1 Appendix : Isoperimetric profiles of wedges

1.1 Itai Benjamini's problem

Definition. Let M be a Riemannian manifold with boundary. Define the isoperimetric profile of M as the largest function $I:(0, \operatorname{vol}(M)) \rightarrow \mathbf{R}_{+}$such that for every compact set $S \subset M$,

$$
\operatorname{area}((\partial S) \backslash(\partial M)) \geq I(\operatorname{vol}(S))
$$

Classical example. When M is a Euclidean ball of radius R,

$$
I(v) \geq \text { const. } R^{-1} \min \{v, \operatorname{vol}(M)-v\} .
$$

Question. Let $f: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$be nondecreasing. Assume f grows less than linearly. Consider the wedge in R^{3},

$$
W_{f}=\{(x, y, z) \mid x>0,0<z<f(x)\} .
$$

View W_{f} as a manifold with boundary. What is the isoperimetric profile of W_{f} ?

Guess. Since, at large scales, W_{f} looks like a thickened half-plane, minimizers should look like thickened disks.

1.2 The result

Let $C_{R}=W_{f} \cap\left\{x^{2}+y^{2}<R^{2}\right\}$ be the thickened disk of radius R in W_{f}. Then

$$
\frac{1}{3} R^{2} f(R)<\operatorname{vol}\left(C_{R}\right)<\frac{\pi}{2} R^{2} f(R)
$$

and

$$
2 R f(R)<\operatorname{area}\left(\partial C_{R}\right)<\pi R f(R) .
$$

Furthermore,

$$
\lim _{R \rightarrow+\infty} \frac{\operatorname{vol}\left(C_{R}\right)}{\frac{\pi}{2} R^{2} f(R)}=1, \quad \lim _{R \rightarrow+\infty} \frac{\operatorname{area}\left(\partial C_{R}\right)}{\pi R f(R)}=1
$$

Notation. Denote by $R(v)$ the solution of $\frac{\pi}{2} R^{2} f(R)=v$. Set $J(v)=$ $\pi R(v) f(R(v))$. By definition of the isoperimetric profile I of the wedge,

$$
\operatorname{area}\left(\partial C_{R}\right) \geq I\left(\operatorname{vol}\left(C_{R}\right)\right)
$$

This implies

$$
\limsup _{v \rightarrow+\infty} \frac{I(v)}{J(v)} \leq 1
$$

Conjecture. The isoperimetric profile I of the wedge satisfies

$$
\lim _{v \rightarrow+\infty} \frac{I(v)}{J(v)}=1 .
$$

In this appendix, only a weaker statement is proven. Fortunately, it is sufficient for Itai's needs.

Theorem 1 Let $f: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$be nondecreasing. Assume $x \mapsto f(2 x) / f(x)$ and $x \mapsto f(x) / x$ are bounded near $+\infty$. Then for v large enough, the isoperimetric profile I of the wedge $W_{f}=\{(x, y, z) \mid x>0,0<z<f(x)\}$ satisfies

$$
I(v) \geq \text { const. } J(v)
$$

Remark. A concave function satisfies the assumptions of Theorem 1.
The proof of Theorem 1 occupies the rest of the appendix. The main trick consists in cutting the wedge into portions Q_{j} which are biLipschitz equivalent to beams, i.e. products of rectangles with lines. By a reflection principle, isoperimetry of beams reduces to isoperimetry of flat manifolds of the form torus \times line, which is known. The edge of the wedge requires a specific treatment.

Remark. If f increases faster than linearly, then one expects the isoperimetric profile of W_{f} to be $I(v) \sim v^{2 / 3}$. It is so, for instance, if f has its derivative bounded below, since then W_{f} is biLipschitz to a half-space.

1.3 Profiles for flat manifolds

Notation. $M_{L, h}=\mathbf{R} / L \mathbf{Z} \times \mathbf{R} \times \mathbf{R} / h \mathbf{Z}$. We use the following result due to L. Hauswirth, J. Pérez, P. Romon, and A. Ros, [HPRR] (see also [RR]).

Proposition 1 ([HPRR]). If $L \geq \frac{9 \pi}{16} h$, the isoperimetric profile of $M_{L, h}$ is achieved by spheres, cylinders or strips bounded by parallel planes. In other words, for every $S \subset M_{L, h}$,

$$
\begin{aligned}
& \operatorname{vol}(S) \leq \frac{4 \pi}{81} h^{3} \Rightarrow \operatorname{area}(\partial S) \geq(36 \pi)^{1 / 3} \operatorname{vol}(S)^{2 / 3}, \\
& \frac{4 \pi}{81} h^{3} \leq \operatorname{vol}(S) \leq \frac{1}{\pi} L^{2} h \Rightarrow \operatorname{area}(\partial S) \geq(4 \pi)^{1 / 2} h^{1 / 2} \operatorname{vol}(S)^{1 / 2}, \\
& \operatorname{vol}(S) \geq \frac{1}{\pi} L^{2} h \Rightarrow \operatorname{area}(\partial S) \geq 2 L h .
\end{aligned}
$$

Corollary 2 Assume $L \geq h$. For $S \subset M_{L, h}$,

$$
\begin{aligned}
& \operatorname{vol}(S) \leq \frac{1}{32 \pi} h^{3} \Rightarrow \operatorname{area}(\partial S) \geq \frac{1}{4} \operatorname{vol}(S)^{2 / 3} \\
& \operatorname{vol}(S) \leq \frac{1}{2 \pi} L^{2} h \Rightarrow \operatorname{area}(\partial S) \geq \frac{1}{2} L^{-1} \operatorname{vol}(S)
\end{aligned}
$$

Proof. First, assume that $L \geq \frac{9 \pi}{16} h$. If $\operatorname{vol}(S) \geq \frac{4 \pi}{81} h^{3}$, then

$$
\begin{aligned}
\operatorname{area}(\partial S) & \geq(4 \pi)^{1 / 2} h^{1 / 2} \operatorname{vol}(S)^{1 / 2} \\
& =(4 \pi)^{1 / 2}\left(\frac{L^{2} h}{\operatorname{vol}(S)}\right)^{1 / 2} L^{-1} \operatorname{vol}(S) \\
& \geq 2 L^{-1} \operatorname{vol}(S)
\end{aligned}
$$

Otherwise, if $\frac{4 \pi}{81} h^{3} \leq \operatorname{vol}(S) \leq \frac{1}{\pi} L^{2} h$,

$$
\begin{aligned}
\operatorname{area}(\partial S) & \geq(36 \pi)^{1 / 3} \operatorname{vol}(S)^{2 / 3} \\
& =(36 \pi)^{1 / 3}\left(\frac{L^{3}}{\operatorname{vol}(S)}\right)^{1 / 3} L^{-1} \operatorname{vol}(S) \\
& \geq(288 \pi)^{1 / 3}\left(\frac{h^{3}}{\operatorname{vol}(S)}\right)^{1 / 3} L^{-1} \operatorname{vol}(S) \\
& \geq 18 L^{-1} \operatorname{vol}(S)
\end{aligned}
$$

In both cases, $\operatorname{area}(\partial S) \geq 2 L^{-1} \operatorname{vol}(S)$.

If $h \leq L \leq \frac{9 \pi}{16} h$, use the affine 2-biLipschitz diffeomorphism of $M_{L, h}$ to $M_{L^{\prime}, h}$ with $L^{\prime}=2 L \geq \frac{9 \pi}{16} h$. This sends S to S^{\prime} with $\operatorname{vol}\left(S^{\prime}\right) \leq 8 \operatorname{vol}(S)$.

If $\operatorname{vol}(S) \leq \frac{1}{32 \pi} h^{3}$ then $\operatorname{vol}\left(S^{\prime}\right) \leq \frac{4 \pi}{81} h^{3}$, thus area $\left(\partial S^{\prime}\right) \geq(36 \pi)^{1 / 3} \operatorname{vol}\left(S^{\prime}\right)^{2 / 3}$ and finally $\operatorname{area}(\partial S) \geq \frac{1}{4} \operatorname{vol}(S)^{2 / 3}$.

If $\operatorname{vol}(S) \leq \frac{1}{2 \pi} L^{2} h$ then $\operatorname{vol}\left(S^{\prime}\right) \leq \frac{1}{\pi} L^{\prime 2} h$, thus area $\left(\partial S^{\prime}\right) \geq 2 L^{\prime-1} \operatorname{vol}\left(S^{\prime}\right)$ and finally $\operatorname{area}(\partial S) \geq \frac{1}{2} L^{-1} \operatorname{vol}(S) . \diamond$

1.4 Selecting a scale R

Let f be a nondecreasing function on \mathbf{R}_{+}. Assume that $f(2 x) / f(x) \leq \lambda$ for x large enough. Assume too that $f(x) / x$ is bounded near $+\infty$. Up to multiplying f by a constant (which only changes the constant in the final result), one can assume that $f(x) / x \leq 1$ for x large enough.

Given $v>0$, let R be defined by $R^{2} f(R)=16 \pi \lambda^{3} v$. Fix v large enough so that $f(R) / R \leq 1$ and $f(2 R) / f(R) \leq \lambda$.

Note that $R \leq 16 \lambda^{3 / 2} R(v)$. Indeed, if n is the smallest integer larger than $\log \left(64 \lambda^{3}\right) / \log 4$, then $4^{n-1} \leq 64 \lambda^{3} \leq 4^{n}$,
$\frac{\pi}{2}\left(2^{-n} R\right)^{2} f\left(2^{-n} R\right) \leq \frac{\pi}{2} 4^{-n} R^{2} f(R) \leq 16 \pi \lambda^{3} R^{2} f(R)=v=\frac{\pi}{2} R(v)^{2} f(R(v))$,
which implies $2^{-n} R \leq R(v)$. By construction, $2^{n} \leq\left(256 \lambda^{3}\right)^{1 / 2}$, thus $R \leq$ $16 \lambda^{3 / 2} R(v)$.

1.5 Cutting sets into 3 pieces

Let $S \subset W_{f}$ have volume v. The goal is to estimate $\operatorname{area}(\partial S)$ by v / R. Let k be the largest integer such that $f(k R) \leq R$.

Split S into 3 parts,

$$
\begin{gathered}
A=S \cap\{0<x<R\}, \quad B=S \cap\{R<x<(k+1) R\}, \\
C=S \cap\{x>(k+1) R\} .
\end{gathered}
$$

1.6 Estimate for $\operatorname{vol}(A)$

Consider the projection along the first factor $\operatorname{proj}(x, y, z)=(y, z)$. It decreases areas. Note that the restriction of proj to ∂S has global degree zero.

At points of $\partial S \cap \partial W_{f}$, proj has local degree 1. Therefore every point of $T=\operatorname{proj}(\partial S)$ is the projection of at least one point of ∂S which does not belong to $\partial W_{f}, T=\operatorname{proj}\left(\partial S \cap W_{f}\right)$. It follows that $\operatorname{area}(T) \leq \operatorname{area}\left(\partial S \cap W_{f}\right)$. Now $A \subset[0, R] \times T$, thus

$$
\operatorname{vol}(A) \leq R \operatorname{area}(T) \leq R \operatorname{area}\left((\partial S) \cap W_{f}\right)
$$

1.7 Chopping and reflecting

Chop B and C into pieces

$$
P_{j}=S \cap\{j R \leq x \leq(j+1) R\},
$$

so that

$$
B=\bigcup_{j \leq k} P_{j}, \quad C=\bigcup_{j \geq k+1} P_{j} .
$$

P_{j} is contained in a portion $Q_{j}=W_{f} \cap\{j R \leq x \leq(j+1) R\}$ which is biLipschitz to a beam $B_{R, f(j R)}=\{j R \leq x \leq(j+1) R, 0 \leq z \leq f(j R)\}$, where the Lipschitz constant is at most $f((j+1) R) / f(j R) \leq \lambda$. Reflect P_{j} in the hyperplanes $\{x=j R\},\{z=0\}$, and map it to the quotient manifold $M_{L_{j}, h_{j}}$ with $L_{j}=2 R, h_{j}=2 f(j R)$. The obtained set $S_{j} \subset M_{L, h}$ has

$$
4 \lambda^{-3} \leq \frac{\operatorname{vol}\left(S_{j}\right)}{\operatorname{vol}\left(P_{j}\right)} \leq 4 \lambda^{3}, \quad 4 \lambda^{-2} \leq \frac{\operatorname{area}\left(\partial S_{j}\right)}{\operatorname{area}\left(\partial P_{j} \backslash \partial Q_{j}\right)} \leq 4 \lambda^{2}
$$

In particular, for all $j, \operatorname{vol}\left(S_{j}\right) \leq 4 \lambda^{3} \operatorname{vol}(S)$.

1.8 Estimate for $\operatorname{vol}(B)$

For $j \leq k, \operatorname{vol}\left(S_{j}\right) \leq \frac{1}{4 \pi} R^{2} f(R) \leq \frac{1}{2 \pi} L_{j}^{2} h_{j}$ and $h_{j} \leq L_{j}$. Corollary 2 gives

$$
\operatorname{area}\left(\partial S_{j}\right) \geq \frac{1}{2}(2 R)^{-1} \operatorname{vol}\left(S_{j}\right)
$$

It follows that

$$
\begin{aligned}
\operatorname{vol}\left(P_{j}\right) & \leq \frac{1}{4} \lambda^{3} \operatorname{vol}\left(S_{j}\right) \\
& \leq 2 \lambda^{3} R \operatorname{area}\left(\partial S_{j}\right) \\
& \leq 8 \lambda^{5} R \operatorname{area}\left(\partial P_{j} \backslash \partial Q_{j}\right),
\end{aligned}
$$

and finally

$$
\operatorname{vol}(B) \leq 8 \lambda^{5} R \text { area }\left((\partial S) \cap W_{f}\right)
$$

Combining estimates for A and B leads to

$$
\begin{aligned}
\operatorname{vol}(A)+\operatorname{vol}(B) & \leq\left(8 \lambda^{5}+1\right) R \operatorname{area}\left((\partial S) \cap W_{f}\right) \\
& \leq 9 \lambda^{5} R \operatorname{area}\left((\partial S) \cap W_{f}\right) .
\end{aligned}
$$

1.9 Estimate for $\operatorname{vol}(C)$

For $j \geq k+1, \operatorname{vol}\left(S_{j}\right) \leq \frac{1}{4 \pi} R^{2} f(R) \leq \frac{1}{32 \pi}(2 R)^{3} \leq \frac{1}{32 \pi} \min \left\{h_{j}, L_{j}\right\}^{3}$. Corollary 2 gives

$$
\operatorname{area}\left(\partial S_{j}\right) \geq \frac{1}{4} \operatorname{vol}\left(S_{j}\right)^{2 / 3} .
$$

It follows that

$$
\begin{aligned}
\operatorname{vol}\left(P_{j}\right)^{2 / 3} & \leq\left(\frac{1}{4}\right)^{2 / 3} \lambda^{2} \operatorname{vol}\left(S_{j}\right)^{2 / 3} \\
& \leq 4^{1 / 3} \lambda^{2} \operatorname{area}\left(\partial S_{j}\right) \\
& \leq 4^{-2 / 3} \lambda^{4} \operatorname{area}\left(\partial P_{j} \backslash \partial Q_{j}\right),
\end{aligned}
$$

and finally

$$
\begin{aligned}
\operatorname{vol}(C)^{2 / 3} & =\left(\sum_{j \geq k+1} \operatorname{vol}\left(P_{j}\right)\right)^{2 / 3} \\
& \leq \sum_{j \geq k+1} \operatorname{vol}\left(P_{j}\right)^{2 / 3} \\
& \leq 4^{-2 / 3} \lambda^{4} \sum_{j \geq k+1} \operatorname{area}\left(\partial P_{j} \backslash \partial Q_{j}\right) \\
& \leq 4^{-2 / 3} \lambda^{4} \operatorname{area}\left((\partial S) \cap W_{f}\right) .
\end{aligned}
$$

1.10 Conclusion

Let $\tau=\operatorname{vol}(C), v=\operatorname{vol}(S)$. We have shown that

$$
\operatorname{area}\left((\partial S) \cap W_{f}\right) \geq \frac{1}{2}\left(4^{2 / 3} \lambda^{-4} \tau^{2 / 3}+\frac{1}{9} \lambda^{-5} R^{-1}(v-\tau)\right) .
$$

The right hand side is a concave function of $\tau \in[0, v]$, which achieves its minimum either at 0 or at v. One concludes that

$$
\operatorname{area}\left((\partial S) \cap W_{f}\right) \geq \min \left\{2^{1 / 3} \lambda^{-4} v^{2 / 3}, \frac{1}{18} \lambda^{-5} R^{-1} v\right\}
$$

It turns out that the minimum is $\frac{1}{18} \lambda^{-5} R^{-1} v$. Therefore

$$
\begin{aligned}
\operatorname{area}\left((\partial S) \cap W_{f}\right) & \geq \frac{1}{24} \lambda^{-5} R^{-1} v \\
& \geq \frac{1}{24} \lambda^{-5} \frac{1}{16} \lambda^{-3 / 2} R(v)^{-1} v \\
& =\frac{1}{776} \lambda^{-13 / 2} J(\operatorname{vol}(S))
\end{aligned}
$$

1.11 Remark

Only a coarser version, with unsharp constants, of the result of [HPRR] is needed. A coarser proof can be given, along the following lines.

For every Riemannian manifold with a cocompact isometry group, extremal domains exist, so that the profile never vanishes. Extremal domains with small enough volume look like small balls. In a flat manifold, they are exactly balls. This occurs at a scale of the order of the injectivity radius. This gives the first statement of Corollary 2 , with an unsharp constant c,

$$
\operatorname{vol}(S) \leq c h^{3} \Rightarrow \operatorname{area}(\partial S) \geq(36 \pi)^{1 / 3} \operatorname{vol}(S)^{2 / 3}
$$

Up to rescaling, one can assume that $L=1$. Up to biLipschitz equivalence, one can assume that $1 / h$ is an integer. Let $M_{1,1} \rightarrow M_{L, h}$ be the $1 / h$-fold cover of $M_{L, h}$. If $S \subset M_{L, h}$ has volume $c L^{2} h$, its inverse image \tilde{S} in $M_{1,1}$ has volume $\leq c$, thus
$\frac{L}{h} \operatorname{area}(\partial S)=\operatorname{area}(\partial \tilde{S}) \geq(36 \pi)^{1 / 3} \operatorname{vol}(\tilde{S})^{2 / 3}=(36 \pi)^{1 / 3} \operatorname{vol}(S)^{2 / 3}\left(\frac{L}{h}\right)^{2 / 3}$.
Since $\operatorname{vol}(S) \leq c L^{2} h, \frac{h}{L} \geq \operatorname{vol}(S) / c L^{3},\left(\frac{h}{L}\right)^{1 / 3} \operatorname{vol}(S)^{2 / 3} \geq \operatorname{vol}(S) / c^{1 / 3} L$, which leads to

$$
\operatorname{area}(\partial S) \geq \text { const. } L^{-1} \operatorname{vol}(S)
$$

as announced. \diamond

References

[HPRR] L. HAUSWIRTH, J. PÉREZ, P. ROMON, A. ROS, The periodic isoperimetric problem. Trans. Amer. Math. Soc. 356, 2025 - 2047 (2004).
[RR] M. RITORÉ, A. ROS, Stable constant mean curvature tori and the isoperimetric problem in three-space forms. Comment. Math. Helv. 67, 293 - 305 (1992).

Pierre Pansu
Laboratoire de Mathématique d'Orsay UMR 8628 du C.N.R.S.
Bâtiment 425
Université Paris-Sud 11-91405 Orsay (France)
Pierre.Pansu@math.u-psud.fr
http://www.math.u-psud.fr/~pansu

