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In 1928, H.Grétzsch [197 observed that the classical Liouville and
Picard theorems — nonexistence of entire functions which are bounded
or, more generally, omit more than two points - extended to a class af
non holemorphic maps. A holomorphic bijection between plane domains is
conformal with respect to EBuclidean metric 3 its differential at each
point is a similitude, i.e., an isometry times a homothety. H. Gritzsch
considered maps whose differential sits at a bounded distance from
similitudes. If, at some point = , the differential takes a circle to
an ellipse with axes a and b , he defined the distorsion Fi{x) as
the least number such that

1/ £ a/h £ @ . .
He furthermore allowed a discrete set of singular pointa whers the map
is a ramified covering. He showed that the Picard theorem extends ta the
class of maps defined on the whole plans which have bounded distorsiorn.

Nowadays, these maps are called quast ragular maps. A smooth
diffeomorphism with bounded distorsion is called guasicornformal, and
the word "quasiregular" includes maps which are not 1-1 and whose

differential may vanish.

gquasiconformality, at least for
manifolds in any dimension.
rigidity theorem for

It is clear that one can define
smooth diffeomorphisms between Riemannian
This notion plays -a crucial role in G.D. Mostow’s

compact Riemannian manifolds of constant sectional curvature -1t and
dimension 2 3 . This theorem states that two such manifelds, if
diffeomorphic, have to be isometric. The argument inveolves
guasiconformal mappings in the following way. A diffeomorphism &
between two guotients D/I and D/r” of the unit disk D in RD

& extends by continuity
unit sphere g~—* . It

lifts to a quasiconformal mapping & of D .
to & quasicontormal homesomarphism f of the
satisfies

f - g = dalg) - ¥ , g €r . (%)
where J&a dencotes the isomarphism induced by & on the fundamental
groups M and Fr? . Equation (%), together with some regularity of £
implies that F is in fact conformal. Tha corresponding hyperbolic
‘isometry of D descends to an isometry between the quotiants.

we investigate whether the first steps of the
simply connected manifolds of negative
a natural notion of "ideal boundary"

In this talk,
argument carry over tao general
curvature. In this class, there is
[71, thus two fquestions arise !

do quasiconformal mappings extend to this boundary 7

is the extension quasiconformal in some sense 7

Schwarz’ Lemma which
of bounded
metric

we discuss a generaliiatiun of
mapping between manifolds
quasiisometry, ie@ay satigfias

In section 1,
shows that a guasiconformal
negative curvature is a
inequalities

g
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= 0+ dilx,y)/L £ diFu,fy) £ Ldix,y) + C

where G and L are large coanstants. Such a map extends to ideal
boundaries. Our proof relies on  conformal distances constructed by
means Df capacities. Section 2 contains capacity estimates which lead
tq a nice application ¢ loaocally symmetric spaces do not admit very
plnghed metrics. The precise definition of quasiregular maps is delayed
until section 3, where the conformal structure on  the boundary of
humogenenus Riemannian manifplds of negative curvature is described. In
sec?1un5 4 and 5, we organise material found in several papers by Pelkka
Tukia and Dennis Sullivan, in particular, we observe that one can spesk
af conformal and quasiconformal mappings on the boundary of a manifold
af negative curvature as soon as there is a cocompact isometry group.

I learned most
with Mikhail Gromav.
how much I owe Hhim.

af the material described here in
I hope that, in the present
Section 2 was

conversations
paper, it is apparsent
completed in Japan during the

Symposium. It is a pleasure to thank the Taniguchi Foundation for its
genarous support.
1. Bchwarz Lemma and conformal distances

. Tbe Schwarz Lemma claims that, if a holomorphiec function F on the
urii t d15k‘f1xes the origin, i.e., f(0) =0 , and if [fezr] £ 1 for
all =z w;th |z| £ 1, then |f’(0)| i1 . The normalization §(0} =@
can be avoided by expressing the result in terms of the hyperbolic
metric d of the unit disk.
1 _%mhwmwm L.emma.— Let the anit disk be equipped with its hyperbolic
mgtr1c d of constant curvature -1 . Then any holomorphic map of the
disk to itself is distance decreasing, i.e.,

difix).Fi{y)) £ dix,y}
In this form, the lemma belongs to Riemannian geometry. This is

evaen more clear with L. Ahlfors’ extension of Schwarz’® Lemma tao surfaces
aof variable curvature. .

w Theoaren L[171 .-Let 5 he a sgsurface
metric of curvature 2 -1 aAny holomorphic
values in § is distance decreasing.

a Riemannian
disk with

endowed with
functian on the

It is apparent in L. Ahlfors’® paper [13]
depends on the isoperimetric, behaviour of the target surface 5 . Let
us define the isoperimsteric profile I(v) of a Riemannian manifold

M as follows. For a real number v £ Volume(M) , let Ilv) be the
infimum of the valumes oaf the hypersurfaces in M which bound a
compact domain of volume v .

I¢v) = inf {vol (D) : D compact, vol(D} = v .

Remember that the (Classical Ispperimetric Inequality
the isoperimetric profile of Euclidean space RP has the form

lave=t (v) = (£n vin—2sn
for a sharp constant c,

that Schwarz’® Lemma only

states that

A Theoeem (M. Gromav [1B1, compare 1.G. Reshetnjak [4%91).- Let

N be

a complete n-dimensional Riemannian manifold whose isoperimatric
prufilg I satisfies the follaowing two inequalities =

(i} for small v , M is at least as good as Euclidean space,

one writes

i.e., if
' TivInsn—1 = c vl + T(v)) ,
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then the integral

: J TiVI— dv/v
should be finite. G

{(ii) for large v , N is strictly bettier than Euclidean space, L.
2., the integral o .
I{v} oot dy

should be fipite.
Let M be a Riemannian manifold with sectional curvature & ~ a? .
Then  any conformal (resp. quasiregular) immersion of M to N is

Lipsechitz (resp. Hilder continuous) with
a 4, the function I

vonstants which depend only on
and the deviation from conformality.

Retmiarka— This theorem is sharp under the condition that a sharp
isoperimetric ineguality is used. For example, in order te conclude
from it that isometries are the only conformal self maps of a rank one
symmetric space M (which in fact is known, see [281), one needs that,
among domains in M of &8 given volume, balls have minimum boundary
volume. This is known yet only when the sectional curvature is constant.

4 Coraliary.— Let M , M be complete simply connected Rieman-
nian manifolds with bounded negative sectional curvature, i.e.,
-a2 £ K £ -bz < 0
Then any quasiconformal diffeomorphism of M onto M* is a
quasi lgonatry, i.e., satisfies inegualities of the form
-C + dim,m*}/L £ di{fm,fm*) £ L di{m,m*) + C
for some constants C and L. which depend only on &y b and the

deviation from conformality.

Proof.- It is known that the assumption on M implies a linear
dsoperimetric inequality (see [14] chap. &), thus condition (ii) is
satisfied. Condition (i) follows from a very general principle : as far

as small volumes are concerned, all Riemannian manifolds behave almost
like Euclidean space, see [4]. Finally, the Hilder condition far f and
f~* , as well as any relation of the type d{fx,fy) & ldlx,v}) , HFor
some homeomorphism & of K. , implies that f is a guasiisometry.s

Let us now return to H. BGrétsch’s original motivation for the study
af quasiregular mappings. Schwarz® Lemma implies Linuville’s theorem as
follows. A bounded entire function f is interpreted as a quasiregular
map  f from C to the disk. Let us cpmpase f with homotheties of

0 3 and restrict them to the unit disk in C . With respect to
hyperbolic metrics, all these maps should be uniformly Hiélder, thus
gquicontinuous. Considering larger and larger homotheties at a point =z

shows that f7(z) wvanishes, thus { is constant. The same argument
gives Picard’s theorem, once one observes that the plane minus twa
points admits a conformal complete metric with bounded negative
curvature, the guasihyperbolic metric which will be defined in & 10.

However, the isoperimetric method does not provide any extension of
Picard’s theorem to dimensions ¢ 3. The following theorem by 8. Rickman
requires some more value distribution theory.

1 Theorem ([501).— Ffor n 23 , q & 3 ,
Ein,g) for the deviation from
which omit at least g values.
It is striking that there extist such
preceding theorem has a guantitative
map on the disk which omits enough points a,,...,a, is Lipschitz {as
far as large distances are concerned) with respect to a complete
conformal metric on the complement of these points. This metric is net
the guasihyperbolic metric.

there is a lawer bound
conformality af quasiregular maps on  RP

[321. The
A guasiregular

maps in dimension 3
varsion {(LS511)

Guastion.—~ What are the invariance properties of this metric 7
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The Schwarz Lemma,
maps fram COn

4% a tool to prove nonexistence of holomorphic
to certain complex manifolds, has had many developments
(see [251), The idea is to construct functorial pseudo—distances on
complex manifolds, for which holomorphic maps are distance decreasing.
Such a distance has to be identically zero for b thus no helomorphic
map can exist from 00 to a manifold for which the pseudo-distance is a
distance ("hyperbolic" complex manifolds), There are analogues in
projective [26]1 and affine geometry [&&63.

In conformal geometry, functorial pseudo—distances can be constructed
using capacities. Conformal capacity has bean used in the plane for a
long time. Its introduction in higher dimensions is due to Ch. Loewner

[34}.
& ‘Dﬁfiﬁitimn._ A condensar in a manifold is a triple (Cy,Bu,B,) where
C is open, Bo and B, , the "plates”, are closed and contained in

the closuwre of C . We shall admit B, = ® when C ie unbounded. Assume
that the manifold is Riemannian. The conformal capacity of a condenser
is the infimum of the volumes of the conformal metrics on C  $or which
the plates stay at distance 1 apart, i.e.,

dist(B,,Bs) 2 1 .
b4 Definltion.— Let M be
worformal peseucdo-distances o
X and vy,

Riemannian
and i3

define two
two points

manifold. We
as follows =@ for

®{n,y) ™ = inf {cap(M,Bo,B,}) : Bo (resp,. Bi»

is connected,
unbounded and contains H

(resp. y)i

fix,y) = inf {cap(M,B,@) : B is compact,
) connected and contains x and y)32
Both these quantities enter as taols in  a number of papers {(for
raeferences, see the papers of M. Vuorinen [681 and H. Tanaka [541).
They bave been studied Ffor their own sake by J. Ferrand L3111 and

I.8. Bal [B] respectively.

] Frapertes. —

i) @« and # are conformal invariants
ii) ‘a guasiconformal homeomarphism is hi—lLipschitz with respect to «
and £ .

iii) a guasiregular map is Lipschitz with respect to @ .

k4 Example.~ For

~distances and the
dependant, i.e., £
unknown. In the
that, -in the

two point homogenegus spaces,
symmetric Riemannian metric d are functionally
= g(d) 4, but the function § is more or less
constant curvature case, F.W. Gehring (91 has shown
definition of o or § , the minimizing condenser is the
one whose plates are gepdesic segments (known as  the Teichmiller -
vresp. Griétsch - condenser)., This is unknown for other rank one (non
compact) symmetric spaces. This yields inegualities of the form
Ad L %id) £a4d+B '
where M and B are constants depending only on the dimension,
L&B1. A similar inequality is obtained for « thanks to the identity
Alxyy) ™" = 20=2 F(log (1+2t+d1+t)) where 2t = 1/cash(¥d(x,y)i-1 .

the conformal pseudo-—

In dimension 2, more is knawn. Indeed, the Schwarz- Christoffel
formula for the conformal mapping af the half-space anto  ths
Teichmiller condenser leads to a reprasentation of & by means of an

elliptic integral, see [301.

It is cbviously important to know for which manifolds the functions
a  ‘and ¢ really are distances, i.e., are positive. This has been
studied by M. Vuorinen in the case of Euglidean domains. Then things are
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easier since one can use direct comparison with the ball. This is the
reason why one introduces the following distances.

1 Definition [123.- et Q@ be an open, connected subset of
Euclidean space. The guasihyperbolic meleio ke on @ is obtained

from Euclidean metric by a conformal factor equal to the inverse of the
Euclidean distance to the boundary &% . The distance je is defined by

Jnilx,y) = log(l + |x”y!/d({x,y},ﬁﬂ})
1 Thewrem [&B1.—- For a domain @ in RM , the pseudo-distances
% 3 B 3 kn and Js are linked by the following inequalities.
Je 3 ke

2 B:lka) £ A ke + B
it & is connected, Jx 21 C @&
exp(D ke + E) £ & £ 8x20bg)
whare A, B, C, D, E are constants, 8. and 8= are homeomorphisms
of R. depending only on the dimension.

These inequalities show that, for most Euclidean domains the
confarmal invariants « and @# are distances. This is not that clear
for general Riemannian manifolds. Again, isoperimetric inequalities
give a useful criterion concerning £ .

1a THaoren (L4311, compare with [161). Assume that the n—dimensional
complete Riemannian manifold M satisfies a strictly stronger
isoperimetric inequality than Euclidean n-space, i.#., condition (ii) in
Theorem 3. Then the conformal pseudo—-distance (# is a distance.

I¥ furthermore ™ has bounded geometry, i.e., bounded sectional
"purvature and 2 positive injectivity radius, and if for example one has
an isoperimetric inegquality of type

val (D) 2 const. vol(D)2—~ with «+ < 1/n ,
then, for all =, vy € M,
Blx,y} 2 A dix,y)r—" - B
for some constants A and B .

15 As a rconsequence, all simply connected manifolds of bounded
negative sectional curvature, all non almost abelian solvable Lie
groups (M. Varopoulos £641 and [4651) have a conformal distance. They do
not admit quasiregular maps from Euclidean space, or, more generally,
from any manifold with wvanishing & . Any quasiconformal mapping
betwesn two such manifolds is a quasiisometry, as defined in the
introduction. .

14 For manifolds of bpunded negative curvature, Theorem 12 is reaso-
nably sharp. Indeed, the reverse inequality

’ Bix,y? £ A dl,y) + B

hoids. To check this, one merely needs compute the LP norm of the
gradient for some Ffunction of the distance to the geadesic segment
through % and vy .

On the other hand, let M be the 3—dimensional Heisenberg group,
i.e., the simply connected nilpotent nonabelian group in dimension 3.
Then an isoperimetric inequality holds with exponent Tr = 1/4 [43],
thus Theorem 12 yields @£ 2z d*~* . Dne easily sees that, conversely,

lim in¥ BOiyy)/dix,yl = 0D .
dix,y)— +m 8
Indeed, given a left—-invariant metric g , =split g orthogonally as
Q = @Gn + gz
where £ is the direction aof the center and H its orthogonal comple-
ment. Define a group auvtomorphism &« by
de = t idy + &2 idz
s0 that &e is a homothety by a factor t of o onto the metric
at = gy + tE m. o

217

y - Then d(fw,8ey) = t dix,y) , whereas
fFexyfey) = £ 8% (x,y) £ ¢t Cap“(M,v o) .
When t goes to infinity, the metrics g* "converge® to a Carnot metric
de (see section 3) with Hausdorff dimension equal to 4. The capacity
Cap*®(M,r,w) converges to a corresponding capacity Cap=~(M,r,®}) which
vanishes, since ¢ has codimension 3 with respect to d. .
RQuestion.— Deterdine the asymptotics of # on nilpotent groups.

To show that the confaormal invariant o« is non trivial, one merely
needs produce a condenser with finite capacity.

18 Froposition.— (see section 2) Let M be an n—dimensional simply
connected Riemannian manifold with pinched negative curvature

-1 £ K< -1+ 1/n .
its conformal pseudo—distance « 13 a distance.

On the other hand, it is very likely that the invariant o vanishes
for a smaller pinching, in particular for guaternionic hyperbolic
spaces (compare Corollary Zt of section 2). This would show that no
general inequality holds between « and £ .

Lés In C&31 chapterl?, J. V&isalad introduces property Pl for a domain
@ in Rr ' § has property Pl at a boundary point b if, for all
connected subsets: E° and F of 2 containing b in their closure,

the capacity
property FPL and if R is an other domain which is finitely connected

at sach boundary point, then every guasiconformal mapping of & onto
Q* extends continuously to the boundary. A Riemannian manifold has
vanishing invariant o ({the class Ho aof [211) if and only if it has

property F1 at © . It would be interesting to have natural examples of
manifalds with this property. - :

One can find other kinds of conformally invariant distances in the
litterature. The Yamabe conjecture - in a conformal class of Riemannian
metrics, find one, often wunique, with constant scalar curvature -
produces & conformally invariant Riemannian metric. It has been studied
exactly for this purpose by Ch. Loewner and L. Nirenberg [351 on
Euclidean domains. Another method consists in starting with some
Riemannian metric and narmalizing it by -a clever conformal factor, a
suitable power of the length | W] of the Weyl tensor, see [42]. Both
these tricks have pseudaconformal analogues, see [23]1 and [&]. These
metrics behave badly under quasicnn%bfmal mappings. Indeed, there are
quasiconformal mappings which are not  locally Lipschitz, and thus, not
Lipschitz under any Riemannian metric.

To study a conformally flat manifeold ™M , one may be tempted to
imitate the construction of thHe Kobayashi heolomorphic or projective
distances, i.e., define

Tlxyyd = inf {dlz,t) 5 z , t in the disk D < RAh ,
there exists a conformal embedding + ¢ D, M
such that +(z) =x , f(L) =y } 4
and make a distance out of the function o . For Euclidean domaing,
inequalities as in Theorem 11 hold, but it is unclgar Ffor which
conformally flat manifolds this distance vanishes.

2. Capacity estimates

In this section, we prove twa inequalities concerning conformal

cap(fl;ExF) is infinite. He then shows that, if 2 has.

i;
"
:

%T
L]
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not vanish. The proof applies +to capacities with arbitrary exponents,
which is also of interest. (Remember that tapacity originates from elec-
trostatic capacity in physics, which, in dimension 3, has exponent 2,
see [471]).

17 Definition.-Let {(CyBo,B,) he a condenser in a Riemannian
manifold., Let p be a positive real number. The poapacity 1is

inf { Ildu[ F: u smooth on €, extends continuously to
c valugs ¢ on B, and 1 on B, 3
Conformal rapacity is chtained foar P equal to the dimension (see
£101 for the equivalence with definition &).

Imitating J. Ferrand’'s definition of conformal distance o y We
introduce a notion of critical- exponent for a simply connected
Riemannian manifold of non positive sectional curvature.

18 Definition.— Let M be an apen Riemannian manifold. Its uwiti;al
exponent piM)  is the least exponent g > n—-1 such that there ex;st
condensers with connected and unbounded plates and which have a finite
q—-capacity.

If furthermore M has non positive sectional curvature, it has an
Eberlein-0°Neill boundary &M . One can considar condensers of type
(Myx,y) where =« and Y are points at infinity. We define the
modified exponent p (M) as the infimum of exponents =1 such that
there exist points x, y € §M with Capq(Myn,y) < +o .

It is likely that p(M) = p(M) !
implies that the conformal distance « does not
Proposition 15 follows from the follawing Lemma.

On the other hand, p(M) > dim M
vanish. Thus

1% L.amma.~ Let M be simply connected and have bounded negative

curvature -a2 { K £ ~-h2 < 0 . Then both p(M) and piM} 2 (n-1)arsb.
Progf.— We exhibit a condenser which has finite g-capacity for all

q > {(n-l)a’b . We choose Beo and B: to be two opposite rays on a

gaodesic v . Let m be a point o r between Bo  and B, . Laet u
be any function on M which is eonstant on rays through m . We claim
that du is Le-integrable outside a neighbourhood of m . indeed,

Rauch’s comparison theorem and K 3 ~ b2 yield
du- £ g—kr
o the sphere 5. of center m and radius r, whereas K 2 — az implies
vol (Sr_) L gifn—13ar
Thus +m

+
I {duls 2 e~ P »ql (S.-) dr < I gt n=ida—andr [
. M
is finite if q > (n-1)a/b .=

In fact, if we denote the valums whtrapy by
Heca (M) = 1lim sup 1leg voli(&.)/r ,

= —rdm
we have proven the following inequality
K £ - b2 =3 RAM) 2 heoa {MX/B .

For example, volume entropy for a rarnk one symmetrig space with
sectional curvature normalized by -4 & K £ -1
equal to n + k - 2 , where k = 2 for complex hyperbolic spaces, k = 4
for guaternionic hyperbolic spaces, k = 8 for Cayley hyperholic plane.
Thus these space have g ¢ n + k - 2 . This inequality is sharp.

B0 lemma.— Let M he a rank one symmetric space with sectional
Curvature normalized by -4 2 K 2 -1 . For @ach n=-1 £ g < n + k - 2,
thare exists a positive constant Crh,a such that, if h denotes a
horofunction attached to a point at infinity ¥ y and B is any c¢losed
subset of M , then

and dimension n is-
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CapotM,B,x) 2 Cr.m lengthth(B)) .

al Lorellsary.— For such a symmatric space, p =npn + Kk - 2 ,

Indead, for QE<n+ k-2, n,y€ &4 y u smooth on M with
uix) = 1, wi(y) =0, h a horafunction attached to x or y one has
2 IAdUI“ L Chua Z901ength th{u}r) + length¢(h{u<%31] = +ao .»

e Corollary.- Let M be a compact quotient of a rark ene symmetric
space of dimension n 2 2k . Then M does not admit any metric with
pinching better than n—1/n+k-232

Notice that the sharp result ~- 1/4 is the hest possible pinching -
is already known in dimension 4 (M. Ville [&71).

The invariants P  and b can be defined in a combinatorial way
for nets. It is likely that they are guasiisometry invariants (see the
work aof M. Kanai [241 for 2-capacities). If this is trua, then the
conclusion of Carollary 22 axtends to all compact manifolds whose
fundamental group is isomorphic to a cocompact subgroup of Uim, 1)
Bplmy1) ar F,—=2o

Guestiaon (Gromav).— Compare o(M) with the exponents for which L=
or L@-=—cohamglogy of M in degree 1 vanishes.

Proof of Lemma 20 .- Let us foliate the symmetric space by
parallel horospheres M centered at ¥ — the levels of the horofonctian
h . Let u be a function on M which takes value 1 on B and extends
by continuity to value © at x . By the coarea formula, it suffices tog
uniformly estimate

j 'dulmlq .
Y]

For the horospheres which hit B -~ a sot of measure length h(B) - the
function uW,n takes the value one on N » thus the integral is graeater
that some capacity Capo(Nypoint,a) . This capacity does not depend an
the particular point, since N is homogeneous. 1t does not depend on
the particular horosphere, since they are all pairwise isometric. It is
non zero for two reasons.

i1} Since the exponent q » n-i, the Sobolev embedding af W'r= intg
Cl—<n—13rsa  3llaws ane to replace the paoint by a ball of finite size as
a plate of the condenser.

ii) The harosphere N is isometric to a nilpotent Lie group with
left-invariant metric, whose isoperimetric profile satisfies I{v)?

const. vP 1" yhere p=n + k - 2 (N. Varopoulos [651), thus Theorem 12
appliegs.n

%
Far M a symmetricg space and X 3y ¥ points at infinity, we show
that Capo(M,x,y) = +@ for all Q<n+ k-2 . fuestion.- What happens
whern g is equal to the critical exponent ?

3. Regularity praperties of quasiconformal mappings.

Early, it has turned out to be necesgary to consider guasiregular
mappings which are not of class 1 - In Teichmiller’s theory (see {531,
(31, [51) one obtains a= solutions of a variatiocnal prablem mappings
which are smooth except at a finite number of points. Furthermare, in
the deformation theory of Riemann surfaces, there definitely oeccur
quasiconformal mappings which are nawhere smooth, as we shall see

below. We give two equivalent definitions of quasiregular maps. A
dUlasi ronfor-mal moamrmd mom Fom e e e
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b Aralytic definition.-~ (C.B. Morrey [3Z71) A continuous map +
between Riemannian manifolds of dimension n 2 2 is KE-guasiireguler if
it admits a differential df in the sense of distributions which is a
locally Li-integrable function and satisfies

jdf |" 2 K Jac(f) .

The pumbetr kK is only one af the various ways to measure the
deviation from conformality, i.e., the distance hetwesn the
differsntial df and the similitudes. In terms of the eigenvalues
Pai2,c.ypn?  of the endomorphism *df-df , one has

kK = Pﬂ”/pl...pn .
An equally satisfactory quantity is
Q= pn/ps
which satisfies
lag & £ log K £ (n-1)log B .

For a linear map A between Euclidean spaces, the number & has a
metric interpretation @ Given a ball B , its image is pinched between
two balls B{s) and Bi{S) - i.e.,

Bi{s) < AB < B(S)
such that @ = 5/s5 . .

More generally, if f is a continuous, discrete, open map bhetween
Riemannian manifolds, x is a point and ¢ is small enough, one can
define the ratio B.G,r) = 5/s where 5 is the minimum radius of a
ball centered at f(x) which contains +B(x,r}) , and s is5 the maximoum
radius of a ball centered at f{(x}? which is contained in FB{x,r} .

24 Matric Definition (MiA.Lavrentiev [29]1) A continupus map between
Riemannian manifolds is quasiregular if it is orientation preserving,
open, discrate, and if
Befx) = 1im sup Qe (x,0)
rFr— o

is bounded.

There is a third characterization of quasiconformality by means of
capacities, [461, (21, [346]1. The fact that, in dimensions ¢ 2, these
definitions coincide is a series of theorems by I.M. Pesin 0453, J.A.
Jenkins [222, F.W. Behring - J. VHisil4 [141, O, Martio - 8. Rickman -
J. VAisalad [346]1. This is the conclusion of langstanding efforts to
determine to which c¢lass of regularity quasiregular maps exactly
belong. This regularity is expresged by the following properties.

2% Fecapertd s, — In dimensions * 2, quasiregular mappings are
absolutely continuous on lines, i.e., in a coordinate patch; a
quasiregular map is absolutely continuous on almost every line. As a
.consequence, they send Lebhesgue null sets to null sets,

RQuasiregular mappings have a differential almost everywhere, which is
LM integrable.

‘These properties have turned aut to be essential in G.D. Mostow’s
rigidity theorem for compact manifolds of constant sectional curvature.

B Theorem [391.- If two compact Riemannian manifolds of dimension &
3 , with constant sectional curvature -1 , are diffeomorphic, then
they are isometric.

27 Here is a sketch of the proof. A diffeomorphism between two such
manifelds lifts to a quasiconformal mapping ¥ of  the universal
COovers, i.e., the unit disk in A" ., Let us denote by o and ©* the
fundamental groups of the compact manifolds. They act conformally on
the disk. The diffeomorphism induces an isomorphism i 3 r = 1’ and,
for g £ oI , one has

f =g = iflg) « f
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The quasiconformal mapping + extends to the unit sphere (Property
Pl aof 6§ 16) and the extension, still denoted by f ,is a gquasicanformal
homeomorphism of the (n-1)-sphere (Schwarz® reflection principle}. We
naw show, following P. Tukia [40], that f is a conformal mapping af
the sphere. This is due tao the fact that the action of r on the
sphere is highly transitive, and necessitates little regularity of +§ .
Btill, it +fails when n = 2 . Choose the upper half-space model, and
normalize + s0 that f(0) = © and f(m) = o . Consider the
l-parameter group of homothetias he . Since ro< Oin, 12 is
cocompact, there exist elements Qe € P such that he™* - g = ke are
bounded in O{n,1) Then one can write ilge)= he =« j. with ix and the
ratio s/t bounded. The conjugacy condition now rsads
) he™ « f v he = hp,e - Je « F - Kemt
Choose subsequences such that s/t , ke and je converge. If f is
differentiable at 0 ,then in the limit k « § + j = df(0} is lingar.
From there on, it is pasy to show that F is conformal.s

e in £401, [411, G.D. Mostow generalized the rigidity theorem to all
locally symmetric spaces without 2-dimensional factors. The argument in
the rank one case also relies an the theary of quasiconformal mapping,
but in 2 slightly extended context. Indeed, the first steps are the
same. A symmetric space of rank one is a simply connected Riemannian
manifold M with negative sectional curvature. As such, it admits an

"ideal boundary", defined by means of asymptotic geodesics [71. The
lift of a diffeomorphism ~ in fact, of any homotopy equivalence - is a
guasiisometry(as defined in the introduction). It extends to a

homeumorphism af the ideal boundary (a fact which can be traced back to

M. Morse [38]). This extension is not quasiconformal with respect to any

Riemannian metric on dM . Indeed, this fails to be true even for
isometries : the analogue af the homotheties  in the upper half space
model for hyperbalic geometry is a l-parameter group &« of isaometries
whose action on &M can be written, in suitable coordinates x. s Yi oy

Felny) = t Ka o ﬁt(yJ) =tz y, .

The plane with equations dys = 0 at the origin is part of a
distribution of planes ¥ which is invariant under the isometry group.
The boundary extensions of isometries are conformal on the subbundle V
and anly there.

w8 Let ws define a family of distances on &M adapted to the
situation. Fix a point W € M. There is a unique Euclidean metric
9. on the subbundle VYV which is invariant under the isametries fixing
X « It allows one to define the length of curves tangent te V , and we
set, for two points p , 9 in &M,
du(pygq} = inf {length <c : c doins p to ¢q in the
boundary, ¢ is tangent to V 3}

This number is finite sinee the distribution V is non integrable,
and defines a distance on &M . When x varies, the distance d.
changes conformally, i.e., a &mall d.-ball is wvery close to a
dy-ball. Thus we have defined a conformal structure (in a genaralizad
sense) on the boundary &M .

Now the boundary extension of a quasiisometry of M is a
quagicanformal mapping with respect to any of the metrics d, . Here we
take the metric definition for quasiregular maps, which is meaningful
for arbitrary metric spaces. The class of maps obtained cgincides with
G.D. Mostow®s "guasiconformal mappings over a division algebra® [40].
These maps are absolutely cantinuous on a suitable class of "lines"
L411 and almast everywhere differentiable [441 in a wsense which we
explain below. Thus P. Tukia’s argument, as well as G.D. Mostow s,
axtends to prove the rigidity theorem in rank one.n

Let M be a rank one symmetric space with isometry group B . To a
Choice of a point X in M and a boundary point p € &M , there
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K is the stabilizer of x

N is simply transitive on &M ~ p .

2] is a one—parameter group of translations along the geodesic
through = and p .

. In the constant curvature case, N is abelian and A consists pof
homotheties. In the other cases, N is two-step nilpotent, its Lie
algebra splits as

n =V + fa,nl
and the element &, of A acts on n by multiplication by t on 'V
and €2 on In,n) . Thus the ideal boundary of a rank one symmetric
space identifies with a nilpotent Lie group. The results. of ahgnlute
continuity and differentiability of quasi— conformal mappings will in
fact apply to the whole class of Carnot groups, which we define now.

20 Deflvttion.- A Caraol group is a simply connected nilpotent Lie
group whose Lie algebra n splits as .
n=VY, &...eV,. where [V.,V,] =V +5 .
A Carnot group N admits a one—parameter group ol momothet s
S € AUL(N) , Fe is multiplication by t* agn W, .

By a norm , we mean a left—invariant distance on N wh@ch is
homogeneous of degree ome under the group of homotheties. Particular
nores are the Carnot  mebtrics @ given a Banach space structure on V, ,
one can define the length of curves in N which are tangent to the
left—invariant subbundle of TN generated by Vi . One def%nes
quasiconformal mappings using the metric definition. The class obtained
does not depend on the particular choice of norm. .

" A continuous map F between Carnot groups N  and M* equipped
with homotheties {f.? and {§’.3 is said to be &-differentiable at
if the limit

Dfedp = 1lim S =2 (F GO 72 (3 dep)
t—sQ
exists for all p . ]

A ling is -an orbit of a left~invariant vector field which is
tangent to V., .

For a smooth function u on N, let

dui(x) = sup fwulx) 3 w € V. , |w| =1 3 ,
We define the p-capacity of a condenser (C,Bu,B.) as the infimum of
the integrals {(with respect to Haar measurs) :

j |dul =
c

over all smooth functions uw on C which tend to 0 on B. and to 1
on B, . Conformal capacity is obtained far P equal +to the graoup’s
Hausdort ¢ dimension

p o= E dim V.

31 Thaoran [441.~- A quasiconformal homeomorphism between open suPsetS
of Carnot groups admits almost everywhere a F~differential which is a
group isomorphism intertwining the twe one—parameter groups of
homotheties.,

It is absolutely continuous on almost every lime [41] and, as a
consedquence, it send null-sets to null-sets.

l~quasiconformal mappings preserve conformal capacitiesa and
K-quasiconformal mappings multiply them at most by K (for a suitable
measurement K of the deviation from conformality). N

In other words, a big part of the analytic theory of guasiconformal
mappings in Euclidean space can be carried out on Carqat groups.
However, it seems tia be harder to obtain capacity estlmatﬁs.' Eor
example, the condenser between two con:eqtric balls hagﬁ pos*tzye
capacity ci{r) , depending only on the ratia r of the rad;f. This is
eufficiant +o prove tHat f-puasiconformal mappifas are | iosecrhitr and 0
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However, one needs further information - still wunknown -~ on the
function cir? to conclude that guasiconformal mappings are Hilder
continuous. It is also unclesr whether the tondenser whose plates are
two arbitrary curves has a non-zero capacity.

3z A new feature of the nilpotent theory is that, in general, there
are na quasiconformal mappings at all,. The reason is that there is tao
iittle chaice for differentials, Indeed, these should live in the group
Auty (M) af avutomorphism of N which commute with the homotheties. In
the abelian case, this is the whole linear group, and every smooth
diffeomorphism is locally qguasiconformal. The Iwasawa caomponant of
Uin, 1) is the Heisenberg aroup. The group Aut 5 (W) consists of
homotheties times symplectic 2n-2 by 2n—2 matrices § a smooth
diffeomorphism is locally guasiconformal if and only if it is a contact
transformation, i.e., it preserves the plane distribution V [251. This
still produces an infinite dimansional group of quasiconformal
mappings. In contrast, when N is the Iwacawa componant of Spin,1) ,
nz 2, the group Auts(N) consists of homotheties and a compact group
Spn—118p (1) - In this case, any quasiconformal mapping is
l-guasiconformal .

s Corollary C441.— The elements of Spin,1) are the only glaohal
quasiconformal self-maps of the boundary of quaternionic hyperbalic
n-space.

In the same vein, if Auts (N} consists of homotheties only - a
case which definitely occurs, see [441 - then any (even local}
quasiconformal mapping of N is the restrictian of a translation ar
hamothety. .

It would be interesting to have a local version of the preceding
corollary. This amounts to prove that local 1—guasiconformal mappings
are smooth. Proofs of this fact in  the Euclidean case are due to I.M,
Reshetnjak [48]1 and F.W. Gehring [111. They rely om non—linear elliptic
regularity theory. In the nilpotent case, the corresponding equations
are hypoelliptic and the necessary regularity is not yet available,

) There is much room ieft for further generalizations, since the
metric definition for quasireqular maps can be taken using arbitrary
matric spaces.

1} The solvable Lie groups which admit left—invariant metrics with
strictly negative curvature have been classified by E. Heintze L[211.
They are aof the form AN where N is a nilpotent Lie group and A a
one-parameter group of contracting automorphisms. The data of N s A
together with & norm is a very natural generalization of a Banach
space with its homotheties. One can speak of differentiability and of
quasiconformal mappirgs, a class which will pot depend on &he
Particular norm. A new feature is that these groups are nat length
spaces (cf [1&]), i.e., the distance between two points is not the
length of any curve Jjoining them. In fact, a group N admits a length
narm if and only if it is a Carnot group.

ii) A guestion of Grompv : as far as I know, nothing is known about
quasiconfarmal mappings betwaen separable Hilbert spaces. What about
Liouville theorem 7 Notice that traditional methods use integration,
and thus do not extend to infinite dimensions.

iii} Lift the assumption of discreteness and you can speak of
quasiregqular maps betwaen manifolds of different dimensions. Is
Licuville theorem still true 7
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4. Quasiconformal groups

nE Definition [1X1.— A4 fuasiconfornal group  on a metric space is a
group of uniformly quasiconformal homeomorphisms.

b We are concerned with the fallowing question, ariginally due to
F.W. Getring and B.P. Palka : when is a4 quasiconformal group of the
standard sphere (resp., ideal boundary of a manifold of negative
curvature) fquasiconformally conjugate to a group of confarmal

transfarmations 7

A general method to adress this question is due te D. Sullivan
[531. He observes that every quasiconformal group leaves invariant at
least one measurable cpnformal structure. Indeed, at each paint, the
- Bpace of conformal structure on  the tangent space identifies with
Gl(n)/C0Otny , which admite an invariant metric with non-positive
sectional curvature. The set of pull-backs of the standard structure
by the elements of the group is bounded, thus one can attach to it a
urigue point, the center of the smallest ball which contains it, for
example (see [591). These data form a measurable canformal structure,
almost everywhere invariant under the group. Notice that this argument
tarries over to Carnot groups, since all what is needed is the a. e.
differentiability of quasiconformal mappings. In this casa, by a
measurable conformal structure, we mean the data at each point of a
Euclidean metric on the left—invariant subbundle generated by V,. The
metric should depend measurably on the point.

A7 In dimension 2, the sphere has anly one cantormal
Riemann’s mapping theorem. (The extension to
structures is due to 0.B. Morrey [371). Thus the invariant contormal
structure is quasiconformally conjugate to the standard one, and we
are done [571. As a tonsequence, all quasiconformal groups in dimension
2 are known.

structure, by
measurable confarmal

o The argument fails in higher dimensions, and in fact, P. Tukia has
constructed domains in R which admit a transitive, connected
quasiconformal group which is not isomarphic to any subgroup of Oim, 1}
[581. Thus one needs extra assumptions. A typical argument is as
follows : assume that the aroup containg an  element g which is
expanding at the point ¥ . Assume that the invariant conformal
structure is smooth at x . Normalize is s0 that it coincides with the
standard structure at x . Using iterates of g s Oune seps  that some

neighborhond U of x tan be mapped conformally to smaller and
smaller neighborhoods of u y which are wvery close to a standard
disk. One concludes that U itself is conformally equivalent to a
standard disk. In fact, as proved by P. Tukia, this argument warks

under no regularity assumption on the invariant conformal structure.
v Theoram [5921.- et ¥ be a measurable conformal structure on the
sphere. If its conformal group is cocompact in the space of triples of
distinct points  (for example, if it comes from a cocompact group of
quasiisometries of the disk), then p is the standard conformal
structure. ’

Clearly, this applies to Carnot groups too.

D. Sullivan has a different result 2 let p
discrete subgroup r of O(n,1) . Then p is standard under a weaker
assumption on T : that it approaches almost every point "horosphericly
L533. The assumption in P.Tukia’s theorem is canical approach a.e.

be invariant under a

cnnﬁected subgroups of
a method +to decide

Since the

Otnyty , Ulnyl) ..
this leads to a

where two

are known,
hamogeneous Riemannian
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manifolds are guasiconformally equivalent. For the case of Euclidean
domains, see the forthcoming work by F.W. Behring and G. Martin.

#4<) Carallary.— Let N be a Carnot group with homothety group A 2 let
M denote the group AN endowed with a left-invariant Riemannian
metric of negative sectional curvature, Let M* be a simply connected
Riemannian manifald with negative sectional curvature and cocpmpact
isometry aroup. Assume that M and M* are quasiconformally
equivalent. Then Isom(M) and Isom{M') arg cacompact subgroups in a

comnon topological group.

Notice that, if Isom(M*) is discrete, we may conclude that hath

Isom(M) and Isam(M’) are subgroups af a simple Lie group Oin,1) ,
134, P 1 I

5. Global characterizatipns of quasiconfoarmal mappings
41 I want +to emphasize the fact that the conformality or quasi-—

conformality of a hoemeomorphism of a manifold
its behaviour under canjugacy with conformal
applies only when the conformal group of M
in the sequel, &S

M can be checked from
mappings of M « Thisg
is large encugh. Therefore,
tdenotes either the boundary of a rank ane symmetric

space (i.e., a sphere with an exptic conformal structure) or a Carnot
group M. We denptae by B its "confarmal graup®, i.e., a simple
graup  O{n,1) , Utn,1) , Sptn,1) , Fe-=a in the symmetric case, the
Qroup MAN where M is maximal compact in Aut.(M) in *he general

case. Let us begin with a cansequence of the preceding discussion.

A3 Carollary (see [&21 For an elementary proof in the rase of
Euclidean space! A qgquasiconformal group on S which contains a
cocompact subgroup af the conformal group G consists anly af

l-quasiconformal mappings (conformal in the symmetric case).

Dne of the applications of the methods of section 1, especially
Thearem 3, is to equicontinuity properties of "mormalized” quasi-—
conformal mappings (sae also La31, chap. 20). Given balls Diy, Dz << Da
and a point % € DB, , we say that a hameomorphism + of the sphere &
is normalized if

fix} =« and Dz < £(D,) < D~
then the normalized quasiconformal mappings of 8
distorsion are equicontinuaus. any quasiconformal
normalized - depending only on its distorsion -~ by
suitable elements of the conformal group.
denotes the set of quasiconfarmal mappings en 8 with deviation from
confarmality less than K , then B < GB where B is a compact subset
of the homeomorphism group of the sphere. A kind of converse is true,

with a given
mapping can bhe
multiplying it with
Thus one can state : if @

43 Frapasition.- Lat r he
group G5 .
fr < rg

a cocampact
A homeomorphism f of §
where B

subgroup of the conformal
is quasiconformal if and only if
is a compact set of homeaomew-phisms of § .

-4} Carallary.- Lat " be cocompact in G . A homeomarphism + is
l-guasiconformal {canformal in the symmetric case) if and only if r is
cocompact in the closed subgroup of Homeo(8) generated by © and § .

4% Remark.~ Since
negative curvature

the boundary of a simply connected manifold of
can be reconstructed functorially +rom any discrete
cacompact group of isometries, this corollary shows that the conformal
group B can be recovered from any discrete cocampact subgroup. By the
way, this is Mostow’s rigidity theorem : anv isomorohicm ek wsee
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lattices extends to an isomorphism between the Lie groups. This leads
us to a notion of conformal mappings between the boundaries of the

universal covers of arbitrary compact manifolds with negative
curvature.

A4é Definition.— Let My M be simply connected manifolds with
negative sectional curvature. Let r . re be cocompact groups of
isometries. A homeomorphism + 1 &M dM”  is said ta be confarmal if
the multiplicative set generated by r , £, f-* and r* is contained
in rBVr°B> where B, B’ <« Homeo (§M), Homeo(§M*) are compact., The map
¥ is called quasiconformal if fr < r'.e where B < Homeo (6M7) is
compact.

47 Theorem (P, Tukia [&113).- With the above definition, a
Quasiconformal mapping extends +o a quasiisometry of M onto M,
well-defined modulo maps with bounded displacement. Conversely, a
quasiisometry extends to a quasiconformal mapping.

44 Muestion.— Doas the conformal group of &M preserve some
conformal class of distances ? In case the group r is smooth with
respect to some differentiable structure on §M , is there any relation
between the quasiconformal group as defined above and the
quasiconformal group attached to the smooth structure 7 The case of
symmetric spaces already shows that there is no inclusion.

4.9 Invariants of pabterns of puints.— It is easy to construct
conformal invariants of a finite number of points on the standard
Tsphere @ given k distinct points, take the various simplices they
generate in hyperbolic space, choose a combination of volumes, mutual
angles and distances. I claim that any such invariant is
quasi—invariant under guasiconformal mappings of the sphere. This just
follows from compactness modulo conformal normalizatiaon.

Conversely, quasiconformal mappings of the standard sphere can be
defined using any conformal invariant of 4 points {(.,.5.454) which
tends to infinity when exactly two points become close to  each other.
Inderd, given a hameomorphism ¢ y use a canformal mapping so that
fixes three given points a, b and € « Then the range of variation of
f(d) is cantrolled by the 4-points invariant ({a,h,c,f{d)) , and a
modulus of continuity at d is given by the invariant (a,b,fid),fFle)).
Thus the sst of normalized homeomarphisms which almost preserve
{ryepepet is compact, and so uniformiy quasiconformal. In particul ar,
a group G of homeomorphisms of gn strictly cantaining O(ny13
cannot  preserve such an  invariant. Dpes this imply some dynamical
propaerty of the action of G’ on quadruples of distinct points ?

There are two famous examples of caonformal invariants of several
points. First, the cross-ratioc on the two-sphere. There, the invariant
has values in the two-sphere itself. Second, the wvolume of the
hyperbolic simplex generated by n+2 points an  the n-sphere, which
enters M. Gromov’s proof of Mostow’s rigidity, see {551, chap. &. It
characterizes conformal mappings. Indeed, a hyperbolic simplex is
regular (i.e., has maximal symmetry) if and only if it has maximal
volume [2013. A homeomorphism which preserves regular simplices
preserves the pattern generated by one of them by reflection across the
faces, which is dense in the sphere, so the homeomorphism extends to an
isometry of hyperbolic space. I da not krnow whether quasiconformal
mappings can be characterized by this invariant of n+2 points,

el Ore may wonder whether the conformal mappings on  the boundary of
a manifold of negative cwrvature as defined in § 44 preserve some
kind of capacity. One can characterize the class of semni—open function
on dM whose derivative is Lh—-integrable, since they have adequate
campactiness properties, see L[3171, but it is unclesr whether ane can

reconstruct the whole FRovdaen algebra of continuous functions with
Li-integrable derivative, together with its norm

sl *+ heap

It is known (see [321, {331} that this algebra caompletely determines
the conformal structure.

HAugstion.— Can one concoct a Rayden algebra Ffor &M out of the
Royden algebra of M ? Some answer must exist already for the disk.
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