S2IFIPS 2008

Feuille d'exercices no 6b

Exercice 1

On définit une application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^2$ par $(u, v, w) \longmapsto (2w, u - v)$.

- (i) Trouver son noyau, son image et son rang. Vérifier que dim Ker $T + \dim \operatorname{Im} T = \dim \mathbb{R}^3$.
- (ii) T est-elle injective? surjective?
- (iii) Quelle est la matrice A représentant T relativement aux bases canoniques B_3 et B_2 ?
- (iv) On équipe à présent \mathbb{R}^3 de la base $B_3' = \{(1,1,0),(1,1,1),(0,2,1)\}$ et \mathbb{R}^2 de la base $B_2' = \{(1,-1),(1,1)\}$. Trouver les matrices de passage $B_2 \to B_2'$ et $B_3' \to B_3$ et la matrice A' représentant T relativement aux bases B_3' et B_2' .

Exercice 2

Les assertions suivantes sont-elles vraies ou fausses?

$$n+1 \sim n,$$
 $2^{n+1} \sim 2^n,$ $n+\sqrt{n} = O(n),$ $2^{n+\sqrt{n}} = O(2^n),$ $2^{\sqrt{n}} = o(2^n),$ $e^n = o(n!),$ $n! = o(n^n).$

Exercice 3

Trouver des équivalents pour les suites suivantes :

$$\sin(1+\frac{1}{n}), \qquad n\ln(1+\frac{1}{n}), \qquad \frac{1}{\ln(1+\frac{1}{n})} - \frac{1}{\sin\frac{1}{n}},$$

$$(1+\sin(\frac{1}{n}))^n, \qquad \sqrt{\ln(n+1)} - \sqrt{\ln(n)}, \qquad n\cos(\frac{1}{n}) - \sqrt{n^2 - 1},$$

$$\ln(\ln(n+1)) - \ln(\ln(n)), \qquad \ln(\sqrt(1+n^2) + n), \qquad \ln(\sqrt(1+n^2) - n), \qquad \cos(\frac{1}{n}) - \frac{1}{4}\cos(\frac{2}{n}) - \frac{3}{4}.$$

Exercice 4

Comparer la croissance des suites suivantes (O, Ω, Θ) :

$$\sin(n)$$
, $\ln(1+\frac{1}{n})$, $n\ln(1+\frac{1}{n}+e^n)$, $2+\cos(n)$.

Exercice 5

Calculer les limites des suites suivantes, en fonctions des éventuels paramètres :

$$n(\sqrt{1+\frac{1}{n}}-1), \qquad n\ln(1+\frac{1}{n}), \qquad n^2-\frac{1}{\sin^2(\frac{1}{n})}.$$

Exercice 6 On pose $u_n = \int_0^1 \frac{dt}{\sqrt{1+t^n}}$.

- (i) Soit $t \in]0,1[$. Donner un développement asymptotique au deuxième ordre, puis un encadrement, de $\frac{1}{\sqrt{1+t^n}}$ pour $n \to \infty$.
- (ii) En déduire un encadrement de u_n . Donner un développement asymptotique de u_n , de la forme

$$u_n = a + \frac{b}{n} + O(\frac{1}{n^2}).$$

Exercice 7

Donner un équivalent, à une constante près, du nombre d'opérations (additions, multiplications) nécessaires pour effectuer les calculs suivants, dans le cas le plus général :

- Ajouter deux matrices $n \times n$.
- Multiplier deux matrices $n \times n$.
- Résoudre un système linéaire de n équations à n inconnues.
- Inverser une matrice $n \times n$ par la méthode du pivot de Gauß.