Mathématiques

Feuille d'exercices 5

Applications linéaires

Exercice 1 Parmi les applications suivantes, lesquelles sont linéaires?

- 1. $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto xy;$
- 2. $f: \mathbb{R} \to \mathbb{R}^2, x \mapsto (2x, 0);$
- 3. $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x + y, x y)$;
- 4. $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$:
- 5. $f: \mathbb{C} \to \mathbb{C}, z \mapsto \overline{z}, \mathbb{C}$ étant considéré comme un \mathbb{R} -espace vectoriel;
- 6. $f:\mathbb{C}\to\mathbb{C},\,z\mapsto\overline{z},\,\mathbb{C}$ étant considéré comme un \mathbb{C} -espace vectoriel;
- 7. $f: \mathbb{C} \to \mathbb{C}, z \mapsto iz, \mathbb{C}$ étant considéré comme un \mathbb{R} -espace vectoriel;
- 8. $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x + y + 1;$
- 9. $f: \mathbb{R}^3 \mapsto \mathbb{R}^2$, $(x, y, z) \mapsto (x + y, x 2y + z)$;
- 10. $f: \mathbb{R}_n[X] \mapsto \mathbb{R}_n[X], P \mapsto P'$, où $\mathbb{R}_n[X]$ est le \mathbb{R} -espace vectoriel des polynômes de degré $\leq n$ et à coefficients réels;
- 11. $f: \mathbb{R}_n[X] \to \mathbb{R}_n[X], P \mapsto XP'$.

Pour celles qui sont linéaires, écrire leur matrice dans les bases canoniques. Déterminer leur noyau, leur image. Préciser si l'application est injective, surjective, bijective.

Exercice 2 Déterminer pour chaque condition s'il existe une application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ vérifiant

- 1. f(1,-1) = (2,3) et f(2,-2) = (3,2);
- 2. f(1,-1) = (2,3) et f(1,1) = (3,2);
- 3. f(1,-1) = (2,3) et f(3,-3) = (6,9).

Exercice 3 Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x, y, z) = (x + 2y - 2z, 2x + y - 2z, 2x + 2y - 3z).$$

- 1. Écrire la matrice A de f dans la base canonique de \mathbb{R}^3 .
- 2. Écrire la matrice B de f dans la base $\{(1,1,1),(-1,1,0),(1,0,1)\}.$
- 3. Donner une matrice inversible P telle que $PAP^{-1} = B$.

Exercice 4 Soit $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x, y, z, t) = (x - 2y - z + t, x + z + t, 3x - y + 2z + 3t).$$

- 1. Calculez une base du noyau de f.
- 2. Calculez une base de l'image de f, e_1, \ldots, e_n . Donnez-en aussi une équation.
- 3. Pour tout e_i , trouvez un élément $\tilde{e}_i \in \mathbb{R}^4$ tel que $f(\tilde{e}_i) = e_i$. Justifiez que la famille $\tilde{e}_1, \ldots, \tilde{e}_n$ est libre.
- 4. Soit $F = \text{Vect}\{\widetilde{e}_1, \dots, \widetilde{e}_n\}$. Vérifiez que F est un supplémentaire pour $\ker f$.

Exercice 5 Soit E le \mathbb{R} -espace vectoriel engendré par les fonctions $1, x, x^2, \sin x, \cos x$. Considérons l'endomorphisme

$$T: E \longrightarrow E$$
$$f \longmapsto f + f' + f''.$$

Démontrez que E est de dimension cinq et que T est linéaire. Écrivez la matrice de T dans la base donnée. Exhibez aussi des bases de $\ker T$ et $\operatorname{im} T$. Existe-t-il $g \in E$ tel que $T(g) = 2\sin x - 3\cos x + 6$?

Exercice 6 Soient E la droite de \mathbb{R}^3 engendrée par le vecteur (1,0,-2) et F le plan de \mathbb{R}^3 déquation x+y-z=0.

- 1. Donner des équations de E, une base de F. Montrer que E et F sont supplémentaires dans \mathbb{R}^3 .
- 2. Donner la matrice des applications suivantes: la projection p_E sur E parallèlement à E; la symétrie s_E par rapport à E, parallèlement à E; la symétrie s_F par rapport à E, parallèlement à E.

Exercice 7

- 1. Soit $p: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire vérifiant $p^2 = p$. Montrer que ker p et im p sont supplémentaires dans E. Que peut-on dire (géométriquement) de p?
- 2. Soit $s: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire vérifiant $s^2 = \mathrm{id}$. Montrer que im $(s \mathrm{id}) \subset \ker(s + \mathrm{id})$. En utilisant le théorème du rang, en déduire que $E = \ker(s \mathrm{id})$ et $F = \ker(s + \mathrm{id})$ sont supplémentaires dans \mathbb{R}^n . Que dire alors de s?
- 3. Soit p telle que $p^2 = p$. Construire à partir de p une application linéaire s vérifiant $s^2 = id$.

Exercice 8 Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire définie par

$$f(x, y, z, t) = (2x + y - z, -x + y - z + t, -x + t, x + y - z + t).$$

- 1. Calculez une base du noyau de f.
- 2. Trouvez une base du sous-espace vectoriel formé des vecteurs $u \in \mathbb{R}^4$ avec f(u) = u.
- 3. Trouvez une base du sous-espace vectoriel formé des vecteurs $u \in \mathbb{R}^4$ avec f(u) = 2u.
- 4. À l'aide des questions précédentes et du théorème du rang, trouvez une base de im f.

Exercice 9 Soit $\theta \in \mathbb{R}$ et définissons

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- 1. Calculez $R(\theta)R(\varphi)$. En déduire $R(\theta)^{-1}$.
- 2. Donnez une interprétation géométrique de l'application linéaire associée à $R(\theta)$.
- 3. Déterminez les réels λ et les vecteurs $u \in \mathbb{R}^2$ tels que $R(\theta)u = \lambda u$.
- 4. Déterminez les $\lambda \in \mathbb{C}$ et les vecteurs $v \in \mathbb{C}^2$ tels que $R(\theta)v = \lambda v$.