182 McDuff & Traynor: The 4-dimensional symplectic camel

Then fi, f2 and g3 vanish on @ by construction. Further, outside a compact
set, g1 = z/)léay%z where 9y, (22,y2) = (¥1,9?). Hence ¢y i's independent of
z1 and has compact support with respect to the other variables. Therefore
d(g1y1) is bounded and we may take 8" = 8’ — d(g1y}). 1

REFERENCES

[A]  Arnol’d, V.I, First steps in symplectic topology, Russian Math. Surveys 41 6
(1986), 1-21. . . o
[BB] Boo’ss, B. and Bleecker, D. D., “Topology and Analysis: The Atiyah-Singer index
formula and gauge theoretic physics,” Springer—Verlag, New.Yor‘k, 19§5“

[E]  Eliashberg, Ya., Filling by holomorphic discs and its applications, Geomt.etry of
low dimensional manifolds,” London mathematical society lecture note series no.
152, Cambridge Univ. Press, 1990. ‘ - '

[EG] Eliashberg, Y. and Gromov, M., Convez symplectic mamfolds,‘ preprint (1990).

[F]  Floer, A., The unregularized gradient flow of the symplectic action, Comm. Pure
Appl. Math. XLI (1988), 775-813. |

[G]  Gromov, M., Pseudo-holomorphic curves on almost complex manifolds, Invent.
Math. 82 (1985), 307-347. o ) ]

[K] Klingenburg, W., Filling a 2-sphere in C? by holomorphic discs, in preparation.

[M1]  McDuff, D., Ezamples of symplectic structures, Invent. Math. 89 (1987), 13-36.

[M2] —_____ Thelocal behaviour of holomorphic curves in almost complex {-man-
ifolds, Jour. Diff Geom. 34 (1991), 143-164. ‘ A

[M3]  ———__, Blow ups and symplectic embeddings in dimension 4, Topology 30
(1991), 409-421.

[M4] ———— | Elliptic methods in symplectic geometry, Bull. Amer. Math. Soc. 23

1990), 311-358. |

[MS]( — ., Symplectic manifolds with contact type boundaries, Invent. Math,
23 (1990), 311-358. . o

[O] Oh, Y-G., Removal of boundary singularities of pseudo-holomorphic curves wit
lagrangian boundary conditions, preprint (1990).

Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794-3651, USA

Differential forms and connections
adapted to a contact structure, after M. Rumin!

Pierre Pansu

U.R.A. 169 du C.N.R.S.
Centre de Mathématiques
Ecole Polytechnique
F-91128 Palaiseau

U.R.A. 1169 du C.N.R.S.
Mathématiques
Université Paris-Sud
F-91405 Orsay

pansu@cmep.polytechnique.fr

Michel Rumin is a student of Mikhael Gromov, who asked him the
following question : Let M be a manifold with contact structure ¢, E a
vector bundle over M. A partial connection on E is a covariant derivative
Ve defined for smooth sections e of E but only for vectors v in ¢. In
particular, parallel translation is defined only along Legendrian curves, that

is curves which are tangent to . Can one define the curvature of such a
connection ?

Gromov provided the following hint : For an ordinary connection A4,
curvature arises in the asymptotics of holonomy around short loops. A loop
encompasses a certain “span” (a 2-vector, see below), quadratic in length,
and holonomy deviates from the identity by an amount proportional to
curvature times span, that is, quadratic in length. In case M has dimension
3 and carries a contact structure, then every Legendrian loop has essentially
zero area. Gromov conjectured that, in this case, curvature should arise as
the cubic term in the asymptotic expansion of holonomy.

Michel Rumin has found a notion of curvature for partially defined
connections along the above lines. The point is to understand the exterior
differential for a partially defined 1-form. In fact, M. Rumin constructs a
substitute for the de Rham complex : alocally exact complex of hypoelliptic
operators naturally attached to a contact manifold (M, €) of dimension 2m+

1. The operator which sends m-forms to m+1-forms is new. It is of second
order.

1Research partially supported by the EEC under contract SC1-0105~-
C, GADGET
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In this lecture, after some comments on the ésymptotics .of I}olon?rrﬁr,
I explain M. Rumin’s construction. Then I des'crlbe an application o1 .
Rumin’s ideas to analysis on complex hyperbolic space : boundary va uES
of L? harmonic forms. I learned most of the material presented here thanks

to P.Y. Gaillard, V. Goldshtein, J. Heber, P. Julg and M. Rumin.

1 ASYMPTOTIC EXPANSION OF HOLONOMY

In this section, I explain how the asymptotic expansion o'f the holon-
omy of a smooth connection specializes to Legendrian curves in a contact

manifold.

1.1 The classical formula.— I define the “span”, i.e., tgle flgebraic area
spanned by a loop ¢ in a vector space V = R"™. Let a € A*V* be a_ 2—formCi
viewed as a translation invariant differential form on V. Then da =0, an
there exists a 1-form 8 such that d8 = . The linear functional

aH/cﬁ

on A2V* corresponds to a unique 2-vector span (¢).

Now let M be a differentiable manifold, z € M , ¢ C M a small loop
through z. Using coordinate charts ¢ we define various covectors

span 4(c) = span (¢(c)) € A* T, M

3 y (49" t'
which coincide up to an error of size o(area(c)), where at ea(c)', the kg;eome
ric area”, is the least area of a surface spanned by c. Thus it makes sense

to state

1.2 FacT —Let D be a connection on some vector bundle E over a man-
ifold M. For z € M, ¢ a short loop through z, let Hol(D,c) denote the
holonomy of the connection D along ¢ (an endomorphism of the fibre E).

Then, as the length of ¢ tends to 0,
Hol(D,c) =1+ {FP,span (c)) + o(area(c)),

where FP is the curvature of D at z, an End(E;)-valued 2-form on T, M.
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1.3 The case of contact manifolds.— Geometric areas will be measured
relative to Carnot-Caratheodory metrics. Given a norm on the plane field
€, a Carnot-Caratheodory metric is defined by minimizing the length of
Legendrian curves between two points.

In dimension 2m+-1 > 5, every Legendrian curve bounds a Legendrian
surface, which has Hausdorff dimension 2. Thus we define the geometric
area area(c) to be the infimum of the 2-dimensional Hausdorff measures of
surfaces whose boundary is ¢. However, in dimension 3, all smooth surfaces
have Hausdorff dimension 3, and we take 3-dimensional Hausdorff measure
in the definition of geometric area. Note that contact transformations are
Lipschitz with respect to Carnot-Caratheodory metrics, so they preserve
the rough size of geometric areas.

Recall that the Heisenberg group N of dimension 2m + 1 is the simply
connected group attached to the following Lie algebra A :

N=R2m@R

with center R and the Lie bracket is given by the symplectic form RZ™ x
R?>™ — R. The left-invariant plane field generated by the factor R*™ is a
contact structure {o. Every contact manifold is locally isomorphic to the
Heisenberg group (N, &).

We define the “algebraic area” spanned by a Legendrian loop ¢ in
the Heisenberg group as before, but replacing the symplectic vector space,
which is the local model for manifolds, by the Heisenberg group, which is
the local model for contact manifolds.

In dimensions 2m+1 > 5, the closed left invariant 2-forms on N all are
pulled-back from N/[N,N] = R*™ = ¢,. For such an o = dfB, the formula

(san(e),a) = [ 5

defines a 2-covector span (c) € A%¢,, equivariantly with respect to Heisen-
berg automorphisms, and also, up to an error controlled by geometric area,
with respect to contact diffeomorphisms.

Note that, if 7 denotes some left-invariant 1-form whose kernel is the
canonical contact structure &g, then

(span(c),dr) = 0.

In dimension 3, all left-invariant 2-forms are closed, and one gets a
2-covector span (c) € A2N.

In both cases, one has
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1.4 FACT .— Let D be a connection on some vector bundle E over a contact
manifold (M, €). Let x € M, and ¢ be a short Legendrian loop through z.
Then, as the length of ¢ tends to 0,

Hol(D,c) = 1+ (FP span(c)) + o(area(c)).

In dimensions 2m + 1 > 5, geometric area is quadratic in length
(Y. Eliashberg, unpublished) and we see that the projection of F” in

A%¢* /Rdr

only depends on the restriction of D to the £ directions, i.e., it is an invariant
attached to the partial connection V = D|;. We call it the curvature of V.
It has (m(m — 1)/2 —1)(1k E)? independant components.

In dimension 3, the geometric area is cubic in length, and we cannot
ignore the vertical components of span (c). We define the curvature of V =
D¢ to be the projection of F D mod multiples of the symplectic structure
dr. It has 2(rk E)? independant components.

In the next section, these definitions will be shown to fit into the
formalism of Rumin differential forms.

2 RUMIN’S COMPLEX

It is a substitute for the de Rham complex, where 1-forms are replaced
by partial 1-forms, i.e., sections of the dual of a contact structure.

Let (M, €) be a 2m + 1-dimensional contact manifold. Let Q* denote
the graded algebra of smooth differential forms. Let 7* be the graded
differential ideal generated by contact forms (i.e., I-forms 7 whose kernel is
the contact hyperplane ¢) and J* the annihilator of 7* (i.e., forms « such
that a A f =0 for all B € 7*). It is again a graded differential ideal.

Once a contact form 7 is chosen, the elements of (Q*/Z*)® J* identify
with sections of subbundles or quotients of A*¢*. Indeed, let

L i AFgr — pAFT2er
denote exterior multiplication by drje,
E*¥ = A¥¢* /im L,

for k < m, and
E* =ker L C A*¢Y,

for k > m. Then (Q¥/T*) @ J* coincides with smooth sections of E¥ if
k < m, and with smooth sections of E¥~! multiplied by 7 if k > m + 1. In
particular, the elements in Q! /Z? are sections of E1, i.e., partial 1-forms.
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There is an induced complex
de (V)T T - (/I e T+

One easily checks that dg is locally exact at QF /7% (resp. at J*) if k <m

(resp. if k > m+1). This has been observed independantly by V. Ginzburg
[5], and generalized by Zhong Ge, [15].

2.1t THEOREM (M. Rumin, [14]).— There exists a linear second order op-
erator

dr : Q™ /I™ — gmtl

such that the sequence

0 R— Q2,011 %, . 2 om/mdn rmi1 de, 2, ot

is a locally exact complex, i.e., a resolution of the constant sheaf R.
‘ We explain this in 3 dimensions. If o € Q! is a 1-form, there is a
unique choice of a function f so that d(e + f7) vanishes on ¢. Take

dr(a mod I') = d(a + fr) € J2.
The function f is determined by the equation
dO!]E +delf =0

'and depends on first derivatives of « (in the ¢ directions only), thus dp
involves two derivatives in the ¢ directions.

Given a metric on ¢, there is a normalization of the contact form 7 so

that |drje| = 1. One gets a pointwise inner product on Q*/T* @ J*, and a
Hodge operator ,

* Q’“/I’“ - J2m+1-k
such that *1 = 7 A (dr)™ and
(a,B) x1=aA B
2.2 THEOREM (M. Rumin, [14]).- Given a metric on €, put df = — * dgx

(resp. df = — x dr*). This is a formal adjoint to d¢ (resp. dp).
The laplacians

(n = k)dedg + (n —k — V)dgde on (QF/T%)@ T* for & #£m,m+1,
(dedf)® +djdp on Q™/T™,
(dzdf)z -+ deE on jm+1,
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are maximally hypoelliptic.
Maximal hypoellipticity means that, given vector fields X; tangent to

¢, one locally has estimates of the form
| X1 Xza [2< C (| Aaflz + [l @ ll2)

for the second order Laplacian, and similarly for the fourth order Laplacian.

There is an analogue in contact geometry of the principal symbol,
which gives a criterion for hypoellipticity, see [11]. However this criterion
becomes effective only when combined with clever Bochner type formulas,
see [14]. Simultaneously, various vanishing theorems are obtained. They
include the following important feature : on a CR manifold whose Webster
torsion vanishes (these are integrability conditions on the metric, analo-
gous to the Kahler condition for Hermitian metrics), the above Laplacians
preserve the bidegree (the unusual choice of coefficients is essential).

Back to connections : A partial connection is a Lie algebra valued
partial 1-form A and one can make sense of the curvature dA+ANA as was
done for dA. In dimensions 2m+12 5,it1s a Lie algebra valued 2-form on
¢ mod dr, in dimension 3, it is a Lie algebra valued 2-form vanishing on §,

as announced in the previous section.

3 L2-HARMONIC FORMS ON COMPLEX HYPERBOLIC SPACE

Complex hyperbolic m+1-space is a complete symmetric Kahler man-
ifold, isometric to the unit ball of C™*1 equipped with its Bergman metric.
It is the symmetric space of the simple Lie group SU(m+1,1). It is a gen-
eralization of the unit disk in C, equipped with its Poincaré metric, which
is the symmetric space of SU(1,1) = PSL(2,R).

The new feature when m > 1is that the boundary S?™*! inherits a
canonical contact structure. At a point z € 52m+1 the contact plane ¢z is
the maximal complex vector subspace in Ty §2m+1 T, C™ L,

Complex hyperbolic m + 1-space has L2-cohomology in the middle
dimension m-+1 and in each type (p, ¢), p+g =m+ 1. Following recent work
by Pierre Julg and Michel Rumin ([9]), we explain that L?-harmonic forms
have boundary values, which realize an isomorphism with an explicit space
of Rumin differential forms on the boundary, the sphere §*™*+! equipped
with its canonical contact structure.

SRR SRS R R e
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3.1 T‘he case of real hyperbolic space.— Let us first explain the cor-
responding theory for real hyperbolic 2m + 2-space, i.e., the space form of
c.onstant sectional curvature —1. L?-harmonic forms in ,the middle dimen-
sion are cor.lformally invariant, so we can replace hyperbolic space minus
one Pomt with $?2m*+1 x R, in a product metric, a situation which has been
studied by Atiyah-Patodi-Singer, [1].

Sir.me the Hodge * commutes with the Laplacian and *? = (—1)™*1
harmOI.nc forms split into self-dual and anti-self-dual forms (xa = +£37 a’
where i, =1if m + 1 is even, ¢, = ¢ if m 4+ 1 is odd). The equations 1"07;‘1 a
closed self dual (resp. anti-self-dual) form a on $?™*+1 x Ry can be viewed
as an ODE in the y € Ry variable. Splitting & = a & i (*a) A dy, it reads

—_— a N
da=0 and -8—ya=—:!:zmd*a. (1)

This equation has constant operator coeflicients and explicit solutions in

terms of data at y = 0, i ‘ ! :
leads to ata at y = 0, ie., along the boundary, are easily found. This

3.2 PROPOSITION .— A closed, self-dual (resp. anti-self-dual) m + 1-
1.‘orm « on real hyperbolic 2m+ 2-space has a boundary value BV (a), which
is a closed m + 1-form on $*™*1 +-invariant under the operator
F=signA, A=i1nd*ed-
The L? norm translates into a Sobolev norm on the boundary :
Il e llz=Il 1417 als |2 -
The L? norm of harmonic forms is recovered as follows (P. Julg) :

Forms a smooth up to the boundary are dense in L? solutions of (1). Choose
a smooth form S such that d3 = @ on $?™*! x Ry and d* 8 = 0 on §Zm+1

then
lali= | Linaha
S2m+1xR+
= / BA+tiga
52m+1

= /52m+1(a, Fim(—=1)™1 x B)

= / (o, £A7 @)
S2m+1

=l 14172 (aszma) [} -
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3.3 Problem.— Since conformal mappings of S?™*! extend as isometr;es
of real hyperbolic space, we observe that both the operator F' and the norm

A7 2 |2

on closed m + 1-forms are Mobius invariants. More ger'lfarally, gncfe fev-l
ery quasiconformal mapping of S52m+1 extends to a qua81}:somefuryto xgear
hyperbolic space, the norm on closed m + 1-forms is quasu'nvm‘1'amlG under
quasiconformal mappings. To what extent is the operator F' invariant un

quasiconformal mappings 7

3.4 The case of complex hyperbolic space.— A similar compu-

tation can be done in the complex case. Harmonic m + 1-forms -SPIZGZ mt:
types and primitive components. Only primitive forms can be in L*.
conformal change leads to a metric on S*™+! x Ry of the form

- 2
gle +y 2ger +dy

where £, the complex tangent to S*™*! in the embedding of Szm'*'; in .C’.":l (;
is the canonical contact structure. The ODE for'c') and ('9-(flose prlﬁnjG iv

forms does not have constant, nor even commu’cmg.‘ coefﬁaent?,. .Sp %t 1n%
forms on $2™+! according to &€ @ ¢+ looks hopeless since the sp-ht,tmg is 1110

invariant under the exterior differential. Neverthel(?ss2 Rumin’s complex
precisely extracts the part of d that preserves the splitting.

It turns out that the ODE, when rephrased in terms of Rurr.lin’s dr
and * operators, can be reduced to scalar equations. These eqx.latlons are
singular at y = 0. Still, their L? solutions are determined by their values at

y = 0. One concludes

3.5 THEOREM (P. Julg,[9]).— There exists a boun'dary value operat';)]:
BV on L? harmonic m + 1-forms on complex hyperbohg n:?}_ 1-i— 1.—spa§e, Wlt
values in (non smooth) closed partial m 4 1-forms on § (i.e., elements
of Jm + 1Nkerdg). It is an isometry for the norm

114172 iz

where A = i,ndR*|ker d, - .
The boﬁndazl"yevaglue operator BV sends the Hodge i, * to the operator

F =signA. ' ’

’Iighe finer splitting of L? harmonic forms into complex typ.es HPe see;ns
to translate as follows. Since the contact hyperp!ane £ carries a complex
structure, Rumin forms of degree k > m + 1 split into types,

@ TP,

ptg=k—1

Jh =

S
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Then

e for p, ¢ > 2, BV(HP?) consists of closed forms in Jrmbig gre-1 .

o BV(H™*1.0) (resp. BV (H%™*1)) consists of closed forms in gm0
(resp. in JO™) ;

e BV(H™1) (resp. BV(’Hl’m)) is the L2—orthogonal complement of
BV(Hm+1’°) (1esp. of BV(HO"”+1)) inside closed forms in J™° @
Jm b (resp. JO™ 4 Jl’m”l), unless m =1 ;

® whenm =1, BV(H!) is the orthogonal complement of BV(H>%) @
BV(HO’Z) in j2 — JI,O @jo,l.

3.6 The ring of representations of SU(m + 1,1).~ The 1ing R(G)
consists of equivalence classes of formal differences of G-modules with a
finite difference of dimension, i.e., of Fredholm G-modules.

P. Julg and G. Kasparov ([10]) prove that R(SU(m+1,1)) = R(U(m+
1)).

Theorem 3.5 is a crucial tool in the proof. Indeed, it allows them to
construct a representative of an important element v of R(SU(m+1,1)) as
a representation of SU(m+1,1) on a module over the algebra of continuous
functions on the compactification X of complex hyperbolic space — forms
on X plus Rumin forms on X — which implies that v = 1.

3.7 Poisson transform.— The results 3.2 and 3.5 provide us with a Pois-
son transform for closed middle degree forms, whose inverse is given by
taking boundary values, in an L2 setting.

More generally, one may naively wonder wether there is a Poisson
transform for differential forms on syminetric spaces G/K with the following
properties :

e it is G-equivariant,
it commutes with the exterior differential,
it coincides with the ordinary Poisson transform for functions,
its inverse amounts to take some kind of boundary value,
its image consists of all harmonic forms on @ /K.
P.Y. Gaillard has studied in [4] the case of real hyperbolic space, i.e.,
G = SO(n,1) (see also [8]). The Poisson transform takes forms on the
boundary isomorphicly onto coclosed harmonic forms, and commutes with
exterior derivative. (There is however an exception : in dimension 2m + 1,
the Poisson transform kills coclosed m-forms on the boundary, and thus
reaches only closed and coclosed m-forms on hyperbolic space). In general,
Poisson transforms have boundary values only in degrees strictly less than
half the dimension.

It is likely that there is an analogous Poisson transform for differential
forms on complex hyperbolic space. Obviously, Rumin differential forms
and modified exterior differential should be used. Also, Poisson transforms
are probably automaticly primitive, § and J-coclosed.
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4 LP-COHOMOLOGY ‘ .

The proof of P. Julg’s theorem involvesi several magic identities sa}tlls—
fied by special functions. We present now a direct argument that shows t .a,fi
L?-harmonic forms on complex hyperbolic space are 'xepresentable by pa?txa
boundary values. It turns out that the method applies to LP-cohomology as
well.

Recall that the LP-cohomology H;(X) of a Riemannian ‘manifold X
is the cohomology of the complex (f,y(X),d) where Qf)(X) is th'e spéce
of differential forms o with |a| € L? and |da| € L?. In general, the image

d(Qf51 (X)) C 0 (X)
is not closed, and one defines reduced LP-cohomology as the quotient
Tk k E—1

by the closure of the image of d. B . o

g HHX(X)= TI—;(X), i.e., if the image d(pr)l(X)) is close(.i in Q(p)(X?,
we say th:t X has only reduced L?-cohomology in degree k. Tl.ns proper.ty is
invariant under coarse quasiisometries, like those arising from isomorphisms

of cocompact isometry groups. . .
Forpp = 2, there is exactly one L?-harmonic form in each reduced

L2-cohomology class, i.e., the space of L?-harmonic forms is isomorphic to
Hy(X).

We explain next that on a negatively curved rr.lanif-old, a clos§d form
in L? often admits a boundary value. We start again with the easier case
of real hyperbolic space, which has been computed independently by V.
Goldshtein, V. Kuz’minov and I. Shvedov, [6].

4.1 LP-cohomology of real hyperbolic space.— One uses the

decomposition of real hyperbolic n-space X as a warped product

-1
X = R+ Xsinh r St

Split a k-form « as
a=a+bAdr

where a and b are viewed as functions on R, with values in Lp-differentl.al
forms on the sphere $®~1. The L? norm of « is rokugll)llgfr the norm of a in
LP(e(n=1=P)7 dr) plus the norm of b in L?(e(n~1=(k= ? dr). The form «
is closed iff a is closed and a%—a = db, which can be written

0 4 -1
— = +d7'db
ard @
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where d™! takes exact k-forms to coexact k — 1-forms. Thus d~! denotes
the pseudo-inverse of d.

Ip<n—1/k—1, LP(er=1=C=Dp)r gy L'(dr) so d™'a converges
in L? as r — 400, and a converges to a distribution a(o0) = BV (a).

Ifae d(pr')l), or if p<n —1/k, then BV(a) = 0.

Conversely, if BV (a) = 0, then « admits a primitive 4 in LP. Indeed,
the Poincaré homotopy formula,

+o0
B(r) = -—/0 b(r +s)ds

(no dr component) solves df = « and is in L? (Hardy inequality) for p <
n—1/k—1.

In conclusion, for real hyperbolic n-space, LP-cohomology in degree k
vanishes for p < n—1/k, and, for n—-1/k<p<n-1/k-1,itis isomorphic
to a certain function space of closed k-forms on S™-1. In particular, it is
a Hausdorff Banach space, thus, for such values of p and k, real hyperbolic
space has only reduced cohomology. The L? norm can be recovered in terms
of boundary values - up to a constant, see [12] for the case when k = 1.

For p=n—1/k -1, reduced cohomology vanishes but LP-cohomolo-
gy is huge.

The same argument applies to manifolds with variable curvature. In-
deed, what matters is the Lie derivative of the metric on forms under the
radial vector field %. This is controlled by sectional curvature. This leads
to the following comparison result (Jens Heber’s help was instrumental in
obtaining the sharp curvature assumption).

4.2 THEOREM [13].- Let X be a complete simply connected Rieman-
nian manifold of dimension n with negatively §-pinched sectional curvature,
ie,—-1< K <6§<0. For all

—k
p<1+§:—_—1v—5,

an L? closed k-form admits a boundary value, which determines its coho-
mology class. In particular, X has only reduced LP-cohomology in degree

4.3 L?-cohomology of complex hyperbolic plane.— We now
check that the LZ-cohomology of complex hyperbolic plane in degree 2 is a
limiting case of the above comparison theorem. Indeed, the theorem applies
to L? closed 2-forms on complex hyperbolic plane, for all p < 2: there exists
a boundary value, which determines the LP -cohomology class.
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For p > 2, the boundary value does not exist any more, but a partial
boundary operator will replace it, at least when p < 4

The complex hyperbolic plane in polar coordinates is not a warped
product : the metric on spheres increases at different speeds along the

factors of the splitting s
TS =t@t.
Accordingly, a 2-form has to be split into four components

a=a+adr+bAdr+brAdr

The L? norm of a in roughly the sum of the norms of a € Lf’(e(4’3f’)" dr),
a'+b € LP(e=)T dr), b € LP(e®~P)" dr). For p = 2, the limiting exp.onent
0 for b’ prevents one from having an ordinary boundary value as in the
preceding paragraph. 7

If we view the forms a +da' AT € JZand be Q! /Il as elements of
Rumin’s complex, the equation da =0 implies

de(a+da' AT)=0

and

g(a +da' A7) =drb
-

which implies that a + da' A 7 converges (when p < 4), this is our partiz.ﬂ
boundary value BV (o). It factors through reduced LP-cohomology , and is

injective on the reduced cohomology.

It turns out that the complex hyperbolic plane has only reduced co-
homology in degree 2. This is a special case of a theorem ?f A. Borel, [2].
Tt also follows from estimates on the spectrum of the Laplacian. Indeed, for
I2-functions and 1-forms, the spectrum of the Laplacian is bounded below,

[3]. This implies an estimate of the form
1B 12<C(ldB 5 +116812)

for compactly supported 1-forms B, which therefore implies that the iI.l’l-
age d(Qf,(CH 2)) is closed in Q7 (CH 2). We conclude that our partial

boundary value BV is injective on L2-cohomology . . ‘
This elementary approach cannot give the finer information on com-

plex types contained in theorem 3.5.

|
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