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Abstract. Let A be a self-adjoint operator acting over a space X endowed with a partition.
We give lower bounds on the energy of a mixed state ρ from its distribution in the partition
and the spectral density of A. These bounds improve with the refinement of the partition,
and generalize inequalities by Li-Yau and Lieb-Thirring for the Laplacian in Rn. They imply
an uncertainty principle, giving a lower bound on the sum of the spatial entropy of ρ, as
measured from X, and some spectral entropy, with respect to its energy distribution. On
Rn, this yields lower bounds on the sum of the entropy of the densities of ρ and its Fourier
transform. A general log-Sobolev inequality is also shown. It holds on mixed states, without
Markovian or positivity assumption on A.

1. Introduction and main results

Let (X,µ) be a σ-finite measure space, V a separable Hilbert space and A a self-adjoint
operator acting on

H = L2(X,V ) = L2(X,µ)⊗ V .
The inequalities we will consider concern mixed states, that is positive trace class operators
on H. From the quantum-mechanical viewpoint, they are positive linear combination of pure
states, which are the orthogonal projections on functions in H; see [18, §23] or [19]. More
precisely, as in [15], we are looking for integral controls on the density of a state ρ from its
energy given by the trace

EA(ρ) = τ(Aρ) .

The density function of the state, or more generally of a bounded positive operator P on
H, is a notion that extends the restriction to the diagonal of X of the V -trace of the kernel of
P . It may be defined as follows (see e.g. [15, §1.2]): given a measurable set Ω ⊂ X, the trace

(1) νP (Ω) = τ(χΩPχΩ) = τ(P 1/2χΩP
1/2)

defines a measure on X. For any Hilbert basis (ei) of H, it holds that

(2) νP (Ω) =

∫
Ω
DµνP (x)dµ(x) where DµνP (x) =

∑
i

‖(P 1/2ei)(x)‖2V

is called the density function of P . For instance, in the case of a pure state P = πf with
‖f‖H = 1, one has DµνP (x) = ‖f(x)‖2V . Also, when V is finite dimensional, as for operators
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acting on scalar valued functions, it turns out that DµνP is bounded if and only if P is
ultracontractive from L1(X) to L∞(X) with

(3) ‖P‖1,∞ ≤ Dµ(P ) = supessDµνP (x) ≤ (dimV )‖P‖1,∞ ,

see e.g. [15, Prop. 1.4].
The inequalities studied here depend on the spectral measure associated to A. It is defined

as follows.

Definition 1.1. Let A be a self-adjoint operator on H and consider the spectral projections
Πλ = Π]−∞,λ[(A). Given λ, we define the spectral measure of a measurable set Ω ⊂ X by

(4) FΩ(λ) = νΠλ(Ω) = τ(ΠλχΩΠλ) ,

and the spectral density by

(5) Fx(λ) = DµνΠλ(x) .

Note that in the case A is a translation invariant operator over a group X = Γ, the spectral
measure FΩ(λ) is proportional to the Haar measure of Ω, i.e. FΩ(λ) = µ(Ω)F (λ). This F (λ)

is called an integrated density of states (IDS) in mathematical physics. When Γ is discrete,
F (λ) is also known as the Γ-trace of Πλ, or von Neumann’s Γ-dimension of Eλ = Πλ(H).

In general, the functions λ 7→ Fx(λ) are positive increasing (in the large sense) and left
continuous. In the sequel, if ϕ : R→ R+ is an increasing function, and y ≥ 0, we will set

ϕ−1(y) = sup{x ∈ R | ϕ(x) ≤ y} ∈ [−∞,+∞] .

It is a pseudo-inverse of ϕ, and right continuous when finite.

1.1. Energy of a confined state and spectral bounds. Our first purpose is to give an
inequality between the trace of a state supported in a domain Ω and its energy.

Theorem 1.2. Let A be a self-adjoint operator acting on H = L2(X,V ), and let ρ be a
non-zero state (positive trace class operator) supported in a set Ω ⊂ X. Suppose that

E+
A (ρ) = τ(ρ1/2 max(A, 0)ρ1/2) is finite.

Then the integral involved below has a finite positive part and it holds that

(6) ‖ρ‖∞ϕΩ

( τ(ρ)

‖ρ‖∞

)
≤ EA(ρ) ,

where ϕΩ(y) =

∫ y

0
F−1

Ω (u)du and ‖ρ‖∞ denotes the L2 − L2 norm of ρ.

When applied to projections onto N -dimensional spaces L of functions supported in Ω,
Theorem 1.2 gives a lower bound on the sum of the N -first Dirichlet eigenvalues of EA in Ω,
namely

(7) ϕΩ(N) ≤
N∑
k=1

λk(Ω) ≤ EA(ΠL) .

Here the Dirichlet spectrum is defined using the min-max principle

λn(Ω) = inf
L∈Ln

max
f∈L

(EA(f)/‖f‖22) with Ln = {suppL ⊂ Ω | dimL = n} .
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Such lower bounds for the Dirichlet spectrum are already known in many cases. As we
shall see in §2.2, they coincide for the Laplacian in Rn with inequalities due to Berezin and
Li-Yau ([3, 12] or [13, Thm. 12.3]); and which are sharp in the semiclassical limit, i.e. when N
goes to∞. More generally, similar results have been proved by Laptev [11] for other invariant
positive pseudodifferential operators on Rn, by Strichartz [17] for positive invariant differential
operators on homogeneous manifolds, and also by Erdős-Loss-Vougalter [9] for the Laplacian
in a constant magnetic field.

The Berezin-Li-Yau inequality (7) implies the following uniform controls of the whole Diri-
chlet spectral distribution in Ω.

Corollary 1.3. Let A and Ω as above, and let

NΩ(λ) = sup{dimV | suppV ⊂ Ω and EA(f) < λ‖f‖22 on V }

denotes the Dirichlet spectral distribution function of A in Ω. Then one has

(8) ϕΩ(NΩ(λ)) ≤ λNΩ(λ) .

If moreover A is positive, then

(9) NΩ(λ) ≤ 2FΩ(2λ) .

Hence in the positive case, the confined spectral distribution in Ω is controlled by twice the
free spectral measure of Ω at twice energy level, i.e. by FΩ(2λ) = τ(χΩΠ2λ). Indeed there,
Π2λ is the free (or unconstrained) spectral space of A on the whole X.

One feature of the sharpness of inequalities like (6) or (8), that will be used in their proofs,
lies in the fact they stay equivalent under an energy shift of A in A+ k. Indeed, one has then

FΩ(λ)→ FΩ(λ− k) thus F−1
Ω → F−1

Ω + k and ϕΩ(y)→ ϕΩ(y) + ky .

Hence both sides of (6) shift by kτ(ρ), while (8) stays unchanged up to a parameter shift.
This implies in particular that one can’t improve (6) or (8) by a fixed multiplicative factor for
any (even positive) operator and state. Indeed, suppose that for any positive operator and
state it holds

(1 + ε)‖ρ‖∞ϕΩ(τ(ρ)/‖ρ‖∞) ≤ EA(ρ) .

Then one would get by a positive energy shift A→ A+ k that

0 ≤ (1 + ε)‖ρ‖∞ϕΩ(τ(ρ)/‖ρ‖∞) ≤ EA−kε(ρ) < 0

for k large enough. Of course another stronger inequality than (6) may hold however.
In the sequel, we shall say that an inequality is balanced if, like (6) or (8), it stays equivalent

through energy shift. None of the inequalities given in [15] is balanced; that precludes them
to hold for operators of indefinite sign.

1.2. A balanced Lieb-Thirring inequality. We now state a version of (6), that gives lower
bounds on EA(ρ) knowing the distribution of the state in a partition of X into tiΩi, i.e. given
νρ(Ωi) = τ(χΩiρχΩi).
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Theorem 1.4. Let A be a self-adjoint operator on H = L2(X,V ), and ρ a non-zero state
such that E+

A (ρ) is finite. Let P = {Ωi} be a measurable partition of X.
• Then the sums and integral involved below have a finite positive part, and it holds that

(10) HP (ρ) = ‖ρ‖∞
∑
i

ψΩi

(νρ(Ωi)

‖ρ‖∞

)
≤ H(ρ) = ‖ρ‖∞

∫
X
ψx

(Dµνρ(x)

‖ρ‖∞

)
dµ(x) ≤ EA(ρ) ,

where

(11) ψΩi(y) =

∫ 1

0
ϕΩi,t(y)dt with ϕΩi,t(y) =

∫ y

0
F−1

Ω (t2u)du ,

and similarly

(12) ψx(y) =

∫ 1

0
ϕx,t(y)dt with ϕx,t(y) =

∫ y

0
F−1
x (t2u)du .

• Moreover if P ′ = {Ω′j} is a finer partition of X than P = {Ωi}, then HP (ρ) ≤ HP ′(ρ).

These balanced inequalities improve the unbalanced ones given in [15, Thm. 1.6-1.7] for
positive operators. They extend an inequality due to Lieb and Thirring in the case of the
Laplacian on Rn; see [14], [13, Thm. 12.5] and §3.3.

To clarify its relation with the previous result, we first remark that since F−1
Ω is increasing,

one has

(13) ψΩ ≤ ϕΩ = ϕΩ,1 .

Hence if the state is confined in a single domain Ω of the partition, the bound (6) is stronger
than HP (ρ) ≤ EA(ρ) in (10). Conversely, we will see in §3.1 that if A is positive, one has

(14) ϕΩ

(x
2

)
≤ ψΩ(x) ,

thus (10) in the confined case actually gives ‖ρ‖∞ϕΩ

( νρ(Ω)
2‖ρ‖∞

)
≤ EA(ρ), close to (6), but weaker.

From the quantum-mechanical viewpoint, (10) gives a lower bound on the energy that had
a state ρ before the measure of its distribution in the partition, given by νρ(Ωi) = τ(χΩiρχΩi),
is performed. Equivalently, one gets an a priori control, through HP (ρ), on the possible
outcomes of a measure of the distribution of a state of known energy, before this measure is
done. Indeed, in quantum physics (see e.g. [18, 19]), an actual measure of this distribution
collapses ρ into

ρ̃ =
∑
i

χΩiρχΩi ,

which is a sum of localized states ρi in Ωi. By (6) and convexity of ϕΩi , one has then

(15) ‖ρ̃‖∞
∑
i

ϕΩi

(νρ(Ωi))

‖ρ̃‖∞

)
≤
∑
i

‖ρi‖∞ϕΩi

(νρ(Ωi))

‖ρi‖∞

)
≤
∑
i

EA(ρi) = EA(ρ̃) .

This is stronger than (10) by (13), but applies only to collapsed states as ρ̃.
The monotonicity of HP (ρ) in the partition makes it behave like an information quantity

on the state. It increases with a finer knowledge of the distribution of ρ, and is dominated by
the continuous integral H(ρ) associated to the “infinitesimal” distribution of ρ. Actually these
inequalities imply other information-type inequalities like entropy bounds, as we see now.
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1.3. Spatial versus spectral entropy and uncertainty principle. One interesting feature
of the Lieb–Thirring inequality (10) lies in its simple behaviour under the change of A into
f(A) for an increasing right continuous function f . Indeed, one has Πf(A)(] − ∞, λ[) ⊂
ΠA(]−∞, f−1(λ)[), and thus for the spectral measures

(16) Ff(A),Ω(λ) ≤ FA,Ω ◦ f−1(λ) ,

This allows to change the integrals H(ρ) in (10) into many expressions, while using the cor-
responding energy Ef(A)(ρ) = τ(f(A)ρ).

An attractive choice is to use lnFA(A), where FA(λ) is the right limit of

FA(λ) = supessx FA,x(λ) .

For this application, it is crucial that (10) holds for non-positive operator, since lnFA(A) is
not positive in general, even if A is. This leads to entropy bounds.

Theorem 1.5. Let A be a self-adjoint operator and ρ a state such that E+
lnFA(A)

(ρ) is finite.
Then the integral Sµ(ρ) below has a finite negative part and it holds that

(17) Sλ(ρ) + Sµ(ρ) ≥ −τ(ρ)(3 + ln ‖ρ‖∞) ,

where

(18) Sλ(ρ) = ElnFA(A)(ρ) and Sµ(ρ) = −
∫
X

ln(Dµνρ(x))dνρ(x) .

The quantity Sµ(ρ) is related to the “spatial entropy” of the state ρ, as seen from the
measure space (X,µ). Actually, when µ(X) = τ(ρ) = 1, it is minus the Kullback–Leibler
divergence from νρ to µ, or relative entropy of νρ to µ. On the other hand,

(19) Sλ(ρ) = τ(lnFA(A)ρ) =

∫
R

lnFA(λ)dτ(ρΠλ) ,

deals with the “spectral entropy” of ρ, as seen from its distribution within the spectrum of
A. Indeed lnFA(λ) is an analytical ersatz for ln dimEλ with Eλ = E]−∞,λ](A). Namely, for
invariant operators acting on groups, one has FA(λ) = dimΓ(Eλ) = τΓ(Π]−∞,λ](A)) with the
notion of von Neumann’s Γ-dimension; see e.g. [15, §1].

This spectral entropy and the inequality (17) have a striking property: they are invariant
under the change of A into f(A) for any increasing homeomorphism f of R. Indeed the
operator FA(A) stays unchanged under such transforms, since they give equality in (16).
Thus, the spectral entropy is not sensitive to the actual energy levels; it depends only on the
ordered set {Πλ}, not its parametrization.

The quantities Sµ,λ(ρ) measure the indeterminacy in position and energy of the state. They
decrease respectively when ρ is concentrated in a set of small measure, or in small energies.
Notice that in the general case, if X is not discrete and µ(X) infinite, neither Sµ(ρ) nor Sλ(ρ)

are bounded from below, even on pure states. Still, the lower bound for their sum in (17)
means that a state can’t be arbitrarily localized both in position and energy. This may be
seen as a general statement of the uncertainty principle from the entropy viewpoint.
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1.4. Log-Sobolev inequalities. The previous Theorem 1.5 is also related to more classical
log-Sobolev inequalities, as stated for instance in [7, 13, 8] for the Laplacian. Indeed applying
Jensen inequality on the spectral entropy in (17) leads to the following entropy-energy bound.

Corollary 1.6. Let A be a self-adjoint operator and ρ a state such that E+
A (ρ) is finite and

τ(ρ) = 1. Then it holds that

(20) Sµ(ρ) + (lnFA)c(EA(ρ)) ≥ −3− ln ‖ρ‖∞ ,

where (lnFA)c is the concave hull of lnFA.

This improves and extends Theorem 1.9 in [15], proved there for positive operators and
with a larger energy term. The inequality (20) is balanced and even invariant under an affine
rescaling of energy A→ k1A+ k2 with k1 > 0. It is also equivalent to the following family of
parametric log-Sobolev inequalities

(21) Sµ(ρ) +m(t)τ(ρ) + tEA(ρ) ≥ −τ(ρ)(3 + ln ‖ρ‖∞) ,

where m(t) = infλ≥0(lnF (λ) − tλ) is minus the concave-Legendre transform of lnF . Such
inequalities actually hold on mixed states, without Markovian or positivity assumption on A.

1.5. Fourier transform and entropy. We now describe consequences of Theorem 1.5 on
Fourier transform. Given a state ρ on X = Rn with Lebesgue’s measure dx, we define its
Fourier transform ρ̂ by ρ̂(f̂) = ρ̂(f). Here our convention is

f̂(ξ) =

∫
Rn
f(x)e−ix. ξdx.

We shall see, by optimizing the choice of A in (17), the following bound on the sum of the
entropy of the density of ρ and the entropy of the distribution of its Fourier transform.

Theorem 1.7. Let vol∗ be the (Plancherel) measure d∗ξ = (2π)−ndξ on Rn, and ρ as above.
Consider the distribution function of νρ̂ relatively to d∗ξ

(22) Fρ̂(y) = vol∗({ξ ∈ Rn |
dνρ̂
d∗ξ

(ξ) ≥ y}) .

Suppose that the positive part of

SF (ρ̂) =

∫ +∞

0
ln(Fρ̂(y))Fρ̂(y)dy

is finite. Then the negative part of the spatial entropy

Sdx(ρ) = −
∫
Rn

ln
(dνρ
dx

)
dνρ(x)

is finite and it holds that

(23) Sdx(ρ) + SF (ρ̂) ≥ −τ(ρ)(2 + ln ‖ρ‖∞) .

This gives an operator free version of the classical uncertainty principle stating that a
function (pure state) can’t be both arbitrarily localized in position and momentum. As will
be seen in §4.3, the bound (23) is equivalent to the previous one (17), with A = ∆, for
states such that ρ̂ has a decaying radial density, but improves it otherwise. For instance, the
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repartition entropy SF (ρ̂) may be much smaller than the spectral entropy Sλ(ρ) associated to
∆, if ρ̂ is concentrated in a set of small measure but scattered far from the origin in Rnξ .

Still, the inequality (23) is not symmetric in the roles of ρ and its Fourier transform ρ̂,
because two kinds of entropies are used at the space and frequency sides. However it implies
the following symmetric inequality. It extends a result proved by Hirschman [10] on pure
states (ρ = πf ).

Corollary 1.8. It holds that

(24) Sdx(ρ) + Sd∗ξ(ρ̂) = −
∫
Rn

ln
(dνρ
dx

)
dνρ −

∫
Rn

ln
(dνρ̂
d∗ξ

)
dνρ̂ ≥ −τ(ρ)(ln τ(ρ) + ln ‖ρ‖∞) ,

provided the positive part of one of these integrals is finite.

Besides its symmetry, this inequality has another interesting property: it is additive on
tensor products of unit trace states.

As a concluding remark, we shall observe in §4.5 that at least on projections on finite
dimensional spaces, the lower bounds occurring in the entropy inequalities obtained here are
also related to another important entropy notion: namely to von Neumann’s proper entropy,
defined by S(ρ) = −τ(ρ ln ρ). This suggests a possible improvement of Corollary 1.8 using
S(ρ) in the lower bound instead. This will be discussed in §4.5.

2. The confined states inequalities

2.1. Proof of Theorem 1.2. We first show Theorem 1.2 for positive operator, and use after
the invariance through energy shift to extend it in the general case.

The proof in the positive case is actually an improvement of an argument given in [15,
§3.1]. It is also close to the approach followed in [9]. Let Π≥λ = Π[λ,+∞[(A) = Id−Πλ. Using
A =

∫ +∞
0 Π≥λdλ, we observe that

(25) EA(ρ) = τ(ρ1/2Aρ1/2) =

∫ +∞

0
τ(ρ1/2Π≥λρ

1/2)dλ .

Since supp ρ ⊂ Ω, one has ρ ≤ ‖ρ‖∞χΩ. Hence, assuming by homogeneity in ρ that ‖ρ‖∞ = 1

in the sequel, it holds that

τ(ρ1/2Π≥λρ
1/2) = τ(ρ)− τ(ρ1/2Πλρ

1/2) = τ(ρ)− τ(ΠλρΠλ)

≥ τ(ρ)− τ(ΠλχΩΠλ)

= τ(ρ)− FΩ(λ) .
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Using it in (25) for λ < F−1
Ω (τ(ρ)) = sup{u | FΩ(u) ≤ τ(ρ)} yields

EA(ρ) ≥
∫ F−1

Ω (τ(ρ))

0
τ(ρ1/2Π≥λρ

1/2)dλ

≥
∫ F−1

Ω (τ(ρ))

0

(
τ(ρ)− FΩ(λ)

)
dλ

=

∫ F−1
Ω (τ(ρ))

0

(∫ τ(ρ)

FΩ(λ)
du
)
dλ =

∫∫
{0≤FΩ(λ)≤u≤τ(ρ)}

dudλ(26)

=

∫ τ(ρ)

0

(∫ F−1
Ω (u)

0
dλ
)
du

=

∫ τ(ρ)

0
F−1

Ω (u)du = ϕΩ(τ(ρ)) ,

as needed.
For a general self-adjoint operator, we consider Ak = AΠ≥k. By positivity of Ak − k and

the behaviour of (6) in such a shift, it holds for any k that

(27) ϕAk,Ω(τ(ρ)) ≤ EAk(ρ) .

In particular, for k = 0, one has max(F−1
A , 0) ≤ F−1

A0
and thus∫ τ(ρ)

0
max(F−1

A (u), 0)du ≤ ϕA0,Ω(τ(ρ)) ≤ EA0(ρ) = E+(ρ) <∞

by hypothesis. Hence the integral ϕA,Ω(τ(ρ)) =
∫ τ(ρ)

0 F−1
A,Ω(u)du makes sense in [−∞,+∞[. If

ϕA,Ω(τ(ρ)) = −∞ there is nothing more to prove, and we assume henceforth that ϕA,Ω(τ(ρ))

is finite. This implies that the increasing function F−1
A,Ω(u) is finite for u < τ(ρ). In particular,

one has necessarily FA,Ω(k) finite for k � 0, and thus by dominated convergence

(28) FA,Ω(k) = τ(χΩΠ]−∞,k[(A)χΩ)↘ 0 when k ↘ −∞ .

Since, for k ≤ λ, one has Πλ(Ak) = Π[k,λ[(A) = Πλ(A)−Πk(A), it holds that

(29) FAk,Ω(λ) = max(FA,Ω(λ)− FA,Ω(k), 0) .

This leads to F−1
Ak,Ω

(u) = F−1
A,Ω(u+ FA,Ω(k)), and finally

ϕAk,Ω(y) =

∫ y

0
F−1
Ak,Ω

(u)du =

∫ y

0
F−1
A,Ω(u+ FA,Ω(k))du .

Together with (28) and (27), this shows that ϕAk,Ω(τ(ρ)) ↘ ϕA,Ω(τ(ρ)) when k ↘ −∞; by
dominated convergence for the positive part, and monotone convergence for the negative one.
For the same reasons, one has EAk(ρ)↘ EA(ρ) for k ↘ −∞, giving the result by (27).

2.2. Illustrations in Rn. As a first illustration of the previous result, we consider the case
of the Laplacian on X = Rn. By group invariance, the density Fx(λ) is a constant given by
the value at 0 of the kernel of Πλ. To compute it, we remark that the spectral spaces E∆(λ)
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are functions whose Fourier transforms are supported in the ball Bn(0, λ1/2). It follows easily
(see e.g. [15, §4.2]) that

(30)
Fx(λ) = χ̂Bn(0,λ1/2)(0) = Cnλ

n/2

with Cn = (2π)−nvol(Bn(0, 1)) = (4π)−n/2Γ
(n

2
+ 1
)
,

and thus

(31) ϕΩ(y) =

∫ y

0
F−1

Ω (u)du =
n

n+ 2
(Cnvol(Ω))−2/ny1+2/n .

Applying Theorem 1.2 to the orthogonal projection ρ on the first N Dirichlet eigenfunctions
of ∆ in Ω, yields the following inequality, due to Berezin and Li-Yau (see [12], [13, Thm. 12.3])

(32) E∆(ρ) =

N∑
i=1

λi(Ω) ≥ n

n+ 2
(Cnvol(Ω))−2/nN1+2/n .

When Ω is a domain of finite boundary area, this bound is known to be sharp, up to lower
order term in N , in the semiclassical limit, i.e. for N goes to ∞; see e.g. [13, Thm. 12.11].

We observe that the previous technique also applies to other translation invariant differential
operators D on Rn; the spectral density F (λ) being still given by the volume of the level sets
{ξ | σ(D)(ξ) ≤ λ} of the symbol σ(D) of D (see also §4.3). Note that for invariant operators,
one has FΩ(λ) = µ(Ω)F (λ), hence

ϕΩ(y) = µ(Ω)

∫ y/µ(Ω)

0
F−1(u)du,

is ruled by the function Σ(x) =
∫ x

0 F
−1(u)du, and the Berezin-Li-Yau inequality (7) writes

(33)
N∑
k=1

λk(Ω) ≤ µ(Ω)Σ(N/µ(Ω)).

This is easily seen to coincide with the estimate proved by Strichartz in [17]. There Σ is
defined for positive operators by

Σ(F (λ)) = density(νAΠλ) =

∫
[0,λ[

udF (u) ,

linearly interpolated between the discrete spectrum; see [17, Definition 4.1] and (34) below.

Note that a similar discussion applies more generally for invariant operators on homogeneous
spaces, leading to inequalities of the same shape as (33). On symmetric spaces, where a Fourier
transform is available, one can still estimate F and Σ in some classical cases, as the Laplacian,
using a Plancherel formula; see examples in [17] and [15, §4.1].

Finally we mention the case of the two-dimensional Laplacian in a constant magnetic field:
H = (−i∇ + A)2, where the (connection) one-form A is such that dA = B is constant. This
example is studied in [9]. It turns out that although H is not an invariant operator on R2,
translations act on H up to unitary conjugation. Hence H has a constant (in space) spectral
density F anyway (the Landau staircase function), and (33) still holds; see [9] for details.
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2.3. Equality case and bathtub filling. The proof of Theorem 1.2 above shows that EA(ρ)

gets smaller and approaches the proposed lower bound ϕΩ(τ(ρ)) when:

(1) ρ is the largest possible, i.e close to χΩ, on Πλ for λ < λ0 = F−1
Ω (τ(ρ));

(2) and ρ is the smallest possible, i.e. close to 0, on Π>λ0 .

That means that ρ has to fill up, or saturate, as much as possible the lower energy levels it
can, under the constraint that ρ ⊂⊂ Ω and until the volume τ(ρ) is reached. This kind of
idea, clear from the physical viewpoint, is actually quite similar to the bathtub principle used
in the proof of Berezin-Li-Yau inequality (32) given by Lieb and Loss in [13, Theorem 12.3],
see also [9, 17].

In general, one can’t have equality in (6) unless ρ is pinched between Πλ0 = Π]−∞,λ0[(A) and
Πλ+

0
= Π]−∞,λ0](A) and supported in Ω. Hence, if the spectral spaces of A are not confined in

a proper subspace Ω of the ambient space X, the only remaining possibility is to take Ω = X

itself. This requires of course that dimEλ−0
= τ(Πλ−0

) ≤ τ(ρ) be finite.

2.4. Asymptotic sharpness and amenability. One can go beyond the previous equality
case and describe situations with X infinite and where (6) is asymptotically sharp. Given λ
and Ω, one considers the two states

ρΩ = χΩΠλχΩ and ρ̃Ω = ΠλχΩΠλ .

Notice that ρΩ is confined in Ω while ρ̃Ω is not. Still, one has τ(ρΩ) = τ(ρ̃Ω) = FΩ(λ) and we
claim that

(34) ϕΩ(τ(ρΩ)) = ϕΩ(FΩ(λ)) =

∫
]−∞,λ[

udFΩ(u) = EA(ρ̃Ω) ,

if this converges. To see this we proceed as in (26), assuming first that A is positive. One
finds

ϕΩ(FΩ(λ)) =

∫ F−1
Ω (FΩ(λ))

0
(FΩ(λ)− FΩ(u))du

=

∫ λ

0
(FΩ(λ)− FΩ(u))du ,

since FΩ(u) = FΩ(λ) for 0 ≤ λ ≤ u ≤ F−1
Ω (FΩ(λ)). Thus

ϕΩ(FΩ(λ)) =

∫
0≤u≤v<λ

dFΩ(v)du

=

∫
[0,λ[

vdFΩ(v) .

The general case follows by energy cut-off and shift as in §2.1.
When Ω is large, ‖ρ̃Ω‖∞ is close to 1, and (34) means that (6) is sharp for these states

ρ̃Ω. However they are not confined in Ω. Still EA(ρΩ) may be compared to EA(ρ̃Ω) in the
following situation. If X is a discrete metric space, and A is a bounded local operator, i.e.
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Af(x) depends only on the value of f in the ball B(x, r), then one has

|EA(ρΩ)− EA(ρ̃Ω)| = |τ(AχΩΠλχΩ)− τ(AΠλχΩΠλ)|
= |τ(ΠλχΩ(AχΩ − χΩA))|
≤ 2‖A‖∞|∂rΩ| ,

where |∂rΩ| is the cardinal of ∂rΩ = {x ∈ X | d(x,Ω) ≤ r and d(x,Ωc) ≤ r}. This leads to
the following asymptotic sharpness result for (6).

Proposition 2.1. Let X = Γ be a discrete amenable group, endowed with an invariant mea-
sure, and let A be a local translation invariant symmetric operator on X. Suppose that Ωn

is a Fölner sequence such that |∂rΩn|/|Ωn| → 0 when n → +∞. Set F = Fx and ϕ = ϕx
(constant in x). Then it holds that

(35) lim
n→+∞

EA(ρΩn)/|Ωn| = lim
n→+∞

‖ρΩn‖∞ϕΩn

( τ(ρΩn)

‖ρΩn‖∞
)
/|Ωn| = ϕ(F (λ)) .

This may be seen as the counterpart in the discrete setting to the semiclassical result recalled
in §2.2; here the sharpness of (6) is achieved on large domains and fixed energy, instead of
the contrary in the semiclassical limit. This statement applies for instance to the discrete
Laplacians on `2-cochains over amenable coverings of finite simplicial complex.

2.5. Faber–Krahn inequality and the heat technique. We can compare the lower bound
on the Dirichlet spectrum, or Faber-Krahn inequality, obtained in (7):

(36) λ1(Ω) ≥ ϕΩ(1) ,

to the one shown in [5, Prop. II.2] using a heat kernel technique. Namely, it follows from the
Nash inequality given there that if A is a positive operator, one has

(37) λ1(Ω) ≥ θ(Ω) = sup
t>0

1

t
ln
( 1

L(t)µ(Ω)

)
,

where L(t) = ‖e−tA‖1,∞. This bound is actually weaker than (36), at least on scalar operators.
Indeed, by (3), it holds that

L(t)µ(Ω) ≥ νe−tA(Ω) = τ(χΩe
−tAχΩ)

=

∫ +∞

0
e−tλdFΩ(λ)

≥
∫

[0,F−1
Ω (1)]

e−tλdF̃Ω(λ)

with F̃Ω(λ) = FΩ(λ) for λ < F−1
Ω (1) and F̃Ω(F−1

Ω (1)) = 1. Notice that 0 ≤ dF̃Ω ≤ dFΩ since
FΩ(F−1

Ω (1)) ≤ 1 ≤ FΩ(F−1
Ω (1)+) by left continuity of FΩ. Then by Jensen,

− ln
(
L(t)µ(Ω)

)
≤ t

∫
[0,F−1

Ω (1)]
λdF̃Ω(λ)

= t

∫ 1

0
(1− FΩ(λ))du = tϕΩ(1) ,

by (26). This gives θ(Ω) ≤ ϕΩ(1) as claimed.
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2.6. Proof of Corollary 1.3. When A is a positive operator, one has for c ∈ [0, 1],

ϕΩ(y) =

∫ y

0
F−1

Ω (u)du ≥
∫ y

cy
F−1

Ω (u)du(38)

≥ (1− c)yF−1
Ω (cy) .

Hence (8), that comes from (7), implies

NΩ(λ) ≤ 1

c
FΩ

( λ

1− c
)
,

giving (9) in the case c = 1/2. Unlike (8) these inequalities are not balanced.
We remark that if FΩ is a concave function, one can sharpen (38) into NΩ(λ) ≤ 2FΩ(λ)

by Jensen. When FΩ(λ)/λ is increasing, for instance when FΩ is a convex function, one sees
easily that NΩ(λ) ≤ FΩ(2λ).

3. The balanced Lieb–Thirring inequality

We now consider Theorem 1.4 and begin with the continuous case. The argument is an
improvement of [15, §3.2].

3.1. Proof of H(ρ) ≤ EA(ρ). Let ρ be a state, Ω any measurable set in X, and let consider
the splitting

ρ1/2χΩ = ρ1/2ΠλχΩ + ρ1/2Π≥λχΩ .

Using Hilbert-Schmidt norm and assuming by homogeneity that ‖ρ1/2‖∞ = ‖ρ‖1/2∞ = 1 yield

‖ρ1/2χΩ‖HS ≤ ‖ρ1/2ΠλχΩ‖HS + ‖ρ1/2Π≥λχΩ‖HS
≤ ‖ΠλχΩ‖HS + ‖ρ1/2Π≥λχΩ‖HS .

Since ‖P‖HS = τ(P ∗P )1/2 = τ(PP ∗)1/2, one finds by (1) that

(39) νρ(Ω)1/2 ≤ νΠλ(Ω)1/2 + νΠ≥λρΠ≥λ(Ω)1/2 .

This implies a similar inequality almost everywhere at the local level, i.e.

(40) Dµνρ(x)1/2 ≤ Fx(λ)1/2 +DµνΠ≥λρΠ≥λ(x)1/2 .

Indeed, using (39) on the sets

Ωa,b,c = {x ∈ X | Dµνρ(x) ≥ a2 , Fx(λ) ≤ b2 and DµνΠ>λρΠ>λ(x) ≤ c2}

with (a, b, c) ∈ D = {a, b, c ∈ Q+ | a > b+ c}, gives that µ(Ωa,b,c) = 0. Whence

{x ∈ X | (40) fails} =
⋃
D

Ωa,b,c

is also negligible. The author is grateful to Guy David for suggesting this level set argument.
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We now suppose that A is positive, and uses (25),

EA(ρ) =

∫ +∞

0
τ(ρ1/2Π≥λρ

1/2)dλ =

∫ +∞

0
τ(Π≥λρΠ≥λ)dλ

=

∫ +∞

0
νΠ≥λρΠ≥λ(X)dλ

=

∫
X×R+

DµνΠ≥λρΠ≥λ(x)dµ(x)dλ

≥
∫

Ω
DµνΠ≥λρΠ≥λ(x)dµ(x)dλ ,(41)

where Ω = {(x, λ) ∈ X × R+ | Fx(λ) ≤ Dµνρ(x)}. Then, by (40),

EA(ρ) ≥
∫

Ω

(
Dµνρ(x)1/2 − Fx(λ)1/2

)2
dµ(x)dλ

=

∫
X
ψx(Dµνρ(x))dµ(x)

with

(42) ψx(y) =

∫ F−1
x (y)

0

(
y1/2 − Fx(λ)1/2

)2
dλ .

We shall compare this expression to ϕx(y) =
∫ y

0 F
−1
x (t)dt. First, using

√
y −
√
u ≥

√
y

2
− u for 0 ≤ u ≤ y

2
,

and proceeding as in (26), one finds that

ψx(y) ≥
∫ F−1

x (y/2)

0

(y
2
− Fx(λ)

)
dλ

=

∫ y/2

0
F−1
x (t)dt = ϕx

(y
2

)
,
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This shows the comparison (14) claimed for positive operators. For the general expression
(12), one uses (42)

ψx(y) =

∫ F−1
x (y)

0

∫ y

Fx(λ)

(
u1/2 − Fx(λ)1/2

) du√
u
dλ

=

∫ F−1
x (y)

0

∫ y

Fx(λ)

∫ u

Fx(λ)

dvdudλ

2
√
uv

=

∫
{0≤Fx(λ)≤v≤u≤y}

dvdudλ

2
√
uv

=

∫ y

0

∫ u

0

∫ F−1
x (v)

0
dλ

dv

2
√
v

du√
u

=

∫ y

0

∫ u

0
F−1
x (v)

dv

2
√
v

du√
u

=

∫ y

0

∫ 1

0
F−1
x (t2u)dtdu

=

∫ 1

0
ϕx,t(y)dt ,

with ϕx,t(y) =
∫ y

0 F
−1
x (t2u)du as needed. This shows thatH(ρ) ≤ EA(ρ) for positive operators.

Remark 3.1. The inequality HP (ρ) ≤ EA(ρ) for partitions can be proved along the same lines;
just replacing (41) above by its discrete analogous

EA(ρ) ≥
∑
i

∫ F−1
Ωi

(νρ(Ωi))

0
νΠλρΠλ(Ωi)dλ ,

and using (39) in place of (40). Furthermore, the previous computations on ϕx and ψx apply
on ϕΩi and ψΩi instead.

The case of general (non-positive) operators can be handled as in §2.1; using the cut-off
Ak = max(A, k) and energy shift in these balanced inequalities. From the positive case, one
has ∫

X

∫ Dµνρ(x)

0

∫ 1

0
max(F−1

x (t2u), 0) dtdudµ(x) ≤ E+
A (ρ) <∞ ,

Hence E+
A (ρ) controls the positive part of the integral H(ρ). Then taking k ↘ −∞ yields

the result: by dominated convergence for the positive part and monotone convergence for the
negative one.

3.2. Behaviour of HP under partition refinement. We shall now prove that

HP ≤ HP ′ ≤ H

if P ′ = {Ω′j} is a finer partition of X than P = {Ωi}. This will actually follow by integration
in t ∈]0, 1] of the parametric inequalities

(43) HP,t ≤ HP ′,t ≤ Ht
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where

HP,t(ρ) = ‖ρ‖∞
∑
i

ϕΩi,t

(νρ(Ωi)

‖ρ‖∞

)
and Ht(ρ) = ‖ρ‖∞

∫
X
ϕx,t

(Dµνρ(x)

‖ρ‖∞

)
dµ(x) .

Remark 3.2. When t = 1, we have seen in (15) that these expressions give energy lower bounds
of collapsed states, and (43) means they also behave like an information quantity; actually
finer than the averaged H, but restricted to such states.

We start with the discrete vs. continuous inequality, in the positive case, i.e. Fx(0) = 0,
and assume again that ‖ρ‖∞ = 1. Given t > 0,

ϕx,t(y) =

∫ y

0
F−1
x (t2u)du and ϕΩi,t(y) =

∫ y

0
F−1

Ωi
(t2u)du

are convex functions whose Legendre transforms are respectively

ϕ∗x,t(z) =

∫ z

0
Fx(v)

dv

t2
and ϕ∗Ωi,t(z) =

∫ z

0
FΩi(v)

dv

t2
.

Young’s inequality states that for any y, z ≥ 0

yz ≤ ϕx,t(y) + ϕ∗x,t(z) .

Integrating it over Ωi with y = Dµνρ(x) yields

zνρ(Ωi) ≤
∫

Ωi

ϕt,x(Dµνρ(x))dµ(x) +

∫
Ωi

∫ z

0
Fx(v)

dv

t2
dµ(x)

=

∫
Ωi

ϕx,t(Dµνρ(x))dµ(x) + ϕ∗Ωi,t(z) ,

by Fubini and (5). Then by Legendre duality, one has

(44) ϕΩi,t(νρ(Ωi)) = sup
z≥0

(
zνρ(Ωi)− ϕ∗Ωi,t(z)

)
≤
∫

Ωi

ϕx,t(Dµνρ(x))dµ(x) .

This gives HP,t(ρ) ≤ Ht(ρ) by summation. The discrete comparison HP (ρ) ≤ HP ′(ρ) follows
the same lines: just replacing the integration over Ωi above by the discrete splitting of Ωi into
smaller Ω′j .

We now consider the general (non-positive) situation. From §3.1, the positive parts ofHt(Ω)

and HP,t(ρ) are finite if E+
A (ρ) is. Moreover we shall assume that the negative part of HP,t(ρ)

is finite, or (43) is already satisfied. This implies in particular that F−1
Ωi

(u) > −∞ for any i
and u > 0, and thus the functions FΩi(λ) =

∫
Ωi
Fx(λ)dµ(x) ↘ 0 when λ ↘ −∞. Whence,

fixing an i, one has a.e. in Ωi that Fx(λ)↘ 0 when λ↘ −∞. We shall now apply (44) to

Fk,x(λ) = Fx(λ+ k)− Fx(k) and Fk,Ωi(λ) = FΩi(λ+ k)− FΩi(k) .

This gives

F−1
k,x(u) = F−1

x (u+ Fx(k)))− k and F−1
k,Ωi

(u) = F−1
Ωi

(u+ FΩi(k)))− k ,

and ∫ νρ(Ωi)

0
F−1

Ωi
(t2u+ F−1

Ωi
(k))du ≤

∫
Ωi

∫ Dµνρ(x)

0
F−1
x (t2u+ Fx(k))dudµ(x) ,

leading to the result for k ↘ −∞.
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3.3. Illustration in Rn. We consider again the case of the Laplacian on Rn. From (30), one
has

(45) F−1
n (u) = C−2/n

n u2/n = 4πΓ(1 + n/2)2/nu2/n ,

giving

ψn(y) =

∫ 1

0

∫ y

0
F−1
n (t2u)dudt = Dny

1+2/n ,

with

Dn =
4π

(1 + 4/n)(1 + 2/n)
Γ(1 + n/2)2/n .

Thus, if ρ is a projection onto a N -dimensional space of orthonormal basis fi, (10) reads

(46) Dn

∫
Rn

( N∑
i=1

|fi(x)|2
)1+2/n

dx ≤
N∑
i=1

‖∇fi‖22 .

Such lower bound of the kinetic energy is due to Lieb–Thirring, see [13, Thm. 12.5] or [14],
and have important applications in quantum mechanics. The constant Dn given here is quite
sharp for large n. Indeed, by [13, §12.5], the (unknown) best constant has to be smaller than
Bn = (1 + 4/n)Dn. This follows from the remark that

ϕn(y) =

∫ y

0
F−1
n (u)du = Bny

1+2/n .

Indeed by Jensen inequality (or (43)) and Berezin-Li-Yau inequality (32) one has both

ϕn,Ω(N) = µ(Ω)−2/nϕn(N) ≤ Bn
∫

Ω

( N∑
i=1

|fi(x)|2
)1+2/n

dx and

N∑
i=1

‖∇fi‖22 ,

for functions confined in a domain Ω. As the second inequality is sharp in the semiclassical
limit N → +∞, the best constant in (46) is smaller than Bn as claimed.

Similar bounds can also be obtained from (10) for other examples of physical interest as
|∇| = ∆1/2 or the relativistic kinetic energy P = (∆ + m2)1/2 −m; see [6, 13]. One replaces
F−1
n above by respectively F−1

|∇| = (F−1
n )1/2 or F−1

P = (F−1
n +m2)1/2 −m. By (45), one finds

that ψ|∇| = Eny
1+1/n with

En = (4π)1/2 Γ(n/2 + 1)1/n

(1 + 2/n)(1 + 1/n)
.

In R3 this gives
N∑
i=1

(|∇|fi, fi) ≥ E3

∫
R3

( N∑
i=1

|fi(x)|2
)4/3

dx

with E3 ' 1, 754, which is slightly stronger than the constant 1, 63 given in [6, eq. (3.4)]. The
author is grateful to the referee for this observation.
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4. Entropy bounds

4.1. Proof of Theorem 1.5. We deduce Theorem 1.5 on the entropy sum from Theorem 1.4.
Consider the functions

FA(λ) = sup
Ω

FA,Ω(λ)

µ(Ω)
= supessx FA,x(λ) and FA(λ) = lim

ε→0+
FA(λ+ ε) .

We observe that FA is increasing and left continuous, since the FA,Ω are, while FA is right
continuous. We shall assume that FA(λ) is finite for λ � 0, in order that the hypothesis of
Theorem 1.5 hold for some state. This implies in particular by dominated convergence that
FA(λ)↘ 0 when λ↘ −∞. Then by (16), one has

FlnFA(A)(λ) ≤ FA ◦ (FA)−1(eλ) ≤ FA ◦ F−1
A (eλ) ≤ eλ,

by left continuity of FA. Hence by (12), it holds a.e. in X that

(47) ψlnFA(A),x(y) ≥
∫ 1

0

∫ y

0
ln(t2u)dudt = y ln y − 3y ,

leading to Theorem 1.5.

4.2. Illustration in Rn. We make explicit Theorem 1.5 in the case of the Laplacian on Rn.
Given a state ρ, we can express its spectral entropy Sλ(ρ) using Fourier transform. Suppose
that ρ =

∑
i piΠfi for orthonormal functions fi. Its Fourier transform ρ̂ acts on L2(Rnξ ) by

ρ̂(f̂) = ρ̂(f); actually ρ̂ =
∑

i piΠf̂i
using the Plancherel measure d∗ξ = (2π)−ndξ. At the

density level, this writes

(48) dνρ(x) =
∑
i

pi|fi(x)|2dx and dνρ̂(ξ) =
∑
i

pi|f̂i(ξ)|2d∗ξ .

By (30), Fn(λ) = Cnλ
n/2 and the spectral entropy is

Sλ(ρ) = τ(ln(Fn(∆))ρ) =
∑
i

pi〈ln(Cn∆n/2)fi, fi〉

=
∑
i

pi

∫
Rn

ln(Cn‖ξ‖n)|f̂i(ξ)|2d∗ξ

=

∫
Rn

ln(vol∗(Bn(0, ‖ξ‖))dνρ̂(ξ) .

Hence the entropy bound (17) writes here

(49)
∫
Rn

ln
(dνρ
dx

)
dνρ(x) ≤

∫
Rn

ln(vol∗(Bn(0, ‖ξ‖))dνρ̂(ξ) + τ(ρ)(3 + ln ‖ρ‖∞) .

To study the general sharpness of this bound, we first observe it implies a log-Sobolev
inequality. Indeed, Jensen inequality yields

(50)

∫
Rn

ln
(dνρ
dx

)dνρ(x)

τ(ρ)
≤ lnFn

(∫
Rn
‖ξ‖2

dνρ̂(ξ)

τ(ρ)

)
+ 3 + ln ‖ρ‖∞

= lnFn

(E∆(ρ)

τ(ρ)

)
+ 3 + ln ‖ρ‖∞ .
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This in turn implies a Berezin–Li–Yau type inequality for confined states in finite measure
sets Ω. Namely the convexity of y 7→ y ln y leads to

(51) τ(ρ) ≤ µ(Ω)‖ρ‖∞e3Fn

(E∆(ρ)

τ(ρ)

)
.

This may be compared to (6) where ϕΩ(y) = n
n+2yF

−1
n ( y

µ(Ω)) gives

τ(ρ) ≤ µ(Ω)‖ρ‖∞Fn
(n+ 2

n

E∆(ρ)

τ(ρ)

)
.

As recalled in §2.2 (and also §2.4 in a discrete setting) this inequality is sharp for all n, in the
semiclassical limit of large energy. It is indeed sharper than (51), since

Fn
(n+ 2

n
λ
)

= Cn

(n+ 2

n
λ
)n/2

≤ eFn(λ) .

As a consequence, the inequalities (49) and (50) are sharp except possibly for the constant 3

there, which can’t be taken smaller than 1 in this generality.

Remark 4.1. We notice that (51), with e instead of e3, is also an instance of the general
confined states result Theorem 1.2. Indeed when applied to lnFA(A), one can use

ϕlnFA(A),Ω(y) ≥
∫ y

0
ln
( u

µ(Ω)

)
du = y ln

( y

µ(Ω)

)
− y ,

instead of the weaker (not confined) ψ version (47).

We return to the log-Sobolev inequality (50) and compare it with a similar one proved by
Dolbeault, Felmer, Loss and Paturel in [8]. Namely it holds on unit trace states

(52)
∫
Rn

ln
(dνρ
dx

)
dνρ(x) ≤ n

2
ln
( e

2πn
E∆(ρ)

)
− S(ρ) ,

where S(ρ) = −τ(ρ ln ρ) is von Neumann’s entropy of ρ; see [18, 19]. From Fn(λ) = Cnλ
n/2

with
Cn = (2π)−nvol(Bn(0, 1)) = (4π)−n/2Γ(n/2 + 1)−1 ,

one finds that the difference between the right sides of (50) and (52) is

∆ = S(ρ) + ln ‖ρ‖∞ + 3 + ln
(
(
n

2e
)n/2/Γ(

n

2
+ 1)

)
.

One has S(ρ) ≥ − ln ‖ρ‖∞ in general, with equality on normalized projections on finite di-
mensional spaces ρ = ΠV / dimV . Moreover by Stirling formula

ln
(
(
n

2e
)n/2/Γ(

n

2
+ 1)

)
= −1

2
ln(πn) + o(1).

Hence (50) is stronger than (52) on uniformly distributed states like ρ = ΠV / dimV and high
ambient dimension n. On the contrary, (52) is stronger than (50) in fixed dimension on states
with irregular distributions. For instance, given an integer N ≥ 2, one can consider states ρN
on Rn with finite spectrum p0 = 1

lnN and pk = lnN−1
N lnN for k ∈ [1, N ]. One has τ(ρN ) = 1 and

− ln ‖ρN‖∞ = − ln p0 = ln(lnN), while

S(ρN ) = −
N∑
0

pi ln pi ∼ lnN � − ln ‖ρ‖∞ for large N.



DISTRIBUTION-ENERGY INEQUALITIES AND ENTROPY BOUNDS 19

Another relationship between the two log-Sobolev inequalities (50) and (52) appears in the
following process. Given a state ρ on Rn with τ(ρ) = 1, one can apply (50) to ⊗Nρ on RnN
for increasing N . One has

Sdx(⊗Nρ) = NSdx(ρ) , E∆(⊗Nρ) = NE∆(ρ) and − ln ‖ ⊗N ρ‖∞ = −N ln ‖ρ‖∞ ,

while

lnFnN
(
E∆(⊗Nρ)

)
=
Nn

2
ln
(

(4π)−1Γ
(Nn

2
+ 1
)−2/Nn

NE∆(ρ)
)

∼ N × n

2
ln
( e

2πn
E∆(ρ)

)
for large N

by Stirling formula. Therefore, (50) divided byN forN ↗ +∞ implies a “stabilized” inequality

(53)
∫
Rn

ln
(dνρ
dx

)
dνρ(x) ≤ n

2
ln
( e

2πn
E∆(ρ)

)
− ln ‖ρ‖∞.

which is closer to (52) except for the weaker term − ln ‖ρ‖∞ in place of S(ρ).

4.3. Proof of Theorem 1.7. The right spectral term of the previous entropy bound (49)
is associated to the level sets of the symbol σ∆(ξ) = ‖ξ‖2 of the Laplacian; namely at some
point ξ0, one has Bn(0, ‖ξ0‖)) = {ξ | σ∆(ξ) ≤ σ∆(ξ0)}, whose volume gives the spectral density
F∆(λ) at the energy λ = ‖ξ0‖2. Given a state ρ, one can consider more general translation
invariant operators, associated to other fillings of Rnξ , in order to minimize the spectral entropy
term Sλ(ρ). We shall proceed as follows.

Let σ be a bounded measurable function on Rnξ , and Aσ be defined by

Âσ(f)(ξ) = σ(ξ)f̂(ξ) .

Let Ωσ
λ = {ξ ∈ Rn | σ(ξ) ≤ λ}. The spectral projection ΠAσ(λ) acts through Fourier transform

by multiplication by χΩλ and, following e.g. [15, §4.1, §4.2], the spectral density of Aσ is

FAσ(λ) = ‖kΠAσ (λ)‖2L2
x

= ‖χΩσλ
‖2L2

ξ
= vol∗(Ωσ

λ) .

This leads to the following expression for the spectral entropy of a state ρ, as long these
integral have finite positive parts,

SAσ(ρ) = τ(lnFAσ(Aσ)ρ) =

∫
R

ln(vol∗(Ωσ
λ))dτ(ΠAσ(λ)ρ)

=

∫
R

ln(vol∗(Ωσ
λ))dτ(χΩσλ

ρ̂)

=

∫
R

ln(vol∗(Ωσ
λ))dνρ̂(Ω

σ
λ)

=

∫
R

ln(vol∗(Ωσ
λ))d(σ∗(νρ̂)(]−∞, λ])) ,

using the push-forward measure σ∗(νρ̂). This yields

(54) SAσ(ρ) =

∫
Rn

ln(vol∗(Ωσ
σ(ξ)))dνρ̂(ξ) .
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The strong functional invariance of this entropy is clear here. It stays unchanged if replacing
the symbol σ into f(σ) for any strictly increasing function f on σ(Rn), as comes from Ω

f(σ)
f(σ)(ξ) =

Ωσ
σ(ξ). The following statement gives the minimum of these quantities and implies Theorem 1.7.

Proposition 4.2. Given ρ, let g =
dνρ̂
d∗ξ and Fρ̂(y) = vol∗({ξ | g(ξ) > y}) as in (22). Then

one has

SAσ(ρ) ≥ SF (ρ̂)− τ(ρ) =

∫ +∞

0
Fρ̂(y) lnFρ̂(y)dy − τ(ρ) .

Equality holds if σ is a decreasing regular filling of the level sets of g in the following sense:
• for each y, there exists λ such that

{ξ | g(ξ) > y} ⊂ Ωσ
λ = {ξ | σ(ξ) ≤ λ} ⊂ {ξ | g(ξ) ≥ y};

• for all λ, vol∗(σ−1(λ)) = 0.

Equivalently, the level sets Ωσ
λ of a regular filling σ are the sets {ξ | g(ξ) ≥ y} (up to

zero measure) for regular values of ρ, i.e. when vol∗(g−1(y)) = 0, while on g−1(y) for the
(discrete) non-regular values, they interpolate continuously in measure between {ξ | g(ξ) > y}
and {ξ | g(ξ) ≥ y}. This can be achieved since the measure has no atom.

From Proposition 4.2, we notice that the use of the Laplacian is already optimal to minimize
the spectral entropy of states such that ρ̂ has a decaying radial density; Theorems 1.5 and 1.7
are equivalent on such states. On anisotropic states, one advantage of (23) over (49) appears in
its stronger invariance through general linear transforms f(x) 7→ f(Ax) and ρ 7→ ρA = AρA−1.
In such cases, one checks easily that

dνρA
dx

(x) = | detA|dνρ
dx

(Ax) while
dνρ̂A
d∗ξ

(ξ) = |detA|−1dνρ̂
d∗ξ

(tA−1ξ) ,

giving that

Sdx(ρA) = Sdx(ρ)− τ(ρ) ln |detA| while SF (ρ̂A) = SF (ρ̂) + τ(ρ) ln |detA| ,

which keeps the entropy sum unchanged in (49).

Proof of Proposition 4.2. Let v(ξ) = vol∗(Ωσ
σ(ξ)) and Fσ(z) = v∗(νρ̂)(]0, z]). Then by (54)

(55) SAσ(ρ) =

∫ +∞

0
ln ydFσ(y) = −

∫ 1

0
Fσ(y)

dy

y
+

∫ +∞

1
(τ(ρ)− Fσ(y))

dy

y
,

by Fubini, since Fσ(+∞) = τ(ρ̂) = τ(ρ). Hence SAσ1
(ρ) ≥ SAσ2

(ρ) if Fσ1 ≤ Fσ2 , and we have
to look for upper bounds for Fσ to minimize SAσ(ρ).

By definition, one has

Fσ(y) =

∫
Dσy

g(ξ)d∗ξ with Dσ
y = {ξ | vol∗(Ωσ

σ(ξ)) ≤ y} .

Clearly one has {ξ | σ(ξ) < λ} ⊂ Dσ
y ⊂ Ωσ

λ where λ = supDσy σ, and thus vol∗(Dσ
y ) ≤ y with

equality if vol∗(σ−1(λ)) = 0. Hence by the ’bathtub principle’ (see [13, Theorem 12.3]) one
has

(56) Fσ(y) ≤ F (y) =

∫
{g>F−1

ρ̂
(y)}

g(ξ)d∗ξ + F−1
ρ̂ (y)(y − Fρ̂(F−1

ρ̂ (y))) ,
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with F−1
ρ̂ (y) = inf{z | Fρ̂(z) ≤ y}. Indeed, this comes from the identity

Fσ(y)− F (y) =

∫
Dσy∩{g≤F

−1
ρ̂

(y)}
(g(ξ)− F−1

ρ̂ (y))d∗ξ

−
∫

(Dσy )c∩{g>F−1
ρ̂

(y)}
(g(ξ)− F−1

ρ̂ (y))d∗ξ + F−1
ρ̂ (y)(vol∗(Dσ

y )− y) .

Moreover this shows that equality holds in (56) if vol∗(Dσ
y ) = y and, up to zero measure sets,

{g > F−1
ρ̂ (y)} ⊂ Dσ

y ⊂ {g ≥ F−1
ρ̂ (y)}; which is fulfilled for regular fillings by the discussion

above.
We rewrite the function F (y) in a more convenient form. Since τ(ρ) = τ(ρ̂) =

∫
Rn g(ξ)d∗ξ,

one has ∫
{g>F−1

ρ̂
(y)}

g(ξ)d∗ξ = τ(ρ)−
∫
{g≤F−1

ρ̂
(y)}

g(ξ)d∗ξ

= τ(ρ)−
∫
{0≤u<g(ξ)≤F−1

ρ̂
(y)}

dud∗ξ

= τ(ρ)−
∫ F−1

ρ̂
(y)

0
(Fρ̂(u)− Fρ̂(F−1

ρ̂ (y))du

= τ(ρ)−
∫ F−1

ρ̂
(y)

0
Fρ̂(u)du+ F−1

ρ̂ (y)Fρ̂(F
−1
ρ̂ (y)) .

Then by (56),

F (y) = τ(ρ)−
∫ F−1

ρ̂
(y)

0
(Fρ̂(u)− y)du

= τ(ρ)−
∫
{y<v<Fρ̂(u)}

dvdu ,

since by right continuity of Fρ̂, one has u < F−1
ρ̂ (y) iff Fρ̂(u) > y. Therefore

(57) F (y) = τ(ρ)−
∫ +∞

y
F−1
ρ̂ (v)dv =

∫ y

0
F−1
ρ̂ (v)dv ,

since

τ(ρ) =

∫
Rn
g(ξ)d∗ξ =

∫
{0≤u<g(ξ)}

dud∗ξ =

∫ +∞

0
Fρ̂(u)du

=

∫
{0≤v<Fρ̂(u)}

dvdu =

∫ +∞

0
F−1
ρ̂ (v)dv .
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Finally, (55) and (57) lead to

SAσ(ρ) ≥
∫ +∞

0
ln yF−1

ρ̂ (y)dy =

∫
{0<z<F−1

ρ̂
(y)}

ln ydzdy

=

∫
{0<y<Fρ̂(z)}

ln ydydz

=

∫ +∞

0
Fρ̂(z)(lnFρ̂(z)− 1)dz = SF (ρ̂)− τ(ρ) ,

as claimed in Proposition 4.2. �

4.4. Proof of Corollary 1.8. We deduce Corollary 1.8 from Theorem 1.7. This relies on the
following entropy comparison:

(58) SF (ρ̂) ≤ Sd∗ξ(ρ̂) + τ(ρ)(1 + ln τ(ρ)) .

Indeed, one has

−Sd∗ξ(ρ̂)− τ(ρ) =

∫
Rn

ln
(dνρ̂
d∗ξ

)
dνρ̂ − τ(ρ̂)

=

∫
{0<y<

dνρ̂
d∗ξ }

ln ydyd∗ξ

=

∫ +∞

0
Fρ̂(y) ln ydy ,

thus

SF (ρ̂)− Sd∗ξ(ρ̂)− τ(ρ) =

∫ +∞

0
ln(yFρ̂(y))Fρ̂(y)dy

≤
∫ +∞

0
ln(τ(ρ))Fρ̂(y)dy = τ(ρ) ln τ(ρ) ,

since yFρ̂(y) = yvol∗{ξ | dνρ̂d∗ξ (ξ) > y} ≤
∫
Rn

dνρ̂
d∗ξd

∗ξ = τ(ρ). Then, (23) and (58) give

Sdx(ρ) + Sd∗ξ(ρ̂) ≥ −τ(ρ)(3 + ln τ(ρ) + ln ‖ρ‖∞) .

Then we observe that, except for the term −3τ(ρ), this expression is additive in taking
tensor product of unit trace states. Therefore, applying it to ⊗Nρ on RnN as in §4.2, and
dividing by N for N ↗ +∞, gives (24) on unit trace states, and the general statement by
homogeneity.

4.5. The role of von Neumann’s entropy. We finally discuss a possible improvement
of the last result Corollary 1.8 using von Neumann’s entropy S(ρ) in the lower bound for
Sdx(ρ) + Sd∗ξ(ρ). Following e.g. [18, 19], this intrinsic entropy is defined for unit trace states
by

S(ρ) = −τ(ρ ln ρ) .

For such states, one has S(ρ) ≥ − ln ‖ρ‖∞, with equality on normalized projections on finite
dimensional spaces ρ = ΠV / dimV . Hence on these projections (24) reads

(59) Sdx(ρ) + Sd∗ξ(ρ̂) ≥ S(ρ) (= ln dimV ).
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We don’t know whether this holds for general unit trace states. An interesting family of
examples here is given by the heat of the harmonic oscillator, which is the semigroup

ρt = exp(−t(∆ + ‖x‖2)) ,

acting on L2(Rnx). This state is the n-th tensor product of the one-dimensional case. Further-
more it is self-dual in Fourier transform, i.e. ρ̂t = ρt. The kernel of ρt is given by Mehler’s
formula (see [4, Chap. 4.2]):

ρt(x, y) = (2π sinh 2t)−n/2 exp
(
−1

2
(coth 2t)(‖x‖2 + ‖y‖2) + (sinh 2t)−1〈x, y〉

)
,

so that its density and trace are
dνρt
dx

= ρt(x, x) = (2π sinh 2t)−n/2 exp(−(tanh t)‖x‖2) and τ(ρt) = (2 sinh t)−n .

This leads easily to the entropies of the normalized states λt = ρt/τ(ρt), namely

Sdx(λt) =
n

2
− n

2
ln(

tanh t

π
) while Sd∗ξ(λ̂t) =

n

2
− n

2
ln(

tanh t

π
)− n ln(2π) ,

hence
Sdx(λt) + Sd∗ξ(λ̂t) = n− n ln 2− n ln(tanh t) .

To compute von Neumann’s entropy of λt, we recall that on R, the spectrum of ρt is given by
pk = e−(2k+1)t, k ∈ N. One finds that

S(λt) = nS(λRt ) = −n
∑
k≥0

(2 sinh t)pk ln((2 sinh t)pk)

= −n ln(2 sinh t)− 2nt sinh t
∑
k≥0

(−2k − 1)e−(2k+1)t

= −n ln(2 sinh t)− 2nt sinh t
( 1

2 sinh t

)′
= nt coth t− n ln 2− n ln(sinh t) .

Therefore we obtain

Sdx(λt) + Sd∗ξ(λ̂t)− S(λt) = n(1 + ln(cosh t)− t coth t) ,

which is easily seen to be increasing in t and positive. Hence these states also satisfy the
entropy bound (59), even sharply when t goes to 0. It is not sharp in the opposite limit t goes
to +∞. Indeed there λt converges to the pure ground state of the harmonic oscillator. One
has S(λt) → 0 while Sdx(λt) + Sd∗ξ(λ̂t) → n(1 − ln 2), which, following [1, 2, 20], is actually
the best lower bound for this entropy sum on pure states.

Another clue in favour of (59) on general (unit trace) states is that it implies the log-Sobolev
inequality (52) proved in [8]:

Sdx(ρ) +
n

2
ln
( e

2πn
E∆(ρ)

)
≥ S(ρ) .

Indeed by a classical inequality ([16, 10, 20]), a probability µ in Rnξ always satisfies

Sdξ(µ) = −
∫
Rd

ln
(dµ
dξ

)
dµ ≤ n

2
ln
(2πe

n
σ2(µ)

)
,
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where σ2(µ) =
∫
Rn ‖ξ − Eµ(ξ)‖2dµ is the variance of µ, and equality achieved on Gaussian

measures. Hence for µ = νρ̂, one has

Sd∗ξ(ρ̂) = Sdξ(ρ̂)− n ln(2π)

≤ n

2
ln
( e

2πn
σ2(νρ̂)

)
with

σ2(νρ̂) ≤
∫
Rn
‖ξ‖2dνρ̂ = τ(‖ξ‖2ρ̂) = τ(∆ρ) = E∆(ρ) .
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