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The defocusing cubic NLS equation

(1) i∂tu+ ∂2xu = 2|u|2u
is well known to enjoy a Lax pair structure, discovered by Zakharov
and Shabat in [4].

Given u ∈ C∞(T,C), T := R/2πZ, we consider the following differen-
tial operators acting on L2(T,C2),

Lu =

(
−D u
u D

)
, D := −i∂x ,

Bu =

(
2i∂2x − i|u|2 u′ + 2u∂x
u′ + 2u∂x −2i∂2x + i|u|2

)
.

Notice that Lu is a selfadjoint operator with domain H1(T,C2), there-
fore, for every h > 0, the operator (I + h2L2

u)
−1 is well defined on

L2(T,C2) and valued into H2(T,C2), hence is trace class as an opera-
tor on L2(T,C2).

If u = u(t, x) is a solution of (1), it also satisfies the Lax pair identity

d

dt
Lu(t) = [Bu(t), Lu(t)] .

From the above Lax pair identity, the quantity Tr
[
(I + h2L2

u(t))
−1
]

is

independent on t. We are going to expand this quantity in powers of
h as h goes to 0. The coefficients of this expansion are therefore con-
servation laws of (1). In particular, we are going to prove the following
result.

Theorem 1. For every p ∈ N, there exists a polynomial function

Fp = Fp(u, . . . , u
(p−1)) : (C ' R2)p → R,

at most quadratic in the variable u(p−1), such that

Ep(u) :=

∫
T

[
|u(p)(x)|2 + Fp(u(x), . . . , u(p−1)(x))

]
dx

is a conservation law of (1).
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Remarks

• Using the Sobolev inequalities, Theorem 1 implies that, for ev-
ery p ≥ 1, for every Hp solution u of (1), the family (u(t))t∈R is
bounded in Hp(T). In fact, using the Birkhoff coordinates in-
troduced in Grébert–Kappeler [2], we know that u is an almost
periodic function on R valued into Hp(T). As a consequence,
the family (u(t))t∈R is relatively compact in Hp(T).
• The boundedness of trajectories in Hs(T) if s ≥ 1 is not an

integer, has been recently tackled in reference [3].
• The quantities Ep(u) correspond to the conservation laws I2p+1(u)

described in the book by Faddeev–Takhtajan [1].

Proof. The operator

I + h2L2
u = (1 + h2D2)I + h2M(x) , M(x) :=

(
|u|2 iu′

−iu′ |u|2
)

is a semiclassical differential operator P (x, hD, h) with

P (x, ξ, h) = (1 + ξ2)I + h2M(x) ,

therefore we can expand its inverse in powers of h as

(I + h2L2
u)
−1 ∼

∑
j≥0

hjAj(x, hD) ,

where matrix valued symbols Aj are given by semiclassical pseudo-
differential calculus. They are characterized by the following infinite
system,

(1 + ξ2)A0(x, ξ) = I ,

(1 + ξ2)A1(x, ξ)− 2iξ∂xA0(x, ξ) = 0 ,

(1 + ξ2)Aj(x, ξ)− 2iξ∂xAj−1(x, ξ) + (M(x)− ∂2x)Aj−2(x, ξ) = 0 , j ≥ 2 .

This leads to

A0(x, ξ) =
1

1 + ξ2
I , A1(x, ξ) = 0 ,

A2(x, ξ) = − 1

(1 + ξ2)2
M(x) , A3(x, ξ) = − 2iξ

(1 + ξ2)3
∂xM(x) ,

with the following induction formula,

Aj(x, ξ) =
2iξ

1 + ξ2
∂xAj−1(x, ξ) +

1

1 + ξ2
(∂2x −M(x))Aj−2(x, ξ) , j ≥ 2 .

Then we get, as h tends to 0,

Tr
[
(I + h2L2

u)
−1] ∼∑

j≥0

hj TrAj(x, hD) .
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Notice that

TrA(x, hD) =
∑
n∈Z

1

2π

∫
T

trA(x, hn) dx =
1

2πh

∫
T

trA(x, ξ) dx dξ+O(hk)

for every k ∈ N. Therefore each quantity

Tj(u) :=
1

2π

∫
T×R

trAj(x, ξ) dx dξ

is a conservation law. In view of the above formulae, T0 does not
depend on u, T1 = 0, while

T2(u) = −1

4

∫
T

trM(x) dx = −1

2

∫
T

|u(x)|2 dx .

Then T3(u) = 0, while

T4(u) =
1

2π

∫
R

1

(1 + ξ2)3
dξ

∫
T

tr(M(x)2) dx .

Since the eigenvalues of M(x) are |u(x)|2 ± |u′(x)|, we conclude

T4(u) =
3

8

∫
T

(|u′(x)|2 + |u(x)|4) dx .

This proves the above theorem for p = 0, 1, which corresponds to the
mass and energy conservation laws. Let us compute the next conser-
vation law. Again we have T5(u) = 0, but

T6(u) = − 1

2π

∫
T×R

tr(M(x)A4(x, ξ)) dx dξ

=

 1

2π

∫
R

(
3

(1 + ξ2)4
− 4

(1 + ξ2)5

)
dξ

∫
T

tr(M ′(x)2) dx

−

 1

2π

∫
R

1

(1 + ξ2)4
dξ

∫
T

tr(M(x)3) dx .

We conclude

T6(u) = − 5

32

∫
T

(
|u′′(x)|2 + (∂x(|u(x)|2))2 + 6|u(x)u′(x)|2 + 2|u(x)|6

)
dx .

This proves the case p = 2. In order the prove the general case, we
need the following lemma.

Lemma 1. For every j ≥ 2, there exist functions cj,α1,...,αr(ξ) such that

Aj(x, ξ) =
∑

2r+α1+...αr=j

cj,α1,...,αr(ξ) ∂
α1
x M(x) . . . ∂αr

x M(x) .
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The proof of Lemma 1 is an easy induction on j, in view of the above
induction formula for Aj(x, ξ) and of the above formulae for A2(x, ξ),
A3(x, ξ).

Let us complete the proof of Theorem 1. Let p ≥ 1. From the induction
formula, we infer

T2p+2(u) = − 1

2π

∫
T×R

tr(M(x)A2p(x, ξ))

1 + ξ2
dx dξ .

Next we apply Lemma 1 with j = 2p. The terms ∂α1
x M(x) . . . ∂αr

x M(x)
in the decomposition of A2p(x, ξ) are of three types :

(1) r ≥ 3 and α1+ · · ·+αr ≤ 2p−6 . In this case, using integrations
by parts, we obtain that the quantity∫

T

tr(M(x)∂α1
x M(x) . . . ∂αr

x M(x)) dx

is a sum of terms of the form∫
T

tr(∂β0x M(x)∂β1x M(x) . . . ∂βrx M(x)) dx

where βk ≤ p−3 for every k. In view of the expression of M(x),
these quantities can be written as∫

T

G(u(x), . . . , u(p−2)(x)) dx

where G is a polynomial function.
(2) r = 2 and α1 + α2 = 2p− 4. Then the quantity∫

T

tr(M(x)∂α1
x M(x)∂α2

x M(x)) dx

is a sum of terms either of the form
∫
T tr(∂β0x M(x)∂β1x M(x)∂β2x M(x)) dx ,

with βk ≤ p − 3, or of the form
∫
T tr(M(x)(∂p−2x M(x))2) dx ,

which can be written as∫
T

H(u(x), . . . , u(p−1)(x)) dx

when is a polynomial function, at most quadratic in u(p−1).
(3) r = 1 and α1 = 2p − 2. Then, after integrating by parts, the

contribution to T2p+2(u) is

(−1)p

 1

2π

∫
R

c2p,2p−2(ξ)

1 + ξ2
dξ

 ∫
T

tr((∂p−1x M(x))2) dx .
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Notice that

tr((∂p−1x M(x))2) = (∂p−1x (|u(x)|2)− |∂pxu(x)|)2 + (∂p−1x (|u(x)|2) + |∂pxu(x)|)2

= 2[(∂p−1x (|u(x)|2))2 + |u(p)(x)|2] .
Therefore, in order to complete the proof, we just have to check that
the coefficient

1

2π

∫
R

c2p,2p−2(ξ)

1 + ξ2
dξ

is not 0. Set
cj(ξ) := cj,j−2(ξ) , j ≥ 2 .

The induction formula for Aj(x, ξ) implies

cj(ξ) =
2iξ

1 + ξ2
cj−1(ξ) +

1

1 + ξ2
cj−2(ξ) , j ≥ 4 .

Solving this linear induction problem in view of

c2(ξ) = − 1

(1 + ξ2)2
, c3(ξ) =

−2iξ

(1 + ξ2)3
,

we obtain

cj(ξ) = −1

2

(
1

(1 + iξ)(1− iξ)j
+

(−1)j

(1− iξ)(1 + iξ)j

)
.

Consequently,
1

2π

∫
R

c2p(ξ)

1 + ξ2
dξ = −2p+ 1

22p+2
6= 0 .

This completes the proof. �

References

[1] Faddeev, L.D., Takhtajan, L.A., Hamiltonian Methods in the Theory of
Solitons, Springer series in Soviet Mathematics, Springer, Berlin, 1987.
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