Chapter VIII

Compactness

Pierre Pansu

In this chapter, we will be concerned with the space of J-holomorphic maps of
compact Riemann surfaces (9, Jg) into a fixed compact almost complex manifold
(V,J). Even if an upper bound on area is imposed, this space is not compact in
general.

Example. —  The conics z — (z,¢/z), CP! — CP? all have the same area.
As € tends to 0, they converge smoothly, except at z = 0.

The graph of a dilation z + (z,ex), CP? — CP! x CP?! converges smoothly,
as € tends to 0, except at z = oo

In both cases, the images f.(S) converge, as subsets in the range V, to a union
of two holomorphic curves

In his paper [3], M. Giomov states a compactness property for sets of holomorphic
curves, which lies between the convergence of images (as subsets in the range) and
the convergence of maps (parameter included): given a sequence f; : (S,Js) —
(V,J) of holomorphic maps with bounded areas, there exists a subsequence that
converges smoothly away from a finite set of points, at which “bubbles” develop.

This kind of result, which is classical in analytic geometry (E. Bishop’s com-
pactness theorem for analytic submanifolds in Kéhler manifolds [1]), appeared more
recently in analysis on manifolds. In this context, the bubbling off phenomenon was
first discovered by J. Sacks and K. Uhlenbeck in their work on harmonic maps of a
Riemann surface to a Riemannian manifold {6]. Since then, it has shown up in other
variational problems where a noncompact symmetry group arises (see the report by
J.P. Bourguignon [2}).

In these notes, which follow [3] closely, a proof of Gromov’s compactness theorem
for closed holomorphic curves is given. Holomorphic curves with boundary are
covered only in an easy special case

The first step in the proof is the compactness of “cusp-curves”, i.e., convergence
up to a change of parameter. In the second step, convergence of parametrised curves
is obtained as a consequence of the convergence of graphs in S x V.

There are other approaches to compactness theorems, due to T. Parker and J.
Wolfson [5] and Rugang Ye [7].
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I express hearty thanks to Dusa McDuff and Francois Labourie for their help in
completing these notes.

1. Riemann surfaces with nodes

Let us view a holomorphic curve in a fixed almost complex manifold V as the
following set of data:

¢ an oriented differentiable 2-manifold S;
e a conformal or complex structure Jg on S;
e a holomorphic map f:§ —V

In a degenerating family of holomorphic curves, it may happen that the complex
structures Jg themselves degenerate. Thus a first step in understanding holomorphic
curves is to understand noncompactness in the moduli space of complex structures
on surfaces. This is a classical subject, for which a good reference is [4]

As we have seen in the above examples, topology can change in a degenerating
family of holomorphic curves. It turns out a similar phenomenon is already present
in the moduli space of complex structures on a surface. It is easy to visualise in
terms of metrics of constant negative curvature.

1.1. Compact surfaces with constant curvature

Let S be a compact, orientable surface of genus greater than 1. In 2 dimen-
sions, Riemannian metrics and complex structures are interrelated objects Given a
Riemannian metric and an orientation, rotation by 90° in each tangent space is well-
defined and defines an almost-complex structure, which is automatically integrable
(see chapter II for references). Two Riemannian metrics define the same complex
structure if and only if they are conformal. Conversely, in a conformal class of Rie-
mannian metrics, the curvature —1 condition singles out a unique metric. This is
the content of the uniformisation theorem.

As a consequence, there is a 1-1 correspondence between complex structures on S
and Riemannian metrics on S with curvature —1 (this correspondence breaks down
for spheres and tori).

Noncompactness in the space of metrics with curvature —1 is easy to understand
"The key notion is that of injectivity radius (see chapter 11I). Locally, any metric of
curvature —1 is isometric to the hyperbolic plane (i.e., the disc with its hyperbolic
metric). The injectivity radius at a point p is the largest r such that the geodesic disc
centreed at p is isometric to a geodesic disc of the hyperbolic plane. The injectivity
radius of the Riemannian surface is the infimum of the injectivity radii of points of
S,

PROPOSITION 1.1.1. ——  For every e > 0, the space of Riemannian metrics on
S with injectivity radius greater than € is compact
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Indeed, the Gauss-Bonnet formula implies that all metrics with curvature —1 on
S have the same area. This means that S can be covered by a number of hyperbolic
discs of 1adius e that depends only on € The gluing data then vary in a compact
set. O

Here, .S; converges to S means that there exist diffeomorphisms ¢; : S; — S
which pull back the metric of S; to metrics on S which converge uniformly in C®-
topology.

1.2. The modulus of an annulus

It is useful to translate the compactness criterion of proposition 1.1.1 into purelfe
conformal terms. A small injectivity radius means that there exists a short closed
geodesic v, which is not null homotopic. Then + has a large embedded tubular
neighbourhood. In an orientable surface, such a neighbourhood is an incompressible
annulus with large modulus.

DEFINITION 1.2.1. — Let A be an annulus equipped with a smooth complex
structure. Then A is either conformal to the punctured Euclidean plane, the punc-
tured disc or a unique cylinder S* x [0, L] where the S* factor has unit length. The
number L is called the modulus of A. Here is an alternative definition.

(12.2) %:inf/|duf2

over smooth functions u on A which take the value 0 on one boundary component
and 1 on the other.

Conversely, if a compact Riemann surface S contains an incompressible annulus
A with large modulus, then the conformal metric with curvature —1 has a small
injectivity radius. A compactness criterion for sets of compact Riemann surfaces
follows, where the following topology is used: the sequence (Sj, Js;) converges to

(S, Js) if there exist diffeomorphisms ®; + 8 — 5; such that the pushed forward
complex structures (¢;).(Js,) on S converge uniformly and smoothly to Jg.

PROPOSITION 1.2.3. —  Fir a number L. Consider all compact Riemann sur-
faces S of fixed genus greater than 1, with the following property: the modulus of
every incompressible annulus in S is less than L. This space is compact.

1.3. Degeneration

Given a complete Riemannian surface S with curvature —1, and ¢ > 0, the e-
thick part of S is the set of points where the injectivity radius is greater than e,
Note that the number of connected components of the e-thick part of S is bounded
in terms of the genus and e.
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DEFINITION 1.3.1. — A sequence of complete surfaces S; with curvature —1
converges to S if for every e > 0, the e-thick part of S; converges to the e-thick part
of S.

An obvious extension of Proposition 1.1.1 says that every sequence of complete
surfaces with curvature —1 and uniformly bounded area has a convergent subse-
quence (in the C*™-topology). The next point is to describe how area and topology
can change in the limit,

The part of a compact surface with curvature —1 where the injectivity radius is
small is also easy to describe. The model is the quotient of the hyperbolic plane by
an isometry which translates a geodesic v by a distance £ < w/4. In this surface,
the injectivity radius is an increasing function of the distance from . Let us denote
by A(£) the 7/8-thin part of this surface, i.e., the set of points where the injectivity
radius is less than 7/8. When £ tends to 0, the annulus A(£) splits into two isometric
parts called standard cusps, and denoted by C. The standard cusp C is a complete
Riemannian surface with boundary, conformal to a punctured disc. It can be viewed
as the quotient of a horodisc, an open subset in the hyperbolic plane, by the parabolic
rotation which translates boundary points by a distance 7/8. Observe that the area
of the e-thin part of A(£) tends to 0 as ¢ tends to 0 uniformly in £. As a consequence,
in the convergence A(£) — C'UC, the areas converge. Furthermore, as £ varies from
0 to 7/8, the area of A(¢) varies between two positive constants.

closed

geodesic geodesic

of length £ loop of
length 7 /4

geodesic
loop of
length /4

the annulus A(¢) the cusp C
Figure 10

The next proposition describes the decomposition of the compact oriented con-
stant curvature surface S into thick and thin parts.

PRrROPOSITION 1.3.2 (Thick and thin decomposition). — The set of points in

S where the injectivity radius is less than 7 /8 is a disjoint union of annuli, each of

them being isometric to one of the A(£).

Thus, if a sequence S; of surfaces with curvature —1 degenerates but converges
to S in the sense of definition 1.3.1, a finite (bounded) number of disjoint closed
geodesics have lengths that tend to zero, and S is diffeomorphic to the complement
of the union of these curves. Furthermore, § contains two isometrically embedded
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copies of the standard cusp C for each removed curve. As a consequence, S is
conformal to a disjoint union ¥ of compact Riemann surfaces with points removed
(exactly 2 for each removed curve). The total genus of these surfaces is no more
than the genus of the S;. For j large enough, §; is obtained from ¥ by performing
a series of connected sums, thus to reconstruct the manifold S;, its is sufficient to
remember which pairs of punctures have to be glued together

It should be clear by now that a description of degeneration in families of Rie-
mannian surfaces with curvature —1 should include disconnected or non compact
surfaces with finite area as well.

1.4. Noncompact surfaces with constant curvature

In general, a complete Riemannian surface with curvature —1 and finite area
contains finitely many disjoint isometric copies of the standard cusp, whose union
has a compact complement. As a consequence, it is conformal to the complement
of a finite subset in a compact surface equipped with a smooth complex structure.
Conversely, given a compact Riemann surface > and a finite subset F' C %, the
uniformisation theorem applies provided the Euler characteristic of &2\ F is negative:
there exists a unique complete conformal metric on X \ F' with curvature —1 and
finite area.

As a consequence, given a compact oriented surface 3, there is a 1-1 correspon-
dence between the data of a complex structure on ¥ together with a finite subset
F C ¥ and complete Riemannian metrics on X \ F with curvature —1 (this corre-
spondence now includes spheres with at least three punctures and tori with at least
one puncture),

Let us call a Riemann surface with nodes the data of a disjoint union of compact
surfaces equipped with complex structures, a finite set of marked points called nodes,
and an equivalence relation identifying certain marked points in pairs. Its genus is
defined to be the sum of the genus of all components.

There is a natural topology on the set of Riemann surfaces with nodes. One says
that 3J; converges to ¥ if ¥, is almost obtained from ¥ by a connected sum at pairs of
identified marked points. This means that there is a disjoint collection A; of annuli
in 3J; of large modulus, a map ¢; from ¥, to ¥ which is a diffeomorphism away from
Aj; and collapses each annulus in A; to a node of ¥, such that the pushed forward
complex structures (p;).Jg; converge on compact subsets of ¥\ {marked points} to

By construction, uniformisation yields a homeomorphism between the space of
Riemann surfaces with nodes and the space of Riemannian surfaces with nodes with
curvature —1 and finite area.

ProprosiTiON 1.4.1. — The space of Riemann surfaces with nodes of genus
less than g is compact
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2. Cusp-curves

2.1. Definitions

DEFINITION 2.1.1. — A cusp-curve in an almost complex manifold (V,J) is
a J-holomorphic map from a Riemann surface with nodes to V, i.e, the data of
a disjoint union of compact surfaces ¥y equipped with complex structures, a finite
set of nodes, and an equivalence relation identifying certain nodes in pairs, together
with a J-holomorphic map f : Up2y — V' compatible with the identifications.

DEFINITION 2.1.2 (C*-topology on cusp-curves). — Let f : UXy, — V be a
cusp-curve. Given ¢ > 0, a Hermitian metric v on Yy and a neighbourhood U of
the nodes, a neighbourhood of the cusp-curve f is defined as follows. It is the set of
cusp-curves f : Uty — V such that there exists a continuous map

g Ugig — ngg

with the following properties: o is a diffeomorphism except above the nodes; the
pull-back of a node is an annulus of modulus > 1/¢ or a node;

“f_fOUAHCk <€

away from U, where the metric v on ¥, and a fixed metric i on 'V are used when
Measuring norms;

TN
away from U, and
‘area (f) — area (f)‘ <e.

By construction, the examples in the introduction illustrate the convergence of
a sequence of holomorphic spheres to the join of two holomorphic spheres.

Figure 11

Since constant maps are holomorphic, the number of distinct curves in the image
() C V can decrease in the limit. The above topology is non Hausdorff, but this
should not be taken too seriously. It is the space of non parametrised curves which
is Hausdorft.

Chap. VIII Compactness 239

Cusp-curves with boundary. — Let T be a compact complex manifold with
boundary of dimension 1 (i.e., it has an atlas of holomorphic charts onto open subsets
of C or of a closed half plane). Its double is a compact Riemann surface S with a
natural antiholomorphic involution 7 which exchanges T and S\ T' while fixing the
boundary &T. If f: T — V is a continuous map, holomorphic in the interior of T,
it is convenient to extend f to S by

f=for

DEFINITION 2.1.3. — A cusp-curve with boundary in (V,J), is the data of
finitely many compact Riemann surfaces Sy obtained by doubling surfaces with bound-
ary T, and a continuous map f : UpSy — V', holomorphic in the interior of each Ty,
and such that for = f. A finite set of “nodes” is given, together with identifications
n pairs compatible with 7 and f

The topology is the same as for closed surfaces. As in the case of closed surfaces,
in a convergent sequence of cusp-curves, a finite number of simple closed curves, but
also, of simple arcs with endpoints on 87}, may collapse to a node.

2.2. Compactness theorems

THEOREM 2.2.1 (Compactness for closed cusp-curves). — Let V be a closed
Riemannian manifold. Let J; be a convergent (in C¥) sequence of almost complex
structures on'V, and f; 1 S — V' a sequence of J;-holomorphic curves with bounded
areas. There exists a subsequence which converges (in C*14% ) to a cusp-curve f :
UeXe — V., where, topologically, U;Y, is obtained from S by collapsing o finite
number of disjoint simple closed curves. In particular, the genus cannot increase in
the limit

> 9(Xe) < g(8).

THEOREM 2.2.2 (Compactness for cusp-curves with boundary). — Let V' be
a closed Riemannian manifold, W a real analytic submanifold of V. Let J; be a
convergent (in C*7®) sequence of almost complex structures on V which are inte-
grable in a neighbourhood of W, and for which W is totally real For every sequence
1 (T,0T) — (V,W) of J;-holomorphic curves with boundary in W, and bounded
areas, has a CFT1H convergent subsequence.

3. Proof of the compactness theorem 2.2.1

3.1. Scheme of the proof

Constant curvature —1 metrics y; on S will be chosen so that the maps f; become
uniformly Lipschitz. Gromov’s Schwarz Lemma provides us with a Lipschitz bound
for maps of large hyperbolic discs immersed in S into small balls of V. By removing
a controlled number of points on S and choosing for j; the conformal metric with
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cusps at these points, one can ensure that each (non removed) point of S is the
centre of such an immersed disc. One can then choose convergent subsequences of
metrics and maps. In the limit, a holomorphic map of finite area of a punctured
surface is obtained. It needs be extended across the punctures.

The main tools, Gromov’s Schwarz lemma and the removable singularity theo-
rem, are needed in the following form (see chapter VII).

PROPOSITION 3.1.1. — Let (V, ) be a compact Riemannian manifold  Let
J be an almost complex structure of class C*® on V. There exist constants o
(depending only on the C° norm of i and on the C* norm of J) and C (depending
only on the C° norm of p and on the C* norm of J) such that every J-holomorphic
map of the unit disc to an €o-ball of V' has its derivatives up to order k+ 1+ o near
the origin bounded by C.

PROPOSITION 3.1.2. — Let (V,u) be a compact Riemannian manifold. Let
J be an almost complez structure of class C*** on V. Every J-holomorphic map
f:D* —V of finite area extends to a J-holomorphic map of the disc to V.

A coarse form of monotonicity will also be needed. The constant o in this
statement is the one in proposition 3.1.1.

PROPOSITION 3.1.3. — Let (V, ) be a compact Riemannian manifold. Let J
be an almost complex structure of class C* onV. Letz € V. If Sisa J-holomorphic
curve in V. with boundary contained in the sphere 0B(z, &), then

area (S) > 5.

3.2. Choice of metric on the domain

Let f : $ — V be a holomorphic map. In this paragraph, a metric with curvature
—1 will be constructed on S {perhaps with finitely many points removed) in such a
way that the image by [ of every unit geodesic disc in this metric has diameter less
than eo, the constant that enters the Schwarz lemma 3.1 1

Removal of a net. — In V, let us choose a maximal system of disjoint gg-balls
with centres on f(S). Let F be the set of centres. According to the monotonicity
property 3.1.3, f(S) leaves a definite quantum of area inside each of these balls, thus
the number of points in F' is bounded by a constant N that depends only on the
area and &g,

Since F is maximal, every point of f(S) lies at a distance at most 2¢g from a
point of F. Next we want to bound the diameter of discs contained in f(S)\ F.
The trick is to construct annuli with large modulus.
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Annuli. — Let A be an annulus contained in f(S) \ F, whose boundary com-
ponents have length at most €9. Then the diameter of A is less than 12¢o. Indeed,
every point of A lies at a distance at most 2¢¢ of the boundary (by construction of
F), and, for the same reason, the boundary components lie at most 4eq apart

If a Riemannian annulus has a large modulus, then a slightly smaller isotopic
annulus has a short boundary Indeed, let ® : S* x [0,L] — A be a conformal
mapping. Denote by

SH=(S* x {t}).

L
/ / (@' | dt
0 \stx{t}

/L /\cp'; dt

15{t}

Then

L
/ length (S} )% dt.
0

Thus there exists a t such that
length (S}) < (area (A)/L)"/?.

Splitting A into three adjacent annuli (i.e., they share boundary components like
plumbing fixtures), one finds short curves in the extreme annuli. We sum up the
discussion in a

LEMMA 3.2.1. — Let Ay, A, A, be adjacent annuli in S\ f~H(F). If the
moduli of Ay et Ay are larger than L, a constant which depends only on the area of
f(S) and on &, then

diameter f(A) < 12e.

Bound on the diameter of discs in the p*-metric. — We choose to give S\
f~Y(F) the unique complete conformal metric p* with curvature —1.

LEMMA 3.2.2. — There exists a constant p depending only on ¢ and on the
area of f(8), such that every geodesic disc of radius p in the metric p* is contained
in an annulus A admitting adjacent annuli with moduli greater than L as in lemma
3.2.1.

Proof -- Fix r = min{n/8,exp(—2L)} and set p = r®. The thick and thin
decomposition of surfaces with constant curvature, (proposition 1.1.1 and §1.4) tells
us what a geodesic disc of radius 7 looks like. Either it is isometric to a hyperbolic
geodesic disc (when the injectivity 1adius is larger than r, the thick case), or it is
contained in a tube around a closed geodesic A(£) or in a standard cusp C' (when
the injectivity radius is less than r, the thin case).
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The thick case: Let z be a point of S\ f~'(F) where the injectivity radius is
larger than 7/8. Choose a point y € dB(x,2r). The shells
Ay = Bly,r*) -y
A = B(y,3%) ~ B(y,r*)
Al - B(ya T) - B(y7 372)

are topological annuli. Also B(z, p) C A, modulus (4) = 400 and

1 1
modulus (4;) =~ 3 log " >L

as required.

Figure 12

e The thin case: Then z is either close to a closed geodesic or in a cusp.

Figure 13

In both cases, the function

u = d(-, geodesic) — d(z, geodesic)

u = d(-,cusp) — d(z, cusp)
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is smooth on B(z,n/8), and |du| = 1. The sets

Ay ut—7/8, —1?
A = u'[-r? 4% > B(z, p)
A w412, 7/8].

are topological annuli. Using formula (1.2.2) one gets

(n/8)°
modulus (4;) > m

of the order of 1/r, which is much larger than L. O

Conclusion. — For all z € S\ f~}(F), one has
lfllz* S const (V7 Hy ||‘]HC‘¥ 3 alea) '

Indeed, if ® denotes the conformal immersion of the unit Euclidean disc onto the
w* geodesic ball B(z, p), then

|£'l}ur (@) < const - |(f 0 @Y ()5,

where the constant only depends on the radius p. Since the image of f o ® has a
small diameter, the Schwarz lemma 3.1.1 applies and a bound on the derivatives of
f o @ follows.

Notice that this bound does not depend on the injectivity radius of the metric

*

we

3.3. End of proof

Convergence of metrics. — Again, we are given a sequence f; : S; — (V,p)
of holomorphic curves with bounded area and genus. On each of them, a finite set
F} is removed and a metric 1 is chosen in order that the maps f; are uniformly
Lipschitz.

Since the genus of S; and the number of points in Fj are bounded, the area of
; stays bounded, and the compactness criterion 1.3.1 for surfaces with curvature
—1 applies. Up to taking a subsequence, the metrics 5 can be viewed as smoothly
convergent metrics on larger and larger subsets of a fixed surface ¥ which is dif-
feomorphic to the complement of finitely many “nodes” in a compact surface ..
The maps f; are then uniformly Lipschitz maps on these subsets. A subsequence
converges uniformly to a holomorphic map f defined on ¥. On compact subsets of
¥, the convergence is as smooth as the almost complex structure on V, thanks to
the estimate on higher derivatives included in the Schwarz lemma and to elliptic
regularity
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Convergence of areas. — According to 1.3.1, the metrics 4§ converge smoothly
away from sets of smaller and smaller area. Since the f; are uniformly Lipschitz,
their Jacobians are bounded and so

area (f()) = lim area(f;(5;)

Bubbles intersect. —  According to the removable singularity theorem 3.1.2, the
map f extends across the nodes. It remains to prove that f is compatible with the
identifications, i.c., it takes equal values at nodes that arise from the degeneration
of the same annulus A(£). As in the proof of the removable singularity theorem, one
shows that if A, is the e-thin part of A(£), then the diameter of f(A.) tends to 0
with &. If not, the holomorphic annulus f(A.) which has a short boundary and small
area (Lipschitz estimate) would intersect a large ball, contradicting monotonicity.
This ends the proof of theorem 2.2.1.

Remark. — The convergence of areas and monotonicity imply that the images
1;(S;) converge as subsets of V.

3.4. Compactness for cusp-curves with boundary

Under our strong assumption (the totally real data W is 1eal analytic), only
minor changes are needed to adapt the proof. The idea is that in the proof of the
estimate for the first derivative of a conformal map

fS ) — (Viu)

only intrinsic properties of the metric ps(s) are used, like isoperimetric inequalities.
In this respect, maps which are a mixture of holomorphic and anti-holomorphic are
just as good as holomorphic maps.

LEMMA 3.4.1. — Let W be a real analytic totally real submanifold in (V,J).
Assume that J is integrable in a neighbourhood of W. Then there exists a unique
anti-holomorphic involution Ty defined in a neighbourhood of W whose fized point
set is W.

Tt is sufficient to produce local holomorphic charts of V' that take W to R™ C C™.
We can assume that V = C™ Write C™ = R™ @ iR™. Locally, W is the graph of
a real analytic map ¢ of R™ to R™, ie,

W = {z +ip(z) € C™ z € R™}.
The map ¢ extends holomorphically to a neighbourhood of R™ in C™. The map
z 2z +ip(z)

is a local diffeomorphism, as follows from the assumption T, W N1, W = 9. O
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LEMMA 3.4.2. — Assume the triple (V,J,W) satisfies the hypotheses of the
previous lemma. Choose on V' o Hermitian metric p which is invariant under the
involution 7y Let f : § — V be a cusp-curve with boundary (remember this means
that f o1 = f) such that f(OT) C W. Then the pull-back metric f*u sur S is
smooth and satisfies the isoperimetric inequalities and monotonicity holds.

Remark — These isoperimetric inequalities are the standard ones involved in
the statement of the Schwarz lemma in chapter VIL
The proof follows from the Schwarz reflection principle.

THEOREM 3.4.3 (Reflection principle). —— Let T be a Riemann surface with
boundary, let T be the natural antiholomorphic involution on the doubled surface S.
Let [ : (T,8T) — (V,W) be holomorphic. The formula

f(z) =1w o for(x)
defines a holomorphic extension of f to a neighbourhood of T in S.
The identity f*u = f*u proves lemma 3.4.2. O
Choice of a metric on the domain — Keep the construction 7-invariant. Ar-

range things so that F* does not intersect W. Since the metric p* is 7-invariant, the
boundary 97 is totally geodesic.

Convergence of metrics on the domain. — Observe that in the limit, the
geodesics which collapse are of three types:

o simple closed curves;

e simple arcs joining two boundary points

¢ boundary components.
The presence of nodes on 7" causes no extra difficulty.

Non compact ranges. —  All of these results persist when, while W is compact,
V has a coercivity property that prevents holomorphic curves with boundary on W

from escaping to infinity. In the case when W = C™, monotonicity, which holds
globally, implies coercivity.

4. Convergence of parametrised curves

Finally, we are concerned with maps f; : S — V where the complex structure
on S is fixed. In this case, the “bubbles”, i.e., the extra components in a limiting
cusp-curve, are always spheres. This remains true if the complex structure is allowed
to vary in a compact subset of the moduli space of S.
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4.1. Graphs

The trick is to apply cusp-curve compactness to the graphs gr(f;) S = SxV
or more generally to sections of bundles X — 5.

THEOREM 4.1.1. — Let X be a compact manifold and w : X — S a fibration
over a Riemann surface S. Let J; be a Ck+e_convergent sequence of almost complex
structures on X, such that for each j the fibration  : (X, J;) — S is holomorphic.
Let f; : S — X be a sequence of sections with bounded area. Then there exist a
finite subset T C S and a Juoo-holomorphic section foo : S — X such that

(i) a subsequence of the f; converges in cktite o f o away from T,

(i1) if v € T and f;(7) do not converge to foo(7), then the fiber X, contains a non

trivial rational curve
Pyt $? — Xy

which passes through foo(7);
(iii) for large 7, the homotopy class of f; in [, X] is the same as

foo”l’z‘pv
y

(care has to be taken if S is not a sphere, but if S is a sphere, the formula
holds in (X)),

Proof — Let F': U;Sy — X be a limiting cusp-cuve for some subsequence of
f;- Let F =7 oF. Since F is holomorphic, the domain splits as

Ut = 35, U S,

where F' is constant on each component of ¥, and F is a ramified covering on each
component of 3. This implies that

genus (3,) > genus (5).
According to theorem 2.2.1,
genus (21 U,) < genus (5).

Thus the surface ¥, whose genus is 0, is a union of spheres.

Let z be a point of S which is neither in I' = F(21) nor a branch point of F'. One
can assume that the f;(z) converge As the f;(S) N X, converge in the Hausdorft
sense to F(UyX%) N X, one concludes that F (UgX?) intersects X in a single point.
As a consequence, the ramified covering F': Xg — S is an isomorphism, and F(Zs)
is the image of a section fo. As the f;(S ) Hausdorff converge to the image of a
section, the maps f; converge uniformly to fe in a neighbourhood of z. Since all of
the f; send this neighbourhood into a small ball of X, the Schwarz lemma applies,

and the convergence is in fact C¥*1**. O
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4.2. The corresponding statement for curves with boundary

THEOREM 4.2.1. — Let w : X — T be a fibration over a Riemann surface
with boundary T. Let W be a submanifold of m=1(8T). Let J; be a C¥™*-convergent
sequence of almost complex structures on X . Assume that for each j, 7 : (X, J;) — S
is holomophic, that W is totally real with respect to J;, and that J; is integrable in
a neighbourhood of W. Let f; : (T,0T) — (X, W) be a sequence of J;-holomorphic
sections of m, with bounded areas. Then there exists o finite subset I in T and a
Joo-holomorphic section foo : T — X such that

(i) a subsequence of the f; C¥ 1 -converges to fo away from T';

(ii) if v € I and f;(7) does not converge to fo(v), then the fiber X, contains a
non trivial rational curve @, : S* — X, (resp. a holomorphic disc ¢~ : (D,0D) —
(X, W,) if v € 0T ) which passes through foo(7);

(iii) for large j, the homotopy class of f; in [(T',0T, (X, W))] is the same as

foo‘FZ‘Pﬂ/

(care has to be taken of T is not a disc, but if T is a disc, the formula holds in
7r2(X7 W)) ’

4.3. Simple homotopy classes

Under certain extra assumptions which forbid bubbles, a compactness theorem
for parametrised curves will follow. Here are two typical assumptions.

e There are no nontrivial rational curves in the fibres. This appears in the proof
that a compact embedded Lagrangian submanifold in C™ cannot be exact
(one argues by contradiction).

o The homotopy class of f; in [S, X] is simple and, in the case when S = S2?,
normalise the parametrisation in three points.

DEFINITION 4.3.1. — Let J be an almost complex structure on V. A homo-
topy class

,B S WQ(V)
is J-simple if in any decomposition § = 3_; f; where f; : 8% — V is J-holomorphic,
at most one of the f; is nonconstant.

Example. — Let V = 8% x V4, equipped with an almost complex structure J
tamed by w = w; @ wy. Let B be the homotopy class of the first factor. Assume
that, for every J-holomorphic curve ¢ in V3

/ we is an integral multiple of / wr.

c

then the class § is J-simple.
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COROLLARY 4.3.2. — Let B € mo(V) be a J-simple class. Fiz three distinct
points 51, Sp, 83 in S%. For all A, all § > 0, there exists an € > 0 such that the set
of J-holomorphic maps f : S* — V which satisfy

area(f) <
diSt(f(Sj),f(sk))
241

is compact.

The operator Of is explained in chapter V. It takes its values in the space of
sections of a certain bundle X. Every such section g determines an almost complex
structure J, on X = 5% x V, and the equation 8f = g means that the graph of f
is Jg-holomorphic. Furthermore, as g tends to 0, the almost complex structure J,
tends to the product structure on X.

Proof — We prove the corollary by contradiction. Let f; be a noncompact
sequence of J,-holomorphic curves with bounded areas, which satisfy the normali-
sation condition in the statement, and where the g; tends to 0. Let F: Ut — X
be a limiting cusp-curve of the graphs of the f; (it is holomorphic with respect to
the product almost complex structure on X). Since § is J-simple, at most one of
the maps

L Xx v
is nonconstant. If the limiting section f, is non constant in V, then there are
no bubbles and compactness holds. Otherwise f,, is coustant and there is exactly
one bubble over some point v € S%. Away from 7, the f; converge uniformly to a
constant map but this contradicts the assumption dist(f(s;), f(sz)) =6 D

Example — Fix three disjoint submanifolds ¥;, Xs, Y3 in $? x V and require
that f(s;) € ¥; In this case the conclusion is that compactness holds for Jg-
holomorphic curves with g small enough (this is theorem 2.3.C of [3]).
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