ON THE CONSERVATION LAWS OF THE DEFOCUSING CUBIC NLS EQUATION

PATRICK GÉRARD

The defocusing cubic NLS equation

$$
\begin{equation*}
i \partial_{t} u+\partial_{x}^{2} u=2|u|^{2} u \tag{1}
\end{equation*}
$$

is well known to enjoy a Lax pair structure, discovered by Zakharov and Shabat in [4].
Given $u \in C^{\infty}(\mathbb{T}, \mathbb{C}), \mathbb{T}:=\mathbb{R} / 2 \pi \mathbb{Z}$, we consider the following differential operators acting on $L^{2}\left(\mathbb{T}, \mathbb{C}^{2}\right)$,

$$
\begin{gathered}
L_{u}=\left(\begin{array}{cc}
-D & u \\
\bar{u} & D
\end{array}\right), D:=-i \partial_{x}, \\
B_{u}=\left(\begin{array}{cc}
2 i \partial_{x}^{2}-i|u|^{2} & u^{\prime}+2 u \partial_{x} \\
\bar{u}^{\prime}+2 \bar{u} \partial_{x} & -2 i \partial_{x}^{2}+i|u|^{2}
\end{array}\right) .
\end{gathered}
$$

Notice that L_{u} is a selfadjoint operator with domain $H^{1}\left(\mathbb{T}, \mathbb{C}^{2}\right)$, therefore, for every $h>0$, the operator $\left(I+h^{2} L_{u}^{2}\right)^{-1}$ is well defined on $L^{2}\left(\mathbb{T}, \mathbb{C}^{2}\right)$ and valued into $H^{2}\left(\mathbb{T}, \mathbb{C}^{2}\right)$, hence is trace class as an operator on $L^{2}\left(\mathbb{T}, \mathbb{C}^{2}\right)$.
If $u=u(t, x)$ is a solution of (1), it also satisfies the Lax pair identity

$$
\frac{d}{d t} L_{u(t)}=\left[B_{u(t)}, L_{u(t)}\right]
$$

From the above Lax pair identity, the quantity $\operatorname{Tr}\left[\left(I+h^{2} L_{u(t)}^{2}\right)^{-1}\right]$ is independent on t. We are going to expand this quantity in powers of h as h goes to 0 . The coefficients of this expansion are therefore conservation laws of (1). In particular, we are going to prove the following result.

Theorem 1. For every $p \in \mathbb{N}$, there exists a polynomial function

$$
F_{p}=F_{p}\left(u, \ldots, u^{(p-1)}\right):\left(\mathbb{C} \simeq \mathbb{R}^{2}\right)^{p} \rightarrow \mathbb{R}
$$

at most quadratic in the variable $u^{(p-1)}$, such that

$$
E_{p}(u):=\int_{\mathbb{T}}\left[\left|u^{(p)}(x)\right|^{2}+F_{p}\left(u(x), \ldots, u^{(p-1)}(x)\right)\right] d x
$$

is a conservation law of (1).

Remarks

- Using the Sobolev inequalities, Theorem 1 implies that, for every $p \geq 1$, for every H^{p} solution u of (1), the family $(u(t))_{t \in \mathbb{R}}$ is bounded in $H^{p}(\mathbb{T})$. In fact, using the Birkhoff coordinates introduced in Grébert-Kappeler [2], we know that u is an almost periodic function on \mathbb{R} valued into $H^{p}(\mathbb{T})$. As a consequence, the family $(u(t))_{t \in \mathbb{R}}$ is relatively compact in $H^{p}(\mathbb{T})$.
- The boundedness of trajectories in $H^{s}(\mathbb{T})$ if $s \geq 1$ is not an integer, has been recently tackled in reference [3].
- The quantities $E_{p}(u)$ correspond to the conservation laws $I_{2 p+1}(u)$ described in the book by Faddeev-Takhtajan [1].

Proof. The operator

$$
I+h^{2} L_{u}^{2}=\left(1+h^{2} D^{2}\right) I+h^{2} M(x), M(x):=\left(\begin{array}{cc}
|u|^{2} & i u^{\prime} \\
-i \bar{u}^{\prime} & |u|^{2}
\end{array}\right)
$$

is a semiclassical differential operator $P(x, h D, h)$ with

$$
P(x, \xi, h)=\left(1+\xi^{2}\right) I+h^{2} M(x),
$$

therefore we can expand its inverse in powers of h as

$$
\left(I+h^{2} L_{u}^{2}\right)^{-1} \sim \sum_{j \geq 0} h^{j} A_{j}(x, h D),
$$

where matrix valued symbols A_{j} are given by semiclassical pseudodifferential calculus. They are characterized by the following infinite system,

$$
\begin{aligned}
\left(1+\xi^{2}\right) A_{0}(x, \xi) & =I \\
\left(1+\xi^{2}\right) A_{1}(x, \xi)-2 i \xi \partial_{x} A_{0}(x, \xi) & =0 \\
\left(1+\xi^{2}\right) A_{j}(x, \xi)-2 i \xi \partial_{x} A_{j-1}(x, \xi)+\left(M(x)-\partial_{x}^{2}\right) A_{j-2}(x, \xi) & =0, j \geq 2
\end{aligned}
$$

This leads to

$$
\begin{aligned}
& A_{0}(x, \xi)=\frac{1}{1+\xi^{2}} I, A_{1}(x, \xi)=0 \\
& A_{2}(x, \xi)=-\frac{1}{\left(1+\xi^{2}\right)^{2}} M(x), A_{3}(x, \xi)=-\frac{2 i \xi}{\left(1+\xi^{2}\right)^{3}} \partial_{x} M(x)
\end{aligned}
$$

with the following induction formula,

$$
A_{j}(x, \xi)=\frac{2 i \xi}{1+\xi^{2}} \partial_{x} A_{j-1}(x, \xi)+\frac{1}{1+\xi^{2}}\left(\partial_{x}^{2}-M(x)\right) A_{j-2}(x, \xi), j \geq 2
$$

Then we get, as h tends to 0 ,

$$
\operatorname{Tr}\left[\left(I+h^{2} L_{u}^{2}\right)^{-1}\right] \sim \sum_{j \geq 0} h^{j} \operatorname{Tr} A_{j}(x, h D) .
$$

Notice that
$\operatorname{Tr} A(x, h D)=\sum_{n \in \mathbb{Z}} \frac{1}{2 \pi} \int_{\mathbb{T}} \operatorname{tr} A(x, h n) d x=\frac{1}{2 \pi h} \int_{\mathbb{T}} \operatorname{tr} A(x, \xi) d x d \xi+O\left(h^{k}\right)$
for every $k \in \mathbb{N}$. Therefore each quantity

$$
T_{j}(u):=\frac{1}{2 \pi} \int_{\mathbb{T} \times \mathbb{R}} \operatorname{tr} A_{j}(x, \xi) d x d \xi
$$

is a conservation law. In view of the above formulae, T_{0} does not depend on $u, T_{1}=0$, while

$$
T_{2}(u)=-\frac{1}{4} \int_{\mathbb{T}} \operatorname{tr} M(x) d x=-\frac{1}{2} \int_{\mathbb{T}}|u(x)|^{2} d x
$$

Then $T_{3}(u)=0$, while

$$
T_{4}(u)=\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{1}{\left(1+\xi^{2}\right)^{3}} d \xi \int_{\mathbb{T}} \operatorname{tr}\left(M(x)^{2}\right) d x
$$

Since the eigenvalues of $M(x)$ are $|u(x)|^{2} \pm\left|u^{\prime}(x)\right|$, we conclude

$$
T_{4}(u)=\frac{3}{8} \int_{\mathbb{T}}\left(\left|u^{\prime}(x)\right|^{2}+|u(x)|^{4}\right) d x
$$

This proves the above theorem for $p=0,1$, which corresponds to the mass and energy conservation laws. Let us compute the next conservation law. Again we have $T_{5}(u)=0$, but

$$
\begin{aligned}
T_{6}(u)= & -\frac{1}{2 \pi} \int_{\mathbb{T} \times \mathbb{R}} \operatorname{tr}\left(M(x) A_{4}(x, \xi)\right) d x d \xi \\
= & {\left[\frac{1}{2 \pi} \int_{\mathbb{R}}\left(\frac{3}{\left(1+\xi^{2}\right)^{4}}-\frac{4}{\left(1+\xi^{2}\right)^{5}}\right) d \xi\right] \int_{\mathbb{T}} \operatorname{tr}\left(M^{\prime}(x)^{2}\right) d x } \\
& -\left[\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{1}{\left(1+\xi^{2}\right)^{4}} d \xi\right] \int_{\mathbb{T}} \operatorname{tr}\left(M(x)^{3}\right) d x
\end{aligned}
$$

We conclude
$T_{6}(u)=-\frac{5}{32} \int_{\mathbb{T}}\left(\left|u^{\prime \prime}(x)\right|^{2}+\left(\partial_{x}\left(|u(x)|^{2}\right)\right)^{2}+6\left|u(x) u^{\prime}(x)\right|^{2}+2|u(x)|^{6}\right) d x$.
This proves the case $p=2$. In order the prove the general case, we need the following lemma.
Lemma 1. For every $j \geq 2$, there exist functions $c_{j, \alpha_{1}, \ldots, \alpha_{r}}(\xi)$ such that

$$
A_{j}(x, \xi)=\sum_{2 r+\alpha_{1}+\ldots \alpha_{r}=j} c_{j, \alpha_{1}, \ldots, \alpha_{r}}(\xi) \partial_{x}^{\alpha_{1}} M(x) \ldots \partial_{x}^{\alpha_{r}} M(x)
$$

The proof of Lemma 1 is an easy induction on j, in view of the above induction formula for $A_{j}(x, \xi)$ and of the above formulae for $A_{2}(x, \xi)$, $A_{3}(x, \xi)$.

Let us complete the proof of Theorem 1. Let $p \geq 1$. From the induction formula, we infer

$$
T_{2 p+2}(u)=-\frac{1}{2 \pi} \int_{\mathbb{T} \times \mathbb{R}} \frac{\operatorname{tr}\left(M(x) A_{2 p}(x, \xi)\right)}{1+\xi^{2}} d x d \xi
$$

Next we apply Lemma 1 with $j=2 p$. The terms $\partial_{x}^{\alpha_{1}} M(x) \ldots \partial_{x}^{\alpha_{r}} M(x)$ in the decomposition of $A_{2 p}(x, \xi)$ are of three types :
(1) $r \geq 3$ and $\alpha_{1}+\cdots+\alpha_{r} \leq 2 p-6$. In this case, using integrations by parts, we obtain that the quantity

$$
\int_{\mathbb{T}} \operatorname{tr}\left(M(x) \partial_{x}^{\alpha_{1}} M(x) \ldots \partial_{x}^{\alpha_{r}} M(x)\right) d x
$$

is a sum of terms of the form

$$
\int_{\mathbb{T}} \operatorname{tr}\left(\partial_{x}^{\beta_{0}} M(x) \partial_{x}^{\beta_{1}} M(x) \ldots \partial_{x}^{\beta_{r}} M(x)\right) d x
$$

where $\beta_{k} \leq p-3$ for every k. In view of the expression of $M(x)$, these quantities can be written as

$$
\int_{\mathbb{T}} G\left(u(x), \ldots, u^{(p-2)}(x)\right) d x
$$

where G is a polynomial function.
(2) $r=2$ and $\alpha_{1}+\alpha_{2}=2 p-4$. Then the quantity

$$
\int_{\mathbb{T}} \operatorname{tr}\left(M(x) \partial_{x}^{\alpha_{1}} M(x) \partial_{x}^{\alpha_{2}} M(x)\right) d x
$$

is a sum of terms either of the form $\int_{\mathbb{T}} \operatorname{tr}\left(\partial_{x}^{\beta_{0}} M(x) \partial_{x}^{\beta_{1}} M(x) \partial_{x}^{\beta_{2}} M(x)\right) d x$, with $\beta_{k} \leq p-3$, or of the form $\int_{\mathbb{T}} \operatorname{tr}\left(M(x)\left(\partial_{x}^{p-2} M(x)\right)^{2}\right) d x$, which can be written as

$$
\int_{\mathbb{T}} H\left(u(x), \ldots, u^{(p-1)}(x)\right) d x
$$

when is a polynomial function, at most quadratic in $u^{(p-1)}$.
(3) $r=1$ and $\alpha_{1}=2 p-2$. Then, after integrating by parts, the contribution to $T_{2 p+2}(u)$ is

$$
(-1)^{p}\left[\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{c_{2 p, 2 p-2}(\xi)}{1+\xi^{2}} d \xi\right] \int_{\mathbb{T}} \operatorname{tr}\left(\left(\partial_{x}^{p-1} M(x)\right)^{2}\right) d x
$$

Notice that

$$
\begin{aligned}
\operatorname{tr}\left(\left(\partial_{x}^{p-1} M(x)\right)^{2}\right) & =\left(\partial_{x}^{p-1}\left(|u(x)|^{2}\right)-\left|\partial_{x}^{p} u(x)\right|\right)^{2}+\left(\partial_{x}^{p-1}\left(|u(x)|^{2}\right)+\left|\partial_{x}^{p} u(x)\right|\right)^{2} \\
& =2\left[\left(\partial_{x}^{p-1}\left(|u(x)|^{2}\right)\right)^{2}+\left|u^{(p)}(x)\right|^{2}\right] .
\end{aligned}
$$

Therefore, in order to complete the proof, we just have to check that the coefficient

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{c_{2 p, 2 p-2}(\xi)}{1+\xi^{2}} d \xi
$$

is not 0 . Set

$$
c_{j}(\xi):=c_{j, j-2}(\xi), j \geq 2 .
$$

The induction formula for $A_{j}(x, \xi)$ implies

$$
c_{j}(\xi)=\frac{2 i \xi}{1+\xi^{2}} c_{j-1}(\xi)+\frac{1}{1+\xi^{2}} c_{j-2}(\xi), j \geq 4
$$

Solving this linear induction problem in view of

$$
c_{2}(\xi)=-\frac{1}{\left(1+\xi^{2}\right)^{2}}, c_{3}(\xi)=\frac{-2 i \xi}{\left(1+\xi^{2}\right)^{3}},
$$

we obtain

$$
c_{j}(\xi)=-\frac{1}{2}\left(\frac{1}{(1+i \xi)(1-i \xi)^{j}}+\frac{(-1)^{j}}{(1-i \xi)(1+i \xi)^{j}}\right) .
$$

Consequently,

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{c_{2 p}(\xi)}{1+\xi^{2}} d \xi=-\frac{2 p+1}{2^{2 p+2}} \neq 0
$$

This completes the proof.

References

[1] Faddeev, L.D., Takhtajan, L.A., Hamiltonian Methods in the Theory of Solitons, Springer series in Soviet Mathematics, Springer, Berlin, 1987.
[2] Grébert, B., Kappeler, T., The defocusing NLS equation and Its Normal Form, EMS series of Lectures in Mathematics, European Mathematical Society, 2014.
[3] Kappeler, T., Schaad, B., Topalov, P., Scattering like phenomena of the periodic defocusing NLS equation, Preprint, May 2015, arXiv:1505.07394v1 [math.AP].
[4] Zakharov, V. E., Shabat, A. B., Exact theory of two-dimensional selffocusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP 34 (1972), no. 1, 62-69.

Université Paris-Sud XI, Laboratoire de Mathématiques d’Orsay, CNRS, UMR 8628

E-mail address: Patrick.Gerard@math.u-psud.fr

