
SPECTRAL DENSITY AND SOBOLEV INEQUALITIES
FOR PURE AND MIXED STATES

MICHEL RUMIN

Abstract. We prove some general Sobolev–type and related inequalities for positive oper-
ators A of given ultracontractive spectral decay F (λ) = ‖χA(]0, λ])‖1,∞, without assuming
e−tA is sub-Markovian. These inequalities hold on functions, or pure states, as usual, but
also on mixed states, or density operators in the quantum-mechanical sense. As an illustra-
tion, one can relate the Novikov–Shubin numbers of coverings of finite simplical complexes
to the vanishing of the torsion of the `p,2-cohomology for some p ≥ 2.

1. Introduction and main results

Let A be a strictly positive self-adjoint operator on a σ-finite measure space (X,µ). Suppose
moreover that the semigroup e−tA is equicontinuous on L1(X) (sub-Markovian for instance).
Then, according to Varopoulos [32], a polynomial heat decay

‖e−tA‖1,∞ ≤ Ct−α/2 with α > 2 ,

is equivalent to the Sobolev inequality

(1) ‖f‖p ≤ C ′‖A1/2f‖2 for 1/p = 1/2− 1/α.

This result applies in particular in the case A is the Laplacian acting on scalar functions of a
complete manifold, either in the smooth or discrete graph setting.

1.1. General Sobolev–Orlicz inequalities. The first purpose of this paper is to present
short proofs of general Sobolev–Orlicz inequalities that hold for positive self-adjoint operators,
without equicontinuity or polynomial decay assumption, knowing either their heat decay, as
above, or the “ultracontractive spectral decay” F (λ) = ‖Πλ‖1,∞ of their spectral projectors
Πλ = χA(]0, λ]) on Eλ. As will be seen, the interest for this former F (λ) mostly comes from
geometric considerations. For instance if A is a scalar invariant operator over an unimodular
group Γ, then F (λ) coincides with von Neumann’s Γ-dimension of Eλ, and thus F represents
the non-zero spectral density function of A, see Proposition 1.4. In the general setting the
spectral decay F remains a right continuous increasing function as follows from the identity

(2) ‖P ∗P‖1,∞ = ‖P‖21,2 = sup
‖f‖1,‖g‖1≤1

|〈Pf, Pg〉|.
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We first state the Sobolev–Orlicz inequality we shall prove on a single function, or “pure state”,
as usual. The technique is inspired by the proof of the L2 − Lp classical Sobolev inequality
in Rn given by Chemin and Xu in [7]. In the sequel, if ϕ is a monotonic function, ϕ−1 will
denote its right continuous inverse. All measure spaces (X,µ) will be assumed σ-finite.

Theorem 1.1. Let A be a positive self-adjoint operator on (X,µ) with ultracontractive spectral
projections Πλ = χA(]0, λ]), i.e. F (λ) = ‖Πλ‖1,∞ < +∞.

Suppose moreover that the Stieljes integral G(λ) =

∫ λ

0

dF (u)

u
converges. Then any non

zero f ∈ L2(X) ∩ (kerA)⊥ of energy E(f) = 〈Af, f〉2 satisfies

(3)
∫
X
H
( |f(x)|2

4E(f)

)
dµ ≤ 1 ,

where H(y) = y G−1(y).

The heat version of this result has a similar statement (and proof).

Theorem 1.2. Let A be a positive self-adjoint operator on (X,µ) such that L(t) = ‖e−tAΠV ‖1,∞
is finite, with V = L2(X) ∩ (kerA)⊥.

Suppose moreover that M(t) =

∫ +∞

t
L(u)du < +∞. Then any non zero f ∈ V of finite

energy satisfies

(4)
∫
X
N
( |f(x)|2

4E(f)

)
dµ ≤ ln 2 ,

where N(y) = y/M−1(y)

Both results give (effective) Sobolev inequalities (1) in the polynomial decay case for F or
L. At first, we will see in (26) that the transform from F to G is increasing in general, while G
to H is decreasing. Therefore, if F (λ) ≤ Cλα for α > 1, then G(λ) ≤ C1λ

α−1 with C1 = Cα
α−1 ,

and H(y) ≥ C
1

1−α
1 y

α
α−1 . Hence (3) reads ‖f‖2α/(α−1) ≤ 2C

1
2α
1 ‖A1/2f‖2.

Other related inequalities: generalised Moser, Nash and Faber–Krahn inequalities are stated
in Theorem 2.2. Also an application of Theorem 1.1 is given below to the study of `2-
cohomology of coverings of simplical complexes, but we will first consider another issue.

1.2. From pure to mixed states. Namely we note that, from the quantum-mechanical
viewpoint, Theorems 1.1 and 1.2 are inequalities dealing with the density |f(x)|2 of a single
particle, or pure state. Since we start from the knowledge of a strong “collective data”, related
to the vector space Eλ, it is tentative to look for a collective version of (3); that would
handle many functions simultaneously. A classical approach in statistical quantum mechanics
consists in replacing the orthogonal projection Πf on f , by a mixed state, that is a positive
linear combination of such projections, or more generally by a positive operator ρ of finite
trace, see [33, Chap. IV] or short presentations in [19, §23] or [35].

When dealing with a pure state, |f(x)|2 interprets as the diagonal value Kρ(x, x) of the
kernel of ρ = Πf . We need then to extend this notion to general density operators ρ. Moreover
it is also useful in geometry to consider operators acting on vector valued, or even Hilbert
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valued functions. For instance, one may work on differential forms of higher degrees. One can
also consider Γ-coverings M̃ of compact manifolds M ; in which case one may set X = Γ and
use L2(M̃) = L2(Γ, H) with H = L2(F) for a fundamental domain F . To handle such cases,
we will rely on the following approach.

Definition 1.3. Let (X,µ) be a σ-finite measure space, H a separable Hilbert space and
P a bounded positive operator acting on H = L2(X,H) = L2(X,µ) ⊗ H. Then, given a
measurable Ω ⊂ X, the trace

(5) νP (Ω) = τ(χΩPχΩ) = τ(P 1/2χΩP
1/2)

defines an absolutely continuous measure on X with respect to µ. Its Radon–Nikodym deriv-

ative DνP =
dνP
dµ

will be called the density function of P , and

D(P ) = supessDνP = sup
Ω

νP (Ω)

µ(Ω)

the density of P .

The following properties summarize the relationships between this density, ultracontractiv-
ity and von Neumann Γ-trace. We refer for instance to [27, §2] for an introduction on this last
subject.

Proposition 1.4. • With P and H as above, one has for any Hilbert basis (ei) of H

(6) νP (Ω) =

∫
Ω

∑
i

‖(P 1/2ei)(x)‖2Hdµ(x) hence DνP (x) =
∑
i

‖(P 1/2ei)(x)‖2H a.e.

without finiteness assumption.
• If H is finite dimensional, a bounded positive P is ultracontractive if and only if it has a

bounded density and

(7) ‖P‖1,∞ ≤ D(P ) ≤ (dimH)‖P‖1,∞ .

•When X is a locally compact group Γ with its Haar measure, and P a translation invariant
operator, then the density function of P is a constant number, so that νP (Ω) = D(P )µ(Ω).
Moreover, it coincides with von Neumann Γ-trace of P when Γ is discrete. Namely if KP

denotes the kernel of P , one has in this case

(8) D(P ) = τH(KP (e, e)) = τΓ(P ) .

In this setting, the mixed state version of Theorem 1.1 is the following.

Theorem 1.5. Let (X,µ) be a measure space, H an Hilbert space, and A a positive self-adjoint
operator on H = L2(X,H).

Suppose that the spectral projections Πλ = χA(]0, λ]) have finite density F (λ) = D(Πλ), and
that G(λ) =

∫ λ
0
dF (u)
u converges. Let ρ be a positive operator such that ρ = 0 on kerA. Then

(9)
∫
X
G−1

( Dνρ(x)

4‖ρ1/2Aρ1/2‖2,2

)
dνρ ≤ 4E(ρ) ,



4 MICHEL RUMIN

where
E(ρ) = τ(ρ1/2Aρ1/2) = τ(A1/2ρA1/2) (= τ(Aρ) if finite) ,

and ‖ρ1/2Aρ1/2‖2,2 is the L2 − L2 norm of ρ1/2Aρ1/2.

The heat version of the Sobolev inequality Theorem 1.2 has also a mixed state or ρ-version,
replacing F above by L(t) = D(e−tA), and G by M̃ where M̃(1/t) =

∫ +∞
t L(s)ds.

To illustrate Theorem 1.5, suppose again that F has a polynomial growth

(10) F (λ) ≤ Cλα for some α > 1 .

As examples of mixed states, we take ρ to be the projection onto a N -dimensional linear space
V of functions such that E(f) = 〈Af, f〉2 ≤ λ‖f‖22 for all f ∈ V . Then (6) yields

Dνρ(x) =

N∑
i=1

‖fi(x)‖2H ,

for any orthonormal basis (fi) of V . Since as previously G(λ) ≤ C1λ
α−1 with C1 = Cα

α−1 , the
ρ-Sobolev inequality (9) provides

(11)
∫
X

( N∑
i=1

‖fi(x)‖2H
) α
α−1dµ ≤ C2λ

1
α−1

N∑
i=1

E(fi) ≤ C2Nλ
α
α−1 ,

with C2 = 4
α
α−1C

1
α−1

1 . In comparison, the sum of Sobolev inequalities only gives∫
X

( N∑
i=1

‖fi(x)‖2H
) α
α−1dµ ≤ C3

( N∑
i=1

E(fi)
) α
α−1 ≤ C3N

α
α−1λ

α
α−1 ,

but holds without the assumptions done in (11) that the functions (fi) are orthonormal and
that E(f) ≤ λ‖f‖22 on their span V .

Another feature of the mixed state inequalities (11) is that they give back some control of
the spectral distribution of the Dirichlet spectrum of E on any domain Ω of finite measure.
Namely, if the states fi are supported in Ω, then by Jensen, one finds that

(N/µ(Ω))α/α−1 =
(∫

Ω

N∑
i=1

‖fi(x)‖2Hdµ/µ(Ω)
)α/α−1

≤ C2(N/µ(Ω))λ
α
α−1 ,

yielding

(12)
dimV

µ(Ω)
≤ 4αα

α− 1
Cλα = C3λ

α,

for any V supported in Ω and such that E(f) ≤ λ‖f‖22 on V .
In the case dimV = 1, i.e. the pure state case, this interprets as a Faber–Krahn inequality,

on the lower bound for the Dirichlet spectrum of E on Ω. While using mixed states, one gets
actually the control of the whole geometrical spectral repartition function

(13) F dim
Ω (λ) = sup

V⊂⊂Ω
{dimV | E ≤ λ on V } ≤ µ(Ω)C3λ

α .



SPECTRAL DENSITY AND SOBOLEV INEQUALITIES 5

Note that if X itself has a finite measure, this control is coherent with the starting hypothesis
(10) on the spectral density F of Eλ, since in finite measure

(14) F dim
X = dimEλ ≤ µ(X)F ,

as follows from Definition 1.3 and

(15) dimV = τ(ΠV ) = νΠV (X) ≤ µ(X)D(ΠV ) .

We note also that for invariant operators and spaces on finite groups, (14) and (15) are
equalities by Proposition 1.4. Hence the “ρ-Sobolev” inequalities (4) capture back the bound
on the spectral density F , at least in this simple setting.

In the case of the Laplacian in Rn, or more general Schrödinger operators, spectral bounds
like (13), have been proved independently by Cwikel, Lieb and Rosenbłjum, see [20] and [21,
§12]. It will be called a CLR inequality in the sequel, like its generalization we will show.

1.3. Moser-like inequalities for mixed states and CLR inequalities. As done in the
polynomial case above, one can show that the previous ρ-Sobolev inequalities also imply
Faber–Krahn and CLR inequalities for other spectral densities, see Proposition 4.4. However
this approach assumes some thinness of the spectrum, as required by the convergence of G
or M . As Faber–Krahn inequalities make sense for thick spectrum, we now present another
viewpoint.

Our starting point is an inequality for mixed state, that extends the Moser–Wang one stated
in Theorem 2.2 on functions. We will give an integral version, as above, but also a discrete
one, associated to a partition of X into

⊔
i Ωi. We state the result under two close sets of

hypothesis; depending whether one remove the kernel of A from the spectral density and the
states, as needed in the previous approach, or not. The integral version is the following.

Theorem 1.6. Let A be a positive self-adjoint operator on L2(X,H) and ρ be a non-zero
positive operator. Suppose either

• ρ = 0 on kerA and Fx(λ) = DνΠ]0,λ]
(x) denotes the density at x of Π]0,λ] = χA(]0, λ]),

• or ρ is any and Fx(λ) = DνΠ[0,λ]
(x) is the density of Π[0,λ] = χA([0, λ]).

Then the following inequality holds for the density operator ρ

(16)
∫
X
F−1
x

(Dνρ(x)

4‖ρ‖2,2

)
dνρ ≤ 4E(ρ) .

As an illustration, suppose again that F (λ) ≤ Cλα, and ρ is a projection on a N-dimensional
linear space V span by orthonormal functions (fi). Then (16) gives∫

X

( N∑
i=1

‖fi(x)‖2H
)α+1

α dµ(x) ≤ 4(4C)
1
α

N∑
i=1

E(fi) .

For the Laplacian and Schrödinger operators on Rn, such an inequality has been proved, and
used in quantum mechanics, by Lieb–Thirring; see [22, Thm 4] and [21, §12].

The “discrete” version to Theorem 1.6 for partitions is written:
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Theorem 1.7. Let A as above and X =
⊔
I Ωi be a discrete measurable partition of X.

Consider the Πλ-measures of Ωi

FΩi(λ) = τ(χΩiΠλχΩi) = νΠλ(Ωi) ,

where Πλ denotes either Π]0,λ] or Π[0,λ]. Let ρ be a non-zero positive operator, with the addi-
tional assumption that ρ = 0 on kerA if using Π]0,λ].

In this discrete setting the ρ-Moser, or Lieb-Thirring inequality, can be written as

(17)
∑
i

F−1
Ωi

( νρ(Ωi)

4‖ρ‖2,2

)
νρ(Ωi) ≤ 4E(ρ) .

This yields the following CLR spectral bounds on set of finite measure.

Corollary 1.8. With the same notations as above, suppose moreover that ρ is supported in a
domain Ω of finite measure and has finite energy E(ρ), then

(18)
τ(ρ)

4‖ρ‖2,2
≤ FΩ

(
4〈A〉ρ

)
≤ µ(Ω)F

(
4〈A〉ρ

)
.

where 〈A〉ρ =
E(ρ)

τ(ρ)
=
τ(Aρ)

τ(ρ)
is the expectation value of A with respect to ρ.

• In particular the whole Dirichlet spectrum of E on Ω is controlled for all λ by

(19) F dim
Ω (λ) ≤ 4µ(Ω)F (4λ) ,

where as in (13), we define F dim
Ω (λ) = sup{dimV | supp(V ) ⊂ Ω and E ≤ λ on V }.

Thus (19) extends uniformly, whatever F , the CLR inequality (13) obtained previously
from the ρ-Sobolev inequalities. In some sense it means that the spectral density of a confined
system is controlled by the spectral density of the free system, up to universal multiplicative
constants in volume and energy.

We note that except for these constants 4, the formula (19) looks quite sharp in general.
Indeed, as recalled above, one has F dim

Γ = µ(Γ)F when A is an invariant operator on a finite
group Γ = X. Hence in general

(20) F dim
Ω (λ) ≤ µ(Ω)F (λ)

is certainly an ideal bound for inequalities like (19).

1.4. Log-Sobolev and entropy inequalities. As a last illustration of the ρ-Moser inequal-
ity, we note that they lead easily to another family of Sobolev-like inequalities: namely para-
metric Log-Sobolev and entropy-energy inequalities, see [10, 11, 21]. They hold here without
sub-Markovian assumption on the heat semigroup, and in the mixed state setting.

Theorem 1.9. • With the assumptions of Theorem 1.6, let

m(t) = sup
λ≥0

(lnF (λ)− tλ) .

Then the following parametric log-Sobolev inequality holds for any t > 0

(21)
∫
X

ln
( Dνρ

4‖ρ‖2,2

)
dνρ ≤ m(t)τ(ρ) + 4tE(ρ) .
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• Let (lnF )c denote the concave hull of lnF , i.e. the smallest concave function dominating
lnF . Then the entropy-energy inequality holds

(22)
∫
X

ln
( Dνρ

4‖ρ‖2,2

) dνρ
τ(ρ)

≤ (lnF )c(4〈A〉ρ) ,

for the mean energy 〈A〉ρ = τ(ρA)/τ(ρ).

Of course (22) is more interesting if lnF is a concave function itself (for instance if F has
polynomial growth), or more generally if (lnF )c(λ) ≤ lnF (kλ) for some constant k.

For its meaning, we note that both sides of (22) have some entropic flavour: the left side is
related to the “spatial entropy” of the state ρ, as seen from X, while the right side deals with
its “spectral entropy” relative to its energy. Indeed heuristically, at least on groups, one has
lnF (λ) = ln(τΓ(Eλ)) = ln dimΓ(Eλ) using the Γ-dimension of Eλ at the energy level λ.

1.5. Sobolev inequalities and `2-cohomology. We conclude with an application to geo-
metric analysis of the pure state case of Sobolev inequalities in Theorem 1.1 or 1.2. As they
are not restricted to Markovian operators, these results apply in the following setting. Let K
be a finite simplicial complex and X → K = X/Γ some covering. One considers on X the
complex of `2 k-cochains with the discrete coboundary

dk : `2Xk → `2Xk+1

dual to the usual boundary ∂ of simplexes, see e.g. [27, §3].
Its `2-cohomology Hk+1

2 = ker dk+1/ Im dk splits in two components :

• the reduced part Hk+1
2 = ker dk+1/Im dk, isomorphic to `2-harmonic cochains Hk+1

2 =

ker dk+1 ∩ ker d∗k,
• and the torsion T k+1

2 = Im dk/ Im dk.
Although this torsion is not a normed space, one can study it by “measuring” the unbound-
edness of d−1

k on Im dk. We will consider here two different means.
- The first one is inspired by `p,q-cohomology. One enlarges the space `2Xk to `pXk for

p ≥ 2, and asks whether, for p large enough, one has

(23) dk(`2Xk)
`2

⊂ dk(`pXk) ,

This is satisfied in case the following Sobolev identity holds

(24) ∃C such that ‖α‖p ≤ C‖dkα‖2 for all α ∈ (ker dk)
⊥ ⊂ `2 .

The geometric interest of the rougher formulation (23) lies in its stability under the change of
X into other bounded homotopy equivalent spaces, as stated in Proposition 5.2. Moreover if
H
k+1
2 (X) vanishes, then (23) is equivalent to the vanishing of the torsion of the `p,2-cohomology

of X, as will be seen in Section 5.
- The second approach is spectral and relies on the von Neumann Γ-trace of Π]0,λ], i.e to

the spectral density by Proposition 1.4. Consider the Γ-invariant self-adjoint A = d∗kdk acting
on (ker dk)

⊥ and the spectral density FΓ,k(λ) = τΓ(Π]0,λ]). This function vanishes near zero
if and only if zero is isolated in the spectrum of A, which is equivalent to the vanishing of
the torsion T k+1

2 . The asymptotic behaviour of FΓ,k(λ) when λ↘ 0 has a geometric interest
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in general since, given Γ, it is an homotopy invariant of the quotient space K, as shown by
Efremov, Gromov and Shubin in [14, 18, 17].

One can compare these two notions in the spirit of Varopoulos’ result (1) on functions. In
the case of polynomial decay one obtains.

Theorem 1.10. Let K be a finite simplicial space and X → K = X/Γ a covering. Let
FΓ,k(λ) = dimΓEλ denotes the spectral density function of A = d∗kdk on (ker dk)

⊥.
If FΓ,k(λ) ≤ Cλα/2 for some α > 2, then the Sobolev inequality (24), and the inclusion

(23), hold for 1/p ≤ 1/2− 1/α.

If moreover the reduced `2-cohomology Hk+1
2 (X) vanishes, this implies the vanishing of the

`p,2-torsion of X, as stated in Corollary 5.4.
Other spectral decays than polynomial can be handled with Theorem 1.1, leading then to

a bounded inverse of dk from Im dk ∩ `2 into a more general Orlicz space given by H.
The author thanks Pierre Pansu and Michel Ledoux for their useful comments on this work,

and the referee for her/his careful reading of the paper.

2. Proof of the pure state inequalities

The first step towards Theorems 1.1 to 1.2 is to consider the ultracontractivity of the
auxiliary operators A−1Πλ and A−1e−tAΠV .

Proposition 2.1. • Let A, F and G be given as in Theorem 1.1. Then A−1Πλ is ultracon-
tractive with

(25) ‖A−1Πλ‖1,∞ ≤ G(λ) =

∫ λ

0

dF (u)

u
.

• Let A, L and M be given as in Theorem 1.2. Then A−1e−tAΠV is ultracontractive with

(26) ‖A−1e−tAΠV ‖1,∞ ≤M(t) =

∫ +∞

t
L(s)ds .

Proof. • The spectral calculus gives

(27) A−1(Πλ −Πε) =

∫
]ε,λ]

u−1dΠu = λ−1Πλ − ε−1Πε +

∫
]ε,λ]

u−2Πudu ,

thus taking norms, one obtains

‖A−1(Πλ −Πε)‖1,∞ ≤ λ−1F (λ) + ε−1F (ε) +

∫
]ε,λ]

u−2F (u)du

= G(λ)−G(ε) + 2ε−1F (ε) .

Now by finiteness of G, one has ‖Πε/ε‖1,∞ = F (ε)/ε ≤ G(ε)→ 0 when ε↘ 0, hence by (2)

‖A−1Πλ‖1,∞ = ‖ΠλA
−1/2Πλ‖21,2

= lim
ε→0
‖(Πλ −Πε)A

−1/2Πλ‖21,2 by Beppo-Levi,

= lim
ε→0
‖A−1(Πλ −Πε)‖1,∞ ≤ G(λ) .
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We note that we also have

(28) G(λ) = λ−1F (λ) +

∫ λ

0
u−2F (u)du ,

which shows the useful monotonicity of the transform from F to G and H.
• The heat case (26) is clear since A−1e−tAΠV =

∫ +∞
t e−sAΠV ds by the spectral calculus.

�

The sequel of the proofs of Theorems 1.1 and 1.2 relies on a classical technique from real
interpolation theory, as used for instance in the elementary proof of the L2 − Lp Sobolev
inequality in Rn given by Chemin and Xu in [7]. This consists here in estimating each level
set {x, |f(x)| > y} by using an appropriate spectral splitting of f ∈ V into

(29) f = χA(]0, λ])f + χA(]λ,+∞[)f = Πλf + Π>λf .

2.1. Proof of Theorem 1.1. By (2) and (25) one has ‖A−1/2Πλ‖22,∞ ≤ G(λ), hence

(30) ‖Πλf‖2∞ ≤ G(λ)‖A1/2f‖22 = G(λ)E(f) .

Then suppose that |f(x)| ≥ y, with y2 = 4G(λ)E(f). As |Πλf(x)| ≤ y/2 by (30), one has
necessarily by (29) that |Π>λf(x)| ≥ y/2 ≥ |Πλf(x)| and finally

(31) |f(x)|2 ≤ 4|Π>λf(x)|2 on
{
x ∈ X | |f(x)|2 ≥ 4G(λ)E(f)

}
.

Hence a first integration in x gives,∫
{x , |f(x)|2≥4E(f)G(λ)}

|f(x)|2dµ ≤ 4‖Π>λf‖22 ,

and a second integration in λ,∫
X

|f(x)|2

4E(f)
G−1

( |f(x)|2

4E(f)

)
dµ(x) ≤

∫ +∞

0

‖Π>λf‖22
E(f)

dλ ,

where G−1(y) = sup{λ | G(λ) ≤ y}. At last the spectral calculus provides∫ +∞

0
‖Π>λf‖22 dλ =

∫ +∞

0

∫ +∞

λ
〈dΠµf, f〉

=

∫ +∞

0
µ 〈dΠµf, f〉 = 〈Af, f〉 = E(f) ,

proving Theorem 1.1.

2.2. Proof of Theorem 1.2. We follow the same lines as above. First by (2) and (26) one
has for f ∈ V

‖e−tA/2f‖2∞ ≤M(t)E(f) ,

leading to

(32) |f(x)|2 ≤ 4|(1− e−tA/2)f(x)|2 on
{
x ∈ X | |f(x)|2 ≥ 4M(t)E(f)

}
.

Then integrations in x and dt/t2 give∫
X

|f(x)|2

4E(f)
/M−1

( |f(x)|2

4E(f)

)
dµ(x) ≤ 1

E(f)

∫ +∞

0
‖(1− e−tA/2)f‖22

dt

t2
,
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where now M−1(y) = inf{t |M(t) ≤ y} for the decreasing M . The right integral is computed
by spectral calculus∫ +∞

0
‖(1− e−tA/2)f‖22

dt

t2
=

∫ +∞

0

∫ +∞

0
(1− e−tλ/2)2〈dΠλf, f〉

dt

t2

=

∫ +∞

0

(∫ +∞

0

(1− e−u)2

2u2
du
)
λ〈dΠλf, f〉

= IE(f) ,

where 2I =

∫ +∞

0

(1− e−u)2

u2
du = 2 ln 2 as seen developing Iε =

∫ +∞

ε

(1− e−u)2

u2
du when

ε↘ 0.

2.3. Related inequalities. Using the same technique as above one can also show some gen-
eralised Moser, Nash and Faber–Krahn inequalities for functions. From the heat decay to
Nash and Faber–Krahn, a general approach has already been obtained by Coulhon, without
markovianity assumption on the semigroup, see [8, 9] and also [16] for the Laplacian. We
will state here inequalities using the spectral density F instead, and compare them to the
heat kernel result after. The starting point is a Moser-like inequality that resembles to the
“F-Sobolev” inequality introduced by Wang in [34] for some Schrödinger operators.

Theorem 2.2. Let A be a positive self-adjoint operator on (X,µ). Suppose either

• f is a non-zero function in V = L2(X) ∩ (kerA)⊥ and F (λ) denotes ‖Π]0,λ]‖1,∞ as
above,
• or f is any non-zero function in L2(X), and F (λ) = ‖Π[0,λ]‖1,∞ .

• Then the following generalised L2-Moser inequality holds

(33)
∫
X
|f(x)|2F−1

( |f(x)|2

4‖f‖22

)
dµ ≤ 4E(f) ,

and also

(34)
∫
X
|f(x)|2F−1

( |f(x)|
2‖f‖1

)
dµ ≤ 4E(f) .

• Both inequalities imply a Nash–type inequality (with weaker constants starting from (33))

(35) ‖f‖22F−1
( ‖f‖22

4‖f‖21

)
≤ 8E(f) .

• In particular if f is supported in a domain Ω of finite measure and has finite energy, the
following Faber–Krahn inequality, or “uncertainty principle”, is satisfied

(36) 4µ(Ω)F
(8E(f)

‖f‖22

)
≥ 1 .

Proof. Here one compares levels of f to ‖f‖2 or ‖f‖1 instead of E(f). This does not rely on
Proposition 2.1, and one can work either with f ∈ (kerA)⊥ and F (λ) = ‖Π]0,λ]‖1,∞, as before,
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or with a general f ∈ L2(X) and F (λ) = ‖Π[0,λ]‖1,∞. In any case, starting from (29) one gets

(37)
|f(x)|2 ≤ 4|Π>λf(x)|2 on{

x ∈ X | |f(x)|2 ≥ 4F (λ)‖f‖22
}

or
{
x ∈ X | |f(x)| ≥ 2F (λ)‖f‖1

}
.

This yields the generalised Moser inequalities (33) and (34) by integrations as in Theorem 1.1.
Note that in the case where one works without restriction on f and F (λ) = ‖Π[0,λ]‖1,+∞,

one has to complete the definition of F−1 by setting

(38) F−1(y) =

{
0 if y < F (0) ,

sup{λ | F (λ) ≤ y} elsewhere .

This means that the inequalities (33) and (34) cut off small values of f in that case.
To deduce the Nash–type inequality (35), we argue as in [10, p. 97]. Observe that for all

non-negative s and t one has

(39) st ≤ sF (s) + tF−1(t) .

Applying to t = |f(x)|
2‖f‖1 gives

s
|f(x)|
2‖f‖1

− sF (s) ≤ |f(x)|
2‖f‖1

F−1
( |f(x)|

2‖f‖1

)
.

By integration against the measure |f(x)|dµ and using (34), this yields

s
‖f‖22
2‖f‖1

− sF (s)‖f‖1 ≤
∫
X

|f(x)|2

2‖f‖1
F−1

( |f(x)|
2‖f‖1

)
dµ ≤ 2E(f)

‖f‖1
.

This provides (35) using

s↗ F−1
( ‖f‖22

4‖f‖21

)
= sup

{
s | F (s) ≤ ‖f‖

2
2

4‖f‖21

}
.

One can proceed similarly starting from the L2 Nash–type inequality (33) instead of (34).
One replaces (39) by

st ≤ s
√
F (s) + tF−1(t2)

with t = |f(x)|
2‖f‖2 . Integrating against |f(x)|dµ and using s↗ F−1(

ε2‖f‖22
‖f‖21

) yields

(
1

2
− ε)‖f‖22F−1

(ε2‖f‖22
‖f‖21

)
≤ 2E(f) ,

which is similar to (35), but with weaker constants.

When is f is supported in a domain Ω of finite measure, one has ‖f‖21 ≤ µ(Ω)‖f‖22, and
thus (35) implies that

F−1
( 1

4µ(Ω)

)
≤ 8E(f)

‖f‖22
.

If E(f) is finite, this leads to the Faber–Krahn inequality (36) since by right continuity of F
and (38), one has F (F−1(λ)) ≥ λ when F−1(λ) is finite.

�
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In comparison to the previous result, from the heat decay to Nash inequality, the following
statement is proved in [8, Prop. II.2]:

Theorem 2.3. Let A be a positive operator on (X,µ) with ultracontractive heat decay L(t) =

‖e−tA‖1,∞. Then for any f ∈ D(A) ∩ L1(X,µ) one has

(40) ‖f‖22θ
(‖f‖22
‖f‖21

)
≤ E(f) ,

where θ(x) = sup
t>0

1

t
log
( x

L(t)

)
.

For invariant operators on groups Γ, this result, starting from the heat decay, follows from
(35), up to multiplicative constants inside and outside θ. Indeed we will see in Proposition 4.3
that ∫ +∞

0
e−tλdF (λ) ≤ nL(t)

for invariant operators on L2(Γ, V ) with dimV = n. In that case one has

(41) θ(x) ≤ F−1(nx) .

Namely, for all t, y > 0, it holds that

nL(t) ≥
∫ y

0
e−tλdF (λ) ≥ e−tyF (y) ,

yielding (41) with y = F−1(nx).
We note also that, from the geometrical viewpoint, the shape of the Faber–Krahn inequality

(36) looks rather natural and optimal in general, except for the multiplicative constants (that
may be tightened a little bit under a convexity assumption on yF−1(y), see also §3.3 below).
Indeed, (36) shows that, on any space X, if there exists a non-zero f of energy E(f) ≤ λ‖f‖22
supported in a domain Ω of finite measure, then

(42) 4F (8λ) ≥ 1/µ(Ω) .

Now it may happen that some spaces X of finite measure are tiled by N = µ(X)/µ(Ω) copies
of such domains, leading by the min-max principle and (14) to

F (λ) ≥ dimEλ/µ(X) ≥ N/µ(X) = 1/µ(Ω) .

This gives the geometric meaning of a control like (42) (also called an L2-isoperimetric profile)
in such cases. Strikingly, its shape in general is the same as in the tiled situation.

2.4. Remarks on the reverse problems. In the previous proofs, it appears clearly that
the proposed controls of ultracontractive norms of spectral or heat decay are much stronger
than the Sobolev or Nash-Moser inequalities deduced. Indeed these inequalities are twice
integrated versions, in space and frequency, of the “local” inequalities (31), (32) and (37),
that come directly from the ultracontractive controls. Therefore it seems hopeless to get the
converse statements in general, even on groups, although we don’t have a counterexample.

However, we recall that one can get back from Sobolev or Nash inequalities to the heat
decay, in the case the heat is equicontinuous on L1 or L∞, see [31, 5]. This stems from
ideas of Nash [25]; see also [8, 9, 16, 32] for further references and details. This strong
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equicontinuity hypothesis holds for the Laplacian on scalar functions, as comes for instance
from the maximum principle, but unfortunately only in a positive curvature setting for Hodge-
de Rham Laplacians acting on forms of higher degrees.

As a last comment here, the problem of finding converse statements is quite different starting
from the mixed state inequalities. Indeed, Proposition 4.4 and Corollary 1.8 state that the
ρ-Sobolev, or better, ρ-Moser Lieb–Thirring inequalities, imply CLR bounds

(43) F dim
Ω (λ) ≤ 4µ(Ω)FMoser(4λ)

for the Dirichlet spectral distribution on domains Ω. Now, according to Dodziuk and Mathai
[13] it can be shown that, on amenable discrete groups X = Γ and for invariant discrete local
operators (as the discrete Laplacian on cochains), one has

F dim
Ωn (λ)/µ(Ωn)→ FΓ(λ)

for a Fölner exhaustion Ωn of Γ, and where FΓ(λ) = τΓ(Πλ) = F (λ) by (8). Together with
(43), this gives F (λ) ≤ 4FMoser(4λ), which means that the function ruling the mixed stated
ρ-Moser inequality, or the CLR bounds, controls back the spectral density F in these cases.

3. Proof of the mixed state inequalities

3.1. Proof of ρ-Sobolev. The proof of the mixed state version of Sobolev inequality follows
the same lines as the pure state one.

The first step is adapted to use the density of operators, as given in Definition 1.3, instead
of their ultracontractive norm.

Proposition 3.1. • Let A, F and G be given as in Theorem 1.5. Then A−1Πλ has finite
density and

(44) D(A−1Πλ) ≤ G(λ) =

∫ λ

0

dF (u)

u
.

• Suppose L(t) = D(e−tA) and M(t) =
∫ +∞
s L(s)ds are finite. Then A−1e−tAΠV has finite

density with

(45) D(A−1e−tA) ≤M(t) =

∫ +∞

t
L(s)ds .

Proof. We follow the proof of Proposition 2.1. First by (27) and linearity of trace one has

νA−1Π]ε,λ]
(Ω) = τ(χΩA

−1Π]ε,λ]χΩ)

= λ−1νΠλ(Ω)− ε−1νΠε(Ω) +

∫
]ε,λ]

u−2νΠε(Ω)du

≤ µ(Ω)
(
λ−1F (λ) +

∫
]ε,λ]

u−2F (u)du
)

= µ(Ω)(G(λ) + F (ε)/ε
)
−→ µ(Ω)G(λ) ,
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when ε ↘ 0 since F (ε)/ε ≤ G(ε) → 0. Now using an Hilbert basis fn of H, one sees by
Beppo-Levi and the spectral theorem that

τ(χΩA
−1Π]ε,λ]χΩ) =

∑
i

‖A−1/2Π]ε,λ]χΩfi‖22

−→
∑
i

‖A−1/2ΠλχΩfi‖22 when ε↘ 0 ,

= τ(χΩA
−1ΠλχΩ) = νA−1Πλ(Ω) .

Therefore we obtain that νA−1Πλ(Ω) ≤ µ(Ω)G(λ) yielding D(A−1Πλ) ≤ G(λ) as claimed.

The proof at the heat level also follows Proposition 2.1 and starts from

νA−1e−tA(Ω) =

∫ +∞

s
νe−sA(Ω)ds .

�

Remark 3.2. In these proofs, we note that for invariant operators on groups Γ, endowed
with their Haar measure, the previous inequalities (44) and (45) become equalities, as due to
νP (Ω) = D(P )µ(Ω) in such cases by Proposition 1.4.

The sequel of the proof also follows the pure state case. Let ρ1/2 be the positive square root
of ρ and consider for a measurable Ω ⊂ X the following splitting

ρ1/2χΩ = ρ1/2A1/2A−1/2ΠλχΩ + ρ1/2Π>λχΩ .

Taking a Hilbert–Schmidt norm gives

‖ρ1/2χΩ‖HS ≤ ‖ρ1/2A1/2‖2,2‖A−1/2ΠλχΩ‖HS + ‖ρ1/2Π>λχΩ‖HS .

Then using the following classical properties, see e.g. [28, Chap. VI],

(46) τ(P ∗P ) = ‖P‖2HS = ‖P ∗‖2HS and ‖P‖22,2 = ‖P ∗‖22,2 = ‖P ∗P‖2,2 ,

one finds that for any Ω ⊂ X

νρ(Ω) = ‖ρ1/2χΩ‖2HS ≤ 2‖ρ1/2Aρ1/2‖2,2νA−1Πλ(Ω) + 2νΠ>λρΠ>λ(Ω) .

Therefore taking densities gives almost everywhere

Dνρ(x) ≤ 2‖ρ1/2Aρ1/2‖2,2DνA−1Πλ(x) + 2DνΠ>λρΠ>λ(x)

≤ 2‖ρ1/2Aρ1/2‖2,2G(λ) + 2DνΠ>λρΠ>λ(x) ,

and finally

(47) Dνρ(x) ≤ 4DνΠ>λρΠ>λ(x) if Dνρ(x) ≥ 4‖ρ1/2Aρ1/2‖2,2G(λ) .
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By integration on Ω = {(x, λ) | Dνρ(x) ≥ 4‖ρ1/2Aρ1/2‖2,2G(λ)} this leads to∫
X
G−1

( Dνρ(x)

4‖ρ1/2Aρ1/2‖2,2

)
dνρ =

∫
Ω
Dνρ(x)dµ(x)dλ by Fubini,

≤ 4

∫
Ω
DνΠ>λρΠ>λ(x)dµ(x)dλ by (47),

≤ 4

∫
X×R+

DνΠ>λρΠ>λ(x)dµ(x)dλ

= 4

∫
R+

τ(Π>λρΠ>λ)dλ

= 4

∫
R+

τ(ρ1/2Π>λρ
1/2)dλ by (46) ,

= 4τ
(
ρ1/2

(∫
R+

Π>λdλ
)
ρ1/2

)
= 4τ(ρ1/2Aρ1/2) = 4E(ρ) .

3.2. Proof of the mixed state Moser inequalities. The proofs of Theorem 1.6 and 1.7
follow the same technique. Here one compares the level sets of Dνρ(x) to ‖ρ‖2,2 instead of
‖ρ1/2Aρ1/2‖2,2 in (47). This does not rely on Proposition 3.1 and one can work either with
ρ = 0 on kerA and Π]0,λ], as before, but also with a general positive ρ and Π[0,λ].

In any case, given Ω ⊂ X, one considers the splitting

ρ1/2χΩ = ρ1/2ΠλχΩ + ρ1/2Π>λχΩ .

Taking Hilbert–Schmidt norms yields

‖ρ1/2χΩ‖HS ≤ ‖ρ1/2‖2,2‖ΠλχΩ‖HS + ‖ρ1/2Π>λχΩ‖HS ,

and using (46) as above

(48) νρ(Ω) = ‖ρ1/2χΩ‖2HS ≤ 2‖ρ‖2,2νΠλ(Ω) + 2νΠ>λρΠ>λ(Ω) ,

whence

Dνρ(x) ≤ 2‖ρ‖2,2DνΠλ(x) + 2DνΠ>λρΠ>λ(x)

= 2‖ρ‖2,2Fx(λ) + 2DνΠ>λρΠ>λ(x) .

Thus in place of (47) one finds that

(49) Dνρ(x) ≤ 4DνΠ>λρΠ>λ(x) if Dνρ(x) ≥ 4‖ρ‖2,2Fx(λ) .

This leads to (16) by integration on B = {(x, λ) | Dνρ(x) ≥ 4‖ρ‖2,2Fx(λ)} as done above.
Note that when one works on general ρ and Π[0,λ] one has to complete the definition of F−1

x

by setting

(50) F−1
x (u) =

{
0 if u < Fx(0) = DνΠkerA

(x) ,

sup{λ | Fx(λ) ≤ u} elsewhere .

This means that the inequality (16) cuts off small values of Dνρ in this setting.
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• For the discrete Moser inequality, (48) provides

(51) νρ(Ω) ≤ 4νΠ>λρΠ>λ(Ω) if νρ(Ω) ≥ 4‖ρ‖2,2FΩ(λ) ,

in place of the local (49). Given a partition X =
⊔

Ωi, and summing (51) on

C = {(i, λ) | νρ(Ωi) ≥ 4‖ρ‖2,2FΩi(λ)} ⊂ I × R+

leads now to (17), where again one defines in general

(52) F−1
Ω (u) =

{
0 if u < FΩ(0) = νkerA(Ω) ,

sup{λ | FΩ(λ) ≤ u} elsewhere .

• When the density ρ is supported in Ω, one has νρ(Ω) = νρ(X) = τ(ρ) and the Moser
inequality (17) can be written as

(53) F−1
Ω

( τ(ρ)

4‖ρ‖2,2

)
≤ 4
E(ρ)

τ(ρ)
= 4〈A〉ρ.

This yields the Faber–Krahn inequality (18) when 〈A〉ρ is finite since by right continuity of
FΩ and (52), one has FΩ(F−1

Ω (λ)) ≥ λ when F−1
Ω (λ) is finite.

3.3. Note on constants. We observe that one can balance differently the multiplicative
constants in the proofs of inequalities. Given ε ∈]0, 1[, one can replace for instance (51) by

ε2νρ(Ω) ≤ νΠ>λρΠ>λ(Ω) if (1− ε)2νρ(Ω) ≥ ‖ρ‖2,2FΩ(λ) ,

yielding ∑
i

F−1
Ωi

((1− ε)2νρ(Ωi)

‖ρ‖2,2

)
νρ(Ωi) ≤ ε−2E(ρ)

instead of (17), and in particular to the Faber–Krahn inequality

(54) (1− ε)2F dim
Ω (λ) ≤ FΩ(ε−2λ) ≤ µ(Ω)F (ε−2λ)

in place of (19). With respect to the ideal bound (20), one sees in (54) that tightening the
energy multiplicative constant to 1 blows up the volume one, and reversely.

3.4. Proof of the log-Sobolev inequality. We show how to deduce Theorem 1.9 from the
ρ-Moser Lieb–Thirring inequality. We follow a general argument in [10, §6].

Given s and t > 0, one has s ≤ F (F−1(s)) if λ = F−1(s) is finite, hence it holds that

ln s− tF−1(s) ≤ lnF (λ)− tλ ≤ m(t) .

Setting s = Dνρ(x)/4‖ρ‖2,2 and integrating on X with dνρ gives∫
X

ln
(Dνρ(x)

4‖ρ‖2,2

)
dνρ(x) ≤ τ(ρ)m(t) + t

∫
X
F−1

(Dνρ(x)

4‖ρ‖2,2

)
dνρ(x)

≤ τ(ρ)m(t) + 4tE(ρ) ,

by ρ-Moser, proving the log-Sobolev inequality (21).
For the entropy inequality (22), we first observe that since m(t) = sup

λ≥0
(lnF (λ) − tλ) one

has
(lnF )c(λ) = inf

t≥0
(m(t) + tλ) ,
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by a classical property of Legendre transform; indeed −m(t) is the concave-Legendre transform
of lnF . Then the optimization in t of the log-Sobolev inequality (21) leads to (22).

4. Relationships between inequalities

4.1. Ultracontractivity, density and von Neumann trace. We start the study of the
relationships existing between the different inequalities we considered. We first discuss Propo-
sition 1.4, that relates the three measurements of positive operators used here: through ultra-
contractivity, density function, or Γ-trace.

At first, the existence and expression for the density function DνP (x) given in (6), directly
comes from the definition (5) written in the form

νP (Ω) = τ(P 1/2χΩP
1/2) = ‖χΩP

1/2‖2HS =

∫
Ω

∑
i

‖(P 1/2ei)(x)‖2Hdµ(x) .

Note that this holds without finiteness assumption. This expression of the density is useful
when P is a positive compact operator. Namely if P =

∑
i λiΠei is the spectral decomposition

of P , it reads

DνP (x) =
∑
i

λi‖ei(x)‖2H almost everywhere.

Also, (6) clearly implies that ‖P‖1,∞ = ‖P 1/2‖22,∞ ≤ D(P ) = supessDνP (x) holds in general.
For the opposite inequality, we suppose H is finite d-dimensional. Then given a basis (ei) of
H and (hj) of H, one has by (6)

DνP (x) =
∑
i

‖P 1/2ei(x)‖2H =

d∑
j=1

∑
i

〈(P 1/2ei)(x), hj〉2 a.e.

where, for each j, by Cauchy–Schwarz∑
i

〈(P 1/2ei)(x), hj〉2 = sup∑
c2i≤1

(∑
i

ci〈(P 1/2ei)(x), hj〉
)2

= sup∑
c2i≤1

(
〈
(
P 1/2(

∑
i

ciei)
)
(x), hj〉

)2

= sup
‖f‖2≤1

(
〈(P 1/2f)(x), hj〉

)2
≤ ‖P 1/2‖22,∞ = ‖P‖1,∞ .

This gives DνP (x) ≤ d‖P‖1,∞ a.e as needed.

We would like to illustrate here the relevance of the spectral density D(Πλ) when dealing
with general mixed state inequalities, while the ultracontractive norm ‖Πλ‖1,∞ is adapted to
functions. Indeed, suppose that A is a scalar positive operator with finite F (λ) = ‖Πλ‖1,∞ =

D(Πλ) and consider n-copies An of A acting diagonally on Hn = L2(X,Cn). Then one finds
easily that

‖Πλ(An)‖1,∞ = ‖Πλ(A)‖1,∞(= ‖Πλ(A)‖22,∞) while D(Πλ(An)) = nD(Πλ(A)) ,
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if one sets ‖f‖∞ = supX ‖f(x)‖2 and ‖f‖1 =
∫
X ‖f(x)‖2dµ with the hermitian norm of Cn.

Hence the Sobolev inequality (3) is independent of the phase space dimension n, as the Faber–
Krahn inequality (36) for the first eigenvalue λ1,n of An on a domain Ω, that can be written
as

4µ(Ω)F (8λ1,n(Ω)) ≥ 1 .

In comparison, the CLR inequality (19) only yields

4nµ(Ω)F (4λ1,n(Ω)) ≥ 1

for the first eigenvalue, but also gives the linear bound in n of the whole spectral distribution,
namely: F dim

Ω,An
(λ) ≤ 4nµ(Ω)F (4λ).

We come back to the study of the density of invariant operators on locally compact groups Γ

with their Haar measure. In such a case, the measure νP (Ω) = τ(χΩPχΩ) is clearly invariant
too, thus its density function is constant, as claimed in Proposition 1.3. Moreover, when Γ is
discrete, this density coincides with von Neumann trace since

D(P ) = DνP (e) = τH(χePχe) = τH(KP (e, e))
def
= TrΓ(P ) ,

where KP is the kernel of P . More generally, one can characterize finite density operators on
not necessarily discrete groups as follows.

Proposition 4.1. Let Γ be a locally compact group with its Haar measure and Q be a bounded
Γ-invariant operator on H = L2(Γ, µ) ⊗H. Let E be the space of Hilbert–Schmidt operators
on H endowed with the Hilbert–Schmidt norm.
• Then P = Q∗Q has a finite density D(P ) iff Q has a kernel KQ(x, y) = kQ(y−1x) with

kQ ∈ L2(Γ, E) and D(P ) =
∫

Γ ‖kQ(x)‖2HSdµ.
• If moreover Γ is unimodular, one has D(Q∗Q) = D(QQ∗) and the density actually defines

a faithful trace in that case.

Remark 4.2. We recall that this last trace property allows one to get a meaningful notion
of dimension for closed Γ-invariant subspaces L ⊂ H = L2(Γ) ⊗ H. Indeed, one sets then
dimΓ L = D(ΠL). This satisfies the key property dimΓ f(L) = dimΓ L for any closed densely
defined invariant injective operator f : L→ H, see e.g. [27, §2] or [30, §3.2, §6].

Proof. We recall that an operator is Hilbert–Schmidt if and only if it possesses an L2 kernel,
see e.g. [28, Chap VI]. Then by definition

νP (Ω) = τH(χΩQ
∗QχΩ) = ‖QχΩ‖2HS

=

∫
Γ×Ω
‖KQ(x, y)‖2HSdµ(x)dµ(y)

= µ(Ω)

∫
Γ
‖kQ(x)‖2HSdµ(x) by invariance .

Hence D(P ) =
∫

Γ ‖kQ(x)‖2HSdµ(x). Moreover, one has

‖kQ(x)‖HS = ‖(kQ(x))∗‖HS = ‖kQ∗(x−1)‖HS
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giving

D(Q∗Q) =

∫
Γ
‖kQ(x)‖2HSdµ(x) =

∫
Γ
‖kQ∗(y)‖2HSdµ(y) = D(QQ∗)

on unimodular groups since there µ(Ω−1) = µ(Ω). �

One can finally express the density using Fourier analysis on some family of groups. Namely,
following Dixmier [12, §18.8], if the group Γ is locally compact, unimodular and postliminaire,
there exists a Plancherel measure µ∗ on its unitary dual Γ̂, together with a Plancherel formula
on L2(Γ). In particular on positive operators P = Q∗Q, one has using Proposition 4.1

(55) D(P ) = ‖kQ‖22 =

∫
Γ̂
‖k̂Q(ξ)‖2HSdµ∗(ξ) .

This allows one to estimate the spectral density F (λ) in some simple cases as in Rn.

4.2. Illustration and comparison with known inequalities on Rn. For instance, in the
case of the Laplacian ∆ on Rn, the spectral space Eλ(∆) is the Fourier transform of functions
supported in the ball B(0,

√
λ) in (R̂n, dµ∗) ' (Rn, (2π)−ndx), hence k̂Πλ = χB(0,

√
λ) and (55)

provides

(56) F (λ) = µ∗(B(0,
√
λ)) = Cnλ

n/2,

with Cn = (2π)−nvol(Bn). This leads to

G(λ) =
nCn
n− 2

λn/2−1 and H(x) = xG−1(x) =
(n− 2

nCn

) 2
n−2

x
n
n−2 ,

so that finally (3) gives the classical Sobolev inequality in Rn

‖f‖2n/(n−2) ≤
1

π

(n vol(Bn)

n− 2

) 1
n ‖df‖2 = Dn‖df‖2 .

One finds that the constant Dn has the correct rate of decay in n, namely Dn ∼+∞

√
2e
nπ .

Indeed according to [2] or [21, Thm. 8.3], the best constant here is

D∗n =
2√

n(n− 2)
area(Sn)−1/n ∼+∞

√
2

nπe
.

We now consider the Moser inequality (33). On functions this gives the classical L2-Moser
inequality with constants with the right decay in n on Rn. Indeed from (56), one finds that

‖f‖2+4/n
2+4/n ≤ 41+2/nC2/n

n ‖f‖
4/n
2 ‖df‖

2
2 = En‖f‖4/n2 ‖df‖

2
2 ,

with En ∼+∞
2e
nπ while, following Beckner, see [3] or [10, Appendix], the best constants in the

L2-Moser inequality are asymptotic to 2
nπe .

Still on Rn, one can get some general algebraic expression of F (λ) for the positive invariant
differential operatorA =

∑
I aI∂xI . Let σ(A)(ξ) =

∑
I aI(iξ)

I be its polynomial symbol. Then
again the spectral space Eλ(A) consists in functions whose Fourier transform is supported in

Dλ = {ξ ∈ Rn | σ(A)(ξ) ≤ λ} ,

and as above
F (λ) = (2π)−nvol(Dλ).
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The asymptotic behaviour of F (λ) when λ ↘ 0 can be obtained from the resolution of the
singularity of the polynomial σ(A) at 0. Indeed, there exists α ∈ Q+ and k ∈ [0, n − 1] ∩ N
such that

F (λ) ∼
λ→0+

Cλα| lnλ|k ,

see e.g. Theorem 7 in [1, §21.6]. Moreover, under a non-degeneracy hypothesis on σ(A), the
exponents α and k can be read from its Newton polyhedra. Then if α > 1, Proposition 4.5
yields that G(λ) �

0
λα−1| lnλ|k. Therefore G−1(u) �

0
u1/(α−1)| lnu|−k/(α−1) and finally the

H-Sobolev inequality (3) is governed in small energy by the function

H(u) � u
α
α−1 | ln(u)|−

k
α−1 for u� 1 .

4.3. Spectral versus heat decay. We now compare the two Theorems 1.1 and 1.2. They
both state Sobolev inequalities for functions starting either from the heat or spectral decay.
One can compare F and G to L and M through Laplace transform of associated measures.

Proposition 4.3. • In any case it holds that

L(t) ≤ L(dF )(t) =

∫ +∞

0
e−λtdF (λ)(57)

M(t) ≤ L(dG)(t) =

∫ +∞

0
e−λtdG(λ) .(58)

• If A is an invariant operator acting on H = L2(Γ, H) over a locally compact group Γ,
then reverse inequalities hold up to the multiplicative factor n = dimH, i.e.

L(dF ) ≤ nL and L(dG) ≤ nM .

Moreover G(y) ≤ neM(y−1) and H-Sobolev inequality (3) implies N-Sobolev (9), up to multi-
plicative constants.
• Reversely, for any operator, if G satisfies the exponential growing condition :

(59) ∃C such that ∀u, y > 0 , G(uy) ≤ eCuG(y) ,

then M(y−1) ≤ 3G(2Cy). Hence H and N -Sobolev are equivalent on groups in that case.

Proof. • By spectral calculus e−tAΠV =
∫ +∞

0 e−tλdΠλ = t
∫ +∞

0 e−tλΠλdλ, hence

L(t) = ‖e−tAΠV ‖1,∞ ≤ t
∫ +∞

0
e−tλ‖Πλ‖1,∞dλ = L(dF )(t) ,

and thus

M(t) =

∫ +∞

t
L(s)ds ≤

∫ +∞

t

∫ +∞

0
e−λsdF (λ)ds =

∫ +∞

0

e−λt

λ
dF (λ) = L(dG)(t) .

• For positive invariant operators P on groups, the ultracontractive norm ‖P‖1,∞ is pinched
between the density D(P ) and nD(P ) by (7). This gives the reverse inequalities by positive
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linearity of D(P ) on such operators. In particular one gets

nM(y−1) ≥
∫ +∞

0
e−λ/ydG(λ) = y−1

∫ +∞

0
e−λ/yG(λ)dλ

≥ y−1

∫ +∞

y
e−λ/yG(y)dλ = e−1G(y).

Therefore N(y) = y/M−1(y) ≤ yG−1(ney) = (ne)−1H(ney) and H-Sobolev implies∫
X
N
( |f(x)|2

4neE(f)

)
dµ ≤ (ne)−1 .

• If G satisfies the growing condition (59), one has by (58)

M(1/y) ≤
∫ +∞

0
e−λ/ydG(λ) =

∫ +∞

0
e−uG(uy)du

≤
∫ 2C

0
e−uG(2Cy)du+

∫ +∞

2C
e−u/2G(2Cy)du

≤ 3G(2Cy) .

�

We note that it may happen that N � H for very thin near–zero spectrum. In an extreme
case there may be a gap in the spectrum, i.e. A ≥ λ0 > 0, hence F = G = 0 on [0, λ0[ and
H(y) ≥ λ0y, while L(t) � Ce−ct, M(t) � C ′e−ct and N(y) � C ′′y/ ln(y/C ′).

We mention also that a similar statement holds at the mixed state level between the two
ρ-Sobolev inequalities obtained from the spectral density F (λ) = D(Πλ) or the heat density
L(t) = D(e−tA). Namely the F version is stronger in general to the L one on groups, although
of the same strength under the same growing assertion (59) on G, that excludes extremely
thin spectrum near zero.

4.4. From ρ-Sobolev to CLR inequalities. We have seen in the introduction how the
mixed state Sobolev inequality (9) implies a CLR inequality (13) in the case of a polynomial
spectral density. We extend this to other profiles and compare the result to Corollary 1.8,
obtained from the mixed state Moser (Lieb–Thirring) approach.

Proposition 4.4. Suppose that a ρ-Sobolev inequality (9) holds for some increasing right
continuous function G. Then for any mixed state ρ supported in a domain Ω of finite volume,
one has

(60) τ(ρ) ≤ 8µ(Ω)‖ρ1/2Aρ1/2‖2,2G(8〈A〉ρ) .

• In particular the following CLR inequality holds

(61) F dim
Ω (λ) ≤ 8µ(Ω)λG(8λ) .

Hence the ρ-Sobolev inequality obtained in Theorem 1.5 implies a CLR inequality which is
a priori weaker that (19), since F (λ) ≤ λG(λ) there.
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Proof. When the function tG−1(t) is convex, Jensen inequality easily gives the result, with
better coefficients. Without convexity assumption, we can argue again as in §2.3. Observe
that for all non-negative s and t one has

st ≤ sG(s) + tG−1(t) .

Applying to t =
Dνρ(x)

4‖ρ1/2Aρ1/2‖2,2
and integrating over Ω yields

sτ(ρ)

4‖ρ1/2Aρ1/2‖2,2
− sG(s)µ(Ω) ≤

∫
X

Dνρ(x)

4‖ρ1/2Aρ1/2‖2,2
G−1

( Dνρ(x)

4‖ρ1/2Aρ1/2‖2,2

)
dµ

≤ τ(Aρ)

‖ρ1/2Aρ1/2‖2,2
by (9) .

Using

s↗ G−1
( τ(ρ)

8µ(Ω)‖ρ1/2Aρ1/2‖2,2

)
= sup

{
s | G(s) ≤ τ(ρ)

8µ(Ω)‖ρ1/2Aρ1/2‖2,2

}
,

gives

G−1
( τ(ρ)

8µ(Ω)‖ρ1/2Aρ1/2‖2,2

)
≤ 8〈A〉ρ ,

and (60) since G(G−1(s)) ≥ s when G−1(s) is finite by right continuity of G. �

Observe that one may have F (λ)� λG(λ) for very thick near-zero spectrum, even when G
converges. For instance if F (λ) = λ/ ln2 λ then λG(λ) = (− lnλ + 1)F (λ). Except this “low
dimensional” phenomenon, one has λG(λ) �

0
F (λ) in the other cases, and thus the two CLR

inequalities (19) and (61) obtained through ρ-Sobolev or Moser inequalities have the same
strength. For instance this holds if F (λ) ∼

0
λ1+εϕ(λ) for some ε > 0 and an increasing ϕ > 0.

This comes from the following remark.

Proposition 4.5. Suppose there exists ε > 0 such that, for small λ, F satisfies the growing
condition F (2λ) ≥ 2(1 + ε)F (λ), then (2 + ε−1)F (λ) ≥ λG(λ) ≥ F (λ).

Proof. By (28), one has

G(λ) =

∫ λ

0

dF (u)

u
=
F (λ)

λ
+

∫ λ

0

F (u)

u2
du

=
F (λ)

λ
+
(∫ λ/2

0
+

∫ λ

λ/2

)F (u)

u2
du

≤ 2F (λ)

λ
+

∫ λ/2

0

F (2u)

2(1 + ε)u2
du by hypothesis on F ,

≤ 2F (λ)

λ
+

1

1 + ε

(
G(λ)− F (λ)

λ

)
,

leading to λG(λ) ≤ (2 + ε−1)F (λ) . �
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As a curiosity, we note that under the growing hypothesis on F above, the spectral density
of states F and the spatial repartition function H have symmetric expressions with respect to
G and G−1. Indeed, one has simply there

(62) F (λ) � λG(λ) while H(x) = xG−1(x) .

4.5. Discrete and integral ρ-Moser inequalities. We now study the relationships between
the two versions of the ρ-Moser inequalities given in Theorem 1.6 and 1.7.

A first remark is that the discrete case may be seen as an instance of the integral version.
Indeed if X =

⊔
I Ωi, then one may split H = L2(X,µ) ⊗H =

⊕
I L

2(Ωi, µ) ⊗H and, given
a positive P on H, define a measure ν ′P on I by

ν ′P (J) =
∑
i∈J

τ(χΩiPχΩi) = νP (∪JΩi) .

Then the density function of ν ′P can be written as

Dν ′P (i) = τ(χΩiPχΩi) = νP (Ωi) .

In this setting the integral formula (16) yields the discrete one (17).

Another feature of these formulae is that, up to multiplicative constants, the integral formula
dominates all the discrete ones, whatever the partition of X.

Proposition 4.6. Given a measurable Ω in X, it holds that

(63) F−1
Ω

( νρ(Ω)

8‖ρ‖2,2

)
νρ(Ω) ≤ 2

∫
Ω
F−1
x

(Dνρ(x)

4‖ρ‖2,2

)
dνρ .

In particular, for any partition X =
⊔
I Ωi one has∑

i

F−1
Ωi

( νρ(Ωi)

8‖ρ‖2,2

)
νρ(Ωi) ≤ 2

∫
X
F−1
x

(Dνρ(x)

4‖ρ‖2,2

)
dνρ .

Hence Theorem 1.6 implies Theorem 1.7 and Corollary 1.8, up to weaker constants 8 instead
of 4.

Proof. Given x ∈ X, one has for all non negative s and t

st ≤ sFx(s) + tF−1
x (t) ,

where Fx(λ) = DνΠλ(x). Applying to t =
Dνρ(x)
4‖ρ‖2,2 and integrating on Ω yields

s
νρ(Ω)

4‖ρ‖2,2
− sFΩ(s) ≤

∫
Ω
F−1
x

(Dνρ(x)

4‖ρ‖2,2

) dνρ
4‖ρ‖2,2

.

This gives (63) using

s↗ F−1
Ω

( νρ(Ω)

8‖ρ‖2,2

)
= sup

{
s | FΩ(s) ≤ νρ(Ω)

8‖ρ‖2,2

}
.

�
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5. Spectral density and cohomology

We conclude with an application of the Sobolev inequalities in the pure state setting. Let
K be a finite simplicial complex and consider a covering Γ → X → K. Let dk be the
coboundary operator on k-cochains Xk of X. As a purely combinatorial and local operator,
it acts boundedly on all `p-spaces of cochains `pXk, see e.g. [4, 27].

Let FΓ,k(λ) denotes the Γ-trace of the spectral projector Πλ = χA(]0, λ]) of A = d∗kdk.
By Proposition 1.4 this function coincides with the density of Πλ relatively to Γ and is also
equivalent, up to multiplicative constants, to the ultracontractive spectral decay F (λ) =

‖Πλ‖1,∞. Thus Theorem 1.10 is a direct application of Theorem 1.1 or 1.5 in the polynomial
case. This statement compares two measurements of the torsion of `2-cohomology T k+1

2 =

dk(`2)
`2

/dk(`
2) that share some geometric invariance. We describe this more precisely.

We first recall the main invariance property of FΓ,k(λ). We say that two increasing functions
f, g : R+ → R+ are equivalent if there exists C ≥ 1 such that f(λ/C) ≤ g(λ) ≤ f(Cλ) for λ
small enough. According to [14, 18, 17] we have:

Theorem 5.1. Let K be a finite simplicial complex and Γ → X → K a covering. Then the
equivalence class of FΓ,k only depends on Γ and the homotopy class of the (k + 1)-skeleton of
K.

One tool in the proof is the observation that an homotopy of finite simplicial complexes
X and Y induces bounded Γ-invariant homotopies between the Hilbert complexes (`2Xk, dk)

and (`2Y k, d′k). That means there exist Γ-invariant bounded maps

fk : `2Xk → `2Y k and gk : `2Y k → `2Xk

such that
fk+1dk = d′kfk and gk+1d

′
k = dkgk

and
gkfk = Id + dk−1hk + hk+1dk and fkgk = Id + d′k−1h

′
k + h′k+1d

′
k

for some bounded maps

hk : `2Xk → `2Xk−1 and h′k : `2Y k → `2Y k−1.

Actually all these maps are purely combinatorial and local, see e.g. [4, §1], and thus extend
on all `p spaces of cochains.

One can show a similar invariance property of the inclusion (23) we recall below, but that
holds more generally on uniformly locally finite simplicial complexes, without requiring a group
invariance. These are simplicial complexes such that each point lies in a bounded number N(k)

of k-simplexes.

Proposition 5.2. Let X and Y be uniformly locally finite simplicial complexes. Suppose that
they are boundedly homotopic in `2 and `p norms for some p ≥ 2. Then one has

(64) dk(`2Xk)
`2

⊂ dk(`pXk) ,

if and only if a similar inclusion holds on Y .
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Proof. Suppose that dk(`2Xk)
`2

⊂ dk(`pXk) and consider a sequence αn = d′k(βn) ∈ d′k(`2Y k)

that converges to α ∈ dk(`2Y k)
`2

in `2.

Then gk+1αn = dk(gkβn) → gk+1α ∈ dk(`2Xk)
`2

. Therefore there exists β ∈ `pXk such
that gk+1α = dkβ. Then taking `2-limit in the sequence

fk+1gk+1αn = αn + d′kh
′
k+1αn + h′k+2d

′
k+1αn = αn + d′kh

′
k+1αn

gives
d′k(fkβ) = fk+1dkβ = α+ d′kh

′
k+1α ,

and finally α ∈ d′k(`pY k) since `2Y k ⊂ `pY k for p ≥ 2. �

The inclusion (64) we consider here is related to problems studied in `p,q cohomology. We
briefly recall this notion and refer for instance to [15] for more details. If X is a simplicial
complex as above, one considers the spaces

Zkq (X) = ker dk ∩ `qXk and Bk
p,q(X) = dk−1(`pXk) ∩ `qXk .

Then the `p,q-cohomology of X is defined by

Hk
p,q(X) = Zkq (X)/Bk

p,q(X) .

Its reduced part is the Banach space

H
k
p,q(X) = Zkq (X)/B

k
p,q(X) ,

while its torsion part
T kp,q(X) = B

k
p,q(X)/Bk

p,q(X)

is not a Banach space. These spaces fit into the exact sequence

0→ T kp,q(X)→ Hk
p,q(X)→ H

k
p,q(X)→ 0 .

It is straightforward to check as above that, for p ≥ q, these spaces satisfy the same homo-
topical invariance property as in Proposition 5.2.

Proposition 5.3. Let X and Y be uniformly locally finite simplicial complexes. Suppose that
they are boundedly homotopic in `p and `q norms for p ≥ q. Then the maps fk : `∗Xk → `∗Y k

and gk : `∗Y k → `∗Xk induce reciprocal isomorphisms between the `p,q cohomologies of X and
Y , as well as their reduced and torsion components.

In this setting, the vanishing of the `p,2-torsion T k+1
p,2 (X) is equivalent to the closeness of

Bk+1
p,2 (X) = dk(`

pXk) ∩ `2Xk+1 in `2Xk+1, i.e. to the inclusion

dk(`pXk) ∩ `2Xk+1
`2

⊂ dk(`pXk) ∩ `2Xk+1 .

This implies the weaker inclusion (64), but is stronger in general unless the following holds

(65) dk(`
pXk) ∩ `2Xk+1 ⊂ dk(`2Xk)

`2

.

Now by Hodge decomposition in `2Xk+1, one has always

dk(`
pXk) ∩ `2Xk+1 ⊂ ker dk+1 ∩ `2Xk+1 = H

k+1
2 (X)⊕⊥ dk(`2Xk)

`2

.
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Hence (65) holds if the reduced `2-cohomology Hk+1
2 (X) vanishes, proving in that case the

equivalence of (64) to the vanishing of the `p,2-torsion, and even to the identity

(66) Bk+1
p,2 := dk(`

pXk) ∩ `2Xk+1 = dk(`2Xk)
`2

,

which is clearly closed in `2.

Corollary 5.4. Let K be a finite simplicial space and Γ→ X → K a covering. Suppose that
the spectral distribution FΓ,k of A = d∗kdk on (ker dk)

⊥ satisfies FΓ,k(λ) ≤ Cλα/2 for some
α > 2. Suppose moreover that the reduced `2-cohomology Hk+1

2 (X) vanishes.
Then (66) and the vanishing of the `p,2-torsion T k+1

p,2 (X) hold for 1/p ≤ 1/2− 1/α.

A comprehensive introduction to L2-invariants may be found in [24]. For instance by [6],
the reduced `2-cohomology vanishes in all degrees for infinite amenable groups; but actually
this vanishing also occurs in other classical situations.

Namely, if Γ is a co-compact lattice in a non-compact Riemannian symmetric space M =

G/K, then the reduced `2-cohomology Hk
2(Γ) is non-zero if and only if rankG = rankK and

k = dimM/2; see e.g. [24, Chap. 5]. Moreover, by [23, 26], all the Novikov-Shubin exponents
αk are known. With our notation, one has FΓ,k(λ) 6= 0 near 0 if and only if

r = rankG− rankK > 0 and k ∈ [(dimM − r)/2, (dimM + r)/2[ ,

in which case
FΓ,k(λ) � λr/2 .

In comparison to such examples, not so much is known on general groups on the geometric
meaning and estimations of these exponents, except for the first one on functions. Indeed,
following [32], α0 is finite only for virtually nilpotent groups, and coincides with the growth
rate of Γ. We mention also that some estimations and computations of higher exponents can
be done on lattices in Carnot-Carathéodory groups G; see [29]. For instance, the exponent α1

in degree one is pinched between α0/(wmax − 1) and α0/(wmin − 1), where α0 is the growth
rate of G and wmin, wmax denote the minimal and maximal weights of the relations required
to define G.

In some sense Theorem 1.10 and Corollary 5.4 relate a spectral invariant to cruder inte-
gration properties on cocycles at large scale. Such a relation was a key in the geometric
understanding of α0 recalled above, see e.g. [9, 32], and hopefully may be useful in higher
degree too.
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[1] V. I. Arnol′d, S. M. Gusĕın-Zade, and A. N. Varchenko. Singularities of differentiable maps. Vol. II,
volume 83 of Monographs in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1988. Monodromy and
asymptotics of integrals, Translated from the Russian by Hugh Porteous, Translation revised by the
authors and James Montaldi.

[2] T. Aubin. Nonlinear analysis on manifolds. Monge-Ampère equations, volume 252 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
New York, 1982.

[3] W. Beckner. Asymptotic estimates for Gagliardo-Nirenberg embedding constants. Potential Anal.,
17(3):253–266, 2002.



SPECTRAL DENSITY AND SOBOLEV INEQUALITIES 27

[4] M. Bourdon and H. Pajot. Cohomologie lp et espaces de Besov. J. Reine Angew. Math., 558:85–108, 2003.
[5] E. A. Carlen, S. Kusuoka, and D. W. Stroock. Upper bounds for symmetric Markov transition functions.

Ann. Inst. H. Poincaré Probab. Statist., 23(2, suppl.):245–287, 1987.
[6] J. Cheeger and M. Gromov. L2-cohomology and group cohomology. Topology, 25(2):189–215, 1986.
[7] J.-Y. Chemin and C.-J. Xu. Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs

sous-elliptiques. Ann. Sci. École Norm. Sup. (4), 30(6):719–751, 1997.
[8] T. Coulhon. Ultracontractivity and Nash type inequalities. J. Funct. Anal., 141(2):510–539, 1996.
[9] T. Coulhon. Heat kernel and isoperimetry on non-compact Riemannian manifolds. In Heat kernels and

analysis on manifolds, graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages
65–99. Amer. Math. Soc., Providence, RI, 2003.

[10] T. Coulhon, A. Grigor′yan, and D. Levin. On isoperimetric profiles of product spaces. Comm. Anal.
Geom., 11(1):85–120, 2003.

[11] E. B. Davies. Heat kernels and spectral theory, volume 92 of Cambridge Tracts in Mathematics. Cambridge
University Press, Cambridge, 1989.

[12] J. Dixmier. Les C∗-algèbres et leurs représentations. Deuxième édition. Cahiers Scientifiques, Fasc. XXIX.
Gauthier-Villars Éditeur, Paris, 1969.

[13] J. Dodziuk and V. Mathai. Approximating L2 invariants of amenable covering spaces: a combinatorial
approach. J. Funct. Anal., 154(2):359–378, 1998.

[14] A. V. Efremov. Cell decompositions and the Novikov-Shubin invariants. Uspekhi Mat. Nauk,
46(3(279)):189–190, 1991.

[15] V. Gol′dshtein and M. Troyanov. Sobolev inequalities for differential forms and Lq,p-cohomology. J. Geom.
Anal., 16(4):597–631, 2006.

[16] A. Grigor′yan. Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana,
10(2):395–452, 1994.

[17] M. Gromov and M. Shubin. Erratum to: “von Neumann spectra near zero” [Geom. Funct. Anal. 1 (1991),
no. 4, 375–404; MR 92i:58184]. Geom. Funct. Anal., 5(4):729, 1995.

[18] M. Gromov and M. A. Shubin. von Neumann spectra near zero. Geom. Funct. Anal., 1(4):375–404, 1991.
[19] C. Kittel. Elementary statistical physics. John Wiley and Sons, Inc., New York, 1958.
[20] E. H. Lieb. The number of bound states of one-body Schroedinger operators and the Weyl problem. In

Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979),
Proc. Sympos. Pure Math., XXXVI, pages 241–252. Amer. Math. Soc., Providence, R.I., 1980.

[21] E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, second edition, 2001.

[22] E. H. Lieb and W. E. Thirring. Inequalities for the moments of the eigenvalues of the schrödinger hamil-
tonian and their relation to sobolev inequalities. Stud. math. Phys., Essays Honor Valentine Bargmann,
269-303 (1976)., 1976.

[23] N. Lohoue and S. Mehdi. The Novikov-Shubin invariants for locally symmetric spaces. J. Math. Pures
Appl. (9), 79(2):111–140, 2000.

[24] W. Lück. L2-invariants: theory and applications to geometry and K-theory, volume 44 of Ergebnisse der
Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 2002.

[25] J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80:931–954, 1958.
[26] M. Olbrich. L2-invariants of locally symmetric spaces. Doc. Math., 7:219–237 (electronic), 2002.
[27] P. Pansu. Introduction to L2 Betti numbers. In Riemannian geometry (Waterloo, ON, 1993), pages 53–86.

Amer. Math. Soc., Providence, RI, 1996.
[28] M. Reed and B. Simon. Methods of modern mathematical physics. I. Academic Press Inc., New York,

second edition, 1980. Functional analysis.
[29] M. Rumin. Around heat decay on forms and relations of nilpotent Lie groups. In Séminaire de Théorie

Spectrale et Géométrie, Vol. 19, Année 2000–2001, volume 19 of Sémin. Théor. Spectr. Géom., pages
123–164. Univ. Grenoble I, Institut Fourier, Saint-Martin-d’Hères, 2001.



28 MICHEL RUMIN

[30] M. Rumin. An introduction to spectral and differential geometry in Carnot-Carathéodory spaces. Rend.
Circ. Mat. Palermo (2) Suppl., (75):139–196, 2005.

[31] M. Tomisaki. Comparison theorems on Dirichlet norms and their applications. Forum Math., 2(3):277–295,
1990.

[32] N. T. Varopoulos, L. Saloff-Coste, and T. Coulhon. Analysis and geometry on groups. Cambridge Univer-
sity Press, Cambridge, 1992.

[33] J. von Neumann. Mathematical foundations of quantum mechanics. Princeton Landmarks in Mathematics.
Princeton University Press, Princeton, NJ, 1996. Translated from the German and with a preface by
Robert T. Beyer, Twelfth printing, Princeton Paperbacks.

[34] F.-Y. Wang. Functional inequalities for empty essential spectrum. J. Funct. Anal., 170(1):219–245, 2000.
[35] Wikipedia. Density matrix. <http://en.wikipedia.org/wiki/Density_matrix>.

—————————————————–

Laboratoire de Mathématiques d’Orsay, UMR 8628, CNRS et Université Paris-Sud, 91405
Orsay Cedex, France

E-mail address: michel.rumin@math.u-psud.fr


	1. Introduction and main results
	1.1. General Sobolev--Orlicz inequalities
	1.2. From pure to mixed states
	1.3. Moser-like inequalities for mixed states and CLR inequalities
	1.4. Log-Sobolev and entropy inequalities
	1.5. Sobolev inequalities and 2-cohomology

	2. Proof of the pure state inequalities
	2.1. Proof of Theorem 1.1
	2.2. Proof of Theorem 1.2
	2.3. Related inequalities
	2.4. Remarks on the reverse problems

	3. Proof of the mixed state inequalities
	3.1. Proof of -Sobolev
	3.2. Proof of the mixed state Moser inequalities.
	3.3. Note on constants
	3.4. Proof of the log-Sobolev inequality

	4. Relationships between inequalities
	4.1. Ultracontractivity, density and von Neumann trace
	4.2. Illustration and comparison with known inequalities on Rn
	4.3. Spectral versus heat decay
	4.4. From -Sobolev to CLR inequalities
	4.5. Discrete and integral -Moser inequalities

	5. Spectral density and cohomology
	References

