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Rigidity of triangle groups

Example
Let Γ = T3,4,7 = 〈s, t, u | s2, t2, u2, (st)3, (tu)4, (us)7〉. Every isometric action of Γ on
hyperbolic plane either factors through a finite group or is the symmetry group of a
tiling by (3, 4, 7)-triangles.

Proof.

1. If either s, t, u, st, tu, us acts trivially, action factors through Z/2Z.

2. Otherwise, each of st, tu, us fixes a point.

3. It two of these points coincide, action fixes a point.

4. Every isometric action on the circle factors through Z/2Z.

5. s fixes Pst and Pus , thus (Pst , Ptu , Pus) is a (3, 4, 7)-triangle.

Remark
The argument extends to isometric actions on the 2-sphere or Euclidean plane. The
conclusion is these cases is that every action factors through Z/2Z.



Rigidity of triangle groups

Example
Let Γ = T3,4,7 = 〈s, t, u | s2, t2, y2, (st)3, (tu)4, (us)7〉. Every non-trivial isometric
action of Γ on hyperbolic 3-space either fixes a point or leaves invariant a totally
geodesic plane.

Proof.

1. If either s, t, u, st, tu, us acts trivially, action is trivial.

2. Each of st, tu, us fixes a line.

3. If two of these lines intersect, action fixes a point.

4. If two fixed lines are asymptotic, action fixes a point at infinity. Busemann
function gives rise to action on the real line.

5. No action on the real line. Thus action on Euclidean plane, thus fixed point.

6. Fixed lines Dst and Dus have a common perpendicular ∆.

7. s fixes Dst and Dus , therefore these lines are coplanar.

8. The plane containing ∆, orthogonal to Dst and Dus , is invariant.

Remark

I The argument seems to generalize to actions on more general nonpositively
curved spaces.

I But nontrivial actions fixing a point exist in high dimensions.



Flexibility of surface groups

Example
T3,4,∞ admits a continuum of different actions on hyperbolic plane. However, every
discrete faithful action admitting a finite area fundamental domain is the symmetry
group of a tiling by (3, 4,∞)-triangles.

Proof.

1. Action depends on one real parameter, the distance x between the fixed points
Pst and Ptu . Let x0 be the value of x for the standard action, preserving a tiling.

2. If x < x0, us has a fixed point. The action is either nondiscrete (case us has
infinite order) or nonfaithful (case us has finite order).

3. Il x > x0, fundamental domains have infinite area.

Examples
Tilings of hyperbolic plane by right-angled hexagons depend on continuous
parameters. More generally, torsion free orientable surface groups of genus g depend
on 6g − 6 parameters.
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Terminology

Superrigidity. (Temporary definition). Let Γ be a group acting isometricly on a space
X . Say (Γ, X ) is superrigid for a class of space Y if every isometric action of Γ on a
space Y ∈ Y

I either fixes a point,

I or leaves invariant a copy of X (homotheticly) embedded in Y .

Mostow rigidity. Let Γ be a group acting discretely and faithfully on a space X with a
finite volume fundamental domain. Say (Γ, X ) is Mostow rigid if there is only one such
action, up to isometry.

Local rigidity. Let Γ be a finitely generated group acting on a space X . Say (Γ, X ) is
infinitesimally rigid if every nearby action is conjugate to original action.
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Rigidity in the 60’s

circa 1958 : A. Selberg proves infinitesimal rigidity of cocompact lattices of Sl(n, R),
n ≥ 3.

1960 : E. Calabi proves infinitesimal rigidity of cocompact lattices of hyperbolic space.
E. Calabi-E. Vesentini extend it to symmetric domains in Cn.

1962 : A. Weil proves infinitesimal rigidity of uniform irreducible lattices in semisimple
Lie groups non isogenic to Sl(2, R). Nonuniform case (and Sl(2, C), non uniform
case). H. Garland proves infinitesimal rigidity of nonuniform irreducible lattices in
semisimple Lie groups non isogenic to Sl(2, R) or Sl(2, C) in 1967.

1967 : G.D. Mostow proves Mostow rigidity of lattices in hyperbolic spaces.

1970 : Generalization to other symmetric spaces.



Margulis’ superrigidity theorem

Theorem
(G.A. Margulis (1974) Let G, H be semisimple algebraic groups over local fields,
without compact factors. Assume that the real rank of G is ≥ 2. Let Γ be an
irreducible lattice in G.
Every homomorphism Γ → H with unbounded and Zariski dense image extends to a
homomorphism G → H.

In other words, finite dimensional linear representations of Γ come from G (except
unitary ones).

What is real rank ?
According to Cartan, every semisimple algebraic group over an Archimedean local field
(R or C) is (isogenous to) the isometry group of a symmetric space. Its rank is the
maximal dimension of a flat totally geodesic subspace.
According to F. Bruhat and J. Tits, a Euclidean building is attached to every
semi-simple algebraic group over a non Archimedean local field (Qp , Fq((t)) and their
finite extensions). The rank is the dimension of the building.



Margulis’ theorem, geometric version

Theorem
Let X , Y be finite dimensional symmetric spaces or buildings, without Euclidean or
compact factors. Assume that X has rank ≥ 2. Let Γ be a discrete irreducible group
of isometries of X such that Vol(Γ \ X ) < +∞.
Every reductive isometric action of Γ on Y either fixes a point or preserves a convex
subspace of Y which is pluriisometric to a product of factors of X .

Meaning of terms.
When X splits nontrivially into a Riemannian product, a group of isometries of X is
irreducible if no finite index subgroup preserves the decomposition. When the metric
on each factor is multiplied by some constant, one gets a space which is pluriisometric
to X . Reductive will be defined later.

Updated terminology.
Say a pair Γ ⊂ G is superrigid with respect to a class Y of metric spaces if every
isometric action of Γ on a space Y ∈ Y preserves a subset Y ′ ⊂ Y on which the
action extends to an isometric action of G .



Arithmetic lattices

Definition
Let Γ be group acting on a space X. Say Γ is a lattice if the action is faithful, discrete,
and admits finite volume fundamental domains. If there exists a compact fundamental
domain, one says that Γ is uniform.

Definition
Let G be a semisimple Lie group. A lattice Γ ⊂ G is arithmetic if Γ is obtained by the
following operations.

1. Find an algebraic Q-group H defined over Q whose group of real points is
isomorphic to L× G for some compact group L.

2. Take integer matrices in H.

3. Project down to G.

4. Choose Γ commensurable to obtained group.

(For nonuniform lattices, L = {1} always works).

Examples
Sl(n, Z) ⊂ Sl(n, R). T3,4,7 is arithmetic in a nonobvious manner.



The arithmeticity theorem

Results

1959 : A. Selberg proves local rigidity for certain lattices, shows that this implies
algebraicity, and conjectures some kind of arithmeticity.

1959 : I. Piatetskii-Shapiro conjectures that arithmeticity holds for nonuniform lattices.

1968 : A. Selberg stresses the role played by unipotent elements and conjectures that
they always exist for nonuniform lattices.

1971 : G. Margulis announces arithmeticity of nonuniform lattices. The proof relies on
existence of unipotents, rationality of maximal unipotent subgroups, compatibility of
the rational structures of intersecting maximal unipotent subgroups.

Proposition
Superrigidity with respect to symmetric spaces and buildings implies arithmeticity.

Remark
There is a generalization involving local fields : the characterization of S-arithmetic
lattices.



Superrigidity in rank one

1990 : K. Corlette proves superrigidity with respect to the class of symmetric spaces
for lattices in rank one symmetric spaces HHn, n ≥ 2 and OH2.

1994 : M. Gromov and R. Schoen prove superrigidity with respect to the class of
Euclidean buildings for lattices in rank one symmetric spaces HHn, n ≥ 2 and OH2.

Examples
Striking superrigidity failures : bending of real hyperbolic manifolds with mirror
symmetry, branched and blow-down holomorphic maps between complex hyperbolic
surfaces.

Corollary
Irreducible lattices in semisimple Lie groups are arithmetic, except possibly for
SO(n, 1), SU(n, 1). In other words, lattices in most semisimple Lie groups are
classified.

Examples
Examples of nonarithmetic lattices are known to exist in SO(n, 1) for all n ≥ 2, and in
SU(n, 1) for n = 2, 3.



Further superrigidity results

Very restricted targets.

circa 1978 : W. Thurston proves that maps of nonzero degree between real hyperbolic
manifolds are covering maps.

1989 : D. Toledo proves that surface groups in PU(n, 1) with maximum Toledo
invariant preserve a totally geodesic complex line.

An arithmeticity result in complex hyperbolic geometry

2006 : B. Klingler; S.K. Yeung and Prasad : Classification of fake complex projective
planes, i.e. of compact complex hyperbolic surfaces with b1 = 0, b2 = 1.

More general targets.

1990 : Corlette’s result implies superrigidity (of certain rank one lattices) with respect
to the class of Riemannian manifolds with nonpositive curvature operator.

1993 : N. Mok, Y. Siu and S.K. Yeung; J. Jost and S.T. Yau : All rank ≥ 2
cocompact lattices are superrigid with respect to the class of nonpositively curved
Riemannian manifolds. All quaternionic and octonionic lattices are superrigid with
respect to the class of Riemannian manifolds with nonpositive complex curvature.



Further superrigidity results

More general domains and targets.

2004 : N. Monod proves that superrigidity holds for cocompact irreducible lattices in
arbitrary products of locally compact groups, with respect to the class of CAT (0)
spaces.

2006 : T. Gelander, A. Karlsson and G.A. Margulis extend this, by a different method,
to a class of spaces with convex distance function.

2006 : I think I can prove, using ideas of M.T. Wang, M. Gromov, H. Izeki and S.
Nayatani, superrigidity for lattices of rank 2 Euclidean buildings, with respect to the
class of CAT (0) spaces.



Plan of forthcoming talks

I will explain briefly why superrigidity implies arithmeticity. Then I will concentrate on
the harmonic map method.

1. Isometric actions on the real line

2. Local rigidity

3. Matsushima’s formula

4. Kazhdan’s property (T)

5. Harmonic map proof of Margulis superrigidity, after Mok, Siu and Yeung

6. Garland’s formula

7. Fixed points for isometric actions on CAT (0) spaces

8. Ã2-buildings



Superrigidity implies algebraicity

Let Γ ⊂ G ⊂ Gl(N, C) be a superrigid lattice, where G is a Q-group.

1. Every homomorphism Γ → C∗ is trivial on some finite index subgroup.
Since translation actions on C have fixed points, every homomorphism Γ → C is
trivial. In particular, the abelianization of Γ has no free part. A homomorphism
Γ → C∗ factors through the finite torsion part of the abelianization.

2. Γ ⊂ Sl(n, C).
Use det : Γ → C∗.

3. Up to conjugacy, Γ ⊂ Sl(n, Q̄).
Indeed, Hom(Γ, Sl(n, C)) is an affine algebraic variety defined over Q. By assumption,
it has at least one complex point. According to the Nullstellensatz, it also has a
nearby Q̄-point, this is a representation by matrices with entries in Q̄. By superrigidity,
the corresponding homomorphism extends to an inner automorphism of Sl(n, C).

4. There exists a number field F such that Γ ⊂ Sl(n, F ).
Indeed, matrix coefficients belong to a finitely generated subfield of Q̄, i.e. a finite
extension of Q.



Superrigidity implies arithmeticity

5. Up to enlarging matrices, Γ ⊂ Sl(N, Q).
Indeed, F can be realized as a ring of matrices (express its multiplication rule in a
Q-basis).

6. G ⊂ Sl(N) is defined over Q.
Indeed, it is the Zariski closure of a subset of Sl(N, Q).

7. Let p be a prime. Then, up to finite index, p does not divide denominators of
matrix coefficients of elements of Γ.
Indeed, the image of Γ → Sl(N, Q) → Sl(N, Qp) fixes a vertex in the building
associated to Sl(N, Qp). Vertices correspond to norms on QN

p . Vectors of norm ≥ 1

form a subgroup commensurable to ZN
p . Therefore a finite index subgroup of Γ fixes

ZN
p , i.e. maps to Sl(N, Zp).

8. Up to finite index, Γ ⊂ Sl(N, Z).
Indeed, only finitely many primes occur in the denominators of matrix coefficients. Up
to finite index, no prime divides any denominator, thus entries are integers.

9. Γ is commensurable to GZ.
Indeed, up to finite index, Γ ⊂ GZ. Since [GZ : Γ] vol(GZ \ G) = vol(Γ \ G) < +∞, Γ
has finite index in GZ.
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Isometric actions on the real line

A subgroup of index 2 acts by translation.

Lemma
A translation action of Γ on R ⇔ a class in H1(Γ, R).
Class vanishes ⇔ action has a fixed point.

De Rham proof

Assume Γ acts freely on manifold X . Pick a Γ-equivariant map f : X → R. Then df
induces a closed 1-form on Γ \ X . This form is exact ⇔ f is invariant ⇔ f (X ) is
pointwise fixed by Γ.

Therefore superrigidity of isometric actions of Γ on the real line ⇔ vanishing of
H1(Γ, R).



Bochner’s vanishing theorem

Theorem
(S. Bochner, circa 1940). Let Γ = π1(M) where M is compact Riemannian with
Ricci > 0. Then H1(Γ, R) = 0.

Proof. Define energy of 1-forms as 1
2

of squared L2-norm,

E(α) =
1

2

Z
M
|α|2.

Hodge : every cohomology class contains an energy minimizing 1-form α, which satisfy
dα = d∗α = 0. This is equivalent to ∆α = 0, where ∆ = dd∗ + d∗d is the Laplacian.
Bochner’s formulaZ

M
|Dα|2 − |dα|2 − |d∗α|2 = −

Z
M

Ricci(α).

Remark
Useless, since non flat locally symmetric spaces have negative Ricci curvature.
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Local rigidity

Proposition
(A. Weil, 1959). For lattices in Lie groups, local rigidity follows from infinitesimal
rigidity, i.e. vanishing of H1(Γ, Lie(G)Ad ).

Proof. The Zariski tangent space of the variety Hom(Γ, G) is equal to the space of
1-cocycles Z1(Γ, Lie(G)Ad ). The tangent space at ρ ∈ Hom(Γ, G) of the G -orbit Gρ
is the space of 1-coboundaries B1(Γ, Lie(G)Ad◦ρ).
Vanishing of H1(Γ, Lie(G)Ad ) implies that the G -action G ×Hom(Γ, G) → Hom(Γ, G)
has constant rank near id , i.e. Hom(Γ, G) is smooth and consists of exactly one orbit
near id .
In other words, every representation which is close enough to the original one it
conjugate to it.



Infinitesimal rigidity

Theorem
(A. Weil, 1960). For uniform lattices in semisimple Lie groups others than Sl(2, R),
H1(Γ, Lie(G)Ad ) = 0.

Proof. De Rham : H1(Γ, Lie(G)Ad ) is the cohomology of E -valued 1-forms on
M = Γ \ G/K , where E is a vector bundle equipped with a flat connection ∇. Equip
E with a natural metric. Then ∇ = D + S where D is a metric connection, which has
nonzero curvature RD .
The vector-valued Bochner formulaZ

M
|Dα|2 − |dDα|2 − |(dD)∗α|2 = −

Z
M

Ricci(α) + tr(α∗RD),

contains an extra term, tr(α∗RD), which compensates for Ricci curvature (and for
|dDα|2 − |(dD)∗α|2, which do not vanish), except when G = Sl(2, R).



Matsushima’s formula
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Matsushima type formulae

Y. Matsushima could directly integrate by parts the curvature term in Weil’s formula.
The formula he got is simple since the curvature tensor of a locally symmetric space is
parallel. More generally, call a curvature tensor a tensor which shares all the
symmetries of the curvature tensor of a Riemannian manifold. Such a tensor Q acts
on 1-forms Q(α) and on 2-tensors Q̇(τ).

Theorem
(Y. Matsushima, 1962). Let M be a compact Riemannian manifold, with curvature
tensor R. Let E be a vectorbundle on M with a metric and a metric connection D.
Let α be an E-valued 1-form. Let Q be a parallel curvature tensor field on M. ThenZ

M
〈Q̇Dα, Dα〉 =

1

2

Z
M

“
〈Q, α∗RD〉+ 〈Q(α), R(α)〉

”
.

Most Riemannian manifolds admit only one parallel curvature tensor field, the
curvature tensor I of the unit sphere. The choice Q = I gives Bochner’s formula.



Matsushima’s formula

Most symmetric spaces admit exactly 2 independant curvature tensor fields, I and R.
The choice Q = R⊥, projection of I ont the line orthogonal to R, gives Matsushima’s
formula Z

M
〈 ˙R⊥Dα, Dα〉 = 0

Corollary
Let Γ be a uniform lattice in a semisimple Lie group without factors isogenic to
SO(n, 1) or SU(n, 1). Then H1(Γ, R) = 0.

Proof.
Under these assumptions, ˙R⊥ is positive definite on traceless symmetric 2-tensors (E.
Calabi, E.Vesentini, A. Borel, Y. Matsushima, S. Kaneyuki, T. Nagano). ThusR
M

˙R⊥Dα, Dα〉 = 0 for harmonic α implies Dα = 0.
Parallel 1-forms exist only if M/K split an Euclidean de Rham factor. Therefore α = 0.
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Kazhdan’s property (T)

1968 : D. Kazhdan proves that H1(Γ, R) = 0 for all higher rank lattices as follows.

Definition
Say a locally compact group G has property (T) if the trivial representation of G is
isolated in the space of unitary representations of G.

Theorem
(D. Kazhdan, B. Kostant, A. Guichardet, P. Delorme).

1. If Γ is a lattice in a locally compact group G, then Γ has property (T) if and only
if G has it.

2. A semisimple Lie group G has property (T) if and only if no simple factor of G is
isogenous to SO(n, 1) or SU(n, 1).

3. Γ has property (T) if and only if H1(Γ, π) = 0 for all unitary representations π of
Γ.

4. Γ has property (T) if and only if every affine isometric action of Γ on a Hilbert
space has a fixed point.

Remark
Property (T) implies that Γ is finitely generated, this was Kazhdan’s motivation.



Matsushima’s formula implies property (T)

Proof. H1(Γ, π) can be computed using L2 E -valued differential 1-forms α on
M = Γ \ G/K , for some flat hermitian vectorbundle E on M.

Positivity of ˙R⊥ on traceless symmetric 2-tensors implies a pointwise inequality

|Dα|2 ≤ const.
“
|dDα|2 + |(dD)∗α|2 + 〈 ˙R⊥Dα, Dα〉

”
.

Bochner’s formula
R
M

“
|Dα|2 − |dDα|2

L2 − |(dD)∗α|2
”

= −
R
M Ricci(α) and

negativity of Ricci curvature giveZ
M
|α|2 ≤ const.

Z
M

“
|Dα|2 − |dDα|2

L2 − |(dD)∗α|2
”

.

Combining these inequalities with Matsushima’s formula
R
M〈 ˙R⊥Dα, Dα〉 = 0 yields

‖ α ‖L2
1
≤ const.

“
‖ dDα ‖2

L2 + ‖ (dD)∗α ‖2
L2

”
.

This implies that (dD)∗ on closed 1-forms is invertible, thus its adjoint dD from
0-forms to closed 1-forms is invertible too.
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Harmonic map approach to superrigidity

Let X be a symmetric space, Y a Riemannian manifold. Let Γ be a lattice of X ,
acting isometricly on Y . If f : X → Y is an equivariant map, df is a dD -closed
f ∗TN-valued 1-form. Half of its squared L2 norm is called the energy of f ,

E(f ) =
1

2

Z
M
|df |2.

Critical points of the energy are called harmonic maps. They satisfy (dD)∗df = 0.
Note that totally geodesic maps, characterized by Ddf = 0, are harmonic. The issue
of superrigidity is the converse : prove that

(dD)∗df = 0 ⇒ Ddf = 0.

A vector valued form of Matsushima’s formula readsZ
Γ\X

〈Q̇Ddf , Ddf 〉 =
1

2

Z
Γ\X

“
〈Q, R〉|df |2 + 〈Q, f ∗RY 〉

”
.

Problem : find a parallel curvature tensorfield Q such that

1. 〈Q, R〉 = 0;

2. Q̇ is positive definite on traceless symmetric 2-tensors;

3. 〈Q, T 〉 ≤ 0 under suitable assumptions on curvature tensor T .



Choice of parallel curvature tensorfield, after Mok, Siu and Yeung

Theorem
(Mok, Siu and Yeung, 1993). Let X be a symmetric space which is neither a real nor a
complex hyperbolic space. There exists a parallel curvature tensorfield Q on X such
that

1. 〈Q, R〉 = 0;

2. Q̇ is positive definite on traceless symmetric 2-tensors;

3. 〈Q, T 〉 ≤ 0 for all nonpositively curved curvature tensor T (resp. for all curvature
tensors T with nonpositive complex curvature if rank(X ) = 1).

Proof. Choose vectors u, v ∈ TX which are tangent to a flat totally geodesic plane.
Let S be orthogonal projection on the line generated by X ∧Y in Λ2TX . Let Q be the
average of k∗S for k ∈ K ⊂ G = Isom(X ). Then Q is K -invariant, and thus parallel.
For T a curvature tensor,

〈Q, T 〉 =

Z
K

T (k(u), k(v), k(u), k(v)) dk

is an average of sectional curvatures of T , so it is ≤ 0 if T is nonpositively curved.
In rank one, take u, v ∈ TX ⊗ C in T 1,0Z for some complex hyperbolic plane Z ⊂ X .
Then 〈Q, T 〉 is an average of complex curvatures <e (T (k(u), k(v), k(u), k(v))).
Note that all symmetric spaces Y have nonpositive complex curvature.



Existence of an equivariant harmonic map

Remark
As in the linear case, Matsushima’s formula should be used to prove the existence of
an equivariant harmonic map without any reductivity assumption.
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Combinatorial harmonic maps

Definition
Let C be a finite simplicial 2-complex. Put on each edge a weight equal to the number
of faces that contain it, put on each vertex the total weight of edges containing it.

For a map g : C → Y sending vertices of C to a metric space Y , define the energy

E(g) =
X

edges e

m(e)d(g(orig(e)), g(end(e)))2 =
1

2

X
c

X
c′∼c

m(c, c ′)d(g(c), g(c ′))2.

Let X be a simplicial 2-complex with a cocompact action of a group Γ. If f : X → Y
is equivariant, define

E(g) =
X

edges e of Γ\X
m(e)d(f (orig(ẽ)), f (end(ẽ)))2,

where ẽ denotes a lift of e to X . Say f is harmonic if it minimizes energy among
equivariant maps.

Proposition
Let Y be CAT(0). Then an equivariant map f : X → Y is harmonic if and only if for
each vertex x of X , f (x) coincides with the barycenter of f|link(x), i.e. the unique point
of Y which minimizes the weighted sum of squares of distances to the images of the
neighbours of X .



Bottom of spectrum

Definition
(M.T. Wang, 1998). Let C be a finite weighted graph. Let

d(g , bar(g))2 =
X
c∈C

m(c)d(g(c), bar(g))2

denote the L2 distance of map g to its barycenter. Define the Rayleigh quotient

RQ(g) =
E(g)

d(g , bar(g))2
.

The bottom of spectrum of C relative to Y is the infimum of Rayleigh quotients of
nonconstant maps C → Y ,

λ(C , Y ) = inf
g :C→Y

RQ(g).

Example
When Y = R, the bottom of spectrum equals the smallest positive eigenvalue of the
combinatorial Laplacian ∆g(c) =

P
neighbours c′ of c m(c, c ′)(g(c)− g(c ′)).



Garland’s formula

It is a combinatorial analogue of Matsushima’s formula, discovered by H. Garland in
1972, in order to prove vanishing of cohomology for, compact quotients of Euclidean
buildings. A. Borel (1973) generalized it to arbitrary simplicial complexes. A. Zuk
applied it to prove Kazhdan’s property. The nonlinear version is due to M.T. Wang
(1998).

Theorem
(H. Garland, 1972, M.T. Wang, 1998). Let X be a simplicial complex, Γ a uniform
lattice in X , acting isometricly on a metric space Y . Let f : X → Y be an equivariant
map. For x ∈ X, denote by

ED(f , x) =
1

2
d(f|link(x), f (x))2,

(where links inherit weights from X). Then

E(f ) =
X

x∈Γ\X
ED(f , x̃).

If f is harmonic, then

E(f ) = 2
X

x∈Γ\X
RQ(f|link(x))ED(f , x).

In particular, if, for all x ∈ X, λ(link(x), Y ) > 1
2
, every equivariant harmonic map

X → Y is constant.



Proof of Garland’s formula

E(f ) =
1

2

X
x∈Γ\X

X
x′∼x

m(x , x ′)d(f (x), f (x ′))2

=
X

x∈Γ\X

1

2

X
x′∈link(x)

m(x , x ′)d(f (x), f (x ′))2

=
X

x∈Γ\X
ED(f , x).

E(f ) =
X

edges (x′,x′′) of Γ\X
m(x ′, x ′′)d(f (x ′), f (x ′′))2

=
X

faces (x,x′,x′′) of Γ\X
m(x , x ′, x ′′)d(f (x ′), f (x ′′))2

=
X

x∈Γ\X
E(f|link(x)).

If f is harmonic, for each x ∈ X ,

E(f|link(x)) = RQ(f|link(x))d(f|link(x), bar(f|link(x)))
2

= RQ(f|link(x))d(f|link(x), f (x))2

= 2RQ(f|link(x))ED(f , x).



Kazhdan’s property (T)

Corollary
(A. Zuk, 1996). Let X be a simplicial complex, Γ a uniform lattice in X . Assume that
for all x ∈ X, λ(link(x), R) ≥ λ > 1

2
. Then Γ has Kazhdan’s property (T).

Lemma
Let Γ act isometricly on a Hilbert space H, let f : X →H be equivariant. Then

(2λ− 1)E(f ) ≤ λ‖ ∆f ‖2.

Proof. In `2(link(x)), f|link(x) − bar(f|link(x)) is orthogonal to the constant function
∆f (x) = f (x)− bar(f|link(x)),

‖ f|link(x) − f (x) ‖2 = ‖ f|link(x) − bar(f|link(x)) ‖2 + ‖ f (x)− bar(f|link(x)) ‖2

= 2ED(f , x) + m(x)|∆f (x)|2.

E(f|link(x)) = RQ(f|link(x))d(f|link(x), bar(f|link(x)))
2

= 2RQ(f|link(x))ED(f , x) + RQ(f|link(x))m(x)|∆f (x)|2

≥ 2λED(f , x) + λm(x)|∆f (x)|2.

Summing gives

E(f ) ≥ 2λE(f ) + λ‖ ∆f ‖2.



Fixed point property, linear case

Proposition
(Following H. Izeki and S. Nayatani, 2004). Let X be a simplicial complex, Γ a
uniform lattice in X , acting isometricly on a Hilbert space H. Assume that for all
x ∈ X, λ(link(x), R) ≥ λ > 1

2
. Then Γ fixes a point in H.

Proof. Start with arbitrary equivariant map f : X →H. Solve heat equation
∂ft
∂t

= −∆ft . Smooth short time solutions always exist, they satisfy

∂

∂t
E(ft) = −‖ ∆ft ‖2

≤ −
2λ− 1

λ
E(ft),

which shows exponential decay of energy. Since

‖
∂ft

∂t
‖

2

= −‖ ∆ft ‖2 = −
∂

∂t
E(ft),

Z +∞

0
‖

∂ft

∂t
‖

2

E(ft)
−1/2 dt = 2E(f0)

1/2

is a priori bounded, therefore ft converges in L2. This suffices to show existence of a
sublimit f∞ with vanishing energy, i.e. a constant equivariant map, i.e. a fixed point.



Random groups

Observe that every group presentation can be modified, by adding generators, so that
all relators have length 3.

Consider presentations on m fixed generators and (2m − 1)3d relators chosen
independently at random among the (2m − 1)3 possibilities. We are interested in
properties which are satisfied with overwhelming probability as m tends to infinity.
Such a property is said to be satisfied by a random group in density d .

Theorem
(M. Gromov, 1993). Random groups in density < 1

2
are infinite and hyperbolic.

(A. Zuk, 2003). Random groups in density > 1
3

have Kazhdan’s property (T).

Proof. (very rough idea)
The Cayley complex has links which look like random graphs. Such graphs (M. Broder
and E. Shamir, 1987) have bottom of spectra which tend to 1 as m tends to infinity.



Fixed points for isometric actions on CAT (0) spaces

1. Isometric actions on the real line

2. Local rigidity

3. Matsushima’s formula

4. Kazhdan’s property (T)

5. Harmonic map proof of Margulis superrigidity, after Mok, Siu and Yeung

6. Garland’s formula

7. Fixed points for isometric actions on CAT (0) spaces

8. Ã2-buildings



Tangent cones

Definition
Let Y be geodesic and CAT(0). If s, s′ are geodesics emanating from y ∈ Y , let

d(s, s′) = lim
t→0

d(s(t), s(t′))

t
,

(nondecreasing limit). Identify s and s′ if d(s, s′) = 0. This gives a metric space,
denoted by TyY , with a distance nonincreasing map πy : Y → TyY .

Examples
If Y is a Riemannian manifold, TyY is a finite dimensional Euclidean space. If Y is a
finite tree, TyY is a bunch of half lines with common endpoint.



A fixed point theorem

Theorem
(H. Izeki and S. Nayatani, 2004). Let X be a simplicial complex, Γ a uniform lattice in
X , acting isometricly on Y . Assume Y is complete, geodesic, CAT(0). Assume that
for all x ∈ X, for all y ∈ Y , λ(link(x), TyY ) > 1

2
. Then Γ fixes a point in Y .

Proof. Define (−∆f )(x) as a point in Tf (x)Y .

Prove a Garland inequality

(2λ− 1)E(f ) ≤ λ‖ −∆f ‖2.

Use U. Mayer’s gradient flow for convex functions on CAT(0) spaces.

Show exponential decay of energy.

Conclude that flow is defined for any time and converges to an `2 map of vanishing
energy.



Comparison to tangent cones

Theorem
(M.T. Wang, 1998). Let C be a finite weighted graph. Let Y be a geodesic CAT(0)
metric space. Then

λ(C , Y ) = inf
y∈Y

λ(C , TyY ).

Proof.

Given g : C → Y , let y = bar(g). Let g ′ = πy ◦ g where πy is the projection from Y
to TyY . Since πy is distance nonincreasing, E(g ′) ≤ E(g).

It turns out that bar(g ′) = y is the vertex of the cone. Indeed, at y , the distance in Y
to a point z osculates the distance in TyY to πy (z). So do d(g , ·)2 and d(g ′, ·)2.
Since the first achieves a minimum at y , so does the second at the vertex of the cone.
It follows that d(g ′, bar(g ′))2 = d(g , bar(g))2, thus RQ(g ′) ≤ RQ(g), and
λ(C , TyY ) ≤ λ(C , Y ).

Reverse inequality holds since each TyY is a limit of rescaled copies of Y .



Superrigidity with respect to nonpositively curved manifolds

Corollary
If Y is a nonpositively curved manifold, then for every finite weighted graph C,
λ(C , Y ) = λ(C , R).

Corollary
Les X be a simplicial complex, Γ a uniform lattice in X . Assume that at all vertices x,
λ(link(x), R) > 1

2
. Then Γ is superrigid with respect to nonpositively curved

Riemannian manifolds : every isometric action of Γ on such a space has a fixed point.

Corollary
Random groups in density > 1

3
are superrigid with respect to nonpositively curved

Riemannian manifolds.



Examples of bottoms of spectra

Proposition
(H. Izeki and S. Nayatani, 2004). If Y is a tree, then for every finite weighted graph
C, λ(C , Y ) = λ(C , R).

Proof. Since we deal with finitely many points at a time, we can assume first that Y
is a finite tree, and then replace it by a bunch of half-lines. One can assume that the
given map has its barycenter at the vertex. Without changing the barycenter nor
increasing energy, one can assume that the given map g : C → Y sends a point ai > 0
in each branch, with weight 1.
The barycenter assumption translates into

∀i , ai ≤
X
j 6=i

aj ,

a necessary and sufficient condition for the numbers ai to be the length of the sides of
a planar Euclidean polygon.
Let ei ∈ R2 be unit vectors parallel to the sides, so that

P
i aiei = 0. Let g ′ : C → R2

be the map which sends a point c mapped by g to the i-th branch to
d(g(c), bar(g))ei . Then bar(g ′) = 0, E(g ′) ≤ E(g), d(g ′, bar(g ′))2 = d(g , bar(g))2,
thus RQ(g ′) ≤ RQ(g), λ(C , Y ) ≥ λ(C , R2) = λ(C , R).



The Iseki-Nayatani invariant

Definition
(H. Izeki and S. Nayatani, 2004). Let Y be a geodesic CAT(0) space. Given a finite
weighted subset Z ∈ Y (sum of weights = 1), let φ : Z →H be a 1-Lipschitz map to
Hilbert space such that for all z ∈ Z, |φ(z)| = d(z, bar(Z)). Define

δ(Z) = inf
φ

|bar(φ)|2

‖ φ ‖2
.

The IN invariant of Y is δ(Y ) = supZ⊂Y δ(Z) ∈ [0, 1].

Lemma
Let Y be a geodesic CAT(0) space, let C be a finite weighted graph. Then

λ(C , Y ) ≥ (1− δ(Y ))λ(C , R).

Proof. Given g : C → Y , let Z = g(C). Choose optimal φ for Z . Pythagore gives
d(φ, bar(φ))2 = ‖ φ ‖2 − |bar(φ)|2 = (1− δ(Z))‖ φ ‖2 = (1− δ(Z))d(g , bar(g))2.

λ(C , R) ≤ RQ(φ ◦ g) =
E(φ ◦ g)

d(φ ◦ g , bar(φ ◦ g))2
≤

E(g)

d(φ, bar(φ))2
=

1

1− δ(Z)
RQ(g).



Examples of values of IN invariant

Examples

1. Hilbert spaces have δ = 0, by definition.

2. For all Y , δ(Y ) = infy∈Y δ(TyY ). Therefore nonpositively curved manifolds have
δ(Y ) = 0.

3. Trees have δ = 0.

4. δ is continuous under ultralimits. Therefore (non proper) Euclidean buildings
which are asymptotic cones of symmetric spaces have δ(Y ) = 0.

5. For all Y and probability measure spaces Ω, δ(L2(Ω, Y )) ≤ δ(Y ).

6. δ(Y1 × Y2) ≤ max{δ(Y1), δ(Y2)}. Therefore, products of the above have δ = 0.

7. The Euclidean building of Sl(3, Qp) has δ ≥ (
√

p−1)2

2(p−√p+1)
(equality conjectured).

8. The Euclidean building of Sl(3, Q2) has δ < 1
2
.



The fixed point property FY≤δ0

Definition
Fix δ0 ∈ [0, 1]. Say a group Γ has property FY≤δ0

if every isometric action of Γ on a
geodesic CAT(0) space Y with δ(Y ) ≤ δ0 has a fixed point.

Proposition
Let δ0 < 1

2
. Let X be a simplicial complex, Γ a uniform lattice in X . Assume that for

all x ∈ X, λ(link(x), R) > 1
2(1−δ0)

. Then Γ has property FY≤δ0
.

Theorem
(A. Zuk, 2003, H. Izeki, T. Kondo and S. Nayatani, 2006). If δ0 < 1

2
, random groups

in density > 1
3

have asymptoticly property FY≤δ0
.

Theorem
(T. Kondo, 2006). In the space of marked groups, FY≤δ0

is an open condition.
Furthermore, FY<1/2 is dense.



Finite representation type

Definition
(H. Bass, 1980). Say a group Γ has finite representation type if for all n, every
homomorphism Γ → Gl(n, C) factors through a finite group.

Theorem
(T. Kondo, 2006). In the space of marked groups, there is a dense Gδ of groups which
have property FY<1/2 and finite representation type.

Proposition
If a group has a fixed point in all its isometric actions on symmetric spaces and
classical Euclidean buildings of type Ãn (call this FIS), then it has finite representation
type.

Remark
FY≤δ0

does not imply FIS. Indeed, δ tends to 1/2 for classical buildings of type Ã2, as
p tends to infinity.



Ã2-buildings

1. Isometric actions on the real line

2. Local rigidity

3. Matsushima’s formula

4. Kazhdan’s property (T)

5. Harmonic map proof of Margulis superrigidity, after Mok, Siu and Yeung

6. Garland’s formula

7. Fixed points for isometric actions on CAT (0) spaces

8. Ã2-buildings



Towards property FCAT (0) ?

Theorem
(M. Gromov, 2001). Let Ck denote the k-cycle. Then, for every CAT(0) space Y ,

λ(Ck , Y ) = λ(Ck , R) =
1

2
|1− e2iπ/k |2.

In particular, λ(C6, Y ) = 1
2
.

Proof. Introduce

F (g) =
1

2
P

m(c)

X
c, c′∈C

m(c)m(c ′)d(g(c), g(c ′))2.

Then d(g , bar(g))2 ≤ F (g) with equality when Y is a Hilbert space.

Given g : Ck → Y , extend g to a geodesic polygon, then to a ruled disk f : D → Y .
Since D has nonpositive curvature, there exists an embedding g ′ : D → R2 which is
isometric on the boundary and does not decrease other distances (Yu. Reshetnyak,
1968). Thus E(g ′) = E(g) and

d(g ′, bar(g ′))2 = F (g ′) ≥ F (g) ≥ d(g , bar(g))2,

thus RQ(g ′) ≤ RQ(g).



Finite projective planes

Definition
Let C be a weighted graph, Y a metric space. Define

λGro(C , Y ) = inf
g :C→Y

RQGro(g) where RQGro(g) =
E(g)

F (g)
.

If Y is geodesic CAT(0), λGro(C , Y ) ≤ λ(C , Y ), with equality when Y is a Hilbert
space.

Proposition
Let C be the incidence graph of a finite projective plane. Let Y be an arbitrary
geodesic CAT(0) space. Then

λGro(C , Y ) = RQGro(ι),

where ι : C → I is the embedding of C in the cone over C, for instance, as the link of
a vertex in a Euclidean building of type Ã2.

Proof. In the incidence graph of a finite projective plane, the number of 6-cycles
containing two given vertices depends only on their distance. Sum up Gromov’s
estimate on F for all 6-cycles.

Unfortunately, RQGro(ι) < 1
2
. Note that RQ(ι) = 1

2
.


