Mathématiques

Feuille d'exercices 4

Remarque : Sur cette feuille, les vecteurs qui sont traditionellement des colonnes (*e.g.* $\binom{a}{b}$) seront notés par une ligne suivi du symbole de la transposition (pour le précédent vecteur $(a,b,c)^{\dagger}$). D'autre part, on notera $\text{Vect}\{\vec{v}_1,\ldots,\vec{v}_n\}$ l'espace engendré par les vecteurs $\vec{v}_1,\ldots,\vec{v}_n$.

Exercice 1. Soit $a \in \mathbb{R}$. Parmi les sous-ensembles de \mathbb{R}^n suivants, lesquels (et pour quelle valeur de a, lorsque cela a un sens) sont des sous-espaces vectoriels.

$$\begin{split} E_1 &= \{(x,y)^\dagger \in \mathbb{R}^2 | x^2 + xy \ge 0\}, \\ E_3 &= \{(x,y)^\dagger \in \mathbb{R}^2 | x + ay + 1 \ge 0\}, \\ E_5 &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y = 0\}, \\ E_7 &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y = 0\}, \\ E_9 &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x^2 - z^2 = 0\}, \\ E_{11} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | z(x^2 + y^2) = 0\}, \\ E_{12} &= \{(x,y,z)^\dagger \in \mathbb{R}^4 | x = 0, \text{ et } x + 3az = 0\}, \\ E_{11} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{12} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x^2 - z = 0\}, \\ E_{13} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{14} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{15} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{16} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{17} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{18} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19} &= \{(x,y,z)^\dagger \in \mathbb{R}^3 | x + y + z = 0\}, \\ E_{19$$

Exercice 2. Soit \mathbb{P}_n l'espace vetoriel (sur \mathbb{R}) des polynômes (en une seule variable et à coefficients dans \mathbb{R}) de degré inférieur ou égal à n. Dites quels ensembles parmi les ensembles suivants sont des sous-espaces vectoriels de \mathbb{P}_3 .

$$E_1 = \{p(x) \in \mathbb{P}_3 | p'(0) = 3\}, \quad E_2 = \{p(x) \in \mathbb{P}_3 | p'(x) \in \mathbb{P}_1\},$$

 $E_3 = \{p(x) \in \mathbb{P}_3 | p(3) = 0\}, \quad E_4 = \{p(x) \in \mathbb{P}_3 | p(1) = p'(2)\}.$

Exercice 3. Soit \mathcal{F} l'espace vectoriel (sur \mathbb{R}) des fonctions de \mathbb{R} à valeur dans \mathbb{R} . Parmi les ensembles suivants, lesquels sont des sous-espaces vectoriels ?

$$\begin{split} E_1 &= \{f(x) \in \mathcal{F} | f(0) = 1\}, \\ E_3 &= \{f(x) \in \mathcal{F} | f \text{ est croissante}\}, \end{split} \quad E_2 = \{f(x) \in \mathcal{F} | f(1) = 0\}, \\ E_4 &= \{f(x) \in \mathcal{F} | f \text{ est dérivable}\}. \end{split}$$

Exercice 4. Soit $\vec{v}_1 = (1,1,0)^{\dagger}$, $\vec{v}_2 = (4,1,4)^{\dagger}$ et $\vec{v}_3 = (2,-1,4)^{\dagger}$.

- (a) Montrer que \vec{v}_1 et \vec{v}_2 ne sont pas colinéaires, puis qu'il en est de même pour \vec{v}_2 et \vec{v}_3 ainsi que \vec{v}_3 et \vec{v}_1 .
 - (b) La famille $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ est-elle libre?

Exercice 5. On considère dans \mathbb{R}^n une famille de quatre vecteurs linéairement indépendants : $\{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4\}$.

- (a) Que pouvez-dire sur *n*?
- (b) Les familles suivantes sont-elles libres?

$$\mathcal{E}_1 = \{\vec{e}_1, 2\vec{e}_2, \vec{e}_3\}, \qquad \mathcal{E}_2 = \{\vec{e}_1, 2\vec{e}_1 + \vec{e}_4, \vec{e}_4\}, \\
\mathcal{E}_3 = \{\vec{e}_3, 3\vec{e}_1 + 2\vec{e}_3, \vec{e}_2 + \vec{e}_3\}, \quad \mathcal{E}_4 = \{2\vec{e}_1 + \vec{e}_2, \vec{e}_1 - 3\vec{e}_2, \vec{e}_4, \vec{e}_2 - \vec{e}_1\}.$$

Exercice 6. Soit $E = \{(x, y, z, t)^{\dagger} \in \mathbb{R}^4 | x + y + z + t = 0\}$. Est-ce un sous-espace vectoriel? Si oui, en donner une base.

Exercice 7. Décrire le sous-espace de \mathbb{P}_2 (l'espace des polynômes de degré inférieur ou égal à 2) engendré par les polynômes 1-x, $(1-x)^2$, $(1+x)^2$ et x^2 ?

Exercice 8. Soit $\vec{e}_1 = (1,2,3,4)^{\dagger}$ et $\vec{e}_2 = (1,-2,3,-4)^{\dagger}$.

- (a) Existe-t-il $x, y \in \mathbb{R}$ tels que $(x, 1, y, 1)^{\dagger} \in \text{Vect}\{\vec{e}_1, \vec{e}_2\}$?
- (b) Qu'en est-il si on demande que $(x, 1, 1, y)^{\dagger} \in \text{Vect}\{\vec{e}_1, \vec{e}_2\}$?

Exercice 9. Soit $E = \text{Vect}\{(2,3,-1)^{\dagger}, (1,-1,-2)^{\dagger}\}$ et $F = \text{Vect}\{(3,7,0)^{\dagger}, (5,0,-7)^{\dagger}\}$ deux sous-espaces vectoriels de \mathbb{R}^3 . Montrer que E et F sont égaux.

Exercice 10. Pour chaque paire de ces sous-espaces vectoriels de \mathbb{R}^4 , donner la somme et dire si elle est directe

$$E_{1} = \text{Vect}\{(1,0,1,0)^{\dagger}, (5,-1,6,0)^{\dagger}\}$$

$$E_{2} = \text{Vect}\{(0,3,4,4)^{\dagger}, (-1,1,2,4)^{\dagger}\}$$

$$E_{3} = \text{Vect}\{(1,1,2,0)^{\dagger}, (1,2,3,0)^{\dagger}, (3,1,4,0)^{\dagger}\}$$

$$E_{4} = \text{Vect}\{(1,1,0,0)^{\dagger}, (1,3,2,4)^{\dagger}, (0,1,1,2)^{\dagger}\}$$

Exercice 11. On se place dans l'espace vectoriel \mathcal{F} des fonctions $f : \mathbb{R} \to \mathbb{R}$. Trouver lesquels parmi les espaces suivants sont en somme directe.

$$E_1 = \{ f \in \mathcal{F} | f \text{ est dérivable sur } \mathbb{R} \}$$
 $E_2 = \{ f \in \mathcal{F} | f(0) = 0 \}$
 $E_3 = \text{Vect}\{x^{1/3}, (x+2) \ln | x+2| \}$ $E_4 = \{ f \in \mathcal{F} | f(1) = 0 \}$

Exercice 12. Montrer que dans \mathbb{R}^3 les vecteurs $\vec{v}_1 = (1,0,1)^{\dagger}$, $\vec{v}_2 = (-1,-1,2)^{\dagger}$, et $\vec{v}_3 = (-2,1,-2)^{\dagger}$ forme une base. Calculer les coordonnées dans cette base d'un vecteur $\vec{x} = (x_1,x_2,x_3)^{\dagger}$.

Exercice 13. Soit $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ une base de \mathbb{R}^3 .

- (a) Montrer que $\vec{v}_1 = \vec{e}_1 + 2\vec{e}_2 + 2\vec{e}_3$ et $\vec{v}_2 = \vec{e}_2 + \vec{e}_3$ forme une famille libre.
- (b) Compléter la famille $\{\vec{v}_1, \vec{v}_2\}$ en une base de \mathbb{R}^3 .

Exercice 14. Soit le sous-espace vectoriel de \mathbb{R}^4 suivant $E = \{(x, y, z, t)^{\dagger} \in \mathbb{R}^4 | 2x - 2y - z + t = 0\}.$

- (a) Déterminer la dimension de E et une base de E.
- (b) Déterminer un supplémentaire de E.

Exercice 15. Soit $\vec{v}_1 = (1, -1, 2, 0)^{\dagger}$, $\vec{v}_2 = (0, 2, 1, 1)^{\dagger}$, $\vec{v}_3 = (1, 1, 3, 1)^{\dagger}$, et $\vec{v}_4 = (2, 0, 5, 1)^{\dagger}$ des vecteurs dans \mathbb{R}^4 .

- (a) Les vecteurs $\vec{v}_1, \vec{v}_2, \vec{v}_3$ et \vec{v}_4 sont-ils linéairement indépendants ?
- (b) Soit $F = \text{Vect}\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$. Déterminer la dimension de F et une base de F. En déduire le rang de la famille $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$.
 - (c) Donner un système d'équation caractérisant F.

(d) Trouver un supplémentaire de F.

Exercice 16. Soit $E = \{(x, y, z, t)^{\dagger} \in \mathbb{R}^4 | y + z + t = 0\}$ et $F = \{(x, y, z, t)^{\dagger} \in \mathbb{R}^4 | x + y = 0$ et $z = 2t\}$ deux sous-espaces vectoriels de \mathbb{R}^4 .

- (a) Déterminer la dimension et une base de E et F.
- (b) Trouver la dimension et une base de $E \cap F$.
- (c) Que peut-on dire de E + F? La somme est-elle directe?

Exercice 17. Soit donné les vecteurs suivant de \mathbb{R}^5 :

Soit E l'espace vectoriel engendré par \vec{v}_1, \vec{v}_2 , et \vec{v}_3 . De même, soit $F = \text{Vect}\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$.

- (a) Trouver la dimension et une base de E.
- (b) Même question pour F.
- (c) Déterminer la dimension et une base de E + F.
- (d) E et F sont-ils en somme directe? En déduire la dimension de $E \cap F$.
- (e) Donner une base de $E \cap F$.

Exercice 18. Soit $a \in \mathbb{R}$. Soit $\vec{v}_1 = (1, -1, 0, 2)^{\dagger}$, $\vec{v}_2 = (1, 0, 1, 2)^{\dagger}$, $\vec{v}_3 = (1, 3, 5, 7)^{\dagger}$ et $\vec{v}_4 = (0, 2, 3, a)$ des vecteurs de \mathbb{R}^4 .

- (a) Pour quelles valeurs de *a* la famille $\mathcal{V} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ est-elle une base?
- (b) Pour les valeurs de a où \mathcal{V} est liée, quelles sont les relations entre ces vecteurs?
- (c) Quelle est la dimension de $E = \text{Vect} \mathcal{V} = \text{Vect} \{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \}$ selon les valeurs de a?
- (d) Soit $k \in \mathbb{R}$. Soit $\vec{e} = (4, k, 1, 3)^{\dagger}$. Pour les valeurs de a où \mathcal{V} est liée, quelles sont les valeurs de k telles que $\vec{e} \in F$.
 - (e) Pour ces valeurs de k et de a, exprimer \vec{e} en fonction de $\vec{v}_1, \vec{v}_2, \vec{v}_3$ et \vec{v}_4 .
- (f) Quand est-ce que $\vec{e} \in F$ pour les valeurs de a où $\mathcal V$ est libre? Écrire les composantes de \vec{e} pour $\mathcal V$.