
1 Appendix : Isoperimetric profiles of wedges

1.1 Itai Benjamini’s problem

Definition. Let M be a Riemannian manifold with boundary. Define the
isoperimetric profile of M as the largest function I : (0, vol(M)) → R+ such
that for every compact set S ⊂ M ,

area((∂S) \ (∂M)) ≥ I(vol(S)).

Classical example. When M is a Euclidean ball of radius R,

I(v) ≥ const.R−1 min{v, vol(M)− v}.

Question. Let f : R+ → R+ be nondecreasing. Assume f grows less
than linearly. Consider the wedge in R3,

Wf = {(x, y, z) |x > 0, 0 < z < f(x)}.

View Wf as a manifold with boundary. What is the isoperimetric profile of
Wf ?

Guess. Since, at large scales, Wf looks like a thickened half-plane, min-
imizers should look like thickened disks.

1.2 The result

Let CR = Wf ∩ {x2 + y2 < R2} be the thickened disk of radius R in Wf .
Then

1

3
R2f(R) < vol(CR) <

π

2
R2f(R)

and

2Rf(R) < area(∂CR) < πRf(R).

Furthermore,

lim
R→+∞

vol(CR)
π
2
R2f(R)

= 1, lim
R→+∞

area(∂CR)

πRf(R)
= 1.
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Notation. Denote by R(v) the solution of π
2
R2f(R) = v. Set J(v) =

πR(v)f(R(v)). By definition of the isoperimetric profile I of the wedge,

area(∂CR) ≥ I(vol(CR)).

This implies

lim sup
v→+∞

I(v)

J(v)
≤ 1.

Conjecture. The isoperimetric profile I of the wedge satisfies

lim
v→+∞

I(v)

J(v)
= 1.

In this appendix, only a weaker statement is proven. Fortunately, it is
sufficient for Itai’s needs.

Theorem 1 Let f : R+ → R+ be nondecreasing. Assume x 7→ f(2x)/f(x)
and x 7→ f(x)/x are bounded near +∞. Then for v large enough, the isoperi-
metric profile I of the wedge Wf = {(x, y, z) |x > 0, 0 < z < f(x)} satisfies

I(v) ≥ const. J(v).

Remark. A concave function satisfies the assumptions of Theorem 1.

The proof of Theorem 1 occupies the rest of the appendix. The main
trick consists in cutting the wedge into portions Qj which are biLipschitz
equivalent to beams, i.e. products of rectangles with lines. By a reflection
principle, isoperimetry of beams reduces to isoperimetry of flat manifolds
of the form torus×line, which is known. The edge of the wedge requires a
specific treatment.

Remark. If f increases faster than linearly, then one expects the isoperi-
metric profile of Wf to be I(v) ∼ v2/3. It is so, for instance, if f has its
derivative bounded below, since then Wf is biLipschitz to a half-space.
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1.3 Profiles for flat manifolds

Notation. ML,h = R/LZ×R×R/hZ. We use the following result due to
L. Hauswirth, J. Pérez, P. Romon, and A. Ros, [HPRR] (see also [RR]).

Proposition 1 ([HPRR]). If L ≥ 9π
16

h, the isoperimetric profile of ML,h is
achieved by spheres, cylinders or strips bounded by parallel planes. In other
words, for every S ⊂ ML,h,

vol(S) ≤ 4π

81
h3 ⇒ area(∂S) ≥ (36π)1/3 vol(S)2/3,

4π

81
h3 ≤ vol(S) ≤ 1

π
L2h ⇒ area(∂S) ≥ (4π)1/2h1/2 vol(S)1/2,

vol(S) ≥ 1

π
L2h ⇒ area(∂S) ≥ 2Lh.

Corollary 2 Assume L ≥ h. For S ⊂ ML,h,

vol(S) ≤ 1

32π
h3 ⇒ area(∂S) ≥ 1

4
vol(S)2/3.

vol(S) ≤ 1

2π
L2h ⇒ area(∂S) ≥ 1

2
L−1vol(S).

Proof. First, assume that L ≥ 9π
16

h. If vol(S) ≥ 4π
81

h3, then

area(∂S) ≥ (4π)1/2h1/2 vol(S)1/2

= (4π)1/2(
L2h

vol(S)
)1/2L−1vol(S)

≥ 2 L−1vol(S).

Otherwise, if 4π
81

h3 ≤ vol(S) ≤ 1
π
L2h,

area(∂S) ≥ (36π)1/3 vol(S)2/3

= (36π)1/3(
L3

vol(S)
)1/3 L−1vol(S)

≥ (288π)1/3(
h3

vol(S)
)1/3 L−1vol(S)

≥ 18 L−1vol(S).

In both cases, area(∂S) ≥ 2 L−1vol(S).
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If h ≤ L ≤ 9π
16

h, use the affine 2-biLipschitz diffeomorphism of ML,h to
ML′,h with L′ = 2L ≥ 9π

16
h. This sends S to S ′ with vol(S ′) ≤ 8 vol(S).

If vol(S) ≤ 1
32π

h3 then vol(S ′) ≤ 4π
81

h3, thus area(∂S ′) ≥ (36π)1/3vol(S ′)2/3

and finally area(∂S) ≥ 1
4
vol(S)2/3.

If vol(S) ≤ 1
2π

L2h then vol(S ′) ≤ 1
π

L′2h, thus area(∂S ′) ≥ 2 L′−1vol(S ′)
and finally area(∂S) ≥ 1

2
L−1vol(S).�

1.4 Selecting a scale R

Let f be a nondecreasing function on R+. Assume that f(2x)/f(x) ≤ λ
for x large enough. Assume too that f(x)/x is bounded near +∞. Up to
multiplying f by a constant (which only changes the constant in the final
result), one can assume that f(x)/x ≤ 1 for x large enough.

Given v > 0, let R be defined by R2f(R) = 16πλ3v. Fix v large enough
so that f(R)/R ≤ 1 and f(2R)/f(R) ≤ λ.

Note that R ≤ 16λ3/2R(v). Indeed, if n is the smallest integer larger than
log(64λ3)/ log 4, then 4n−1 ≤ 64λ3 ≤ 4n,

π

2
(2−nR)2f(2−nR) ≤ π

2
4−nR2f(R) ≤ 16πλ3R2f(R) = v =

π

2
R(v)2f(R(v)),

which implies 2−nR ≤ R(v). By construction, 2n ≤ (256λ3)1/2, thus R ≤
16λ3/2R(v).

1.5 Cutting sets into 3 pieces

Let S ⊂ Wf have volume v. The goal is to estimate area(∂S) by v/R. Let
k be the largest integer such that f(kR) ≤ R.

Split S into 3 parts,

A = S ∩ {0 < x < R}, B = S ∩ {R < x < (k + 1)R},

C = S ∩ {x > (k + 1)R}.

1.6 Estimate for vol(A)

Consider the projection along the first factor proj(x, y, z) = (y, z). It de-
creases areas. Note that the restriction of proj to ∂S has global degree zero.
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At points of ∂S ∩ ∂Wf , proj has local degree 1. Therefore every point of
T = proj(∂S) is the projection of at least one point of ∂S which does not be-
long to ∂Wf , T = proj(∂S ∩Wf ). It follows that area(T ) ≤ area(∂S ∩Wf ).
Now A ⊂ [0, R]× T , thus

vol(A) ≤ R area(T ) ≤ R area((∂S) ∩Wf ).

1.7 Chopping and reflecting

Chop B and C into pieces

Pj = S ∩ {jR ≤ x ≤ (j + 1)R},

so that

B =
⋃
j≤k

Pj, C =
⋃

j≥k+1

Pj.

Pj is contained in a portion Qj = Wf ∩ {jR ≤ x ≤ (j + 1)R} which is
biLipschitz to a beam BR,f(jR) = {jR ≤ x ≤ (j + 1)R, 0 ≤ z ≤ f(jR)},
where the Lipschitz constant is at most f((j + 1)R)/f(jR) ≤ λ. Reflect Pj

in the hyperplanes {x = jR}, {z = 0}, and map it to the quotient manifold
MLj ,hj

with Lj = 2R, hj = 2f(jR). The obtained set Sj ⊂ ML,h has

4λ−3 ≤ vol(Sj)

vol(Pj)
≤ 4λ3, 4λ−2 ≤ area(∂Sj)

area(∂Pj \ ∂Qj)
≤ 4λ2.

In particular, for all j, vol(Sj) ≤ 4λ3vol(S).

1.8 Estimate for vol(B)

For j ≤ k, vol(Sj) ≤ 1
4π

R2f(R) ≤ 1
2π

L2
jhj and hj ≤ Lj. Corollary 2 gives

area(∂Sj) ≥
1

2
(2R)−1vol(Sj).

It follows that

vol(Pj) ≤ 1

4
λ3vol(Sj)

≤ 2λ3R area(∂Sj)

≤ 8λ5R area(∂Pj \ ∂Qj),
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and finally

vol(B) ≤ 8λ5R area((∂S) ∩Wf ).

Combining estimates for A and B leads to

vol(A) + vol(B) ≤ (8λ5 + 1)R area((∂S) ∩Wf )

≤ 9λ5 R area((∂S) ∩Wf ).

1.9 Estimate for vol(C)

For j ≥ k + 1, vol(Sj) ≤ 1
4π

R2f(R) ≤ 1
32π

(2R)3 ≤ 1
32π

min{hj, Lj}3. Corol-
lary 2 gives

area(∂Sj) ≥
1

4
vol(Sj)

2/3.

It follows that

vol(Pj)
2/3 ≤ (

1

4
)2/3λ2vol(Sj)

2/3

≤ 41/3λ2 area(∂Sj)

≤ 4−2/3λ4 area(∂Pj \ ∂Qj),

and finally

vol(C)2/3 = (
∑

j≥k+1

vol(Pj))
2/3

≤
∑

j≥k+1

vol(Pj)
2/3

≤ 4−2/3λ4
∑

j≥k+1

area(∂Pj \ ∂Qj)

≤ 4−2/3λ4 area((∂S) ∩Wf ).

1.10 Conclusion

Let τ = vol(C), v = vol(S). We have shown that

area((∂S) ∩Wf ) ≥
1

2
(42/3λ−4τ 2/3 +

1

9
λ−5R−1(v − τ)).
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The right hand side is a concave function of τ ∈ [0, v], which achieves its
minimum either at 0 or at v. One concludes that

area((∂S) ∩Wf ) ≥ min{21/3λ−4v2/3,
1

18
λ−5R−1v}.

It turns out that the minimum is 1
18

λ−5R−1v. Therefore

area((∂S) ∩Wf ) ≥ 1

24
λ−5R−1v

≥ 1

24
λ−5 1

16
λ−3/2R(v)−1v

=
1

776
λ−13/2J(vol(S)).

1.11 Remark

Only a coarser version, with unsharp constants, of the result of [HPRR] is
needed. A coarser proof can be given, along the following lines.

For every Riemannian manifold with a cocompact isometry group, ex-
tremal domains exist, so that the profile never vanishes. Extremal domains
with small enough volume look like small balls. In a flat manifold, they are
exactly balls. This occurs at a scale of the order of the injectivity radius.
This gives the first statement of Corollary 2, with an unsharp constant c,

vol(S) ≤ c h3 ⇒ area(∂S) ≥ (36π)1/3 vol(S)2/3.

Up to rescaling, one can assume that L = 1. Up to biLipschitz equiv-
alence, one can assume that 1/h is an integer. Let M1,1 → ML,h be the
1/h-fold cover of ML,h. If S ⊂ ML,h has volume c L2h, its inverse image S̃ in
M1,1 has volume ≤ c, thus

L

h
area(∂S) = area(∂S̃) ≥ (36π)1/3 vol(S̃)2/3 = (36π)1/3 vol(S)2/3(

L

h
)2/3.

Since vol(S) ≤ c L2h, h
L
≥ vol(S)/cL3, ( h

L
)1/3vol(S)2/3 ≥ vol(S)/c1/3L,

which leads to

area(∂S) ≥ const. L−1vol(S),

as announced.�
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