Geometric rigidity

Pierre Pansu

Grenoble, june 2004

What is it all about ?

Classifying finite dimension linear representations of certain discrete groups. Existing results apply mainly to lattices (i.e. finite covolume discrete subgroups) of semi-simple algebraic groups. Prototype : $\Gamma = Sl(n, \mathbb{Z}), G = Sl(n, \mathbb{R}).$ One wonders wether methods might apply to larger classes of discrete subgroups.

Counting linear representations

Rough dimension count for Hom(Γ ,G)/G. If Γ has g generators and r relators, dim(Hom(Γ ,G)/G) \approx dim(G)(g-r-1).

Example. S compact orientable surface of genus γ . Then $\Gamma = \pi_1(S)$ has a presentation with 2g generators and 1 relator, thus dim(Hom(Γ ,G)/G) \approx dim(G)(2 γ -2). This is sharp for G = PSl(2,**R**), PSl(2,**C**), but not for PU(2,1).

Compact 3-manifold groups

If $\Gamma = \pi_1(M^3)$, a Morse function with n_i critical points of index i, $n_0 = n_3 = 1$, yields a presentation with $g = n_1$, $r = n_2$. Since $0 = \chi(M) = 1 - n_1 + n_2 - 1$, g = r.

Thurston. If $G = PSL(2, \mathbb{C})$, the dimension count can be refined to give dim(Hom(Γ,G)/G) = 0.

This looks sharp, in view of Calabi-Weil infinitesimal rigidity. Higher dimensional lattices should be even more rigid.

Superrigidity of lattices

Margulis (1974). Let G, H be semi-simple algebraic groups over local fields, without compact factors. Assume G has real rank at least 2. Let Γ be an irreducible lattice in G.

Every homomorphism $\Gamma \rightarrow H$ whose image is unbounded and Zariski dense extends to G \rightarrow H.

Dictionnary

Margulis (1974). Let G, H be semi-simple algebraic groups

over local fields, without compact factors. Assume G has real rank at least 2. Let Γ be an irreducible lattice in G.

Every homomorphism $\Gamma \rightarrow H$ whose image is unbounded and Zariski dense extends to $G \rightarrow$ H. Let X, Y be finite dimensional symmetric spaces or buildings, without euclidean or compact factors. Assume X has rank at least 2. Let Γ be a discrete irreducible group of isometries of X such that $vol(\Gamma \setminus X) < \infty$.

Every reductive isometric action of Γ
on Y leaves invariant either a point
or a convex subset C of Y which is
pluriisometric to a product of
irreducible factors of X.

Rank 1 lattices

Corlette, **Gromov-Schoen** (1992). Preceding results extend to the case when X is a hyperbolic space over the quaternions or the octonions of dimension > 4.

Remark. They do not extend to the two other families of rank 1 symmetric spaces, real hyperbolic spaces **R**Hⁿ or complex hyperbolic spaces **C**Hⁿ.

Arithmeticity

Corollary. Irreducible lattices in semi-simple Lie groups other than $SO(n,1) = Isom(\mathbf{R}H^n)$ and $SU(n,1) = Isom(\mathbf{C}H^n)$ are *arithmetic* i.e. obtained as integer matrices in a linear representation defined over \mathbf{Q} of G (up to lifting in a product G × L, L compact, and up to commensurability).

Since algebraic groups over **Q** are classified (**Tits** 1966), this can be viewed as a classification of commensurability classes of lattices.

CAT(0) spaces

Symmetric spaces and buildings are examples of CAT(0) metric spaces.

Definition. A geodesic space Y is CAT(0) if for every triangle, medians are shorter that in the euclidean comparison triangle.

For Riemannian manifolds, CAT(0) ⇔ simply connected, nonpositive curvature

Generalization

Question. Let Γ be a discrete finite covolume group of isometries of a metric space X. Find conditions on X so that every isometric action of Γ sur on a complete CAT(0) space Y has a fixed point or leaves a convex subset homothetic to X invariant.

This is the program of *geometric superrigidity*.

What is it good for ?

- 1. Understand why lattices of SU(n,1) are not superrigid.
- 2. Investigate infinite dimensional representations of lattices.
- 3. Study group actions on compact manifolds, via the associated action on an auxiliary CAT(0) space, like the space of measurable metrics.
- 4. Prove that certain groups are not linear.

Non linear groups

Remark. There exist finitely presented groups without non trivial finite dimensional linear representations (e.g. infinite *simple* groups).

Question. Does a *generic* finitely presented group admit non trivial finite dimensional represented groups ?

Random groups

Claim (Gromov 2002). Let Γ be a random group modelled on a graph of large girth. With probability tending to 1 as girth tends to infinity, for all n, every homomorphism Γ \rightarrow Gl(n,**R**) has a finite image.

Question. Find an elementary proof of this.

Geometric superrigidity ⇒ finiteness of representations

Let $\Gamma \subset Gl(n, \mathbb{C})$ be a superrigid group.

- 1. Choose a $\overline{\mathbf{Q}}$ -point h of Hom(Γ , Gl(n,**C**)).
- 2. $Y = \mathbf{C} \Rightarrow h(\Gamma) \subset Sl(n, \mathbf{C})$, in fact $Sl(n, \mathbf{Q})$.
- 3. Γ finitely generated $\Rightarrow h(\Gamma) \subset Sl(n,F)$, F a finite extension of Q. Extension of scalars yields h': $\Gamma \rightarrow Sl(N,Q)$.
- 4. Y = building of Sl(N, \mathbf{Q}_p) \Rightarrow h'(Γ ') \subset Sl(N,Z), for Γ ' of finite index in Γ .
- 5. $Y = Sl(N,C)/SU(N) \Rightarrow h'(\Gamma) \subset SU(N).$
- 6. $h'(\Gamma') \subset SU(N) \cap Sl(N,Z)$ is finite.

Results discussed in the sequel

- Affine actions (Bochner, Matsushima, Garland, Zuk).
- Actions on CAT(0) manifolds (Eells-Sampson, Corlette, Jost-Yau, Mok-Siu-Yeung, Wang).
- Actions on certain CAT(0) spaces (Gromov-Schoen, Wang, Gromov, Iseki-Nayatani).
- Irreducible lattices in products (Monod).
- Commensurators (Margulis, Monod).

Contents

- 1. Harmonic maps
- Eells-Sampson and Ricci > 0
- Affine actions and vanishing theorems
- A combinatorial vanishing theorem
- More general CAT(0) targets
- 2. Induction
- Irreducible lattices in products
- Commensurator superrigidity

Equivariant maps

Notation. M compact manifold, $\Gamma = \pi_1(M)$, N universal covering of M. h isometric action of Γ on Y.

Goal. Prove that h has a fixed point.

Notation. $L^{[2]}(M,h)$ = space of equivariant Lipschitz maps f:N \rightarrow Y, equipped with L² distance. Nonempty if Y is contractible.

Remark. h has a fixed point $\Leftrightarrow L^{[2]}(M,h)$ contains a constant map.

Energy

Definition. Let $f \in L^{[2]}(M,h)$. Its *energy* is $E(f) = 1/2 \int_M |df|^2$.

Critical points of E are called *harmonic maps*.

Remark. Y is CAT(0) \Rightarrow L^[2](M,h) is CAT(0) and E is convex. If nonempty, the set of critical points of E is convex, closed and E achieves its absolute minimum on it.

Strategy

Strategy (Eells-Sampson 1964, Yau late '70). Under a suitable assumption on M and h,

- show that E achieves its minimum at some map f,
- show that f is constant.

Eells-Sampson and Ricci > 0

- 1. Harmonic maps
- Eells-Sampson and Ricci > 0
- Affine actions and vanishing theorems
- A simplicial vanishing theorem
- More general CAT(0) targets
- 2. Induction
- Irreducible lattices in products
- Commensurator superrigidity

Eells-Sampson's fixed point theorem

- **Eells-Sampson** (1964). Let Y be a CAT(0) manifold. Assume $h(\Gamma)$ is discrete cocompact.
- Then E achieves its minimum at some f.
- If M has Ricci > 0, then f is constant.
- If Ricci ≥ 0 , then h(Γ) leaves invariant a convex d-flat and M fibres over a d-torus.

Actions on a line

Goal. Prove the second part of Eells-Sampson's theorem in case Y = R.

- **Remark**. If $f : N \rightarrow \mathbf{R}$ is equivariant, $\alpha = df$ is a 1-form on M.
- Let $D\alpha$ = covariant derivative, $\delta\alpha$ = tr($D\alpha$), d α = A($D\alpha$), where A skew-symmetrizes 2-tensors. Then

 $\forall f, d\alpha = 0.$ f harmonic $\Leftrightarrow \delta \alpha = 0.$

Bochner's formula

Bochner (1946). For T a 2-tensor, let $Q_{B}(T) = |T|^{2} - |A(T)|^{2} - tr(T)^{2}.$ Then for every 1-form α on M, $\int_{M} Q_{B}(D\alpha) = -\int_{M} \operatorname{Ricci}(\alpha, \alpha).$

Remark. Q_B is positive definite on the subspace S^2_0 of tracefree symmetric 2-tensors.

 $f: M \rightarrow \mathbf{R}$ harmonic $\Leftrightarrow D\alpha \in S^2_0$.

Thus Ricci > 0 $\Rightarrow \alpha = 0$, f constant. \Box

Eells-Sampson's formula

Let Y be a manifold, $f : N \rightarrow Y$ equivariant. Then df is a 1form with values in the vector bundle f*TY. Again, ddf = 0 and f harmonic $\Leftrightarrow \delta df = 0$.

Eells-Sampson (1964). Let $F \rightarrow M$ be an orthogonal vector bundle with metric connection. For all F-valued 1–forms α on M,

 $\int_{M} Q_{B}(D\alpha) = -\int_{M} \operatorname{Ricci}(\alpha, \alpha) + \operatorname{tr}(\alpha^{*}R^{F}).$

If Y is CAT(0) and F = f*TY, then $R^F \le 0$. Thus Ricci > 0 $\Rightarrow \alpha = 0$, f constant. Ricci $\ge 0 \Rightarrow$ f totally geodesic, curvature of Y vanishes on the image of f. \Box

Affine actions and vanishing theorems

- 1. Harmonic maps
- Eells-Sampson and Ricci > 0.
- Affine actions and vanishing theorems
- A simplicial vanishing theorem
- More general CAT(0) manifolds and spaces
- 2. Induction
- Irreducible lattices in products
- Commensurator superrigidity

Affine actions

Definition. Γ has property FH is every affine isometric action Γ on a Hilbert space has a fixed point.

Goal. Prove that most lattices have property FH.

Guichardet. FH implies Kazhdan's property (T) (for countable groups).

Matsushima's formula

A curvature tensor is a 4-tensor such that $Q_{1234} = -Q_{2134} = Q_{3412}$ and $Q_{1234} + Q_{2314} + Q_{3124} = 0$.

Matsushima (1962), revisited by Mok-Siu-Yeung (1993). Let Q be a *parallel* curvature tensor on M. It defines a quadratic form on 2-tensors. Then, for all vector bundle valued 1-forms α on M,

 $\int_{M} Q(\mathrm{D}\alpha) = 1/2 \int_{M} \left(\langle Q, \alpha^* R^F \rangle + \langle Q(\alpha), R(\alpha) \rangle \right).$

Parallel curvature tensors

Examples.

- Q_B corresponds to the curvature tensor I of **R**Hⁿ, which can be transplanted on any Riemannian manifold. Therefore Bochner ⊂ Matsushima.
- M is locally symmetric ⇔ its curvature tensor R est parallel. In this case, let R[⊥] be the component of I orthogonal to R. If N is irreducible, and α is an equivariant Hilbert space valued 1-form, Matsushima's formula reads

 $\int_{M} \mathbf{R}^{\perp}(\mathbf{D}\alpha) = 0.$

Positivity

Calabi, Vesentini, Borel (1960), Matsushima, Kaneyuki-Nagano (1962). If N is distinct from RHⁿ and CHⁿ, the quadratic form R^{\perp} is positive definite on S²₀.

Corollary. Every affine isometric action of a uniform lattice which is neither real or complex hyperbolic has a fixed point (property FH). In particular, these lattices have Kazhdan's property (T).

Avoiding harmonic maps

Proof. Positivity $\Rightarrow \exists C_1, C_2 > 0$ such that $R^{\perp}(T) + C_1(|A(T)|^2 + tr(T)^2) \ge C_2|T|^2$. For all equivariant \mathcal{H} -valued 1-forms α , Matsushima + Bochner \Rightarrow $\|\alpha\|^2 \leq C_3 \|D\alpha\|^2 \leq C_4 (\|d\alpha\|^2 + \|\delta\alpha\|^2),$ Thus $\delta I_{ker(d)}$ is an isomorphism. So is its adjoint d. Let $f: N \rightarrow \mathcal{H}$ be equivariant. Then $g = f - d^{-1}df$ is equivariant and constant. \Box

A combinatorial vanishing theorem

- 1. Harmonic maps
- Eells-Sampson and Ricci > 0
- Affine actions and vanishing theorems
- A combinatorial vanishing theorem
- More general CAT(0) targets
- 2. Induction
- Irreducible lattices in products
- Commensurator superrigidity

Combinatorial equivariant maps

From manifolds to simplicial complexes

Goal. A combinatorial analogue of Matsushima's formula.

Weights. A *weight* on a complex C is a positive function m on simplices of C, such that for each k-simplex σ , m(σ) is the sum of m(τ) over all (k+1)-simplices τ containing σ .

Example. Let m = 1 for all 2-simplices and propagate to 1and 0-simplices.

Energy. Given a weighted complex (C,m) and a map g' : C \rightarrow Y, E(g) = $1/2 \sum_{c,c'} m(c,c') d(g(c),g(c'))^2$.

Combinatorial harmonic maps

Definition. Let Z be a finite simplicial complex with universal covering X, $\Gamma = \pi_1(Z)$, h an isometric action of Γ on Y. Let $L^{[2]}(Z,h)$ be the set of equivariant maps of the set of vertices of X to Y. $E(f) = 1/2 \sum_{z,z'} m(z,z')d(f(x),f(x'))^2$. Critical points of E are *harmonic maps*.

Interpretation. Z is network of springs of strength m. E is potential energy, harmonic map is equilibrium configuration.

Notations in case of affine action

Barycenter. Let (C,m) be a finite weighted graph. For $g : C \rightarrow \mathcal{H}$, let $bar(g) = \sum_{c} m(c)g(c) / \sum_{c} m(c).$

Energy. For
$$g : C \rightarrow \mathcal{H}$$
, let

$$E(g) = 1/2 \sum_{c,c'} m(c,c') |g(c)-g(c')|^2.$$

Links. Link(c) inherits weight m(c, •).

Combinatorial harmonic maps : affine case

Definition. Let Z be a finite simplicial complex with universal covering X, $\Gamma = \pi_1(Z)$, h an affine isometric action of Γ on a Hilbert space \mathcal{H} . Let $L^{[2]}(Z,h)$ be the Hilbert space of equivariant maps f of the set of vertices of X to \mathcal{H} . Let $E(f) = 1/2 \sum_{z,z'} m(z,z') |f(x)-f(x')|^2$.

Harmonic map equation.

f is harmonic $\Leftrightarrow \forall x, f(x) = bar(f_{|link(x)}).$
Bottom of spectrum

Definition. (C,m) weighted graph, $g : C \rightarrow R$. The *Rayleigh quotient* of g is $RQ(g) = E(g)/||g - bar(g)||^2$. Then $\lambda(C) = \inf_g RQ(g)$ is the *bottom of the spectrum* of the discrete Laplacian on C.

Example. If C is a circle subdivised in 6 edges with equal weights, $\lambda(C) = 1/2$. A random regular graph of large size and degree has $\lambda(C)$ close to 1.

Intuition. $\lambda(C)$ large means C is strongly interconnected.

Garland's formula

Garland (1972), **Borel** (1973). h affine isometric action of Γ on Hilbert space \mathcal{H} , f : X $\rightarrow \mathcal{H}$ equivariant. For x \in X, let ED(f,x)=1/2 || f_{|link(x)} - f(x) ||², so that E(f)= $\sum_{z} ED(f,x)$.

If f is harmonic, then

 $E(f) = 2\sum_{z} RQ(f_{|link(x)}) ED(f,x).$

Corollary (**Zuk** 1996). If for all z, $\lambda(\text{link}(z)) > 1/2$, then Γ has property FH.

Example. Sufficiently thick euclidean buildings, certain hyperbolic buildings.

Proof of Garland's formula

$$\begin{split} \mathrm{E}(\mathrm{f}) &= 1/2 \sum_{z, z'} m(z, z') |\mathrm{f}(x') - \mathrm{f}(x'')|^2 \\ &= 1/2 \sum_{z, z', z''} m(z, z', z'') |\mathrm{f}(x') - \mathrm{f}(x'')|^2 \\ &= \sum_z \mathrm{E}(\mathrm{f}_{|\mathrm{link}(x)}). \end{split}$$

For each
$$x \in X$$
,

$$E(f_{|link(x)}) = RQ(f_{|link(x)}) || f_{|link(x)} - bar(f_{|link(x)}) ||^2$$

$$= RQ(f_{|link(x)}) || f_{|link(x)} - f(x) ||^2$$

$$= 2 RQ(f_{|link(x)}) ED(f,x). \Box$$

Property FH for random groups

Zuk (2003). Let Γ be a random group, i.e. given by a presentation $\langle S, R \rangle$ where R consists of words of length L. Assume

#R = (#S)^{dL} where d > 1/3.

With probability tending to 1 as L tends to infinity, every affine isometric action of Γ on a Hilbert space has a fixed point.

Remark. d < $1/2 \Rightarrow \Gamma$ is nonelementary hyperbolic (**Gromov** 1993).

Why density > 1/3 ?

Gromov, **Zuk**. Let S' = all words of length < L/3. Then Γ = <S',R'> where R' consists of random words of length 3. The Cayley complex of this new presentation is simplicial, its links are approximately random regular graphs of size $\#S'=(\#S)^{L/3}$. Their degree is

 $\#R/\#S' = (\#S)^{L(d-(1/3))},$

which tends to infinity with L if d > 1/3.

Unclear wether bound 1/3 is sharp. **Ollivier** and **Wise** (2004) show that random groups in density < 1/8 are not FH.

More general CAT(0) targets

- 1. Harmonic maps
- Eells-Sampson and Ricci > 0
- Affine actions and vanishing theorems
- A simplicial vanishing theorem
- More general CAT(0) targets
- 2. Induction
- Irreducible lattices in products
- Commensurator superrigidity

Harmonic maps from symmetric spaces to manifolds

Mok-Siu-Yeung, Jost-Yau (1993). Every equivariant harmonic map of a higher rank compact irreducible locally symmetric space to a CAT(0) manifold is totally geodesic and pluriisometric.

Corlette (1990), **ibid**. Same conclusion for quotients of **H**Hⁿ and **O**H², under a stronger negativity assumption on the range (satisfied by symmetric spaces) : nonpositive complex sectional curvature.

Harmonic map proof of Margulis superrigidity

- **Proof**. M compact higher rank locally symmetric space. Then there exists on M a parallel curvature tensor Q such that
- $Q \gg 0$ on S_0^2 ,
- $\langle Q,T \rangle \leq 0$ for all curvature tensors with nonpositive sectional curvature.

Matsushima ⇒ if f : N→Y is equivariant harmonic, $0 \leq \int_{M} Q(Ddf) = 1/2 \int_{M} \langle Q, R \rangle |df|^2 + \langle Q, f^*R^Y \rangle \leq 0.$ ⇒ f totally geodesic.□

Construction of a parallel curvature tensor

M higher rank locally symmetric space. $\mathcal{F}(x) = \text{set}$ of 2-flats F through x. p : $T_xM \rightarrow T_xF$ orthogonal projection. Pull back Bochner's curvature tensor on F and average, i.e. set

 $Q_F = p^*Q_{B,F}$ and $Q = \int_{\mathcal{F}(x)} Q_F dF$. Then Q is K-invariant, thus parallel.

$$\langle \mathbf{Q}, \mathbf{S} \rangle = \int_{\mathcal{F}(\mathbf{X})} \mathbf{S}(\mathbf{F}) \, \mathrm{dF}$$

is an average of sectional curvatures. Therefore $\langle Q, S \rangle \leq 0$ if S has nonpositive sectional curvature.

Harmonic maps from symmetric spaces to buildings

Gromov-Schoen (1992). Every equivariant harmonic map of a compact irreducible locally symmetric space (not covered by **R**Hⁿ or **C**Hⁿ) to a Euclidean building is constant.

Proof. Such a map is smooth (i.e. locally factors through an isometric embedding of a euclidean space) away from a set of codimension 2. Thus integration by parts applies.□

Simplicial maps to CAT(0) spaces

L² distance. Given maps g, g' : C \rightarrow Y, d(g,g')² = \sum_{c} m(c) d(g(c),g'(c))².

Barycenter. The *barycenter* bar(g) of g is the point of Y which minimizes

 $y \rightarrow d(g,y)^2 = \sum_c m(c) d(g(c),y)^2.$

Harmonic map equation.

f is harmonic $\Leftrightarrow \forall x, f(x) = bar(f_{|link(x)}).$

Bottom of spectrum. Let $\lambda(C, Y)$ denote the inf of $RQ(g)=E(g)/d(g,bar(g))^2$ over all maps $g: C \rightarrow Y$.

Tangent cones

Let Y be CAT(0). Then Y admits at each point y a tangent cone T_y Y which is again a CAT(0) metric space.

Wang. $\lambda(C,Y) \ge \inf_{y \in Y} \lambda(C,T_yY)$. In particular, if Y is a manifold or a tree, $\lambda(C,Y) \ge \lambda(C,\mathbf{R}) = \lambda(C)$.

Nonlinear Garland formula

Wang (2000). Let $ED(f,x) = d(f_{|link(x)},f(x))^2$. If f is harmonic,

 $E(f) = 2\sum_{z} RQ(f_{|link(x)}) ED(f,x).$

In particular, if for each z and y,

 $\lambda(\ln(z), T_yY) > 1/2,$

every equivariant harmonic map $f: X \rightarrow Y$ is constant.

Corollary (**Gromov** 2003, **Iseki-Nayatani** 2004). Every isometric action of Γ on Y has a fixed point.

Nonlinear heat flow

Proof. Mayer (1998) constructs a gradient flow for every continuous convex function on a complete CAT(0) space. This applies to E on L^[2](Z,h), yielding $t \rightarrow f_t$. If all $x \in X$ and $y \in Y$ satisfy $\lambda(link(x), T_y Y) \ge \lambda >$ 1/2, Garland's formula implies $\partial E(f_t)/\partial t \le -4 \lambda E(f_t)$.

Since

$$\left| \partial f_t / \partial t \right|^2 = - \partial E(f_t) / \partial t,$$

one concludes that f_t subconverges to a constant map. \Box

Comparing simplicial curvatures

Iseki-Nayatani (2004) attach to every metric space Y a number $\delta(Y)$ such that for every weighted graph C,

 $\lambda(C,Y) \ge (1-\delta(Y)) \lambda(C).$

 $\delta(Y) = 0$ if Y is a tree.

 $\delta(\mathbf{Y}) \leq 0.41$ if \mathbf{Y} is the building of PGl(3, \mathbf{Q}_2).

Corollary. Random groups in density >1/3, lattices in PGl(3, \mathbf{Q}_p) for large *p*, must have a fixed point when acting on this specific building.

Izeki-Nayatani's invariant

Consider probability measures μ on Y and distance decreasing maps $\phi : Y \rightarrow \mathcal{H}$ such that

$$\forall y \in Y, |\phi(y)| = d(y, bar(\mu)).$$

Define

$$\delta(\mathbf{Y}) = \sup_{\mu} \inf_{\phi} |\int_{\mathbf{Y}} d\mu|^2 / \int_{\mathbf{Y}} |\phi|^2 d\mu \ .$$

Induction

- 1. Harmonic maps
- Eells-Sampson and Ricci > 0
- Affine actions and vanishing theorems
- A simplicial vanishing theorem
- More general CAT(0) targets
- 2. Induction
- Irreducible lattices in products
- Commensurator superrigidity

Induction and Kazhdan's property (T)

Kazhdan (1968). If Γ is a lattice in G, then G has property (T) $\Rightarrow \Gamma$ has property (T).

Proof. π unitary representation of Γ . Then π has almost Γ -invariant vectors \Leftrightarrow $L^2(\Gamma \setminus G, \pi)$ has almost G-invariant vectors. \Box

Inducing isometric actions

Inducing a Γ -action h on Y means considering the G-action (by precomposition with right translations) on $L^2(\Gamma \setminus G,h) = \{\text{equivariant } L^2 \text{ maps } G \rightarrow Y\},\$ where L^2 means $g \rightarrow d(f(g), y_0)$ is L^2 on a fundamental domain (this requires a condition on h if Γ is not uniform).

Lemma. Γ lattice in G.

- \exists D G-invariant closed convex subset in L^[2](Γ\G,Y) such that ∀f, f'∈ D, d(f(g),f'(g)) is independent on the choice of g∈G.
- \Rightarrow **3**C Γ -invariant closed convex subset in Y on which the Γ -action extends to a G-action.

Evanescence

Definition (Monod). A continuous isometric Gaction on Y is *evanescent* if there exist an unbounded $T \subset Y$ such that for every compact set $Q \subset G$, the Q-orbits of elements of T have diameters bounded in terms of Q only.

Remark. An affine action of a σ -compact group is evanescent \Leftrightarrow the associated linear representation has almost invariant vectors.

Induction and evanescence

Proposition. Let G be locally compact second countable. Let Γ be a uniform lattice in G, h a non evanescent isometric action on a CAT(0) space Y. Then the induced G-action on L^[2](Γ \G,h) is non evanescent.

Irreducible lattices in products

- 1. Harmonic maps
- Eells-Sampson and Ricci > 0
- Affine actions and vanishing theorems
- A simplicial vanishing theorem
- More general CAT(0) targets
- 2. Induction
- Irreducible lattices in products
- Commensurator superrigidity

Irreducible lattices

Definition. Let G_i be locally compact second countable groups. A lattice $\Gamma \subset G = G_1 \times \ldots \times G_n$ is *irreducible* if its projections to factors are dense.

Example. The automorphism group of the product of two trees admits such lattices (**Burger-Mozes** 1997).

Superrigidity of irreducible lattices in products

Monod (2004). Let Γ be an irreducible uniform lattice in $G = G_1 \times ... \times G_n$. For every isometric and non evanescent action of Γ on a complete, separable CAT(0) space Y, there is either a fixed point or a closed convex Γ -invariant subset $C \subset Y$ which is equivariantly isometric to a product of minimal G_i spaces.

The proof relies on the following splitting theorem for G actions.

Splitting of actions of products

Monod (2004). Let G_i be topological groups. Let $G = G_1 \times \ldots \times G_n$ act isometricly and continuously on a CAT(0) space Y. If the action is not evanescent, there is a closed convex G-invariant subset $D \subset Y$ which is equivariantly isometric to a product of G_i -spaces.

Encompasses results of **Schroeder** (1985), **Bridson** and **Jost-Yau** (1999) for locally compact targets.

Proof of the splitting theorem

Let n=2.

- There is a minimal closed convex G_i-invariant set D_i (weak compactness of bounded convex sets + non evanescence).
- The union D of the minimal closed convex G_1 invariant sets splits isometricly as $D_1 \times D_2$.
- The G-action on $D_1 \times D_2$ is the product action.

Proof of superrigidity

The splitting theorem applied to $L^{[2]}(\Gamma \setminus G,h)$ yields a G-invariant subset $D = D_1 \times D_2$. Let f, f' $\in D_1$ be joined by a geodesic σ . The slopes of σ (with respect to the infinite product structure of $L^{[2]}(\Gamma \setminus G,h)$) are G_2 -invariant functions. By irreducibility, they are constant. This means that $g \rightarrow d(f(g), f'(g))$ is constant. The lemma applies. \Box

Challenge. Analyze isometric actions of higher rank semi-simple Lie groups and prove superrigidity.

Commensurator rigidity

- 1. Harmonic maps
- Eells-Sampson and Ricci > 0
- Affine actions and vanishing theorems
- A simplicial vanishing theorem
- More general CAT(0) targets
- 2. Induction
- Irreducible lattices in products
- Commensurator superrigidity

Commensurators and arithmeticity

Definition. Γ subgroup of G. Comm(Γ ,G) is the group of $g \in G$ such that $g^{-1}\Gamma g \cap \Gamma$ has finite index in Γ .

Example. $\Gamma = Sl(n, \mathbb{Z}), G = Sl(n, \mathbb{R}) \Rightarrow Comm(\Gamma, G) = Sl(n, \mathbb{Q}).$ Typical of arithmetic lattices.

Margulis. G semi-simple Lie group with trivial center and no compact factors, Γ irreducible lattice in G. Then Γ is arithmetic \Leftrightarrow Comm(Γ ,G) is dense in G \Leftrightarrow Γ has infinite index in Comm(Γ ,G).

Proof of commensurator arithmeticity criterion

Recall the proof of arithmeticity for superrigid lattices. Let h be a $\overline{\mathbf{Q}}$ -point of Hom(Γ ,Sl(n,C)). After extension of scalars, get $\Gamma \hookrightarrow Sl(N,\mathbf{Q})$. Then Comm(Γ ,G) \subset Sl(N,Q) for G= Sl(N,R). Apply superrigidity to $\Gamma \hookrightarrow Comm(\Gamma,G) \hookrightarrow Sl(N,\mathbf{Q}) \hookrightarrow Sl(N,\mathbf{Q}_p)$.

Get $\Gamma' \subset Sl(N, \mathbb{Z})$, for Γ' of finite index in Γ .

Observe that superrigidity is used only for homomorphisms $\Gamma \rightarrow H$ which are restrictions of homomorphisms defined on Comm(Γ ,G).

Commensurator superrigidity

Margulis. G, H semi-simple, Γ lattice in G. G without compact factors. Let Λ be a dense subgroup of G contained in Comm(Γ ,G). Then any homomorphism h : $\Lambda \rightarrow$ H such that h(Λ) is unbounded and Zariski dense extends to G \rightarrow H.

Remark. Margulis gave an (unpublished) harmonic map proof of this.

Geometric commensurator superrigidity

Monod (2004). Γ uniform lattice in G locally compact, σ -compact. Let Λ be a dense subgroup of G contained in Comm(Γ ,G). Suppose Λ acts isometricly on a complete CAT(0) space Y which is nonevanescent and unbounded on Γ . After restriction to a non empty Γ -invariant closed convex subset, the Γ -action extends to G.

Case of the automorphism group of a tree treated by **Lebeau** (Y is a tree) and **Burger-Mozes** (Y CAT(-1), (1996)).

Proof of commensurator rigidity (1/2)

Let Y' = $L^{[2]}(\Gamma \setminus G,h)$.

- 1. Averaging over finite subsets A of $\Gamma \setminus \Lambda$. For $f \in Y'$ and $a \in \Lambda$, let $f_a : g \rightarrow h(a)^{-1}f(ag)$. The set $\{f_a : a \in A\}$ is finite and permuted by Γ . Therefore its barycenter $F_A(f) \in Y'$. The map $F_A : Y' \rightarrow Y'$ is G-equivariant.
- 2. Non evanescence implies that the F_A -orbits are bounded. The fixed-point set D_A of F_A is non empty, convex and G-invariant. If f, f' $\in D_A$, then $g \rightarrow d(f(g), f'(g))$ is Λ_A invariant, $\Lambda_A = \text{group generated by } \Gamma A$.
- 3. D_A splits isometricly as $C \times T_A$ where C is a minimal closed convex G-invariant set.

Proof of commensurator rigidity (2/2)

4. Non evanescence implies that $\bigcup_A T_A$ is bounded. Weak compactness implies that the T_A have a non empty intersection. If f, f' ∈ D = $\bigcap_A D_A$, then g → d(f(g),f'(g)) is Λ -invariant, thus constant, and the lemma applies.□

References (1)

- N. A'Campo, M. Burger, *Réseaux arithmétiques et commensurateur d'après G.A. Margulis*, Invent. Math. **116** (1994), 1-25.
- A. Borel, On the curvature tensor of the hermitian symmetric manifolds, Ann. Math. **71** (1960), 508-521.
- A. Borel, Cohomologie de certains groupes discrets et laplacien p-adique (d'après H. Garland), Séminaire Bourbaki (1973-74), exposé 437, 12-35, Lecture Notes in Math.
 431, Springer, Berlin (1975).
- M. Bridson, A. Haefliger, *Metric spaces of nonpositive curvature*, Grundlehren **319**, Springer, Berlin (1999).
- M. Burger, S. Mozes, Lattices in products of trees, Publ. Math. IHES 92 (2000), 113-150.
- M. Burger, S. Mozes, *CAT(-1) spaces, divergence groups and their commensurators*, J. Amer. Math. Soc. **9** (1996).
- E. Calabi, E. Vesentini, On compact locally symmetric Kähler manifolds, Ann. Math. **71** (1960), 472-507.
- K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. Math. **135** (1992), 165-182.

References (2)

- P. De la Harpe, A. Valette, *La propriété (T) de Kazhdan pour les groupes localement compacts*, Astérisque **175**, Soc. Math. de France (1989).
- J. Eells, J. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math. **85** (1964), 109-160.
- H. Garland, *p-adic curvature and the cohomology of discrete subgroups of p-adic groups*, Ann. Math. **97** (1973), 375-423.
- M. Gromov, *Asymptotic invariants of infinite groups*, Geometric group theory vol. 2 (Sussex, 1991), 1-295, London Math. Soc. Lecture Notes Ser. **182**, Cambridge Univ. Press, Cambridge, 1993.
- M. Gromov, Random walks on random groups, GAFA 13 (2003), 73-148.
- M. Gromov, P. Pansu, Rigidity of lattices : an introduction, Geometric topology : recent developments, Montecatini Terme 1990, 39-137, Lecture Notes **1504**, Springer, Berlin, 1991.
- M. Gromov, R. Schoen, *Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one*, Publ. Math. IHES, **76** (1992), 165-246.
- H. Izeki, S. Nayatani, *Combinatorial harmonic maps and discrete-group actions on Hadamard spaces*, preprint (2004).
References (3)

- E. Lebeau, Applications harmoniques entre graphes finis et un théorème de superrigidité, Ann. Inst. Fourier **46** (1996), 1183-1203.
- J. Jost, S.T. Yau, *Harmonic maps and superrigidity*, Differential geometry, partial differential equations on manifolds, Proc. Symp. Pure Math. **54-I** (1993), 245-280.
- J. Jost, S.T. Yau, *Harmonic maps and rigidity theorems for spaces of nonpositive curvature*, Commun. Anal. Geom. **7** (1999), 681-694.
- G.A. Margulis, *Arithmeticity and finite dimensional representations of uniform lattices*, Funkc. Anal. I Prilozh. **8** (1974), 258-259.
- G.A. Margulis, *Discrete subgroups of semi-simple Lie groups*, Ergebn. der Math. **17**, Springer, Berlin (1990).
- G.A. Margulis, *Superrigidity for commensurability subgroups and generalized harmonic maps*, preprint.
- Y. Matsushima, On the first Betti number of compact quotient spaces of higher dimensional symmetric spaces, Ann. Math. **75** (1962), 312-330.
- U. Mayer, *Gradient flows of nonpositively curved metric spaces and harmonic maps*, Commun. Anal. Geom. **6** (1998), 199-253.
- N. Mok, Y.T. Siu, S.K. Yeung, Geometric superrigidity, Invent. Math. 113 (1993), 57-83.

Références (4)

N. Monod, Superrigidity for irreducible lattices and geometric splitting, preprint (2004).

- P. Pansu, *Sous-groupes discrets des groupes de Lie : rigidité, arithméticité*, Sém. Bourbaki, exposé 778, (1993-94), 69-105, Astérisque **105**, Soc. Math. de France (1995).
- P. Pansu, Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles, Bull. Soc. Math. De France 126 (1998), 107-139.
- V. Schroeder, A splitting theorem for spaces of nonpositive curvature. Invent. Math. **79** (1985), 323-327.
- W. Thurston, Geometry and topology of 3-manifolds, Lecture notes, Princeton (1979).
- J. Tits, *Classification of algebraic groups*, Algebraic groups and discrete subgroups, Proc. Symp. Pure Math. Amer. Math. Soc. **9** (1966), 33-62.
- M.T. Wang, *Generalized harmonic maps and representations of discrete groups*, Commun. Anal. Geom. **8** (2000), 545-563.
- A. Zuk, La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Acad. Sci. Paris **323** (1996), 453-458.
- A. Zuk, Property (T) and Kazhdan constants for discrete groups, GAFA 13 (2003), 643-670.