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1 Introduction

Let (M, g) be a Riemannian manifold, and z a point in M. Let B(z,r} denote the ball of
radius r and center . The volume growth is the function v on R defined by

(r) = Oifr <0
YA Vol B(z, 7} otherwise.

Which functions on R can be the volume growth of some webric on A7 7 Tt follows from
[G1] that any smooth function on 0, +-oof with positive derivative can be approximated
fin the fine €7 topology) by a volumne growth, Therefore, the restrictions on ¢ ave only
loeal.

In thig paper, wo are concerned wilh the diffsrentiability of » when A4 has dimensiou
2. After a description of the genceric picture, see Theorern 1, we prove that il the metric is
real analytic, then the volume growth is semianalytic, see Theovem 2, Finally, we survey
results from [GP2] and [GP3] giving lower bounds on the singularities lor an avbitrary
melric,

Section 2 contains precise statements. Proofs are to be found in sections 3 to 7.
We need the fact that genericly the energy functional on the space of based loops has
nondegencrate critical points. A proof of this variant of R. Abraham's Duwmpy Metrics
Theorem, [A], is included in an appendix.

2 HResults

2.1 The generic picture

For a generic smooth metric on a 2-dimeusional manifold, the cutlocus of a point = is
a smoothly embedded graph. Each point y € Cutlocus(z) is joined to 2 by as many
minimizing geodesics ag there are ares of Cutlocus(z) emanating from y, never moro than
3. In particular, an endpoint ¢ of Cutlocus(z) is joined to z by a unique minimizing
geodesic aloug which it is conjugate to . .

"T'he distance to z restricted to Cutlocus(z) has three types of singular values
1. the set Ry of distances to x of endpoints;

2. the set Ry of critical values of the distance to x restricted to the interiors of edges
of Cutlocus(z);

3. the set Ry of distances to = of branch points of Cutlocus(z).

Geonerically, the sebs /21, Rg and Ry are disjoint and locally finite.

If r > 0, the derivative v/(r) is the length of the geodesic sphere 85(z, 7). The geodosic
spliers iy a subset of the wave front W(r), image of the circle of radius v in T, M by the

1[(eywordﬂ: Volurne, cutlocus, geodesic flow, subanalytic sol. Mathematics Subject Classification;
B3C22, 58K10, BT 7.
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exponential map. The length of the wave front is a smooth function of r, but parts of it
brutally collapse sometimes.

If g is not a critical value, then the geodesic sphere 8B(z, 7o) is smooth except at
points of Cutlocus(zx), where it is transverse to Cutlocus(z). Therefore v’ is smooth in a
neigborhood of rg. _

If rp € Ry, two smooth branches of W(r) touch quadraticly at some point y €
Cutlocus(x). Either y is a local minimum of the distance to x restricted to the inte-
rior of an edge of Cutlocus(z). In that case, the length of #B(z,r) is smooth up $o rg
and decreases like —/7 = 7p for r > rp. Or y is a local maximum, and '{r) decreases like
7o — 7 for r < ro, and is smooth for r > 7.

If v € R, three smooth branches of the wave front 85(z,70) meet transversally at
some point y & Cutlocus(z). Near y, for r < rg, B{z,r) is & tiny triangle that collapses
to a point. Therefore the length of 8B(x, ) is smooth on both sides of ro but its right
derivative is strictly larger than its left derivative.

If r¢ € Ry, the wave front W(rg) has a singularity of the form y? = 2%, The length of
OB({x,r) is smooth up to ro and decreases like —{r — rg)3f 2 for v > rg.

This leads to the following theorem. We use the notation

, Z{Uif'rSU;
+ rifr >0,

Theorem 1 Let g be a generic smooth metric on a 2-dimensional monifold M. Then the
volume growth function is smooth awey from the locally finite set T = {0} U X, UTg U Xis.
In o neighborhood of a point vy of I, the derivative v odmits o Puiseus expansion of the
form

(o) V'(r) =g{r) — M(r —ro}s) ¥ro=0;

@) v'(r) = g(r) + (- ro)h((r — 10)}*) if ro € %

(i) o'(r) = gr) + h((r — r0)¥?) or () = g{r) = h{(ro — 1Y) ¥ 1o € Ty
(1) o/(r) = g(r) + h{{ro —7)4) ¥ ro € Xi3;

where g and I are smooth, h{0) =0 and I (0) < 0.

2.2 The real analytic case

Definition 1 A set K in R® is semianalytic if, locally in R™, 4 is o finite union of
subsels K; defined by finitely many enalytic equations and inequalions.

Let T be an interval in R, A function ¢ : I — R is semianalytic if ifs graph
{(z,$(2)) | © € I} is a semionalytic subsel of R2.

Here is a concrete characterization of semianalytic functions (see Corollary 3}, A
function ¢ on R is semianalytic if and only if there exists a sequence 0 < xp < -++ <
Ty < »+- such that

i} ¢ is analytic away from the zz;

if) on each side of x, ¢ admits a Puiseux expansion of the form ¢(x) = h(|z — x| HP)
where p is an integer and h is analytic on a neighborhood of § in R,
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Theorem 2 Let (M, g) be o real analytic complete Riemannian manifold of dimension
9. For esch x tn M, the volume of balls centered at x and its derivative are semionalytic
functions of the radius. :

2.3 Results about arbitrary sinooth metrics

For the sake of cdmpleteﬁess, we quote two results concerning general smooth metrics.
The idea is that the singularities of the volume growth observed in the generic case can
get only worse for an arbitrary mefric.

Theorem 3 {{GP2]) Let (M ,9) be a smooth 2-dimensional Riemonnian manifold, and
x € M. Let £ be the injectivity radius at x. Let A be the length of the shortest homotopicly
nontrivial loop at . Let L be the largest distance of ¢ point of M to x. Then

1. at 7’2\-, the wolume growth v is not of class C1® for any o > %;
2. at0 and at I, v is not bf elass C%;

3. at £, v is not of class C** for any & > 1.

Furthermore, the number of singular radii is bounded below by the topology of M.
Fix a point z € M and a generic metric ds®. Say that y € M is a critical point if either

(o) y==zor

(1) ¥ € Cutlocus(z) is a local minimum of the restriction of the distance to x to the
interior of an edge of Cutlocus{x):

(i} y € Cutlocus(z) is a branch point of Cutlocus(z) or a local maximum of the restric-

tion of the distance to z to the inferior of an edge of Cutlocus(z).

In case (o) (resp. (i}, resp (if)), say that y has index O {resp. 1, resp. 2). It is eagy
to approximate the distance function by a smooth proper Moise function with the same
critical points and the same indices. Morse inequalities then provide topological lower
bounds for #Rq and # Ry -+ #R3.

© For slightly less generic metrics, the distance to 2 can take equal valnes at different
critical points, and now one gets weaker estimates. Let S(M) (resp. s(M)) denote the
minimum number of critical values {resp. of index 1) of a smooth proper function with
nondegenerate critical points on M. Fot such less generic metrics, one merely gets #£ Ry -
#Rq > S(M) and #Ra 2 s(M). |
Here is a table plotting the values of § and s for 2-dimensional manifolds,

thanifold : ] o
R2

52 :

non compact, finite type, # R*
corupact, # 52 -
infinite type

ENMHE

== SOt
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It turns out that S{M) and s(M) give sharp bounds for the number of singularities
of the volume growth for arbitrery metrics, except for the real projective plane. Given a
metric ds? on M ands a point = ¢ M, let £'{g) denote the set of vatues of r such that v
is not of class G for any o > % in any neighborhood of r. Let X(g) denote the et of
values of r such that v is not of class €% in any neighborhood of »,

Theorem 4 ([GP3]) Let M be a 2-dimensional manifold, and € M. For any metric

ds* on M, one has
#X'(g) 2 S(M), #Z"{g) = s(M)

i M £ RP?. If M = RP?, then
#X(g) =22, #T'(g) =1
These estimates are sharp, equality is achieved by certain constant curvature metrics.

The metrics on RP?2 such that #3/(g) = 2 and #¥"(g) = 1 form a very small and
explicite family. For such a metric, all geodesics through & come back to x after the same
time A, the volume growth is not C1 at X All othier metrics have #3(g) > 3 = S{RP?)
and #%7(g) > 1 = s{(RP?) and this is again sharp.

3 Facts about semianalytic functions
We shall need a few standard properties of semianalytic functions.

Lemma 2 Let ¢ : [0,1] — R be a semionalytic function. There exists a subdivision
D= <oy < <ap =1 of [0,1] such that over each interval [z, z,11], the graph of ¢
is coptained in an embedded analytic arc.

Proof. Let K denote the graph of ¢. By assumption definition, near one of its points
(20, 70) the set K is a finite union of subsets K; defined by finitely many equations
Ji;(@,y) = 0 and inequalities gij(a;,'y) < 0 where the functions fi; and g;; are analytic
in a neighborhood of {ze, ). We can assume that the sets {fi; = 0} et {gi, = 0} contain
(24, 70) and are all distinct near (wg,30). Then they have only finitely many intersection
points, Therefore, wo can assume that they are disjoint outside {zg, ). As a conse-
quence, each K; has at most one equation. Since the projection 7 : (z,y) =+ = iz injective
on K, each K is defined by exactly one equation f; and a number of inequalities. Near
{z0, ¥a), the analytic set {f; = 0} consists of finitely many arcs intersecting at (xo, %0).
The inequalities gi; <0 do not cut these arcs, thus they merely suppress certain arcs. As
a consequence, the set J{; itself consists of finitely many arcs K;, which meet in (o, y0).
The projection w(K;,) contains a half neighborhood of zg. Since x is injective on X, only
two cases can occur.

» either there is only one set K; consisting of two arcs which project onto two opposite
half neighborhoods of g ; .

e or there are exactly two sets i, each of them an arc which projects onto a half
neighborhood of zp.
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In both cases, on some interval Jug — ¢, o) (resp. on [z, zg -+ €}, ¢ parameirizes an
analytic set. Only finitely many neighborhoods of the Jzo — €, %0 + €] are needed to cover
[0,1]. =

Proposition 3 A function ¢ on [0,1] 4s semianalytic if and only if there exists o sequence
U=y < <axp =1 such that

i} ¢ is analytic away from the zy,;

i) on each side of xy, ¢ admits @ Puiseuz expansion of the Jorm ¢(z) = h()z — x4 V/7)
where p 48 an integer and b is analytic on o neighborhood of O in R.

Indeed, if K is an analytic subset of B2 which at (itk, #(2r)) does not contain a vertical
line segment, then K can be locally parametrized by | - e el— RE, e (2 + P, A{E})
(see [L2], page 172). If K contains all points (z, ¢(z)) for & € @y, zp + €, then ¢(z) =
R{Z|z — zx|*/7) on that interval.

Conversely, if ¢ is piecewise analytic with Puiseux expansions, its graph is clearly
semianalytic. w

Lemma 4 Lezﬁ ¢ : [0,1] = R be a nonconstant semignalytic funetion. Let © be an analytic
function on R2, Then

yHa(y)=/ Oz, y) dx
. {= | dlz)>y} (=)
is semianalylic on R.

Proof. According to Lemma 2, we can assume that the graph of ¢ is an analytic set.
Near yo and on each side of it, the equation ¢(z) = y has finitely many solutions = = w;{y)
which admit a Puiseux expansion ({L2] page 172)

o) = hy(ly — yo| /%)

where fi; is analytic on a neighborhood of 0 in R.. Cloarly, ¢ is semianalytic on each side
of Yo.

Let us label the solutions 9;(y) in increasing order, from § = 1 to j = 2k, unless
#(0) <y, in which case one sets @ (y) = 0 or ¢(1) < , in which case one sets o (y) = 1.
Let Gz, y) = f§ ©@,y)dt. This is an snalytic function, The expression

k
a{y) = ) Glay(y),y) — Glagj—1 (), 1)
F=1

shows that a is semianalytic on each side of 0. .

Lemma 5 Let a be a differentiable function on an interval of R. Assume its derivative
o' is semianalytic. Then a is semianalytic.

Proof. Near zg, we integrate a Puisenx expansion
() = h(|z — zp|Y7).

Then

ae) = alan) + [ () s = ateyt [ iy

is semianalytic on each side of zg. w
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4 Proof of theorem 2

We need a few facts from [GP1]. Let S denote the unit circle in the tangent plane T M.
For a direction & € §1, let

cut(?) %ef sup{r | the geodesic s — exp(st)) is minimizing up to r}

For a smooth métric, the function v — v(r) = Vol B{z,r) is absolutely continnous. Its
derivative v is continuous away from a countable set. At such a point,

S = f (0, r)df
: {eut{0)>r} .

where @(9, r} is the density‘of the volume element in polar coordinates cFentered at =, N
If the mefric iz real analytic, v' is eontinuous except in a very specinl cage. If v/ is
discontinuous at #, then cut{0). = r for all . In particular, there is at most one such r,
which will not affect semianalyticity, _ _
According to [B2], for a real analytic metric, the cutlocus Cutlocus(x) in M is suban-
alytic (see [H]). It follows that the cutlocus in the tangent plane K = OU where

U={(r,d)|r <cut(d)}

is subanalytic as well. Indeed, by definition, subanalyticity is a local property, and images
of subanalytic scts by proper analytic maps arc subanalytic. For each £ > 0, the subset
Up = U N {cut < t} is open in K, and K is the projection on the first factor of T M x R
of the subanalytic sct o

Ul ={(r8,8)|0<r<s<t and exp,(s0) € Cutlocus(z)}.

This shows that If is subanalytic, and so is its boundary, [H].

A classical theorem of 8. Lojasiewicz ([L1], see for example [KJZ]} asserts that every
subanalytic set in the plane is semianalytic. Thus Lemina 4 applies and v is semianalytic,
then Lemma 5 applies and @ is semnianalytic, =

Remark 6 Consider the following semialgebraic subset in R®
A={(z,,2) €eR®*|0<a <1, y >0, 2% —yla? + 2%) = 0}

and its horizontal slices A, = Av{z = r}. The function
area(A,;) = %(1 —~ 2 log(1 + %) 4 r?log{r?))

is not semianalytic (I thank K. Kurdyke for this example). Therefore, it i likely that
Theoremn 2 does not extend to higher dimensional manifolds.

5 Facts about generip cut loci

Fix a 2-dimensional manifold M and a point 2 in M. According to M. Buchner [B1], [B3],
there is a residual subset M of the spdce of smooth complete riemannian metrics on M
such that for every metric in M, the following holds.
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The cutlocus Cutlocus{z} is a smoothly embedded finite graph. Each vortex belongs
either to 3 or to one edge. Vertices belonging to only one edge are called endpoints.
Vertices belonging to 3 edges are called #riple points. Interior points on edges are called
double points.

Each endpoint is joined to = by a unigue minimizing geodesic, along which it is conju-
gate to m. This geodesic is tangent and opposite to the cutlocus at . The only points of
the cutlocus which are conjugate to x along & minimizing geodesic are endpoints.

Hach double point is joined to = by 2 minimizing geodesics which are transverse to the
cutlocus. -

Each triple point y is joined to z by 3 minimizing geodesics. These geodesics are
neither tangent nor orthogonal to the cutlocus at ¥, and the patrwise angles they malke at
y are all less than .

6 Differentiability of the cut function

In this section, we give sufficient conditions on a metric in order that the cut function be
smooth on its domain of definition (an open subset of §'} and have nondegenerate critical
points, and only finitely of them many below any level. The Puiseux expansions described
in theorem 1 then follow from Lemme 1 in [GP2).

~ The- cutlocus in the tangent plane is the set

K = {(r,0) | cut(8) = r}.

It is pa.ft of the inverse image of the cutlocus Cutlocus(z) C M. Assume the metric is in
M. According to results in the previous section, S splits into four subsets,

1. By is the finite set consisting of inverse images of the endpoints of Cutlocus{zx); -
2, By is the inverse image of the interior of the 1-skeleton of C’utlacus(ﬁ);
3. By is the finite set consisting of inverse images of triple points of Cutlocus(x);

4. By is the open subset where cut = +oo.

6.1 ‘Triple points

Lemma 7 Assume that the Riemannian metric g € M. Let 8y € B;. The cut function
is smooth on both sides of 8y, its left and right derivatives at 8y are nonzero.

Indeed, since 3‘9; exp,,(cut(fo), Op) is transverse to the cutlocus, the 3 edges of Clutlocus(r)
pull back to 3 arcs transverse to % and pairwise transverse, Then cut is the minimum of
3 smooth functions which take equal values only at 8. Thus cut i3 piecewise smooth. The
derivatives cut'(fg) are the cosines of certain angles of minimizing geodesics with arcs of
the cutlocus, which were assumed not to vanish. =

6.2 Double points

If 0o € By, near (cut(f),d), K consists of a smooth arc transverse to B%, thus cut is
smooth, near €y. Each critical point 8y of cut in By corresponds te a geodesic loop of
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length 2eunt(fy). Thercfore, for each £, the subset of critical points of cut in By with
cut < 1 is compact.

There remains to make sure that critical points of cut in By are nondegenerate.

Fix a critical point fp € Ha. Let rg = cut(fy) and i = exp,(rp, fo). Let 51— y(s) be
the arclength parametrization of Cutlocus(z) near y. By assumption, for s small, y(s)
is joined to = by exactly two minimizing geodesics vy, and Ti,e With initial speeds @y,
and 01, and length 7(s). Since y(s) is not conjugate to = along these geodesics, the map
8+ by, is a diffeomorphism at 0, and cut has a nondegenerate critical point at (o if and
only if ry hias a nondegenerate critical poin{ at 0.

Lemma 8 Lety be o degenerate criticel point of the restriction of the distance to x to an
open arc of Cutlocus(x). Then the two minimizing geodesics from y to = form a geodesic
loop v at « und x is conjugate lo itself along +.

Proof. Consider the family of broken geodesics

‘ str(s)}ift € {0,1);
%) = {zi},s(r(s)@ ~-)yift e [1,2)

Ttz length is 2r(s). Denote as usual 1' = %’ff and V = %%. At & = rp, these vectorfields
and their derivatives are possibly discontinuous, but have left and right limits T'(r7} and
T(rg), etc...
The vectorfield V' is continuous since V(ry) = V(rd) = o/(s). The first variation
formula implies that /
WVlro), T(rd) ~ T(rg)) = 2'(0) =0

therefore T'(ry) = T(v"ar ), thus vy is a geodesic loop, smooth at ro. Away from 7, V is
a Jacobi field. We next show that V is differentiable at ro. This follows from the second
variation formuta, [GKM)], section 4,

20°(0) = {DrV,V)rg) - {DrV,V)(0) + (D V, Vi(2ro) — (DpV, Vi(r{)
+ ADVV T)(rg) — (DvV, THO) + (Dy V, TH{2r0) — (DyV, T) (rd)
= (DgV, V)(rg) — (DrV, Vi(rd).

Since r(0) = 0 and (DrV,T)(rg) = (DpV,T(r}) = 0, this implies that DeVirg) =
DrV(rd). We conclude that V is a smooth nonzero Jacobi fieid along vy which vanishes
at endpoints. Therefore 2 is conjugate to itself along v. a

Proposition 9 There is a residual set M’ of metrics for which © is a regular volue of
expy ! ToM — M. If ¢ Riemannian metric g € M N M, then oll eriticel points of cut in
By are nondegenerate.

Proof, The first sentence is Theorem & of the appendix. For ¢ € M N M’, z is not
conjugaie to itself along geodesic loops, the critical points of the distance to z on edges

of Cutloeus(z) are nondegenerate, and points in Iy are nondegenerate critical points of
cuf, m
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6.3 Endpoints

In this paragraph, we fix & Riemannian metric g in M and an endpoint 4 of the eutlocus
Cutlocus(z) of x. We can write y — expg(ro, fn) where 8 € By, Tor calculations, we use
Fermi coordinates (X,Y) around #- This means that Y (r, #) is the {signed) distance of the
point expy(r,#) to the minimal geodesic from z to g, and X{r,0) is the arclengih {with
origin at ) of the orthogonal projection of exp,(r, 8) onto this geodesic. In pérticula,r,
K(r,80) =r —rg and ¥ (r, 0y) = 0 for all r. In Yermi coordinates, the Riemannian metric
reads
g=d¥?y e(X,Y)dXx?

where (X, 0) = 1 and %(X, 0)=0.

Lemma 10 Assume thal the Riemannian metric g € M, Lot ¥ = exp,{ro, ) be an
endpoint of Cutlocus(z). Then

P

80 06
-(-9?(1‘"0, 90) 7{ 0 (L’ﬁ‘ld '59-(1"(], 9[)) = 0
Proof. The function r O{r, ) is & nonvero solution of the Jacobi equation

%6
o + R 0

This is a linear second order differential equation. Since 8(rg,f) = 0 (y is a conjugate
point), the derivative %—?(rg, flo) # 0. As a cousequence, the set 7 = {(r,0) | ©(r,0) = 0} is
a.submanifold near fg, the equation O(r,#) = 0 has a unique smooth solution r = conj(6).

We show that conj achieves a local minimum at fy. Since %—f('r, &) = 1 for all 7, then
for & close to g, the function » +s X (r,8) is increasing on [0, cong{f)]. It is a classical fact
that cut < conj (see for example [GKM] page 143). By assumption, the cutlocus near y
is an arc opposite to the geodesie segment. {¥ =0, X < 0}, Therefore X > 0 on the
cutlocus, and we conclude that

K{eong(6),6) 2 X(eut(8),6) 2 0 = X (ro, On).

The first variation formula gives %%"(?‘0,90) = (. BExpanding the derivative § —
%X {coni(8),0) leads to Geong

gives 88 (rg, 6p) = 0.

(o) = 0. Differentiating the identity ©{conj(),8) = 0

Lemma 11 Assume that the Riemannian mefricg e M, Let VC M bea submanifold
which is ftangent to Cutlocus(z) at y. Then exp~ (V) is near {r,60) the union of two
smooth transversal submanifolds, one of which is tangent to the circle {r=ro} at {70, o).

Proof. Let V be given as a graph V = W{X) near y, with $(0} = '(0) = 0. Les
£ = 4"(0) be the curvature of V at y. We show that the function

h('f', 9) = Y(’n‘“, 0) - @b(X("“? 9))

has a nondegenerate critical point at {ra, Bo) with Hessian s dr? %—f’?(m, fo) dr dd. Morse
Lemma then applies.
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Since X(r,8) = r—ro+O{{r—ro)*+{8—00)%), 1(X) = §(r—ro)2+0((r—re)2-+(0-05)%).
Since %(m, o) = 0, differentiating the identity

8X 8Y 8X 6Y
O =Y 56 ~ 6 o)
gives , o sy ' %6
8%y i L _
W(TO,BO) = B (ro,00) # 0, il (ro, fo) = a0 {ru,Bo) = 0,

thanks to Lemma 10. Finally, since Y (r, 99) =0 for all 7, %i%’-(frn, 8q) = 0. This gives the
announced expression for the Hesslan of k. = :

Lemma 12 Assume that the Riemannian metric g € M. Let 6y € By, Thgn the function
cut s smooth near 8y, cut'(fp) = 0 and .

1,8%0 060

cut”(fp) = —5(59—2/‘57:)(

cﬂt(f}g), o).

Proof. By assumption, in Fermi eoordinates the cut locus is given near y = exp,(ro, fo)
by Cutlocus(z) = {¥ = ¢(X) | X > 0} (here again rp = cut(fp)). Furthermore, X
vanishes on Cutlocus(z) only at y. Since %)f =1 and %%g = 0, the inequation X{r, /) < 0
is solved by 7 < $(#) where ¢(fo) = cut{bp} and ¢'(tz) = 0. Furthermore, ¢ < cut away
from #p. ‘Therefore the condition X > 0 cuts exactly one of the 4 arcs of the Morse critical
levél set A71(0). Thus exactly the 2 arcs tangent to the circle » = cut(fg) contribute to
the function cuf. We conclude that cut is smooth with cut/(f) = 0.

Differentiating the identity h{cut{(#),9) = 0 three times gives .
_1 (@ / &
6" 0% orog

Next we express the derivatives of & in terms of derivatives of ©. First some preparation.
The equation

cut’(8p) = )(ro, fo).-

8 o _PX8X ay oy
*) 0= {7 P g P2l = 55 + AN V) 505

g'tves -‘%—‘g(r, ) = 0 for all r, and therefore g;z,-g)%(r, ) = 0. V;fith #'{0) = 0, this implies
a—b%‘;—q(ro,ﬂu) = 0. From the proof of Lemms 11, we take —g;al%('f'u,ﬂi)) = %%(1*0,(90) and

find h 99
— = —-(rg, Fy)-
arog " ) = 5 (ro, o)
Differentiating (*) with respect to & yields
%X
“5;}"2—(7'0,90) = (.

and thus X (ro, 6) = O((6 — 89)*). Since $(X) = O(X?), this implios that (X (ro,8)) =
O((6 — 6;)8) does not contribute either to the third derivative g—;’g‘.

» 3
There remains to compute %%f(ru, Bo).

-
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s

Since e(X,Y) = 1+ O(X? +Y?) = 1+ O((f — 0p)*), we can forget this term when
differentiating the expression for © twice. Since % = O{{6 —th)?), %’ = ‘%%%g*{?‘o, o) (0~
80)2 + O({0 — 60)%) and %%(rg,ﬂo) = 0, we conclude

% 3 V3
(+4)53(ro, 60) = TX (1o, 00) = 228 (ro, B0). w

Proposition 13 Assume thet the Riemannian melric g € M. Then at each point of By,
the function cut is smooth and has a nendegenerate critical poing '

. . 7°e
Proof. We show that for 0o € B and rg = cul(fo) = conj(8y), W(Tn’ o) # 0.

It is folklore that for a generic metiic in dimension 2, the singularitios of the conjugate
locus are ordinary cusps tangent to the cutlocus at endpoints. “This can be extracted from
[B3]. On page 112, M. Buchner gives a model for the energy functional on the space
of paths from « near the minimizing segment joining @ to and endpoint y. In fact; M.
Buchner uses a finite dimensional approximation # = R” x R? where the endpoint map
{on paths) corresponds to the projection on the second factor {in some local coordinates
{u, v) near y). The model is

1
H{zy, .., %0, u,0) = 2§ 4+ uz? 4 vay + fo
i=2
In a neighborhood of ¥, with ¥ excluded, the cutlocus is the set of (u, ) such that H, as
a, function of (%1,...,%,) has two minima. This leads to v =0 and u < 0. )
Near y, the conjugate locus is the set of (1, v) such that H, as a function of @100, 20)
has a degenerate critical point. The equations for such a degenerate critical point are

2=0,42>2, 4+ 2um +v=0, 122242 =0
Eliminating z1 gives the équation of the conjugate locus - .
813 + 27t =0,
This is an ordinary cusp, with the cutlocus .as a half tangent at the vertex y.

The conjugate locus is also the image of the map 8 — expy (conj(¢),8)). Let us show
that &

@v(exp,u(fonj(ﬂ),9)))(6‘0) # 0.

Let 7'(s} denote the affine line (in the (u,v) coordinates) tangent to the conjugate locus
at (—35%, —s%). Its slope is 5. For € > 0 small, let {8, U(s)) be the intersection of T'(s)
with the line u = . Then U(s) is a smooth function of s with U'(0) # 0. If we replace
affine lines by geodesics in some smooth riemannian melric, then for ¢ small enough the
function U still satisfies U’(0) # 0. Since the line u = ¢ is away from the cutlocus, and
transverse to the minimizing geodesic from z to ¥, '

exp2 (6, U(6)) = (r(5), 0(63) = (con (0(s)), 6(5)

3
where s — 8(s) is smooth with 6'(0) # 0. Since g—g(ﬂ) # 0 and lower order derivatives
. - ; ,

ish du
vanish, we get m(é‘o) #0.




170 P, PANSU

Let us compare Iermi coordinates to v and v. Since the cutlocus 19 contained in v = 0,
the differential dY is colinear to dv at 3. Therefore there exists & nonzerc constant A such
that ¥ = dv + Ou? + %},

) @
Now we argue by contradiction. Let rg = eut{fg) = conj{fp). Assume that —679—2—(?"0, 6o}

vanishes. Since Q,Q(rn, Bg) # 0 and conj'(fy) = 0, differentiating the identity &{conj(6), 0}
T -
= 0 twice gives conj”(fp) = 0. Let us denote Y (cong(#),8) = Y'{#) for short, "Then

d*Y 5%y
TJ@—( o) = ‘(.3‘67(%90) =9
and since %TK(TG,OU) =0, .
Y &y,
7 00} = 7 {ro, fo).

Since u = O((0 — 85)?) and v = O((f - 80)%), Y = du 4 O((f ~ 00)?). Therefore

d*Y diu
a contradiction since, according to (*¥},

Y e

—6'07(7'0,90) = QW(TU, fho)

and this was assumed to vanish. With Lemma 12, this shows that for a metric in M, for
each fp € By, cut’{Bp) # 0. m

7 Proof of Theorem 1 ' -

7.1 Singular values are genericly distinct

Here we check that genericly the singular values of the distance to x on Cutlocus(z) are
distinet.

For a metric g € M, triple points are not conjugate to & along minimizing geodesics,
and do not git on geodesic loops. Therefore, they vary smoothly with the metric (as
transverse intersection points) as does their distance to z, and the corresponding set of
directions Bs{g) < 5.

The other singular values of the distance to z on Cutlocus(z) are the critical values
of the cut function. For a metric g € M N M, the critical points are nondegencrate, they
vary smoothly with the metric in a neighborhood of ¢ and so do the values of cut on them.

Lemma 14 Fiz o metric gg € MO M and o number B which is not a singular value of
the distance to © on Cutlocus(z) for the metric go. Then for g close fo gy the singular
values below R m1(g),...,7x{g) of the distance to x on Cutlocus(z) vary smoothly with g
and the map

g (Tl(g)’ s :T-'i?(g))

is o submersion to R5,
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Proof. Each r;(g) is equal to cuty(f) for 6 = 8,{g) & Bi(g), resp. for G;{g), 65(g) € Bulg),
resp. for 05(g), 0;(g), 2 (g) € Bs(g). Denote ry = cuty (05(g0)).
Given ¢ = (e1,...,€6,) € R*, we define a metric gc using the pelar coordinates fo go.

ge equals go except in a small neighborhood of (%rj, 8;{¢0)) where
ge = (14 x5 (r)n; (€))dr” + O(r, 0 a6,

Here x; = 0 is a function with support in a small interval centered at ér? such that
f(;'j xj(r)dr = 1 and 7y > 0 is a function with support in a small interval centered at
8;(go) such that (8;(go)) = 1. In case of double (resp. triple) points, the same function
x; and the same parameter ¢; are used in a neighborhood of 8:(g0), 87 (g0).

The geodesics with initial speeds close to 6;, 8}, 6] remain geodesics in the metric g,
only the paramcter when it approaches the cutlocus has changed by adding a constant €.
Therefore the points of B1(go), B2(go) remain critical points of cut for the metric g.. Since
Bi(ge)s Ba(ge} vary smoothly with €, we conclude that Bi(g.) = Bi(gn), Ba(ge) = Balgo).
Similarty, triple points for go are joined to @ by 3 geodesics of equal length with respect to
ge- Since there are finitely many such points, depending smoothly on ¢, they do not move
at all.

Therefore, rj(ge) = Jo'(1 + €x;(r))dr = r; + ¢; and this is cleatly a submersion to

‘RE. =

Proposition 15 For o residual subset M¥ C MO M, the volume growth is smooth
away from a locally finite set 5 C Ry, and for each r € T only one svent scours. The
sphere of radius v contains exactly one endpoint, or one double point, or one triple point
of Cutlocus(z).

Indeed, for R > 0 let M be tho set of metrics in M N M’ such that all singular values
r; < R are distinct. According to Lemma 14, MY is the complement of a finite union of
submanifolds in M Mt A4, thus it is residual. Then M” = [ M% is residual.

R—4o00

7.2 End of the proof of Theorem 1

Singularity at ro = 0. Let 4 be the injectivity radius at z. For r € [0,i], v/(r) =
S ©(r,0) df. The function R(r,d) = R{exp,(r,d)) is smooth on R2, Then O, the solution
of N
2

99,0+ R(n0)0(r,0) =0, ©(0,0)=0, 22(0,0)=1,

r ar
is a smooth function on R2. Therefore v coincides on [0, 7] with a smooth function defined
on R.

Singularity at a point r¢ € Xj. Say that ry € &) if the sphere 8B (x,70) contains an
endpoint of Cutlocus(z). If ¢ € M, then cut™!(re) is a finite set in a neighborhood of
which cut {s smooth and has exactly one critical point, a nondegenerate local minimum
. At that point, ©(ry, 5} = 0 bus %?(m,b’g) # 0. Therefore below rg, v is smooth and
above rg

V()= [ Or,0)dd = (r — ro)h{v/7 —15)
J{cut>r}

where A is smooth with A(0) = 0 and #’{0) < 0, see Lemme 1 in [GP2).
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Singularity at a point ro € Sp. Say that ro € Ty if the sphere 8B(z,rp) contains a
double point y of Cutlocus(x) which is a critical point of the distance to . If g € M,
then cut~1(rp) is & finite set in a neighborhood of which cut is simooth and has exactly two
critical points 8y and 0 which are nondegenerate. Af these points, B(rg, } # 0. O (or
84} is a local ‘maximum of cut if and only if ¥ is a local maximum of the distance to x on
Cutlocus(z). I this is the case, then v/ equals a smooth function plus a smooth function
of /7o — 7 (extended by zero above rp). Otherwise, fo and f} are local minima, v’ equals
& smooth function plus a smooth function of v/ —ro.
. Singularity at a point ro € Xg. Say that rop € Ej if the sphere 8B(zx,rp) contains

& triple point y of Cutlocus(z). If g € M, then cut{rg) is a finite set of the form
AU {6, 64,04} The cut function is smooth with nonvanishing derivative at each point of
A. At 8, 05, 64, cut is the minimum of two smooth functions with distinct, nonvanishing
derivatives, Let us show that 6o, 8, 6] are local maxima, of cut. The values of cut near o
correspond to values of the distance to z along Cutlocus(z) near the triple point y. Bach
arc of Cutlocus(z) makes an acute angle with at least one of the minimizing peodesics
from y to z. 'Therefore, the distance to = strictly decreases along the cutlocus. One
concludes that v’ is smooth both below and above rp, but its left and right derivatives

satisfy v} (ro) < v}/(re). =

8 Appendix: Genericly all geodesic loops are nondegenerate

We prove the following result which was needed in Proposition 9.
Fheorem b Let M be o manifold, x a point in M. There is a residual set M’ of complete
metrics on M such that 2 45 a regular value of exp,.

Remark 16 For o metric in M', the energy funclional on loops based ot x has only
nondegenerate critical points. N

Proof. The set M of complete metrics on A such that = is a regular value of expy, is
a Gy in fine ¢ topology. It suffices to show that M’ is dense.

8.1 Reduction to a transversality assertion

Recall the Hamiltonian description of the geodesic flow, of. [KT]. A metric ¢ determines
a dual norm on covectors, and the Hamiltonian Hy{£} = 1|€]* on T*M. Let w denote the
canonical symplectic structure on T*M. The geodesic flow is the Hamiltonian vector field
Xy on T*M defined by ‘.
. Lx,w = dHy.

Let ¢y : T*M — T*M denote the time 1 map of the geodesic flow. Then x is a regular
value of exp, , if and only if the restriction of ¢, to Ty M is transversal to the submanifold
M C TM. We fix a nonzero covector v € T; M. We show that the map

¢:{g}—T"M, &(g) = dg(v)
is transverse to Ty M. It follows that -

¢ (g} x TEM — T*M,  ¢(g,v) = dp(v)

is transverss to T7 M (we already know that & is transverse to TEM at (g,0) for every g). .

Finally, it will follow that for a dense set of metrics g, ¢, i transverse to TpM.
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8.2 Computation of the differential d¢

Let s 1 g be & one parameter family of metrics and £ € T3 M, let £:(t) = ¢, (fv) denote
the trajectory of v under the geodesic flow of g, ie., )

% (1) = Xpu(E6(8)-
. , 7
The derivative o(t) = %—)I . satisfies the variational equation. In coordinates, it reads
==

S0 = o Xonlo ) + S 0o

More invariantly, the vectorfield ¢ along £ satisfies

dX,
Lxo = 5
X ds |s=0
d :
Let b = _&%EI o Let ¢ be the sclution of the variational equation with initial condition

o(0) = 0. Then dyp(h) = o(1).

8.3 The equation of Riemannian variations

‘Che next task is to understand which vectorfields ¥ along a trajectory £ are Riemannian

X, . .
g for some pne parameter family of Riemannian metrics.

-~ . d
variations, i.e. are equal to

5 |s=0 X ;

Let 8y denote multiplication by A in the fibers. Let Z be the radial vertical vectorficld
Z(&) = ¢ whose flow is ,¢. The canonical symplectic form o is homogeneous of degree
one, Lzw = w. : ’ ,

Any geodesic flow is homogeneous of degree one, £zX = X. Therefore, the candidates
Y for variations must be homogeneous of degree one, i.e. £zY =¥,

Any geodesic flow is symplectic, £xw = 0. Therefore, the candidates ¥ for variations
must be symplectic. In particular, d(iyw)(X,Z) = 0. This leads to the differential
equation ‘ : -

(%% %) w{fxY, Z) = w(X,Y).

Conversely, given a 'vectorfield ¥ along a trajectory £ which satisfles equation (¥*¥),
let us extend ¥ by homogeneity as a vectorfield along the surface S : (8, 1) — 8, (€(2)).
Then £zY =Y and d{tyw)g = 0. Let f be a function on § such that dfjg = tywg. Then
J can be extended in a neighborhood of 5, as a homogeneous function f o §y = A f which
satisfies df = tyw at each point of £. If ¥ has compact support on ¢ {i.e. vanishes in a
neighborhood of the endpoints}, then f can be chosen to have compact support, provided

./Lyw:()f
c

The next lemma allows to replace f by a smooth field of ciuadratic forms. Therefore
equation (***} characterizes Riemannian variations.
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Lemma 17 Let N be the image in T*M of @ smooth newhere vanishing seetion on some
open set U. Let f be e smooth function on T*U which is homogeneous of degree 2 along
the fibers, Then there exists o smooth function b on T*U, homogencous quadratic along
the fibers, such thet dh = df of each point of N. If f has compact support, so does h.

Proof of Lomma, Selting i == f on N gives h the correct derivatives in the direction of
N. There remains to adjust the fiber derivatives, i.e., to construct on each fiber TyM a
quadratic form by, with prescribed 1-jet at & nonszero point £ = N NI;M. I b is viewed as
a symmetric map ki Ty M — Ty M, the equation is A(£) = def. This is a linear system of
maximal rank. Its solutions form a smooth bundie of afline spaces, which admits a smooth
section. Since f is homogeneous of degree 2, any such section k will automaticly satisfy

7(6) = 36, da (= {6 el HE).

Where f vanishes, i can be chosen to vanish as well. w

8.4 BSolving the equations

Lemma 18 Let ¢ : [0,1] — T*M be o trajectory of the geodesic flow X = X, whose
projection «y to M hus no selfintersection. Let o € Ty)T* M, m1 € Ty T* M satisfy

w(X,m0} = w(X,m) = 0.

There exists a one parameter family of metrics gy supported in an arbitrary small neigh-
borhood of a proper subarc of v such that the solution ¢ of the variational cguation
Lyxo = (dXg, [ds)i;—o, sutisfics 0(0) = n and o(1) = ny.

Proof. By linearity, we can assume that g and 57, are very small. Therefore the whole
discussion takes place in a tiny tubular neighborhood of the trajectory £. Let us choose
coordinates (g1, -+, qny 1, -+, Pn) in which £(0) = 0, X == 3‘3&; and w = 3" dp; A dgy. This
is possible since a nonvanishing hamiltonian vectorfield has no local invariants, We view
a vectorfield ¥ along £ as a map [0, 1] — R®™ and interpret Lx¥ = ¥/(¢) as a derivative.
A solution Y of the equation of Riemannian variations which satisfies the extra equation
w(X,Y) = 0 becomes a map (0,1} — R**' which satisfies w{Z,Y") = 0, i.e., ¥ is tangent
to the contact structure ker ¢ zw.

In the chosen coordinates, the variational equation reads ¢/ = Y with houndary con-
ditions in R, The problem reduces to finding a closed contact eurve in R2! with
prescribed barycenter. It obviously admits solutions ¥ with compact support in |0, 1[.
Since w(X,Y) = 0, the condition [ .yw = 0 is satisfled, and one can integrate tyw into a
homogeneous function f with the required support. Lemma 17 then produces a field h of
quadratic forms, and the family of metrics on T'M dual to H; = H + sh has the required
propertics. »

8.5 Proof of Theorem 5

Let g be a Riemannian metric on M such that ¢(g} € T, M. Let £(%) be the trajectory of v
under the geodesic flow X, so that ¢(g) = £{1). Let 4{t) = w{£(£}) be the corresponding
geodesic loop. Choose a, b €]0, 1], @ < b such that

¢ the arc ¥([a, b]) has no selfintersection;
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o (|a, b)) is disjoint from ([0, a[) and (b, 1])

Let n € TpyT™M be a tangent vector such that w(X,n) = 0. Let o(t) be a smooth
vectortield along & such that ¢{0) = 0, (1) = # and o satisfies the variational equation
with vanishing right hand side Lxo = 0 ou |0,a[ and on |b, 1]. Then

%w()(, o) = Lyw(X,0) =w(X,Lxa) =0

so that w(X,o{a)) = u])(X, o(b)) = 0. According to Lemma 18, there exisis a smooth
field of quadratic forms h, which vanishes in a neighborhood of ([0, a]} U v{]b, 1]}, with
hamiltonian fow ¥, such that the solution & of the variational equation £x# = ¥ along
£([a, b)) satisfies 5(a) = ofa) and (b) = o(b). Note that ¥ vanishes along £([0, al) and
&([b,1]). Puiting o and & together produces a solution of Ly =Y along all of £([0, 1]).
Therefore 5 = dy¢(h).

We conclude that the image of dg¢ contains ker txw, & subspace which iz transverse
to the fiber TL M. =

Remark 19 If v generates a periodic geodesic, then the image of dgp equals ker Lxw.

Indeed, for any one parameter family of metrics g, with derivative f at 0, H,(¢:(1)) —
Hy(£,(0)). = 0. Differentiating with respect to s at 0 gives
RED) — hE©) = deqryH(o(1)) — de(oyH (o(0))
= txw(o(l)) — txw(e(0))
= txw(dyp(h)).

Thus dyp(f) € ker exew i £(1) = €(0), L.e. if v is periodic. Otherwise, ¢ is a submersion at
g.
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A Combinatorial Approach to 3-manifolds

Carlo Petronio

This paper describes joint work with Riccardo Benedetti, Qur main result is & com-
binatorial realization of some categories of 3-manifolds with extra structure. Let us
first explain what this means exactly. Let 7 be a collection of topological objects (for
us, 3-dimensional manifolds with a certain extra structure), regarded up to a suitable
equivalence refation. The first ingredient of a realization will be an explicitly described
set § of finite combinatorial objects (typically, finite graphs with certain properties and
decorations), together with an effective mapping ¥ : § - T, called the reconsiruction
map, whose image is the whole of 7. The second ingredient of the realization is the
calculus, namely an explicitly described finite set of local moves on § with the property
that two elements of § have the same image in 7 under ¥ if and only if they are related
to each other by a finite combination of the moves of the calculus.

A combinatorial realization which has been known for s long time is the present-
ation of links up to isotopy in S% by means of planar diagrams, where the calculus
is generated by Reidemeister moves. In 3-manifold topology seme examples of com-
binatorial representation are known which satisfy at least some of the requirements
which we have stated. Let us remark however that the requirements of finifeness and
locality of the calculus are somewhat restrictive, For instance the presentation of closed
connected oriented 3-manifolds via léngi(;udinal Dehn surgery on framed links in $3,
with either of the two versions of the Kirby calculus, does not satisfy the requirements.
If we use the version of the calculus which includes the band move, then we have a
non-local move, whereas, if we use the generalized Kirby move, then we have indeed
local moves, but we actually have to take into account infinitely many different ones,
parametrized by the number of strands which link the curl removed by the move. In [1],
using a slight refinement of the theory of standard spines and an appropriate graphic
encoding, we have produced a combinatorial realization of the category of compact
connected 3-manifolds with non-empty boundary, and a refined version of the same
realization for the oriented case.

We will describe now the topological objects of which we provide a combinatorial
realization. By a 3-manifold we will always mean a connected, compact and oriented




