map f on the whole manifold
M. We will explain in the last paragraph how one can further obtain that f is isomorphic to
its restriction to the set

⋃
i f

i(K × C).
Once again the construction will be carried out recursively. At step k we will take care of all

return times less than 2k+1, that is, the map Φk will be constructed so that the approximation
fk of f will satisfy the description of figure 13 for | p |≤ 2k+1. This property will be transmitted
to fk+1 (and so gradually to f) because for any point x of K whose return time in K is less than
or equal to 2k + 1, f p

k+1(x) = fp
k (x). Actually the equality fk+1 = fk will hold except on a very

set which becomes smaller and smaller as k increases (just as in the Denjoy construction). On
the other hand fk+1 will take care of return times equal to 2k + 2 and 2k + 3. The convergence
of the sequences (Φk) and (fk) will be obtained using essentially the same argument as in the
Denjoy construction.

Another feature of the construction is that we want f to inherit from the minimality of R.
This will be an easy consequence of the two following properties. Firstly the fiber Φ−1(x) above
a point x that does not belong to an iterate of K will be reduced to a point. Secondly the other
fibers will have empty interior.

Control of invariant measures Until here, we have been dealing with the control of the
dynamics on the iterates of the product Cantor set K × C. This is enough for f to admit the
product R× hC as a subsystem, and to get an example with positive topological entropy (Rees
initial result). If we want the much stronger property that f is uniquely ergodic (in theorem 5.1)
or isomorphic to R×hC (in theorem 5.2), we need to gain some control of the dynamics outside
the iterates of K ×C, on the whole manifoldM. With this in view, we first note that, since K
has positive measure, the (unique) invariant measure for R gives full measure to

⋃
iR

i(K). The

automatic consequence for f is that any invariant measure for f gives full measure to
⋃

i f
i(K̃)

(with K̃ = Φ−1(K)). It now remains to put further constraints on the construction to ensure
that any invariant measure for f will give measure 0 to K̃ \ K × C. This will be done by

47



fp

Rp

Φ

x

y

{
x
}
×

C

{
y
}
×

C

C ← K × C

hp
C

C
K × C

K

f

R

M

M̃ =M

fp({x} × C) = {y} × C

Rp(x) = y

Figure 13: Rees construction on the torus: description of the isomorphism between f and
R× hC . The topological flavor is given by the vertical map Φ, the measurable flavor is given by
the horizontal map K × C → C.
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considering the first return map of f in K̃, and by forcing the ω-limit set of any point x ∈ K̃,
with respect to this first return map, to be included in K × C.

5.6 Structure of the proof

Recall that our goal is to prove theorem 5.5 (which implies theorem 5.2 and theorem 5.1, see
the end of section 5.3). So we are given, in particular, a homeomorphism R on a manifold M
and a map h which fibers over R, and we aim to construct a homeomorphism f onM which is
isomorphic to

(⋃
i∈Z

Ri(A)× C, h
)⊔(

M\
⋃

i∈Z
Ri(A), R

)
.

The proof is divided into three steps.

– First, we construct a Cantor set K, obtained as a decreasing intersections of a sequence
sets (E0

n)n∈N, where E0
n is a finite collection of pairwise disjoint rectangles for every n.

– Then, we explain how to blow-up the orbits of the points of K: we construct a sequence
of homeomorphisms (Mn) whose infinite composition is a map Ψ : M → M such that
Ψ−1(K) contains a copy of the product Cantor set K × C.

– Finally, we explain how to insert the dynamics of h in the blowing-up of the orbits of the
points of K. In order to improve the convergence, one will define an extracted sequence
(Mk) of (Mn). One also needs to “twist” the dynamics by constructing a sequence of
homeomorphisms (Hk) and by replacing each Mk by the homeomorphism Hk ◦Mk. The
infinite composition of the homeomorphisms Hk ◦Mk is a map Φ and the desired homeo-
morphism f :M→M is a topological extension of R by Φ.

5.7 Some examples

Let us now illustrate some of these results by a few examples.

a) Denjoy counter-examples

The simplest setting is when the set K is a single point. This yields various generalizations of
the classical Denjoy counter-examples on S1. These examples can have wandering domains and
will not give irrational pseudo-rotations.

Proposition 5.7. Let R be a homeomorphism on a compact manifold M, and x a point of
M which is not periodic under R. Consider a compact subset D of M which can be written
as the intersection of a strictly decreasing sequence (X̃n)n≥0 of topological closed balls. Then
there exist a homeomorphism f :M→M and a continuous onto map Φ :M→M such that
Φ ◦ f = R ◦ Φ, and such that

– Φ−1(x) = D;

– Φ−1(y) is a single point if y does not belong to the R-orbit of x.

Remarks 5.8.

– The properties of Φ and f imply that, if R is minimal, then the setM\
⋃

n∈Z
fn(Int(D))

is the only minimal closed invariant set for f .
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– So, if R is an irrational rotation on M = S1 and D is a non-trivial interval of S1, then f
is a classical Denjoy counter-example.

– In any case, if the interior of D is non empty, then it is an open wandering set for f . In
particular, if R is minimal and D has non-empty interior, then the dynamics of f is very
similar to the dynamics of Denjoy counter-examples on the circle.

– If R is minimal and D has empty interior, then f is minimal. In this case, we obtain
a kind of “Denjoy-counter-example” whose dynamical behavior is actually quite different
from those of the classical Denjoy counter-examples on the circle.

b) Different ways of blowing-up an invariant circle

Now, we would like to build other examples of irrational pseudo-rotations of S2 having a
pathological minimal set (see section 3.3).

For this purpose, we consider an irrational rigid rotation R of the sphere S2 (fixing the two
poles N and S). We denote by Λ the equatorial circle of S2 (which is invariant under R), and
we pick a point x ∈ Λ. Using proposition 5.7, we can construct a homeomorphism f and a map
Φ such that Φ ◦ f = R ◦Φ, such that Φ−1(x) is a non-trivial “vertical” segment J and such that
Φ−1(y) is a single point if y does not belong to the R-orbit of x. It follows that Λ̃ = Φ−1(Λ) is
a one-dimensional (connected with empty interior) f -invariant compact set which separates S2

into two connected open sets.
Moreover, according to the way we choose the Mn’s, we can get quite different topologies

for the set Λ̃ and quite different dynamics for the restriction of f to Λ̃. Here are three possible
types of behaviors:

– Λ̃ is a non-arcwise connected set which is minimal for f (figure 14, I);

– Λ̃ is a topological circle which is not minimal for f : the restriction of f to Λ̃ is a Denjoy
counter-example on the circle, the vertical segment J is wandering (figure 14, II);

– Λ̃ contains a circle which is a minimal set for f , but is not equal to this circle (figure 14,
III, where the minimal set is the equatorial circle).

Remark 5.9. The construction of the above examples can be made in such a way that Φ is C∞

on S2 \ Λ̃. Moreover, if we identify S2 \ {N,S} to the annulus S1 × R and see f as a homeo-
morphism of S1 × R, then all the constructions can be made in such a way that f is a fibered
homeomorphism (i.e. is of the form f(x, y) = (x+ α, fx(y))).

c) Pseudo-rotations with positive topological entropy

We would like to apply theorem 5.5 to obtain a more sophisticated example of pseudo-rotation
on S2. The possibility of constructing such a homeomorphism was mentioned in [49]; more
details are given in appendix 5.7. We choose any irrational angle α ∈ S1 and denote by Rα the
rigid rotation of angle α. We denote by Λ be the equatorial circle invariant by Rα.

Proposition 5.10. For every α ∈ R \ Q, there exists an irrational pseudo-rotation f on S2 of
angle α with positive topological entropy.
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Figure 14: Different ways of blowing-up an invariant circle
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Furthermore, there exists a continuous onto semi-conjugacy Φ between f and the rigid rota-
tion Rα. If Λ is the equatorial circle of S2 (invariant under Rα), then the set Λ̃ = Φ−1(Λ) is a
one-dimensional (connected with empty interior) minimal closed f -invariant set which carries
all the entropy of f . It separates the sphere into two connected open sets. The map Φ is smooth
on S2 \ Λ̃; thus the restriction f to S2 \ Λ̃ is C∞-conjugate to the restriction of Rα to S2 \ Λ.

Proof. The proposition is almost a corollary of theorem 5.5 applied in the case where the manifold
M is the sphere S2, the homeomorphism R is the rigid rotation Rα, the measure µ is the unique
R-invariant measure supported by the equatorial circle Λ, the set A is the equatorial circle Λ
and the map h is the product of Rα|Λ by a Cantor homeomorphism with positive topological
entropy. The only point which does not follow from theorem 5.5 is the fact that Φ is C∞ on
S2 \ Λ̃.
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[35] Kerékjártó, Béla. Über die periodischer Transformationen der Kreisscheibe und der Kugelfläche.
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