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Carnot manifolds
Definition. Let M be a manifold, H⊂TM a subbundle.

Assume that iterated Lie brackets of sections of H
generate TM. Call these data a Carnot manifold.

Choose euclidean metrics on fibers of H. Minimizing
lengths of horizontal curves defines a Carnot
metric.

Problem. How far can Carnot manifolds be from
Riemannian metrics.



Example : Heisenberg group
Heis3 = 3×3 unipotent real matrices,
H = kernel of left-invariant
 1-form  dz-ydx .

Choose left-invariant metric
dx2+dy2. Then dilations δε(x,y,z) ö(εx, εy, ε2z)

multiply distance by  ε.

ï  Hausdorff dimension = 4.



Carnot groups

Definition. A Carnot group is a Lie group G
equipped with one-parameter group of
automorphisms δε  such that

V1={vœLie(G) | δεv=εv} generates Lie(G).

 Take H = left-translated V1 . Then left-invariant
Carnot metrics are δε-homogeneous.

Define Vi+1=[Vi, V1]. Then
Hausdorff dimension = ∑ i dim(Vi) .



Equiregular Carnot manifolds

Definition. Given H⊂TM and xœM, let Hi(x)
= subspace of TxM generated by values at x
of i-th order iterated brackets of sections of
H. Say H is equiregular if dim(Hi) is
constant.

Example. M=—3, H generated by ∂x, ∂y +x2∂z,
is not equiregular.



Tangent cones of equiregular
Carnot manifolds

Theorem (Nagel-Stein-Wainger, Mitchell). An
equiregular Carnot manifold is asymptotic to a
Carnot group Gx at each point xœM. In particular,

Hausdorff dimension = ∑ i (dim(Hi)-dim(Hi-1)).

Example. In dimension 3, equiregular ⇔ contact.
Then Gx = Heis3 . In dimension 5, if codim(H)=1,
equiregular ⇔ contact (then Gx = Heis5) or H =
ker(α) with dα of rank 2 (then Gx = Heis5 × —2).



BiLipschitz equivalence

Theorem. Two Carnot groups are biLipschitz
homeomorphic (resp. quasiconformally
homeomorphic) if and only if they are
isomorphic.

Theorem (Mostow-Margulis). If f:M→M’ is a
quasiconformal homeomorphism, then for
all xœM, G’f(x) is isomorphic to Gx .



Hölder equivalence

Theorem (Rashevsky, Chow,..). A Carnot manifold
is α-Hölder-homeomorphic to a Riemannian
manifold, α r1/r if Hr=TM.

Remark. A Carnot manifold of dimension n and
Haudorff dimension d is not α-Hölder-
homeomorphic to a Riemannian metric if α>n/d.

Question. What is the best α , α(M,H) ?
Example. 1/2 b α(Heis3) b 3/4 .



The case of Heis3 (1/2)

Theorem. α(Heis3) b 2/3. i.e. Heis3 is not α-Hölder
homeomorphic to —3 for α > 2/3.

Lemma. Every topological surface in Heis3 has
Hausdorff dimension r3.

Theorem follows : f œ Cα : —333→ Heis3   fl
3 b dimHauf(S) b dimHauS / α = 2/α .



The case of Heis3 (2/2)

Proof of Lemma.
1. topdim(S) r 2 fl ∃ continuous curve c such that

every neighboring curve intersects S.
2. Can take c smooth, embedded and horizontal.
3. Insert c in a smooth submersion p: Heis3→ —2

with horizontal fibers.
4. Tube generated by ε-ball has volume b Cτ ε3 .
5.  Cover S with εj-balls. Corresponding tubes cover

a fixed open set.
6. ∑j εj

3 r  Vol(∪Tubes)/C is bounded away from 0.
Therefore  dimHauS r 3 .



Results to be covered

a. Two proofs of isoperimetric inequality.
b. An existence result for horizontal

submanifolds.
c. A Carnot version of de Rham theorem.
d. Applications to Hölder equivalence.
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Isoperimetric inequality

Theorem. Let K be a compact subset in an
equiregular Carnot manifold of Haudorff
dimension d. There exist constants c and C
such that for every domain D in K,

H d(D) b c fl H d(D) b C H d-1(∂D)d/d-1.

Corollary. α(M) b (n-1)/(d-1).



Proof of Carnot isoperimetric
inequality (1/4)

Flow tube estimates. Let X be a smooth horizontal
vector field, B an ε-ball, T the tube swept by B in
time τ under the flow of X. Then

H d(T) b const(X,K) τ/ε H d(B).
For the tube T(S) swept by a hypersurface S,

H d(T(S)) b const(X,K) τ H d-1(S).

Choose smooth horizontal vector fields X1,…,Xk such
that the « iterated orbit » of any point mœK under
them in time τ  contains B(m, τ) and is contained
in B(m,λτ), λ = const(K).



Proof of Carnot isoperimetric
inequality (2/4)

Local isoperimetric inequality. For every ball B of
radius R b const(K), such that B’=λB⊂K, and for
every subset D⊂K with H d(D) b H d(B)/2,

H d(D∩B) b const(K) R H d-1(∂D∩B’).

Indeed, one of the fields Xj moves a proportion
const(K) of the measure of D∩B outside D∩B in
time τ=2R. Thus the Xj-tube in time 2R of ∂D∩B’
contains const(K)H d(D∩B).



Proof of Carnot isoperimetric
inequality (3/4)

Covering lemma. If H d(D) b const(K), there exists
a collection of disjoint balls Bj such that

-    D is covered by concentric balls 2Bj.
-   H d(D∩ λ-1Bj) r λd H d(λ-2Bj)/2.
-   H d(D∩Bj) b λd H d(λ-1Bj )/2.

Indeed, given mœD, let B(m) be the last of the balls
B(m,λ-i) to satisfy H d(D∩B) b λd H d(λ-1 B)/2.

Then let B0 be the largest B(m), B1 the largest which
is disjoint from B0, …



Proof of Carnot isoperimetric
inequality (4/4)

End of proof. Local isoperimetric ineq. in λ-1Bj fl
H d(D∩λ-1Bj) b  const(K) Rj H d-1(∂D∩Bj).

Since
H d(D∩ λ-1Bj ) r λd H d(λ-2Bj)/2 r  const(K) Rj

d,
one gets
H d(D∩ λ-1Bj ) b  const(K) H d-1(∂D∩Bj)d/d-1.

Finally,
H d(D∩2Bj) b H d(2Bj) b const(K)H d(Bj)
b  const(K)H d(D∩λ-1Bj).
So one can sum up and estimate H d(D).



Sobolev meets Poincaré

Isoperimetric inequality is equivalent to Sobolev
inequality for compactly supported u,

||u||d/d-1 b const. ||du||1 .

Local isoperimetric inequality is equivalent to (weak)
(1,1)-Poincaré inequality, for arbitrary u defined
on a ball λB of radius R,

Infcœ— ÛB |u-c| b const. R ÛλB |du| .

Carnot case : replace du with dHu= du|H, the
horizontal differential.



Proof of Isoperimetric ⇔
Sobolev

1. Isoperimetric ⇔ Sobolev for characteristic
functions 1D of domains D.

2. Every nonnegative compactly supported
function  u  is a sum of characteristic functions,
u = ! 0∞ 1{u>t} dt .

3. Coarea formula
 ! 0∞ H d({u=t}) dt = ||dHu||1.



Proof of Local Isoperimetric ⇔
Poincaré

1. Up to replacing u with u-c,
H d({u>0}∩B), H d ({u<0}∩B) b H d(B)/2.

2.  u=u+-u- where u+=max{u,0}.
3.  ! B u+ = ! B ! 0∞ 1{u>t} dt = ! 0∞ H d({u>t} ∩B) dt .
4. Local isoperimetric inequality implies

! B u+ b const. ! 0∞ H d({u=t} ∩λB) dt.
5. Coarea fl ! B |u| b const. ! λB |dHu||.
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Topological dimension

Theorem (Alexandrov). A subset V⊂Mn has
topological dimension n-k ⇔ there are k-1-cycles
in M\V which do not bound chains of small
diameter in M\V.

Corollary. If topdim(V) r n-k, there exists a k-
dimensional polyhedron P and a continuous map
f:P→M such that any f’ C0-close to f hits V. Call
this f transverse to V.



Folded maps
Definition. P polyhedron. A map f:P→M is folded if

P is covered with subpolyhedra Pj such that f is a
smooth immersion on simplices of Pj and a
homeomorphism of Pj onto a smooth submanifold
with boundary.

Terminology. Say a Carnot manifold is k-rich if
given a C0 map f:P→M, where dim(P)=k, there
exists a nearby horizontal folded map F:P×—q→M
which is an immersion on Pj and a submersion on
Pj ×—q.



k-wealthfllower bound on
Hausdorff dimension

Lemma. Assume Mn is k-rich. Then for every n-k-
dimensional subset V⊂M,

 dimHau(V)-dim(V) r dimHau(M)-dim(M).
It follows that α(M) b (n-k)/(d-k).
Indeed, given F:P×—q→M which is close to a

transversal to V, pick —n-k⊂—q on which F is a
diffeo. F defines τ-tubes. Tubes generated by ε-
balls have volume b τkεd-k. Cover V with εj-balls.
Then ∑j εj

d-k r τ-kVol(∪Tubes) is bounded away
from 0.



Results

Theorem (Gromov). Let dim M=n. Assume
       h-k r (n-h)k. Then a generic h-dimensional

distribution H on M is k-rich. A contact structure
on M2m+1 is k-rich for all kbm.

Proof.
1. Linear algebra : existence of regular isotropic

subspaces in H.
2. Analysis : microflexibility of regular horizontal

submanifolds (Nash).
3. Topology : local to global (Smale).



Isotropic subspaces
Notation. Let H=ker(ϑ), where ϑ  is —n-h-valued. If

V⊂M is horizontal, then dϑ |TV = 0.

Definition. Let mœM. A subspace S⊂Hm is isotropic
if dϑ|S = 0.

Examples. 1-dimensional subspaces are always
isotropic. If H is a contact structure on M2m+1,
isotropic subspaces have dimension b m .



Linearizing horizontality

Goal. Apply inverse function theorem to horizontal
submanifold equation.

Write E(V)= ϑ |TV . Then
V  is horizontal ⇔ E(V)=0.

X vectorfield along V⊂M. Then
DVE(X)=(d(ιXϑ)+ιX(dϑ))|TV .



Regular subspaces
Definition. Assume H=ker(ϑ), where ϑ  is —n-h -

valued. Say S⊂Hm is regular if
Hm → Hom(S, —n-h),  X → ιX(dϑ))|S is onto.

Examples. In contact manifolds, all horizontal
subspaces are regular.

All 1-dimensional subspaces are regular ⇔ H
satisfies the strong bracket generating hypothesis.
This is very rare.



Generic case
Proposition. If S⊂Hm is isotropic and regular, then

h-k r (n-h)k, where h=dim H, k=dim S.
Conversely, if h-k r (n-h)k, a generic h-dimensional

distribution admits regular isotropic k-planes,
away from a small subset.

Indeed, regular isotropic k-planes are the smooth
points of the variety of isotropic k-planes. Their
existence is a Zariski open condition on a 2-form
ω. Assumption allows to construct at least one
such 2-form. The map ϑ→dϑ|ker(ϑ) is transverse to
the set of bad ω.



Algebraic inverses
Proposition. If TV⊂H is regular, DVE admits an

algebraic right inverse.
Indeed, if Mm : Tm*V→ Hm is a right inverse of X →
ιX(dϑ))|TV, β → M(β), Ω1(V) → C∞(H) is a right
inverse of DVE.

Remark. For f:V→—q, the first order linear operator
L(f)=Af+∑iBi∂if  œ —q’ is algebraicly invertible for
generic A and Bi if q q q’.

Indeed, to solve L(f)=g, it suffices to solve Bif=0 and
(A- ∑i ∂iBi)f=g.



Nash implicit function theorem

Theorem (Nash). Let F, G be bundles over V.
Assume E:C∞(F) → C∞(G) is a differential
operator whose linearization Df E admits a
differential right inverse Mf , which is defined for f
in a subset A of C∞(F) defined by an open
differential relation. Let s be large enough.

Then for each fœA, there exists a right inverse Ef
-1 of

E, defined on a Cs-neighborhood of E(f) in C∞(G).
Furthermore, Ef

-1 depends smoothly on parameters,
and is local : Ef

-1(g)(v) depends on g|B(v,1) only.



Approximate solutions.

Corollary. Any germ f0 that solves
E(f0)(m) = o(|m-m0|s)

can be deformed to a true local solution f1 : E(f1)=0.

Indeed, choose gœC∞(G) such that g= -E(f0) near m0,
but g is Cs-small. Set ft =Ef

-1 (E(f0)+tg).

In other words, it suffices to construct solutions up to
order s (s=2 is enough for the horizontal manifold
problem). This implies local existence.



Microflexibility (1/2)

Definition. Say an equation is (micro)flexible if
given compact sets K’⊂K⊂V, a solution f defined
on a neighborhood of K, and a deformation ft, tœ
[0,1], of its restriction to K’, the deformation
extends to a neighborhood of K (for a while, i.e.
for tœ [0,ε]). It should also work for families fp
parametrized by a polyhedron P.

Example. Inequations are always microflexible.



Microflexibility (2/2)

Corollary. If for fœA, Df E admits a differential right
inverse, then A∩{E=0} is microflexible.

Indeed, given solutions f on K and ft on K’, extend ft
arbitrarily to f’t defined on K. For t small, one can
set et=Ef’t

-1(0). Locality fl et= ft near K’.

Remark. (Micro)flexibility means that restriction of
solutions from K to K’ is a fibration (submersion).



h-principle

Definition (Gromov). Given an equation of order r,
there is a notion of nonholonomic solution, « r-jet
of a solution ».

Example. For horizontal immersions V→ (M,H), a
nonholonomic solution is a continuous map f: V→
M together with an isotropic injective linear map
TmV → Hf(m).

Say an equation satisfies the C0 h-principle if every
nonholonomic solution can be C0-approximated
by solutions (and also familywise).



h-principle as a homotopy theory

h-principle localizes near a compact subset K, and
has a relative version for a pair (K,K’).

Proposition. h-principle for K’ + h-principle for
(K,K’) fl h-principle for K.

Theorem (Smale). h-principle for K’ + h-principle
for K + diff. invariance + flexibility fl h-principle
for (K,K’).



Microflexibility versus flexibility

Corollary. Flexibility + local existence fl
global existence (h-principle).

Theorem (Gromov). Microflexibility on
V=W×— fl flexibility on W.
Microflexibility implies h-principle for
folded solutions.



Smooth horizontal immersions
Definition. S⊂H is superregular if S⊂S’, S’ is

regular isotropic and dim S’ = dim S +1.

Theorem (Gromov). Let dim M=n. Assume h-k r
(n-h)k. For a generic h-dimensional distribution H
on M the h-principle holds for k-1-dimensional
superregular horizontal immersions.

Theorem (Duchamp). In a contact manifold M2m+1 ,
the h-principle holds for k-dimensional horizontal
immersions for all kb m.



Regularity and calculus of
variations

Remark. The space of regular horizontal
immersions V→ (M,H) is a smooth
manifold. Therefore, one can write Euler-
Lagrange equations for the extremals of
functionals on such immersions.

Example. Variational Hamiltonian
Legendrian surfaces in S5 .



Back to the Hölder equivalence
problem

Let (Mn,Hh) be a Carnot manifold of Hausdorff
dimension d. Then from existence of horizontal
(folded) submanifolds, one gets the following
upper bounds for α=α (M,H), the best possible
exponent for a Hölder homeomorphism —n→M .

1.  α b (n-1)/(d-1) in general.
2.  α b (n-k)/(d-k) for generic H, if h-k r (n-h)k.
3.  α b (m+1)/(m+2) for contact H, n=2m+1.



From submanifolds to differential
forms

1. Hausdorff dimension of hypersurfaces and
the isoperimetric inequality

2. Hausdorff dimension of higher
codimensional submanifolds
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Horizontal forms
Remark. Let p:M→—q  be a submersion with

horizontal fibers. Then p*vol is a horizontal form,
i.e. its wedge product with a form that vanishes on
H is zero. Thus k-wealth implies abundance of
horizontal n-k-forms.

Notation. Let Θ* denote the ideal of forms that
vanish on H and A* its annihilator,

A*={η|η∧ϑ=0 ∀ϑœ Θ*}.
Elements of A* are called horizontal forms.



Existence of horizontal forms
(1/2)

Proposition. Every closed n-1-form is
cohomologous to a horizontal form.

Proof (Heisenberg group case). Let ϑ be the
contact form, ω a n-1-form. Since dϑ |H  is
symplectic, there is a unique n-3-form β on
Η such that (dϑ)|H∧β - ω|H =0. Extend β
arbitrarily. Then ω+d(ϑ∧β)  is horizontal.



Existence of horizontal forms
(2/2)

Proof (general case). Consider the operators
dH:Θ1→Ω2/Θ2 and dH:An-2→Ωn−1/An-1 induced by
the exterior differential. Both are order zero, and
adjoints of each other, since, for ϑœ Θ* and ηœ
A*,

 (dHϑ)∧η ± ϑ∧dHη = d(ϑ∧η) = 0.
Bracket generating fl dH is injective, so dH is

surjective. Given a closed n-1-form ω, there exists
ηœ An-2 such that dHη=-ω mod An-1, i.e. ω+dη is
horizontal.



Second proof of isoperimetric
inequality

Goal. H d(D) b C H d-1(∂D)d/d-1 (Carnot group case).
1. Choose horizontal representative of generator of

Hn-1(G\{e}/‚δ2Ú,Ÿ), lift it to G\{e}. Get horizontal
form ωe such that |ωe(g)| b const.|g|1-d . Left
translate it at each gœG.

2.  H d(D)= ! D(! ∂D ωg) dg b ! D×∂D d(g,g’)1-d dgdg’
= (! ∂D (! D d(g,g’)1-d dg)dg’.

3. If B is ball centered at g’ with H d(D)=H d(B),
             ! D d(g,g’)1-d dg b ! B d(g,g’)1-d dg = H d(D)1/d.



More horizontal forms, contact
case

Notation. Let Ι* ={α∧ϑ +β∧dϑ} denote the
differential ideal generated by forms that vanish
on H and J* its annihilator,

J*={η|η∧ϑ=0 ∀ϑœ Ι*}.

Theorem (Rumin). M2m+1 contact manifold.
There exists a second order differential operator

D:Ωm/Im → Jm+1  such that the complex
0 → Ω1/I1→...→ Ωm/Im → Jm+1 →...→ J2m+1 → 0
    is homotopy equivalent to the de Rham complex.



Rumin’s second order operator
Proof (case Heis3). ω a 1-form mod I1. Let β be the

unique function such that (dω +β dϑ)|H = 0. Set
Dω = d(ω +β ∧ ϑ) . Then dH D = D dH =0.

Locally, Dω = 0 ⇔ ω +βϑ is exact ⇔ ω is dH -exact.
Also, locally, a 2-form η is closed ⇔ η =d(ω +βdϑ)

in which case (ω +βϑ)|H = 0, thus η =Dω.

Corollary. There exist small open subsets in M with
closed non exact horizontal q-forms for all q r m+1.



Weights of differential forms
Definition. Say a q-form ω  on a Carnot manifold has

weight r w if its vanishes on all q-vectors of
Hi1...Hiq whenever i1+…+iq < w.

Examples. On a Carnot group, the dual basis of Vi has
weight i, and weight adds up under wedge product.

A q-form ω  on a Carnot group has weight r w ⇔ the
L∞ norm ||δε∗ω ||∞ b const. εw.

A q-form is horizontal ⇔ it has weight r d-n+q.
Goal. Show that the minimal weight of forms needed
to represent a cohomology class is a Hölder covariant.



Alexander-Spanier cochains (1/4)

Definition (Alexander-Spanier). A straight q-
cochain is a function on q+1-tuples of
points of diameter < δ. Set |c|ε = sup of c on
q+1-tuples of points of diameter < ε.

Properties. If δ is small enough, straight
cochains compute cohomology. There are
straight chains too, dual to cochains.



Alexander-Spanier cochains (2/4)

Proposition. On a Riemannian manifold,
straight cocycles representing nonzero
classes of degree q satisfy |c|ε r const. ε q .

Indeed, fix a cycle c’ such that c(c’) is
nonzero. Subdivide c’ into   const. ε -q
simplices of diameter b ε. Then c(c’) b
const. ε -q |c|ε .



Alexander-Spanier cochains (3/4)
Proposition. Let ω be a closed form of weight  r w

on some open set U. Then ∀ε, [ω] can be
represented by a straight cocycle cε such that

|cε |ε b const. εw .

Indeed, assume M is a Carnot group. Equip it with
an invariant Riemannian metric g and its dilates
δε∗g. Fill in straight simplices of unit size with
geodesic singular simplices. For each straight
chain σ, this gives a family σε . Set cε (σ)=! σε ω .
Then  |cε| b const. εw.



Alexander-Spanier cochains (4/4)

Corollary (Gromov). Define Wq(M) as the largest w
such that there exists an open set U⊂M and a
nonzero class in Hq(U, —) which can be represen-
ted by a form of weight r w. If there exists a α-
Hölder homeomorphism —n→M, then α b q/Wq .

Examples. For all Carnot manifolds, Wn-1(M) b d-1.
For contact M2m+1, Rumin’s theorem applies with
q=m+1, Wq(M) b m+2. One recovers the bound
given by h-principle for horizontal m-manifolds.



Rumin’s complex in general

Goal. Produce a retraction r of the de Rham complex
onto a subcomplex consisting of forms of high
weight.

Retraction means r=1-dB-Bd. Removing low weight
components ⇔ B inverts d on low weights.

Notation. Ω q,w={q-forms of weight r w}.
Properties. Ω*,w ∧ Ω*,w’ ⊂ Ω*,w+w’. dΩ*,w ⊂ Ω*,w .
d0 : Ω*,w / Ω*,w+1 → Ω*,w / Ω*,w+1 is algebraic, d0 =

Lie algebra differential on tangent cone.



Equihomological Carnot
manifolds

Definition. Say an equiregular Carnot manifold is
equihomological if dimensions of cohomology
groups of tangent Lie algebras are constant.

A choice of complements
   Vk of Hk-1 in Hk,
   F of ker d0 in Λ*T*M and
   E of im d0 in ker d0 ,
determines an inverse d0

-1. Set r=1-dd0
-1- d0

-1d.



Rumin’s complex

Theorem (Rumin). Assume M is equihomological.
The iterates rj stabilize to a projector p of Ω*M,
with image E = ker d0

-1 ∩ ker(d0
-1d) and kernel

F = im d0
-1 + im(dd0

-1). Both are subcomplexes.
p is a differential operator. Furthermore

E = {η œ E+F | dη œ E+F }.
In particular, E 1 identifies with Ω1/Θ1 .

Corollary. Assume that, in degree q, E+F ⊂ Ω q,w.
Then Wq(M) r w. It follows that α(M) b q/w.



Graduation and duality
Let G be a Carnot Lie algebra, G=V1⊕ …⊕Vr . Let

Λq,w = ⊕ i1+2i2+…+rir =w Λi1V1*…. Λir Vr*.
For adapted metric, use Hodge *: Λq,w →Λn-q,d-w.

Im d0 criterion. If im d0
q-1  ⊕w’<w Λq,w’ then

Wq(G) r w.

Ker d0 criterion. If ker d0
q ⊂ ⊕w’bw Λq,w’ then

Wn-q(G) r d-w.



Examples

Degree n-1. ker d0
1 =V1*=Λ1,1 fl Wn-1(G)r d-1.

Contact. ΛqG*= ΛqV1* ⊕ V2*Λq-1V1*.
d0(η+ϑ ∧ β) = dϑ ∧ β + ϑ ∧ 0.

 d0
q vanishes on ΛqV1*, is injective on V2*Λq-1V1*
if q r m+1. Thus ker d0

q =Λq,q flWn-q(G)r d-q.

Rank 2 distributions. im d0
1  Λ2,2 flWn-2(G)r 2.

Genericly (n>4), im d0
1  Λ2,2⊕Λ2,3 flWn-2(G)r 3.



Regular isotropic planes

Remark. If (G,V1) admits a regular isotropic
horizontal k-plane S, then ker d0

k ⊂ Λk,k. Therefore
Wk(G) r d-k.

Indeed, if ω œ ker d0
k ∩ Λk,>k, then ω=∑i=1

n-h aiϑi∧ηi
where ϑi œ Λ1,>1. If X œ V1, since S is isotropic,
(ιXdω)|S = ∑i=1

n-h ai (ιX dϑi)|S∧ηi|S. Choose X such
that all (ιX dϑi)|S vanish but one, which is
(ιXdϑi0)|S=*Sηi0|S. Conclude that ω =0.



Quaternionic Heisenberg group
 G=V1⊕V2 where V1=«n and V2=ℑm «, [u,v]=
ℑm‚u,vÚ. Then Aut(G,V1)  Sp(n)Sp(1) and
Λ2,*=Λ2,2⊕Λ2,3⊕Λ2,4 is a decomposition into
irreducible summands. Therefore ker d0

2 = Λ2,2,
which implies Wn-2(G) r d-2 = 4n+4.

Remark. Isotropic subspaces S exist in each
dimension kbn. They form a unique orbit —k ⊂—n

⊂ «n , entirely regular. Therefore horizontal
submanifolds of dimension <n obey h-principle.



Rumin’s retraction in the contact
case (1/2)

Let H= ker ϑ, where ϑ  is a contact form,dim=2m+1.
Choose V2 = ker dϑ . Then

d0(η+ϑ ∧ β) = dϑ ∧ β + ϑ ∧ 0 = L β.
Choose, for k b m,

Ek = {η œ Ωk | ϑ ∧ Lm-k+1 η=ϑ ∧ Lm-kdη=0},
Fk = {ϑ ∧ η | η œ Ωk-1},

and for k r m+1,
Ek = {η = dϑ ∧ β | dϑ ∧ β =0},
Fk = {ϑ ∧ Lm-k+1 η | η œ Ω*}.



Rumin’s retraction in the contact
case (2/2)

q-forms on H can be uniquely written η = η 0 + Lη1
+…+Lm’ηm’ where ηi are primitive and m’=m or
m-1 depending wether q is even or odd. Define

L-1η = η 1 +…+Lm’-1ηm’.  Then, for ω = η+ϑ ∧ β,
pω = rω = η0 - ϑ ∧ (L-1dη +β-βm).

Therefore, p-1ÎdÎp coincides with the second order
operator D.



Conclusion

As far as the Hölder equivalence problem is
concerned, the algebraic approach using
differential forms seems to give better results than
horizontal submanifolds : not all closed currents
are laminated.

Possibility of improvement : produce retraction onto
a subcomplex on which d0 vanishes.

New (metric-analytic ?) idea needed for Hölder
equivalence problem for Heis3.
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