Submanifolds and differential forms in Carnot groups

After M. Gromov and M. Rumin

Carnot manifolds

Definition. Let *M* be a manifold, $H \subset TM$ a subbundle. Assume that iterated Lie brackets of sections of *H* generate *TM*. Call these data a <u>Carnot manifold</u>.

Choose euclidean metrics on fibers of *H*. Minimizing lengths of <u>horizontal</u> curves defines a <u>Carnot</u> <u>metric</u>.

Problem. How far can Carnot manifolds be from Riemannian metrics.

Example : Heisenberg group

Heis³ = 3×3 unipotent real matrices, H = kernel of left-invariant 1-form dz-ydx.

 $\left(\begin{array}{rrrr}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)$

Choose left-invariant metric dx^2+dy^2 . Then dilations $\delta_{\varepsilon}(x,y,z) \longrightarrow (\varepsilon x, \varepsilon y, \varepsilon^2 z)$ multiply distance by ε .

 \implies Hausdorff dimension = 4.

Carnot groups

Definition. A <u>Carnot group</u> is a Lie group *G* equipped with one-parameter group of automorphisms δ_{ε} such that $V^{1}=\{v\in Lie(G) \mid \delta_{\varepsilon}v=\varepsilon v\}$ generates Lie(G).

Take H = left-translated V^{1} . Then left-invariant Carnot metrics are δ_{ε} -homogeneous.

Define $V^{i+1} = [V^i, V^1]$. Then Hausdorff dimension = $\sum i \dim(V^i)$.

Equiregular Carnot manifolds

Definition. Given $H \subset TM$ and $x \in M$, let $H^i(x)$ = subspace of $T_x M$ generated by values at xof *i*-th order iterated brackets of sections of H. Say H is <u>equiregular</u> if $dim(H^i)$ is constant.

Example. $M = \mathbb{R}^3$, H generated by ∂_x , $\partial_y + x^2 \partial_z$, is not equiregular.

Tangent cones of equiregular Carnot manifolds

Theorem (Nagel-Stein-Wainger, Mitchell). An equiregular Carnot manifold is asymptotic to a Carnot group G_x at each point $x \in M$. In particular, Hausdorff dimension = $\sum i (dim(H^i) - dim(H^{i-1}))$.

Example. In dimension 3, equiregular \Leftrightarrow contact. Then $G_x = Heis^3$. In dimension 5, if codim(H)=1, equiregular \Leftrightarrow contact (then $G_x = Heis^5$) or $H = ker(\alpha)$ with $d\alpha$ of rank 2 (then $G_x = Heis^5 \times \mathbb{R}^2$).

BiLipschitz equivalence

Theorem. Two Carnot groups are biLipschitz homeomorphic (resp. quasiconformally homeomorphic) if and only if they are isomorphic.

Theorem (Mostow-Margulis). If $f:M \rightarrow M'$ is a quasiconformal homeomorphism, then for all $x \in M$, $G'_{f(x)}$ is isomorphic to G_x .

Hölder equivalence

Theorem (Rashevsky, Chow,...). A Carnot manifold is α -Hölder-homeomorphic to a Riemannian manifold, $\alpha \ge 1/r$ if $H^r = TM$.

Remark. A Carnot manifold of dimension *n* and Haudorff dimension *d* is not α -Hölderhomeomorphic to a Riemannian metric if $\alpha > n/d$.

Question. What is the best α , $\alpha(M,H)$? **Example**. $1/2 \le \alpha(Heis^3) \le 3/4$.

The case of $Heis^3(1/2)$

Theorem. $\alpha(Heis^3) \leq 2/3$. i.e. $Heis^3$ is not α -Hölder homeomorphic to \mathbb{R}^3 for $\alpha > 2/3$.

Lemma. Every topological surface in *Heis*³ has Hausdorff dimension ≥3.

Theorem follows : $f \in C^{\alpha} : \mathbb{R}^{3} \to Heis^{3} \Rightarrow$ $3 \leq dim_{Hau} f(S) \leq dim_{Hau} S / \alpha = 2/\alpha$.

The case of $Heis^3(2/2)$

Proof of Lemma.

- 1. topdim(S) $\ge 2 \Rightarrow \exists$ continuous curve *c* such that every neighboring curve intersects *S*.
- 2. Can take *c* smooth, embedded and horizontal.
- 3. Insert *c* in a smooth submersion *p*: $Heis^3 \rightarrow \mathbb{R}^2$ with horizontal fibers.
- 4. Tube generated by ε -ball has volume $\leq C\tau \varepsilon^3$.
- 5. Cover *S* with ε_j -balls. Corresponding tubes cover a fixed open set.
- 6. $\sum_{j} \varepsilon_{j}^{3} \ge Vol(\bigcup \text{Tubes})/\text{C} \text{ is bounded away from 0.}$ Therefore $dim_{Hau}S \ge 3$.

Results to be covered

- a. Two proofs of isoperimetric inequality.
- b. An existence result for horizontal submanifolds.
- c. A Carnot version of de Rham theorem.
- d. Applications to Hölder equivalence.

Contents

- 1. Hausdorff dimension of hypersurfaces and the isoperimetric inequality
- 2. Hausdorff dimension of higher codimensional submanifolds
- 3. From submanifolds to differential forms

Isoperimetric inequality

Theorem. Let *K* be a compact subset in an equiregular Carnot manifold of Haudorff dimension *d*. There exist constants *c* and *C* such that for every domain *D* in *K*, $\mathcal{H}^d(D) \leq c \Rightarrow \mathcal{H}^d(D) \leq C \mathcal{H}^{d-1}(\partial D)^{d/d-1}$.

Corollary. $\alpha(M) \leq (n-1)/(d-1)$.

Proof of Carnot isoperimetric inequality (1/4)

Flow tube estimates. Let *X* be a smooth horizontal vector field, B an ε -ball, *T* the tube swept by *B* in time τ under the flow of X. Then

 $\mathcal{H}^d(T) \leq \operatorname{const}(X,K) \tau/\varepsilon \mathcal{H}^d(B).$

For the tube T(S) swept by a hypersurface S, $\mathcal{H}^{d}(T(S)) \leq \operatorname{const}(X,K) \tau \mathcal{H}^{d-1}(S).$

Choose smooth horizontal vector fields $X_1, ..., X_k$ such that the « iterated orbit » of any point $m \in K$ under them in time τ contains $B(m, \tau)$ and is contained in $B(m, \lambda \tau)$, $\lambda = \text{const}(K)$.

Proof of Carnot isoperimetric inequality (2/4)

Local isoperimetric inequality. For every ball *B* of radius $R \leq \operatorname{const}(K)$, such that $B'=\lambda B \subset K$, and for every subset $D \subset K$ with $\mathcal{H}^d(D) \leq \mathcal{H}^d(B)/2$, $\mathcal{H}^d(D \cap B) \leq \operatorname{const}(K) R \mathcal{H}^{d-1}(\partial D \cap B')$.

Indeed, one of the fields X_j moves a proportion const(*K*) of the measure of $D \cap B$ outside $D \cap B$ in time $\tau=2R$. Thus the X_j -tube in time 2R of $\partial D \cap B'$ contains const(*K*) $\mathcal{H}^d(D \cap B)$.

Proof of Carnot isoperimetric inequality (3/4)

Covering lemma. If $\mathcal{H}^d(D) \leq \operatorname{const}(K)$, there exists a collection of disjoint balls B_i such that

- *D* is covered by concentric balls $2B_i$.
- $\mathcal{H}^d(D \cap \lambda^{-1}B_j) \ge \lambda^d \mathcal{H}^d(\lambda^{-2}B_j)/2.$
- $\mathcal{H}^d(D\cap B_j) \leq \lambda^d \mathcal{H}^d(\lambda^{-1}B_j)/2.$

Indeed, given $m \in D$, let B(m) be the last of the balls $B(m, \lambda^{-i})$ to satisfy $\mathcal{H}^d(D \cap B) \leq \lambda^d \mathcal{H}^d(\lambda^{-1} B)/2$. Then let B_0 be the largest B(m), B_1 the largest which is disjoint from B_0 , ...

Proof of Carnot isoperimetric inequality (4/4)

End of proof. Local isoperimetric ineq. in $\lambda^{-1}B_j \Rightarrow \mathcal{H}^d(D \cap \lambda^{-1}B_j) \leq \operatorname{const}(K) R_j \mathcal{H}^{d-1}(\partial D \cap B_j)$.

Since

 $\mathcal{H}^{d}(D \cap \lambda^{-1}B_{j}) \geq \lambda^{d} \mathcal{H}^{d}(\lambda^{-2}B_{j})/2 \geq \operatorname{const}(K) R_{j}^{d},$

one gets

- $\mathcal{H}^{d}(D \cap \lambda^{-1}B_{j}) \leq \operatorname{const}(K) \mathcal{H}^{d-1}(\partial D \cap B_{j})^{d/d-1}.$ *Finally*,
- $\mathcal{H}^{d}(D \cap 2B_{j}) \leq \mathcal{H}^{d}(2B_{j}) \leq \operatorname{const}(K)\mathcal{H}^{d}(B_{j})$ $\leq \operatorname{const}(K)\mathcal{H}^{d}(D \cap \lambda^{-1}B_{j}).$

So one can sum up and estimate $\mathcal{H}^d(D)$.

Sobolev meets Poincaré

Isoperimetric inequality is equivalent to Sobolev inequality for compactly supported u, $\|u\|_{d/d-1} \leq \text{const.} \|du\|_1$.

Local isoperimetric inequality is equivalent to (weak) (1,1)-Poincaré inequality, for arbitrary u defined on a ball λ B of radius R,

 $\operatorname{Inf}_{c\in\mathbb{R}}\int_{B}|u\text{-}c| \leq \operatorname{const.} R \int_{\lambda B} |du| .$

Carnot case : replace du with $d^{H}u = du_{|H}$, the <u>horizontal</u> differential.

Proof of Isoperimetric ⇔ Sobolev

- 1. Isoperimetric \Leftrightarrow Sobolev for characteristic functions l_D of domains D.
- 2. Every nonnegative compactly supported function *u* is a sum of characteristic functions, $u = \int_0^\infty I_{\{u>t\}} dt$.
- 3. Coarea formula

$$\int_0^\infty \mathcal{H}^d(\{u=t\}) dt = \|d^H u\|_1.$$

Proof of Local Isoperimetric ⇔ Poincaré

1. Up to replacing *u* with *u*-*c*, $\mathcal{H}^d(\{u > 0\} \cap B), \mathcal{H}^d(\{u < 0\} \cap B) \leq \mathcal{H}^d(B)/2.$

2.
$$u = u_{+} - u_{-}$$
 where $u_{+} = max\{u, 0\}$.

3.
$$\int_B u_+ = \int_B \int_0^\infty \mathcal{I}_{\{u>t\}} dt = \int_0^\infty \mathcal{H}^d(\{u>t\} \cap B) dt$$
.

- 4. Local isoperimetric inequality implies $\int_B u_+ \leq \text{const.} \int_0^\infty \mathcal{H}^d(\{u=t\} \cap \lambda B) dt.$
- 5. Coarea $\Rightarrow \int_B |u| \le \text{const.} \int_{\lambda B} |d^H u|$.

Hausdorff dimension of higher codimensional submanifolds

- 1. Hausdorff dimension of hypersurfaces and the isoperimetric inequality
- 2. Hausdorff dimension of higher codimensional submanifolds
- 3. From submanifolds to differential forms

Topological dimension

Theorem (Alexandrov). A subset $V \subset M^n$ has topological dimension $n \cdot k \Leftrightarrow$ there are $k \cdot 1$ -cycles in $M \setminus V$ which do not bound chains of small diameter in $M \setminus V$.

Corollary. If topdim(V) $\ge n$ -k, there exists a k-dimensional polyhedron P and a continuous map $f:P \rightarrow M$ such that any $f' C^0$ -close to f hits V. Call this f transverse to V.

Folded maps

Definition. *P* polyhedron. A map $f:P \rightarrow M$ is <u>folded</u> if *P* is covered with subpolyhedra P_j such that *f* is a smooth immersion on simplices of P_j and a homeomorphism of P_j onto a smooth submanifold with boundary.

Terminology. Say a Carnot manifold is <u>k-rich</u> if given a $C^0 \operatorname{map} f: P \to M$, where $\dim(P) = k$, there exists a nearby horizontal folded map $F: P \times \mathbb{R}^q \to M$ which is an immersion on P_j and a submersion on $P_j \times \mathbb{R}^q$.

k-wealth⇒lower bound on Hausdorff dimension

Lemma. Assume M^n is *k*-rich. Then for every *n*-*k*-dimensional subset $V \subset M$,

 $dim_{Hau}(V)-dim(V) \ge dim_{Hau}(M)-dim(M).$ It follows that $\alpha(M) \le (n-k)/(d-k)$.

Indeed, given $F:P \times \mathbb{R}^{q} \to M$ which is close to a transversal to V, pick $\mathbb{R}^{n-k} \subset \mathbb{R}^{q}$ on which F is a diffeo. F defines τ -tubes. Tubes generated by ε balls have volume $\leq \tau^{k} \varepsilon^{d-k}$. Cover V with ε_{j} -balls. Then $\sum_{j} \varepsilon_{j}^{d-k} \geq \tau^{k} Vol(\cup \text{Tubes})$ is bounded away from 0.

Results

Theorem (Gromov). Let *dim M=n*. Assume

 $h-k \ge (n-h)k$. Then a generic *h*-dimensional distribution *H* on *M* is *k*-rich. A contact structure on M^{2m+1} is *k*-rich for all $k \le m$.

Proof.

- 1. Linear algebra : existence of regular isotropic subspaces in *H*.
- 2. Analysis : microflexibility of regular horizontal submanifolds (Nash).
- 3. Topology : local to global (Smale).

Isotropic subspaces

Notation. Let $H = ker(\vartheta)$, where ϑ is \mathbb{R}^{n-h} -valued. If $V \subseteq M$ is horizontal, then $d\vartheta_{|TV} = 0$.

Definition. Let $m \in M$. A subspace $S \subset H_m$ is <u>isotropic</u> if $d\vartheta_{|S|} = 0$.

Examples. 1-dimensional subspaces are always isotropic. If *H* is a contact structure on M^{2m+1} , isotropic subspaces have dimension $\leq m$.

Linearizing horizontality

Goal. Apply inverse function theorem to horizontal submanifold equation.

Write $E(V) = \vartheta_{|TV|}$. Then V is horizontal $\Leftrightarrow E(V) = 0$.

X vectorfield along *V*⊂*M*. Then $D_V E(X) = (d(\iota_X \vartheta) + \iota_X (d\vartheta))_{|TV}.$

Regular subspaces

Definition. Assume $H = ker(\vartheta)$, where ϑ is \mathbb{R}^{n-h} - valued. Say $S \subset H_m$ is <u>regular</u> if $H_m \rightarrow Hom(S, \mathbb{R}^{n-h}), X \rightarrow \iota_X(d\vartheta))_{|S}$ is onto.

Examples. In contact manifolds, all horizontal subspaces are regular.

All 1-dimensional subspaces are regular $\Leftrightarrow H$ satisfies the strong bracket generating hypothesis. This is very rare.

Generic case

Proposition. If $S \subset H_m$ is isotropic and regular, then $h-k \ge (n-h)k$, where h=dim H, k=dim S.

Conversely, if $h \cdot k \ge (n \cdot h)k$, a generic *h*-dimensional distribution admits regular isotropic *k*-planes, away from a small subset.

Indeed, regular isotropic k-planes are the smooth points of the variety of isotropic k-planes. Their existence is a Zariski open condition on a 2-form ω . Assumption allows to construct at least one such 2-form. The map $\vartheta \rightarrow d\vartheta_{|ker(\vartheta)}$ is transverse to the set of bad ω .

Algebraic inverses

Proposition. If $TV \subset H$ is regular, $D_V E$ admits an algebraic right inverse.

Indeed, if $M_m : T_m * V \rightarrow H_m$ is a right inverse of $X \rightarrow \iota_X(d\vartheta))_{|TV}, \beta \rightarrow M(\beta), \Omega^1(V) \rightarrow C^{\infty}(H)$ is a right inverse of $D_V E$.

Remark. For $f:V \rightarrow \mathbb{R}^q$, the first order linear operator $L(f)=Af+\sum_i B_i \partial_i f \in \mathbb{R}^{q'}$ is algebraicly invertible for generic A and B_i if $q \gg q'$.

Indeed, to solve L(f)=g, it suffices to solve $B_i f=0$ and $(A - \sum_i \partial_i B_i) f=g$.

Nash implicit function theorem

Theorem (Nash). Let *F*, *G* be bundles over *V*. Assume $E:C^{\infty}(F) \rightarrow C^{\infty}(G)$ is a differential operator whose linearization $D_f E$ admits a differential right inverse M_f , which is defined for *f* in a subset *A* of $C^{\infty}(F)$ defined by an open differential relation. Let *s* be large enough.

Then for each $f \in A$, there exists a right inverse E_f^{-1} of E, defined on a C^s -neighborhood of E(f) in $C^{\infty}(G)$. Furthermore, E_f^{-1} depends smoothly on parameters, and is local : $E_f^{-1}(g)(v)$ depends on $g_{|B(v,1)}$ only.

Approximate solutions.

Corollary. Any germ f_0 that solves $E(f_0)(m) = o(|m-m_0|^s)$

can be deformed to a true local solution $f_1: E(f_1)=0$.

Indeed, choose $g \in C^{\infty}(G)$ such that $g = -E(f_0)$ near m_0 , but g is C^s-small. Set $f_t = E_f^{-1}(E(f_0) + tg)$.

In other words, it suffices to construct solutions up to order s (s=2 is enough for the horizontal manifold problem). This implies local existence.

Microflexibility (1/2)

Definition. Say an equation is (micro)flexible if given compact sets $K' \subset K \subset V$, a solution f defined on a neighborhood of K, and a deformation f_r , $t \in$ [0,1], of its restriction to K', the deformation extends to a neighborhood of K (for a while, i.e. for $t \in [0, \varepsilon]$). It should also work for families f_p parametrized by a polyhedron P.

Example. Inequations are always microflexible.

Microflexibility (2/2)

Corollary. If for $f \in A$, $D_f E$ admits a differential right inverse, then $A \cap \{E=0\}$ is microflexible.

Indeed, given solutions f on K and f_t on K', extend f_t arbitrarily to f'_t defined on K. For t small, one can set $e_t = E_{f't}^{-1}(0)$. Locality $\Rightarrow e_t = f_t$ near K'.

Remark. (Micro)flexibility means that restriction of solutions from *K* to *K*' is a fibration (submersion).

h-principle

Definition (Gromov). Given an equation of order *r*, there is a notion of <u>nonholonomic solution</u>, « *r*-jet of a solution ».

- **Example**. For horizontal immersions $V \rightarrow (M,H)$, a nonholonomic solution is a continuous map $f: V \rightarrow M$ together with an isotropic injective linear map $T_m V \rightarrow H_{f(m)}$.
- Say an equation <u>satisfies the $C^{\underline{0}}$ h-principle</u> if every nonholonomic solution can be C^{0} -approximated by solutions (and also familywise).

h-principle as a homotopy theory

h-principle localizes near a compact subset K, and has a relative version for a pair (K,K').

Proposition. h-principle for K' + h-principle for $(K,K') \Rightarrow$ h-principle for K.

Theorem (Smale). h-principle for K' + h-principle for K + diff. invariance + flexibility \Rightarrow h-principle for (*K*,*K'*).

Microflexibility versus flexibility

Corollary. Flexibility + local existence \Rightarrow global existence (h-principle).

Theorem (Gromov). Microflexibility on $V=W\times \mathbb{R} \Rightarrow$ flexibility on W. Microflexibility implies h-principle for folded solutions.

Smooth horizontal immersions

Definition. $S \subset H$ is superregular if $S \subset S'$, S' is regular isotropic and dim $S' = \dim S + 1$.

Theorem (Gromov). Let dim M=n. Assume $h-k \ge (n-h)k$. For a generic *h*-dimensional distribution *H* on *M* the h-principle holds for *k*-*1*-dimensional superregular horizontal immersions.

Theorem (Duchamp). In a contact manifold M^{2m+1} , the h-principle holds for *k*-dimensional horizontal immersions for all $k \le m$.

Regularity and calculus of variations

Remark. The space of regular horizontal immersions $V \rightarrow (M,H)$ is a smooth manifold. Therefore, one can write Euler-Lagrange equations for the extremals of functionals on such immersions.

Example. Variational Hamiltonian Legendrian surfaces in S^5 .

Back to the Hölder equivalence problem

Let (M^n, H^h) be a Carnot manifold of Hausdorff dimension *d*. Then from existence of horizontal (folded) submanifolds, one gets the following upper bounds for $\alpha = \alpha$ (*M*,*H*), the best possible exponent for a Hölder homeomorphism $\mathbb{R}^n \rightarrow M$.

- 1. $\alpha \leq (n-1)/(d-1)$ in general.
- 2. $\alpha \leq (n-k)/(d-k)$ for generic *H*, if $h-k \geq (n-h)k$.
- 3. $\alpha \leq (m+1)/(m+2)$ for contact H, n=2m+1.

From submanifolds to differential forms

- 1. Hausdorff dimension of hypersurfaces and the isoperimetric inequality
- 2. Hausdorff dimension of higher codimensional submanifolds
- 3. From submanifolds to differential forms

Horizontal forms

Remark. Let $p:M \rightarrow \mathbb{R}^q$ be a submersion with horizontal fibers. Then p^*vol is a horizontal form, i.e. its wedge product with a form that vanishes on *H* is zero. Thus *k*-wealth implies abundance of horizontal *n-k*-forms.

Notation. Let Θ^* denote the ideal of forms that vanish on *H* and *A*^{*} its annihilator,

 $A^* = \{ \eta | \eta \land \vartheta = 0 \forall \vartheta \in \Theta^* \}.$

Elements of A^* are called <u>horizontal forms</u>.

Existence of horizontal forms (1/2)

Proposition. Every closed *n*-1-form is cohomologous to a horizontal form.

Proof (Heisenberg group case). Let ϑ be the contact form, ω a *n*-1-form. Since $d\vartheta_{|H}$ is symplectic, there is a unique *n*-3-form β on *H* such that $(d\vartheta)_{|H} \wedge \beta - \omega_{|H} = 0$. Extend β arbitrarily. Then $\omega + d(\vartheta \wedge \beta)$ is horizontal.

Existence of horizontal forms (2/2)

Proof (general case). Consider the operators $d^{H}:\Theta^{I} \rightarrow \Omega^{2}/\Theta^{2}$ and $d_{H}:A^{n-2} \rightarrow \Omega^{n-1}/A^{n-1}$ induced by the exterior differential. Both are order zero, and adjoints of each other, since, for $\vartheta \in \Theta^{*}$ and $\eta \in A^{*}$,

 $(d_H\vartheta) \wedge \eta \pm \vartheta \wedge d^H \eta = d(\vartheta \wedge \eta) = 0.$

Bracket generating $\Rightarrow d^H$ is injective, so d_H is surjective. Given a closed *n*-1-form ω , there exists $\eta \in A^{n-2}$ such that $d_H \eta = -\omega \mod A^{n-1}$, i.e. $\omega + d\eta$ is horizontal.

Second proof of isoperimetric inequality

Goal. $\mathcal{H}^{d}(D) \leq C \mathcal{H}^{d-1}(\partial D)^{d/d-1}$ (Carnot group case).

- 1. Choose horizontal representative of generator of $H^{n-1}(G \setminus \{e\}/\langle \delta_2 \rangle, \mathbb{Z})$, lift it to $G \setminus \{e\}$. Get horizontal form ω_e such that $|\omega_e(g)| \leq \text{const.} |g|^{1-d}$. Left translate it at each $g \in G$.
- 2. $\mathcal{H}^{d}(D) = \int_{D} (\int_{\partial D} \omega_{g}) \, dg \leq \int_{D \times \partial D} d(g,g')^{1-d} \, dg dg'$ $= (\int_{\partial D} (\int_{D} d(g,g')^{1-d} \, dg) dg'.$
- 3. If *B* is ball centered at *g*' with $\mathcal{H}^d(D) = \mathcal{H}^d(B)$, $\int_D d(g,g')^{1-d} dg \leq \int_B d(g,g')^{1-d} dg = \mathcal{H}^d(D)^{1/d}.$

More horizontal forms, contact case

Notation. Let $I^* = \{\alpha \land \vartheta + \beta \land \vartheta \}$ denote the differential ideal generated by forms that vanish on *H* and *J** its annihilator,

 $J^* = \{\eta | \eta \land \vartheta = 0 \forall \vartheta \in I^* \}.$

Theorem (Rumin). M^{2m+1} contact manifold.

There exists a second order differential operator $D: \Omega^m/I^m \to J^{m+1}$ such that the complex $0 \to \Omega^1/I^1 \to ... \to \Omega^m/I^m \to J^{m+1} \to ... \to J^{2m+1} \to 0$ is homotopy equivalent to the de Rham complex.

Rumin's second order operator

Proof (case *Heis*³). ω a *1*-form mod I^{1} . Let β be the unique function such that $(d\omega + \beta d\vartheta)_{|H} = 0$. Set $D\omega = d(\omega + \beta \wedge \vartheta)$. Then $d^{H} D = D d_{H} = 0$. Locally, $D\omega = 0 \Leftrightarrow \omega + \beta \vartheta$ is exact $\Leftrightarrow \omega$ is d_{H} -exact. Also, locally, a 2-form η is closed $\Leftrightarrow \eta = d(\omega + \beta d\vartheta)$ in which case $(\omega + \beta \vartheta)_{|H} = 0$, thus $\eta = D\omega$.

Corollary. There exist small open subsets in *M* with closed non exact horizontal *q*-forms for all $q \ge m+1$.

Weights of differential forms

- **Definition**. Say a *q*-form ω on a Carnot manifold has <u>weight</u> $\geq w$ if its vanishes on all *q*-vectors of $H_{i1} \otimes ... \otimes H_{iq}$ whenever $i_1 + ... + i_q < w$.
- **Examples**. On a Carnot group, the dual basis of V^i has weight *i*, and weight adds up under wedge product.
- A *q*-form ω on a Carnot group has weight $\geq w \Leftrightarrow$ the L^{∞} norm $\|\delta_{\varepsilon}^* \omega\|_{\infty} \leq \text{const. } \varepsilon^w$.

A q-form is horizontal \Leftrightarrow it has weight $\ge d \cdot n + q$.

Goal. Show that the minimal weight of forms needed to represent a cohomology class is a Hölder covariant.

Alexander-Spanier cochains (1/4)

Definition (Alexander-Spanier). A <u>straight</u> q-<u>cochain</u> is a function on q+1-tuples of points of diameter $< \delta$. Set $|c|_{\varepsilon} = \sup$ of c on q+1-tuples of points of diameter $< \varepsilon$.

Properties. If δ is small enough, straight cochains compute cohomology. There are straight chains too, dual to cochains.

Alexander-Spanier cochains (2/4)

Proposition. On a Riemannian manifold, straight cocycles representing nonzero classes of degree q satisfy $|c|_{\varepsilon} \ge \text{const. } \varepsilon^{q}$.

Indeed, fix a cycle *c*' such that c(c') is nonzero. Subdivide *c*' into const. ε^{-q} simplices of diameter $\leq \varepsilon$. Then $c(c') \leq$ const. $\varepsilon^{-q} |c|_{\varepsilon}$.

Alexander-Spanier cochains (3/4)

Proposition. Let ω be a closed form of weight $\geq w$ on some open set U. Then $\forall \varepsilon$, $[\omega]$ can be represented by a straight cocycle c_{ε} such that $|c_{\varepsilon}|_{\varepsilon} \leq \text{const. } \varepsilon^{w}$.

Indeed, assume M is a Carnot group. Equip it with an invariant Riemannian metric g and its dilates $\delta_{\varepsilon}^* g$. Fill in straight simplices of unit size with geodesic singular simplices. For each straight chain σ , this gives a family σ_{ε} . Set $c_{\varepsilon}(\sigma) = \int_{\sigma \varepsilon} \omega$. Then $|c_{\varepsilon}| \leq \text{const. } \varepsilon^{w}$.

Alexander-Spanier cochains (4/4)

Corollary (Gromov). Define $W_q(M)$ as the largest w such that there exists an open set $U \subset M$ and a nonzero class in $H^q(U, \mathbb{R})$ which can be represented by a form of weight $\geq w$. If there exists a α -Hölder homeomorphism $\mathbb{R}^n \rightarrow M$, then $\alpha \leq q/W_q$.

Examples. For all Carnot manifolds, $W_{n-1}(M) \leq d-1$. For contact M^{2m+1} , Rumin's theorem applies with q=m+1, $W_q(M) \leq m+2$. One recovers the bound given by h-principle for horizontal *m*-manifolds.

Rumin's complex in general

- **Goal**. Produce a retraction *r* of the de Rham complex onto a subcomplex consisting of forms of high weight.
- Retraction means r=1-dB-Bd. Removing low weight components $\Leftrightarrow B$ inverts d on low weights.

Notation. $\Omega^{q,w} = \{q \text{-forms of weight} \ge w\}.$ Properties. $\Omega^{*,w} \land \Omega^{*,w'} \subset \Omega^{*,w+w'}. d\Omega^{*,w} \subset \Omega^{*,w}.$ $d_0: \Omega^{*,w} / \Omega^{*,w+1} \rightarrow \Omega^{*,w} / \Omega^{*,w+1}$ is algebraic, $d_0 =$ Lie algebra differential on tangent cone.

Equihomological Carnot manifolds

Definition. Say an equiregular Carnot manifold is <u>equihomological</u> if dimensions of cohomology groups of tangent Lie algebras are constant.

A choice of complements V^k of H^{k-1} in H^k , F of ker d_0 in Λ^*T^*M and E of im d_0 in ker d_0 , determines an inverse d_0^{-1} . Set $r=1-dd_0^{-1}-d_0^{-1}d$.

Rumin's complex

Theorem (Rumin). Assume *M* is equihomological. The iterates r^j stabilize to a projector *p* of Ω^*M , with image $\mathcal{E} = \ker d_0^{-1} \cap \ker(d_0^{-1}d)$ and kernel $\mathcal{F} = \operatorname{im} d_0^{-1} + \operatorname{im}(dd_0^{-1})$. Both are subcomplexes. *p* is a differential operator. Furthermore $\mathcal{E} = \{\eta \in E + F \mid d\eta \in E + F\}.$

In particular, \mathcal{E}^{1} identifies with Ω^{1}/Θ^{1} .

Corollary. Assume that, in degree $q, E+F \subset \Omega^{q,w}$. Then $W_q(M) \ge w$. It follows that $\alpha(M) \le q/w$.

Graduation and duality

Let \mathcal{G} be a Carnot Lie algebra, $\mathcal{G}=V^{1}\oplus\ldots\oplus V^{r}$. Let $\Lambda^{q,w} = \bigoplus_{i1+2i2+\ldots+rir=w} \Lambda^{i1}V^{1*}\otimes\ldots\otimes\Lambda^{ir}V^{r*}$. For adapted metric, use Hodge *: $\Lambda^{q,w} \to \Lambda^{n-q,d-w}$.

Im d_0 criterion. If $im \ d_0^{q-1} \supset \bigoplus_{w' < w} \Lambda^{q,w'}$ then $W_q(G) \ge w$.

Ker d_0 criterion. If $ker \ d_0^q \subset \bigoplus_{w' \leq w} \Lambda^{q,w'}$ then $W_{n-q}(G) \ge d$ -w.

Examples

Degree *n*-1. ker $d_0^{-1} = V^{1*} = \Lambda^{1,1} \Rightarrow W_{n-1}(G) \ge d-1$.

Contact.
$$\Lambda^{q}G^{*} = \Lambda^{q}V^{1*} \oplus V^{2*} \otimes \Lambda^{q-1}V^{1*}$$
.
 $d_{0}(\eta + \vartheta \wedge \beta) = d\vartheta \wedge \beta + \vartheta \wedge 0$.
 d_{0}^{q} vanishes on $\Lambda^{q}V^{1*}$, is injective on $V^{2*} \otimes \Lambda^{q-1}V^{1*}$
if $q \ge m+1$. Thus ker $d_{0}^{q} = \Lambda^{q,q} \Rightarrow W_{n-q}(G) \ge d-q$.

Rank 2 distributions. *im* $d_0^1 \supset \Lambda^{2,2} \Rightarrow W_{n-2}(G) \ge 2$. Genericly (*n*>4), *im* $d_0^1 \supset \Lambda^{2,2} \oplus \Lambda^{2,3} \Rightarrow W_{n-2}(G) \ge 3$.

Regular isotropic planes

Remark. If (G, V^1) admits a regular isotropic horizontal *k*-plane *S*, then $ker d_0^k \subset \Lambda^{k,k}$. Therefore $W_k(G) \ge d-k$.

Indeed, if $\omega \in \ker d_0^k \cap \Lambda^{k,>k}$, then $\omega = \sum_{i=1}^{n-h} a_i \vartheta_i \wedge \eta_i$ where $\vartheta_i \in \Lambda^{1,>1}$. If $X \in V^1$, since S is isotropic, $(\iota_X d\omega)_{|S|} = \sum_{i=1}^{n-h} a_i (\iota_X d\vartheta_i)_{|S|} \wedge \eta_{i|S}$. Choose X such that all $(\iota_X d\vartheta_i)_{|S|}$ vanish but one, which is $(\iota_X d\vartheta_{i0})_{|S|} = {}^*_S \eta_{i0|S}$. Conclude that $\omega = 0$.

Quaternionic Heisenberg group

 $\mathcal{G}=V^{1}\oplus V^{2}$ where $V^{1}=\mathbb{H}^{n}$ and $V^{2}=\Im \mathbb{M}$, [u,v]= $\Im (u,v)$. Then $Aut(\mathcal{G},V^{1}) \supset Sp(n)Sp(1)$ and $\Lambda^{2,*}=\Lambda^{2,2}\oplus\Lambda^{2,3}\oplus\Lambda^{2,4}$ is a decomposition into irreducible summands. Therefore $ker d_{0}^{2} = \Lambda^{2,2}$, which implies $W_{n-2}(G) \ge d-2 = 4n+4$.

Remark. Isotropic subspaces *S* exist in each dimension $k \le n$. They form a unique orbit $\mathbb{R}^k \subset \mathbb{R}^n \subset \mathbb{H}^n$, entirely regular. Therefore horizontal submanifolds of dimension < n obey h-principle.

Rumin's retraction in the contact case (1/2)

Let $H = ker \vartheta$, where ϑ is a contact form, dim=2m+1. Choose $V^2 = ker d\vartheta$. Then

$$d_0(\eta + \vartheta \land \beta) = d\vartheta \land \beta + \vartheta \land 0 = L\beta.$$

Choose, for $k \leq m$,

$$E^{k} = \{ \eta \in \Omega^{k} \mid \vartheta \wedge L^{m \cdot k + 1} \eta = \vartheta \wedge L^{m \cdot k} d\eta = 0 \},$$
$$F^{k} = \{ \vartheta \wedge \eta \mid \eta \in \Omega^{k \cdot 1} \},$$

and for $k \ge m+1$,

$$E^{k} = \{ \eta = d\vartheta \land \beta \mid d\vartheta \land \beta = 0 \},\$$
$$F^{k} = \{ \vartheta \land L^{m-k+1} \eta \mid \eta \in \Omega^{*} \}.$$

Rumin's retraction in the contact case (2/2)

q-forms on *H* can be uniquely written $\eta = \eta_0 + L\eta_1 + \ldots + L^{m'}\eta_{m'}$ where η_i are primitive and m'=m or *m*-1 depending wether *q* is even or odd. Define $L^{-1}\eta = \eta_1 + \ldots + L^{m'-1}\eta_{m'}$. Then, for $\omega = \eta + \vartheta \wedge \beta$, $p\omega = r\omega = \eta_0 - \vartheta \wedge (L^{-1}d\eta + \beta - \beta_m)$.

Therefore, $p^{-1} \circ d \circ p$ coincides with the second order operator *D*.

Conclusion

As far as the Hölder equivalence problem is concerned, the algebraic approach using differential forms seems to give better results than horizontal submanifolds : not all closed currents are laminated.

- Possibility of improvement : produce retraction onto a subcomplex on which d_0 vanishes.
- New (metric-analytic ?) idea needed for Hölder equivalence problem for *Heis³*.

References

- M. Gromov, *Partial Differential Relations*, Ergeb. der Math. 9, Springer, Berlin (1986).
- M. Gromov, *Carnot-Caratheodory spaces seen from within*, in *Sub-Riemannian Geometry*, A.
 Bellaïche and J.-J. Risler ed., Birkhaüser, Basel (1996).
- M. Rumin, Around heat decay on forms and relations of nilpotent groups, Sem. Th. Spectr. Geom. Grenoble (2001).