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CHAPTER 1

Introduction

1.1
Let X be a finite simplicial complex. The Betti numbers
bi(X) = dim H*(X R)
are homotopy invariants of X. The Euler characteristic of X is given by

x(X) =Y _(-1)%:(X).

i
Let X be a covering of X of degree d The Euler characteristics satisfy
X(X) = dy(X).
However, individual Betti numbers do not obey such a simple rule. In general,
bi(X) # dbi(X).

In these notes, we explain how to construct a variant of Betti numbers called
L2-Betti numbers, which shares many properties of ordinary Betti numbers, i.e.,

B1 Homotopy invariance: For each 4, L?b;(X) is a homotopy invariant of X;

B2 Euler characteristic: x(X) = Y, (~1)*L%b;(X);
but has a simple transformation rule under finite coverings: .

B3 Finite coverings: if X — X is a d-fold covering, then L?b;(X) = d L?b;(X).
What will be lost is integrality: L?Betti numbers are by definition real numbers.
They are conjectured to be always rational. Property B3 suggests the following
definition for L?Betti numbers:

B4 Continuity: if X,- — X is a d;-fold covering, and if the sequence X ;=X
converges to the universal covering in the following sense: every loop in X lifts to
an open path in some X, then

1 ~
2p. = K . .
L7,(X) = lim 7 bi(X;).

However, not every complex admits such a tower of finite coverings (it is the
case, if and only if, the fundamental group of X is residually finite). .

The actual definition involves L? cohomology of the universal covering X of
X. Although the main idea is present in Murray-Von Neumann’s theory of type II
factors, (Murray and Von Neumann [1943]) the concept is due to M. Atiyah [1976],
and I.M. Singer [1977], (property B4 has been proved only recently by W. Liick
[1993]). J

L? Betti numbers are useful tools for topology, as shown by J. Cheeger and
M. Gromov [1986], and W. Liick (to appear). In these notes, we shall describe a
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58 1 Introduction

striking application to a problem in Riemannian geometry that goes back to H.
Hopf and maybe even to S.S. Chern.

1.1.1 H. Hopf’s problem Does the sign of sectional curvature determine
the sign of Euler characteristic?

In two dimensions, the Gauss-Bonnet formula immediately implies that a com-
pact manifold which admits a positively (resp. negatively) curved metric has posi-
tive (resp. negative) Euler characteristic.

In four dimensions, one can still check that positive (resp. negative) sectional
curvature implies that the Gauss-Bonnet integrand is pointwise positive (J. Mil-
nor). This is a computation in linear algebra. However, in higher dimensions, it is
known that the sign of sectional curvature only does not determine the sign of the
Gauss-Bonnet integrand; see for example Geroch [1976], even in the Kéhler case
(Bourguignon and Polombo [1981]). Nevertheless, the following question is still
open:

Let M be a compact negatively curved riemannian manifold of dimension 2m.
Is it true that (—1)™x(M) > 07

M. Gromov has given a positive answer in the case the metric is Kéhler. His
solution uses L2 Betti numbers and their relation with L%-cohomology of the uni-
versal covering, which we now explain.

1.1.2 L? cohomology Let M be a Riemannian manifold. The Riemannian
metric allows to impose decay conditions at infinity such as square integrability. Let
L20* denote the space of differential forms on M which are in L?as well as their
exterior derivative. Then the exterior differential d : L*Q* — L*Q* is bounded. r?
cobomology is the quotient L2H*(M) = Kerd/Imd. Note that Imd is not always
a closed subspace in Ker d. This leads to the definition of reduced L? cohomology
where Tmd is replaced by its closure L2H (M) = Kerd/Tmd. If M is complete,
integration by parts works, and shows that L? harmonic forms are closed and
coclosed. A standard argument shows that every class in g (M) contains a
unique L? harmonic form, thus reduced L? cohomology is isomorphic to the space
L*H* (M) of L* harmonic forms.

If M covers a compact manifold M, then any Riemannian metric on M gives
rise to a Riemannian metric on M, and L? cohomology of M is independent on
the particular choice. Then~L2 Betti numbers of M can be defined in terms of the
action of 71 (M) on L*H*(M). In particular, one has:

B5 Harmonic forms: L2b;(M) vanishes if and only if L*H*(}M) vanishes.

1.1.3 J. Dodziuk and I.M. Singer’s approach Properties 2 and 5 imply
that a positive answer to H. Hopf’s question would follow from a vanishing theorem
for L*H(M), i # m, and a non vanishing theorem for L2H™(M). J. Dodziuk and
1M. Singer asked whether L2H*(M) = 0, i # m for the unjversal covering of every
compact negatively curved manifold. This question is still open too. The answer is
positive for rotationnally symmetric metrics (Dodziuk [1977]) and symmetric spaces
(Borel [1983]). It is known that a stronger pinching condition on sectional curvature
implies vanishing of LZH*(M), i # m (H. Donnelly and F. Xavier, [1984]). However
such a pinching condition is needed, as examples by M. Anderson [1984] show, they
are simply connected manifolds without compact quotients.

Gromov [1991] introduces the class of Kéhler hyperbolic manifolds, i.e., com-
plete Kihler manifolds for which the Kahler form is the differential of a bounded
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form. He observes that, for the universal covering of a compact negatively curved
manifold, every closed bounded form is the differential of a_bounded form. He
proves that, for a Kéhler hyperbolic omn-manifold M, L*HH(M) =0, i # m. The
argument is elementary, and yields a lower bound on the L2-spectrum of the Lapla-
cian on forms on M, orthogonally to L?harmonic m-forms. The last step, non
vanishing of L2H* (M), is less elementary. It relies on a new avatar of the L? index
theorem.




CHAPTER 2

Von-Neumann Dimension

2.1

Let T' be a discrete group. We are about to attach a real number dimr to
certain unitary representations V of I'' The construction fits naturally into the
theory of Von Neumann algebras, see Murray and Von Neumann [1943], Atiyah
[1976], Shubin [1993]. Instead of sketching the general theory, we shall follow a
pedestrian route.

The idea is to renormalize infinite dimensions by dividing out the order of the
group. Thus, typically the dimension of the regular representation of a group T’
should be 1. Recall that the main role played by dimension in usual linear algebra
is in the following lemma. If L : V — W is linear and dimV > dimW then L
has a non trivial kernel. The proof amounts to constructing a complement V”’ of

Ker L in V, observing that Ly~ is an isomorphism of V' onto Im L, and the formula
dimKer L + dimV’' = dim V.

In an infinite dimensional situation, one will often encounter dense images, so
we want that renormalized dimension be equal for 2 spaces when one is isomorphic
to a dense subspace in the other. Furthermore, in order that property B3 of 12
Betti numbers holds, a simple transformation rule for change of group to a finite
index subgroup should be available. In summary, the renormalized dimension dim
should have the following properties.

D1 Positivity: dimp(V) > 0, and dimp(V) =0 iff V = 0;

D2 Invariance: if V is isomorphic to a dense subspace of W, then dimp(V) =
dimp(W);

D3 Addivity: if Z is the orthogonal direct sum of V and W, then dimr(Z) =
dimp(V) + dimp(W);

D4 Continuity: If V; is a decreasing sequence of I'-invariant subspaces, then:

dimp(ﬂjVj) = 7ll’n°10d1mp(1/']),

D5 Finite index subgroups: if I C T is a subgroup with index d, then any
representation V of T' becomes a representation of IV and d1m (V) =ddimp(V);
D6 Normalization: dim p(¢%(T)) = 1.

2.1.1 Example: Invariant subspaces in,£2(Z). £2(Z) consists of doubly
infinite series (an)nez of complex numbers such that Y no _ . |an|* < co. The
group 7 acts on it by shifting indices. The Fourier transform is an isomorphism of
£2(Z) with L2(S') where n € Z acts on L*(8) by f(z) — 2" f(2).

If A C S! is measurable, then the subspace F4 of functions that vanish outside
A is closed, invariant. Assuming that dim (F4) makes sense, let us deduce from
the axioms only that it is equal to the measure of A.
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62 2 Von-Neumann Dimension

Indeed, according to axioms D3 and D4, A — dim r(E4) is a countably additive
measure. The transformation law D5 applied to IY = pZ shows that this probability
measure is invariant under translations 7 of order p (since F, 4 is isomorphic to E4
under pZ), and thus it coincides with Lebesgue measure.

As a consequence, measure theory on the circle should be a particular case of

our I'-dimension theory. This is important for intuition

2.1.2 Finite groups When T’ is finite, axioms D5 and D6 force

. dim V'
dimp(V) = Codl
Here is a fancy way to rewrite this formula. Assume that V' is finite dimensional
Then V is contained in the sum of finitely many copies of the regular representation
£2(T'), in other words, V C £2(I')®F where I" acts trivially on F. The space £2(T)@F
admits a natural I-invariant orthonormal basis (e,;) = ve; where v € I and (e;)
is a basis of F'. Let II denote the orthogonal projection of £2(T") ® F onto V. Then

dimV = Tracell

= E—y(zi<e%i|n|e%i))
= CardI‘ zi<€1)ilnl61,i>

since the sum within parentheses does not depend on +. This sum will be taken as
a definition of dim (V) for infinite I'. Unfortunately, the definition applies only to
spaces embeddable in £2(T") ® F' and this is a serious restriction when T' is infinite.
In Proposition 2.6, an intrinsic characterization of these special representations will
be given, together with an intrinsic expression for dimrp.

2.1.3 The I'-trace

Definition 2.1 Let I' be a discrete group acting by unitary transformations
on a Hilbert space H. H is a free Imodule if it admits a I-invariant Hilbert basis,
ie., a Hilbert basis (e;)ier such that T' acts freely on I and e,; = ve;. If Pis &

T-equivariant operator on H, we define its I'-trace by
Tracer P = Z {e;|Ples),
i€T\I

where the notation means that one representative is chosen in each I'-orbit in I.
If V is a I'-invariant subspace in H, we define its I'-dimension as the I'-trace of
the orthogonal projector of H onto the closure of V.

For non-negative hermitian I'-equivariant operators P, Tracer P does not de-
pend on the choice of I'-invariant basis. Indeed, if U is T-equivariant and unitary,
then Tracer UPU* = Tracep P. This follows from the following easy lemma by
setting A=U VP.

Lemma 2.2 If A is a bounded T'-equivariant operator, and if Tracer A*A is
finite, then so is Tracep AA* and

Tracer (A*A) = Tracer (AA¥).

More generally, let us prove a precised version of axiom D2,

e
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Lemma 2.3 Let V and W be invariant subspaces in free T-modules. Assume
there ezists a closed densely defined injective I'-equivariant operator A : V. — W
with dense image. Assume that dimrV is finite. The so is dimpW and dim1V =
dimpW.

Proof By taking the direct sum of ambient spaces for V and W, we can assume
that V and W sit in the same free I-module H.

Let Iy : H — V denote the orthogonal projector onto the closure of V.. We use
the polar decomposition B = US of the closed unbounded densely defined opere%tor
B = Ally;. Here S is non negative self adjoint and U is a partial isometry, i.e.,
U*U =1l By uniqueness, U and S are I'-equivariant. Now

UU* =Ty

S0
dim oW = Tracer UU* = Tracer U*U = dim rV.

O

Axioms D1 (positivity), D3 (additivity), D5 (transformation under finite index
subgroups) and-D6 (normalization) are clear. Combined with Lemma 2 4 they lead
to the expected generalization of finite dimensional linear algebra

D7 Invariance of index. Let V and W have finite I-dimension. Let L : V — W
be a bounded I'-equivariant operator. Then

dim rKer I — dim rKer L* = dimpV — dim W
Axdom D4 follows from the following dominated convergence result (see Atiyah
[1976] and Shubin [1993}).
Lemma 2.4 Let S be of T-trace class and P; be operators with uniformly

bounded operator norms. Assume that P; weakly converge to P. Then

Tracer SP = lim Tracer SP;.
j—oo

2.1.4 Square integrable representations At last, we give an intrinsic def-
inition for dimp. Let V be some unitary 1epresentation of a group T'. Denote
by

B(u,w) = 3 (olye)?.
Y€
This is not always finite. Say that v € V is a L®vector if there exists a constant
C such that B(v,w) < C || w ||? for all w € V' (the terminology is inspired by the
case of £2(Z) = L*(S1)).
Definition 2.5 (Compare Dixmier [1964], Chapter 14) Say V' is a square in-

" tegrable representation if its L>°vectors are dense.

If V admits a T-invariant basis (g;), then B(e;, w) <|} w||? for all w i.n Vﬂ‘ As
a consequence, the set of L>®vectors is dense in V. More generally, all 1nvanar'1t
subspaces in free I'-modules are square integrable representations. The converse is

true




64 2 Von-Neumann Dimension

Proposition 2.6 IfV is a separable square integrable representation of T', then
V' embeds in o free T-module and

dimpV =sup »_ || v; |2

over collections (v;) of vectors which, together with their T-translates, generate a
dense subspace in V, and are normalized by

ZB(vi,w) <Jwl|?  forallw E Vv

Proof Choose any countable collection v; of L*®vectors which, together with
their I-translates, generate a dense subspace in V. Eventually rescale each of them
so that the series >, || v; |2, < 1. Let F be the abstract Hilbert space with a
countable Hilbert basis e;. The linear I' equivariant map L : £2(T') ® F — V taking
e; to v; is bounded with norm 1. It has a dense image. Thus its adjoint I* embeds
V into #(T)® F. Let L* = U'S be the polar decomposition of L*. The I'-dimension
of L*(V) is -

dimpL*V = Tracepr UU*
=2 (e UU*|es)

=2 Ure|?
=2l 7 v |?
235 v P

2

with equality if one replaces the collection v; by §~1v;. [

2.1.5 Naive dimension Clearly, if V is representation of I" and if a dense
subspace in V' is generated by finitely many L*vectors (and their I-translates)
then dimrV is finite. The converse is not true in general (consider the Z-module,
®L?([0,27)).

CHAPTER 3
Simplicial L?> Betti Numbers

3.1
3.1.1 Simplicial cohomology Let X be a locally finite simplicial complex.
A k-cochain is a function which attaches a real number to each k-simplex of X.
They form a vector space denoted by C*(X,R). The coboundary operator d is
dual to the boundary 8 which attaches to a simplex o a combination of its faces
b0 =3, (—1)! ;0.
There is a natural Hilbert space structure on Ck(f( ,R), where

e l*= > le(o)I*.

o a k-simplex in X

Then the coboundary is a bounded operator on L2C*(X,R), and we denote its

adjoint by d*.  _
Assume that X is the universal covering of a finite complex X with fundamental

group I'. Then as representations of I',
I?C*(X,R) = £#(I) ® C*(X,R).

Indeed, choose for each simplex ¢ a lifting & € X . Then each cochain ¢ of X defines
a sequence of cochains ¢, on X by ¢, = ¢(75). However, note that the coboundary

operator does not split.
Thus one can view the space L2H* = Ker (d +d*) of L? harmonic cocycles on

X as a T-invariant subspace in the free [-module £2(I") ® C*(X,R) and assign it a
Von Neumann dimension.
Definition 3.1 The simplicial L2 Betti numbers are L2b;(X) = dim rL*H*.
Next we check that this definition fulfills the rules set in the introduction. Rule
B3 follows from the corresponding property D5 of Von-Neumann dimension. B1
and B5 will be established in the next paragraph. For B4, we refer to W. Liick’s
[1993] paper Next we prove B2.

Proposition 3.2 Simplicial L? Betti numbers compute the Euler character-
J

x(X) = Z(—l)"LZbi(X)”

1stic

Proof Consider the bounded I-equivariant operator
I = d+d* :L2Ceven(X) — L2COdd(X),
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66 3 Simplicial L? Betti Numbers

According to property D7 of Von Neumann dimension,
3o:(=1)iL%(X) = dimKer L — dim pKer L*
= dim pL?C*¥**(X) - dim r L2C°%(X)
= dim C*¥**(X) — dim C°%(X)
= x(X).
O

Remark 3.3 The simplical Laplacian belongs in a special class of I-invariant
operators in £2(I')®F called finite equations onI'. These are finite sums of operators
of the form R, ® M where R, is right translation by v and M € End F is a matrix.
One expects that the space of L2 solutions of such special operators have integer
I'-dimension

This is easy when I' = Z. Indeed, via Fourier transform ¢2(Z) = L2(S%), such
an operator P translates into a square matiix M(z) that depends polynomially on
z € 5! and acts on vector-valued functions on the circle by multiplication. Thé ?
kernel of P consists of L? sections of the measurable subbundle Ker M (z), whose
f'ank Jjumps only at finitely many points. Thus dim zL?Ker P = max dim Ker M (2)
is an integer.

) This particular example is not so useful as far as Betti numbers are concerned
since spaces with abelian fundamental groups have vanishing L? Betti numbers. ’

CHAPTER 4

Homotopy Invariance

4.1

The homotopy invariance of L? Betti numbers has first been established by
J. Dodziuk [1977]. We recall the sheaf theoretic proof of homotopy invariance of
simplicial cohomology, and check that the proof still applies in an I? context.

4.1.1 Sheaves of Hilbert spaces We first recall the classical sheaf theory
terminology. See Godement [1964].

A sheaf over a manifold is fine if its sections can be multiplied by smooth
partitions of unity. A sheaf over a simplicial complex is fine if its sections can be
multiplied by continuous piecewise linear functions.

A complex of sheaves 0 — A~1 — A® — Al — .- is a resolution of A~ if it
is locally exact.

A covering U = (Uy) is acyclic with respect to the complex of sheaves 0 —
A~ — A% — - if the sequence is exact on each open set (U,) and on all inter-

sections of (Uy)’s.

Next we add L? norms and uniformity in these notions.
When we deal with a sheaf A of Hilbert spaces we assume that
(a) if U C V and f is a section of A) on V, then

Ifivlo < 1flv s
(b) if f is a section of Aon UUV, then
[flvwv < const. (| fiuly + | fviv)

A covering U = (U,) of of a metric space X is uniform if
(1) there exists an € > 0 such that the sets
U ={zxeU, | dz, M\Us,) > ¢}
still cover X;
(2) each set U, intersects only a bounded number of Uy;

(3) the diameter of U, is bounded
A covering U is uniformly acyclic with respect to the complex of sheaves

0— A"1d, 404, 0

if on all intersections, there is a bounded operator (with a uniform bound on the

norm) which solves df = o when da = 0.

Uniform coverings exist on Riemannian manifolds of bounded geometry (i.e.,
with cwrvature bounded from above and injectivity radius bounded from below)
and simplicial complexes of bounded geometry (ie., each simplex meets a bounded

67




68 ’, 4 Homotopy Invariance

number of simplices). These assumptions are automaticly satisfied for spaces which
isometricly cover a compact space

Theorem 4.1 (de Rham, sheaf theoretic version) Let
0—-R— A" 5 A 5 .

be a fine resolution of the constant sheaf R over X. Let U be an acyclic covering of
X. Then the cohomology of the complex of global sections of A* on X coincides with
the Cech cohomology of the covering, i.e., the simplicial cohomology of the nerve of
the covering U.L? case: If one adds uniformity in all assumptions, the conclusion

is that the complezes L2A* and L*C*(U) are bounded homotopy equivalent. In
particular, they have isomorphic L? cohomology and reduced L? cohomology

Given a metric space X equipped with a measure, we apply Theorem 4 1 to the
resolution of constants by Alexander-Spanier cochains of size 1. Such a i-cochain
is a function on i + 1-tuples of points in X with pairwise distances less than 7. The
L? norm comes from the product measure on the space of admissible simplices

Lemma 4.2 The Alezander-Spanier L? cohomology of the unit simplez in R™
is independant of the size n. As a consequence (take n = 2), it vanishes except in
degree zero

Proof Subdivide a large simplex into smaller simplices. [

Let X be a simplicial complex of bounded geometry. Then the covering by
stars of vertices is uniform and uniformly acyclic with respect to the resolution of
constants by Alexander-Spanier cochains of size 1/2. Thus L? cohomology can be
computed via Alexander-Spanier cochains. Since this is natural under uniformly
continuous maps, and in particular, maps lifted from a compact quotient, we con-
clude that L? cohomology of the universal covering is a homotopy invariant. This
proves property Bl of L2 Betti numbers.

4.1.2 Differential forms Given a Riemannian manifold of bounded geome-
try, we apply Theorem 4.1 to the resolution of constants by differential forms.

Lemma 4.3 The De Rham L?> cohomology of the unit ball in R™ wvanishes
except in degree zero.

Proof Use Poincaré’s homotopy formula. Fixing an origin p, use polar coor-
dinates, write a form a = a + b A dr and set hy(e) = [bds. Then [h,dp is L?
bounded and solves df = . O

As a consequence, if M is a compact manifold, L? cohomology of the univer-
sal covering can be computed via differential forms. This proves property B5 of
L? Betti numbers. For oriented n-manifolds, the Hodge % operator sends L2 har-
monic i-forms to L? harmonic n — i-forms isomorphicly, and we obtain one more
formal property of L? Betti numbers. B6 Poincaré duality: if M is a compact

n~dimensional manifold, then

L2b;(M) = L2b,_(M).

CHAPTER 5

Invariants of Discrete Groups

5.1

Let T be a discrete group. Assume that there exist finite simplicial complexes X
such that X is contractible and 71(X) = I'. Then we can define L? Betti numbers
for I' as the L? Betti numbers of any such X.

A closer look into the proof of Theorem 4.1 shows that, for any finite complex
X, L2H*(X) only depends on 71(X). The same holds for the exact cohomology
in degree 2 (exact L2cohomology is the kernel of L2H*(X) — H*(X,R)). In
particular L2b; and EL?b; make sense for all finitely presented groups.

Any infinite group has L2?by = 0. Further vanishing results, combined with the
formal rules Bl to B6, sometimes enable one to compute L?Betti numbers.

5.1.1 Example: Free groups The free group F), on n letters has

L2b0 (F TL) = Oa
L%b(F,) =0
for 2 > 2 and
L% (Fp) = —x(F) =n—1
In particular, a regular tree which is not a line has non-vanishing L*H'. This fact
also follows directly from uniformization.

This is easy to see directly. Indeed, let T be a tree, e an edge which divides T
into infinite subtrees T; and T}. Let u be the function on vertices (i.e. the 0-cochain)
which takes value 0 on vertices of T and 1 on vertices of T3. Its coboundary du is
supported on e and thus L2, but no solution of dv = du can be in L%, This shows
that L2H! # 0.

If a tree has at least 3 edges at each vertex, then Sobolev inequality holds: for
compactly supported v, || v ||< coust. || dv || (this is an isoperimetric property,
see for example Gromov, Lafontaine and Pansu [1981], Chapter 6). This in turn
implies that dL?Q° ¢ L2Q! is closed, and one concludes that L*H' = [2H' #0.

For n = 1 we observe that L2 (Z) = 0 whereas L2H*(Z) # 0. More generally,
the discrepancy g # L2H" characterizes amenable groups; see R. Brooks [1981].

5.1.2 Example: Surface groups Let I' be the fundamental group of a
compact surface M of negative Euler characteristic. Then L*p(T) =0 for i > 3.
Poincaré duality implies L2by(T") = L?bo(T") = 0 and thus L?b; (') = —x(T"). Again
this implies that M has non vanishing L*H®.

This follows directly from uniformization. Indeed, the space L*H' of L?
harmonic 1-forms is a conformal invariant. Now conformally, M coincides with
the unit disk D in C, where the form dz is harmonic and L2. In fact, L?harmonic
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70 5 Invariants of Discrete Groups

1-forms on D are differentials of harmonic functions, which in turn are determined
by their boundary values on the circle. Up to constants, L>H!(D) identifies with
the Sobolev space of functions on the circle with a half derivative in L2.

5.1.3 Example: Free abelian groups Since tori admit finite self cover-
ings of any degree, property B3 implies that all their Betti numbers vanish. As a
consequence, L?b;(Z™) = 0 for all n.

More generally, if m;(X) has an infinite center, then all its L?Betti numbers
vanish.

We give a short sketch of the argument, taken from M. Gromov [1993].

First step. The center acts trivially on L?cohomology. Indeed, a central el-
ement v acts by an isometry of X which translates points a bounded amount e.
This number may be large. Nevertheless, since X is uniformly contractible, its
L?%cohomology can be computed using Alexander-Spanier cochains of arbitrarily
large size. Then for any Alexander-Spanier simplex o, y.0 — o bounds a prism of
size ¢ and dually v* — 1 is null homotopic.

Second step. Any infinite proper isometric action on X acts non trivially on
L?harmonic cocycles Indeed, for each L%cocycle c, there is a compact set K that
contains more than half of the square L2norm. If yK N K = 0, then y*c # c.

This gives a rather short proof of the fact that x(I') = 0 when T has a finite
K(T',1) and a non trivial center, compare Rosset [1984]. A drawback is the as-
sumption made that I has a finite K(T",1). Cheeger and Gromov [1986] have been
able to remove it by enlarging the definition of L?Betti numbers.

5.1.4 Amenable groups The general idea is that L?Betti numbers vanish
unless the group has a large “ideal boundary”. For example, infinite amenable
groups have vanishing L?Betti numbers (Cheeger and Gromov [1986]). Amenable
means that there are finite subsets A € T with #8A/#A arbitrarily small. On the
opposite, hyperbolic groups give many examples of non vanishing L2b; for some i.
However, note that fundamental groups of compact odd dimensional real hyper-
bolic manifolds have all L?Betti numbers zero. (See Lott and Liick [1991] for a
computation of L?Betti numbers of 3-manifolds.)

CHAPTER 6
Atiyah’s L? Index Theorem

6.1

For compact manifolds, one can view the formula x(M) = 3_,(—1)*dim ?{’ (M)
as a special case of the index theorem. Indeed, it is a topological expression for
the index of the elliptic operator d + d* : Q**"(M) — Qodd(pM). Our f(;x"mula
x(M) = ¥,(~1)idim,L*H}(M) is also a special case of a more general L index
theorem. A variant of it will be used in section 9 to obtain a non vanishing result
for I2solutions of a perturbation of d + d*.

Theorem 6.1 (M. Atiyah [1976]) Let M be a compact manifold, P o fiete'r—
mined elliptic operator on sections of certain bundles over M. Denote by P its l-zﬂ
to the universal covering M. Let T' = m(M). Then the L%kernel of P has a finite

T'-dimension, and
I[2Indexr P = divazKerf’ — dim,yLzKerf’* = Index P.
Proof Finiteness of dimension. The orthogonal projector II onto the L?kernel

of P has a smooth (vector-valued) kernel p(z,y), since it satisfles~a detern}ined
elliptic system of equations. Fix a fundamental domain U for I' in M and write

L?(M,bundle) = £*(T) ® L*(U, bundle).

Then Tracepll = TracerIli where i : L*(U) — L*(M) is injection and 7 :
L2(M) — L?(U) is orthogonal projection. Now Tracerll is the trace of an op-
erator L2(U) — L?(U) whose kernel is p restricted to U x U. Thus

’I‘racepﬂz/ Tracep(z, z) dz (%)
U

is finite. o
Index formula. The index can be expressed in terms of a parametrix, ie., an

" operator @ such that

QP=1-5, PQ=1-5;
where S and S have smooth kernels. The formula
Index P = Trace Sp — ’I)&‘ace S1,

which is obvious for Green’s function Q = P~! : Im P — Ker PY, =0 on Im P, is
in fact true for all parametrices. The rather formal proof extends to the case where
traces are replaced by I-traces. Now on the compact manifold M, one can choosje
a parametrix whose kernel is supported in a neighborhood of the diagonal. This
kernel lifts to M into a parametrix for P. The numbers L?Indexrt P and Index P
are then obtained by integration of equal functions on U and M.
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See Atiyah [1985] for a complete proof. A slightly different proof will be given
in Chapter 10. O

Example 6.2 The theorem applies to the operator P =9: Q%(%) — Q%1(%)
on a compact Riemann surface & of genus g. Its adjoint is & : 010 — Q1 Then
dimKer P = 1 and dimKer P* = g. If ¢ > 1, one concludes that 3 admits non
trival L2holomorphic 1-forms Again, this is clear from uniformization. In the
boundary value description of 5.2, these 1-forms correspond to H/2 functions with
all negative Fourier coefficients vanishing

6.1.1 Proportionnality principle A consequence of the formula (*) for T
dimensions as integrals of Schwartz kernels is the following B7 Proportionnality
principle: if M and M’ are compact manifolds which have isometric universal
coverings, then for all i

L2b;(M) _ L2%y(M)
Volume M ~ Volume M’

CHAPTER 7

L*® Cohomology and Negative Curvature

7.1

When is a closed bounded form on a Riemannian manifold the differential of
a bounded form? This is true exactly if L°°cohomology vanishes. Observe that, if
M covers a compact manifold M, then L®H *(M ) does not depend on the choice
of a metric on M. More, as a.lready mentionned for L2cohomology, L H(M) and
exact EL*H 2(M ) only depend on the fundamental group of M.

Proposition 7.1 Let M be a complete, simply connected manifold with sec-
tional curvature K < —e2 < 0. Then L°H*(M) = 0, i.c., every closed bounded
form on M is the differential of a bounded form.

Proof Fix an origin p. According to the Cartan-Hadamard theorem (Ballman,
Gromov, and Schréder [1985]) for every point z, there is a unique geodesic segment
joining z to p. Denote by Z(z) its unit tangent vector at z Denote by 75(x) the
point at distance s from z on this segment. The Rauch comparison theorem implies
that 7, contracts at least by a factor e™*° for large s.

Let o be a closed bounded k-form on M. To solve dB = a, use Poincaré’s

formula T
Br = / T (iza) ds.
0
Then dfr = o — 77 pce. Since
I1724(i20) oo €70 || a floo,

the form By converges as T — o0 to a form g such that || 8 || < (—k—lT)e | & [|oo-
Also 7* ;o tends to zeroso dB = a. O
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CHAPTER 8

A Vanishing Theorem for Kahler Hyperbolic Manifolds

8.1

A Riemannian manifold is Kahler if it admits a parallel 2-form w of unit norm
whose stabilizer in the orthogonal group of some tangent space is a conjugate of
the unitary group. The K&hler form w is then closed

Definition 8.1 (M. Gromov) A Kihler manifold is Kahler hyperbolic if the
Kahler form is the differential of a bounded form.

Hermitian symmetric spaces are Kahler hyperbolic. According to Proposition
7.1, if M is a compact Kahler manifold, and if M admits some metric of negative
sectlonal curvature, then its universal cover M is Kahler hyperbolic. Kahler hy-

perbolicity implies hyperbolicity in the sense of Kobayashi (a purely holomorphic
notion).

A key fact is that multiplication with the Kéhler form w commutes with the
Laplacian; see Weil [1958]. If w = db, b bounded, then for every L? harmonic
form a, w A a = d(b A @) is zero in L? cohomology, and thus vanishes. However,
linear algebra (Weil [1958]) says that multiplication by w is injective on i-forms if
4 < dim M. One concludes that L*H!(M) =0 for i < 1dim M.

A little bit more is true.

Theorem 8.2 Let M be o complete Kihler hyperbolic manifold of real dimen-
sion 2m. Then L*Q*(M) splits orthogonally as L*Q*(M) = L*H™ & E and the
Laplacian is invertible on E. In particular, L*H? (M) =0 for i # m.

Proof Let a be a i-form, i # m. We prove that || & ||2< const. (Acje). Even-
tually replacing « by *«, we can assume that ¢ < m. We shall use the integration
by parts || dB || + || d*8 ||*= (AB|B) and the fact that wedging with w in degrees
< m is an isometric injection.

Write

lal? =lanw|?
= (a Aw|a Adb)
= {a Aw|d(a A b)) £ {a Aw|da Ab)
< const. | & || (Il &*(ccAw) || + Il dar ).

Since J
| de |P< (Acfe)

and
| d{arw)|? <{(AlaAw)aAw)
= {(Aa Aw|aAw)
= <AO£|C\{>,
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76 8 A Vanishing Theorem for Kéhler Hyperbolic Manifolds

we get || o [|2< const. {Aaja) where const. =|| b ||eo.

These estimates imply that for all i < m the image of d : L2Q* — L2 is
closed. Indeed, on L2Q° one has || « ||< const. || de || which implies that dL2Q°
is closed in L2Q*. Then given o € dL*Q}, o = dg, there is a 1-form 8 of minimal
norm in B+ dL2Q° This 3 is coclosed and so satisfies || 8 ||< const. || « ||. This
proves that dL2Q is closed in L2, and so on by induction.

The Hodge decomposition

LZQm — L2Hm o dI2qm—1 st d*L2Qm+1

holds in general on complete manifolds. Here it becomes
E =dL*Qm ! @ +dL*Qm!

Since the Hodge * and the differential d commute with the Laplacian, the inequality
|| & |[2< const. (Ac|c) holds on E. This implies that A is invertible on E. O

Remark 8.3 There is an obvious generalization of the previous argument to
quaternionic Kihler hyperbolic manifolds. A 4m-dimensional Riemannian mani-
fold is quaternionic Kahler if it admits a parallel 4-form w whose stabilizer in the
orthogonal group of some tangent space is conjugate to the maximal subgroup
Sp(m)Sp(1). The needed linear algebra is due to E. Bonan [1982].

CHAPTER 9

Non Vanishing Theorems for L? Cohomology

9.1

Following M. Gromov, we shall prove that, if M is compact with a Kahler
hyperbolic universal cover M, then x(M) # 0. In view of 8.2, it is enough to show
that the Laplacian A is not invertible on LQQ*(M ). There is a general conjecture
(due to J. Lott and christened “zero in the spectrum conjecture” by M. Gromov
[1993]) saying that for every compact manifold M, A is not invertible on L2Q*(M).
We shall establish this conjecture in a few cases below.

M. Gromov’s method amounts to construct arbitrarily small perturbations of
d+d* on L2Q*(M) with a non trivial L? kernel. For this, he applies the L? index
‘theorem to a twisted d + d*, i.e., to vector valued differential forms. The idea —
expressing an operator P as a deformation of an other operator @ which has non
zero index in order to obtain upper bounds on eigenvalues of P — goes back to
Randol [1974].

Let (L, V) — M be a vector bundle equipped with a hermitian metric and
hermitian connection V. Then there is an induced exterior differential d¥ on
Q*(M) L If P=dV +(d*)7, then Atiyah-Singer’s index theorem states

Index (P) = /M Ly~ Ch(L).

Here L34 is Hirzebruch’s L class,
Ly=1+ +eM)

where 1 € HO(M) and e(M) € HY™M (M) is the Euler class. When L is a complex
line bundle, Ch L = exp(ci(L)).

We want (L, V) to be a small perturbation of a trivial bundle, and also that
c1(L) # 0. This cannot be realized on M itself, since ¢1(L) is an integral class, but
on some finite cover it is sometimes possible.

9.1.1 Riemann surface case Let ¥ be a compact Riemann surface. Let us
do as if we did not know that x(£) # 0 and give a complicated proof of it. This
proof will be a model for higher dimensional situations.

9.1.2 Claim For every ¢ > 0, there exists a finite cover £, — ¥ and an
¢e-contracting map f. : £, — CP? of degree 1.

Proof Equip ¥ with a metric of curvature 0 or —1. Since m;(X) is residually
finite, there exists a finite covering X, which contains an isomeétricly embedded
hyperbolic disk D, of radius /e The inverse of the exponential map is a length
non increasing map to a Buclidean disk of the same radius. Apply a homothety to
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78 9 Non Vanishing Theorems for L? Cohomology

a Euclidean disk of radius 7, then use the exponential map to CP! equipped with
its contant curvature 1 metric. Extend this map to a constant outside of D.. O

Consider the tautological line bundle Ly — CP? as a line subbundle in a trivial
C2-bundle over CP! with trivial connection. Let Vg be the induced connection.
The map f. pulls back (Lg, Vo) to a hermitian connected line bundle (L., V.) on
3. Let

PE — dVE + (d*)ve
If we assume that x(X) = 0 then the Atiyah-Singer formula reads Index (P.) =
c1(Le) # 0. The L? index theorem applies to the lift P. of P. to the universal
cover X, which is invariant under I, = m1(Z,).

L?Indexr, P, = L*Index p,) # 0.

This implies that either P. or its adjoint (which is the same operator with Lg
replaced by its dual) has a non trivial L? kernel.

Let us show that P. is indeed a small perturbation of d + d*, the ordinary Dirac
operator on scalar differential forms on 2.

L. is a line subbundle in a trivial C? bundle over X, that varies slowly, i.e., has
small second fundamental form B, The induced connection is

Ve= _V_—e + B.
where V. is the trivial connection and |B¢| < const.e. Extending B, to all of C?

by zero, we view V. as a connection on C?, which leaves the subbundle L. parallel.
Let Qc = dVe + (d*)V« be the corresponding C? valued Dirac operator on £. Then
Q. contains a unitary equivalent copy of P., so it has a non trivial I? kernel. Also
Q. = (d/:cE‘) ® C2? + b, with || b [|o< const. e. Since € can be arbitrarily small,
this implies that m is not invertible.

9.1.3 Case of enlargeable manifolds Say a compact 2m-dimensional man-
ifold is enlargeable if for all € > 0, there exists a finite cover M. — M which admits
an e-contracting map of non zero degree to the sphere S§¥m (M. Gromov and B.
Lawson [1980] assume that M is spin but this is unnecessary here).

Pulling back a bundle £ — 5% with com(E) # 0, we obtain again a bundle
over M., embedded in a trivial bundle, with small second fundamental form, and
the argument goes through. This proves the following lemma.

Theorem 9.1 If M is compact and enlargeable, then the Laplacian is not in-
vertible on L2Q*(M). In other words, L2H*(M) # 0.

9.1.4 Hypereuclidean manifolds General non positively curved manifolds
are enlargeable only when their fundamental group is residually finite. Nevertheless,
Theorem 9.1 can be extended to non residually finite cases (Gromov [1993]). Say M
is hypereuclidean if it admits e contracting maps to the sphere which are constant
at infinity. The above argument applies to hypereuclidean manifolds, but a new
index theorem is needed: relative index as in Gromov and Lawson [1983] or Connes’
index theorem for foliations. The zero in the spectrum conjecture, as well as the
positive scalar curvature problem, is a motivation for developping more and more
sophisticated versions of the index theorem.
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9.1.5 Kaéhler hyperbolic case Let M be a compact Ké&hler manifold, with
exact Kahler form w = db on M. Let T’ = m1(M). For each €, V, = d + ieb (here
i = y/—1) is a unitary connection on the trivial line bundle L = M x C. One can
try to make it I-invariant by changing to a non trivial action of I' on M xC,ie,
setting, for v € T,

V&, 2) = (7, ™% 2).
We want v*V, = V,,ie., du = —{y*b—b) Since d(y*b — b) = v*w — w = 0, there
always exists a solution (7, -), well defined up to a constant.

However, one cannot adjust the constants to obtain an action (if so, one would
get a line bundle on M with curvature ew and first Chern class o=[w]). The ob-
struction lives in H?(T', R). This means that the action is only defined on a central
extension, we call this a projective representation.

Definition 9.2 Let G, be the subgroup of Diff (M x C) formed by maps g
which are linear unitary on fibers, preserve the connection V. and cover an element
of T,

By construction we have an exact sequence

1-U1)—»Ge—»T =1

Since sections of the line bundle M x C — M can be viewed as U(1) equivariant
functions on M x U(1), the operator P, = d¥« + (d*)V< can be viewed as a G,
invariant operator on the Hilbert space H of U(1) equivariant basic I? differential
forms on M x U(1).

We shall soon define a projective Von-Neumann dimension for invariant sub-
spaces in a projective representation of I', and state an index theorem that will
apply as follows to the present situation.

Theorem 9.3 The operator P. has a finite projective L? index given by
~ €
L*Indezc, (P.) = / Ly~ exp(=—w])
M 27

This number is a polynomial in ¢ whose highest degree term is

| Gor#o

(dim M = 2m) thus for € small enough, P. has a non zero L? kernel. By construc-
tion, P. is an e-small perturbation of d + d*, so d + d* is not invertible.
Corollary 9.4 Let M be a 2m-dimensional compact Kdhler manifold. Assume

that its universal cover M is Kdihler hyperbolic. Then M admits non zero L?
harmonic m~forms.




CHAPTER 10

L? Index for Projectively Invariant Operators

Let I be a discrete group.

Definition 10.1 A projective representation of I' is the data of a central ex-
tension 1 — U(1) » G — I — 1 and a unitary representation of G on a Hilbert
space H, such that the center U(1) acts on H by multiplication.

Warning. This terminology (projective taken in the sense of homomorphism
into PU(H)) should not be confused with the notion of a projective module from
commutative algebra. ;

A collection (e;);cr is a G-invariant Hilbert basis of H if G acts on I, eg; = ge;

and if the choice of one representative for each U(1) orbit yields a Hilbert basis of

H

Definition 10.2 The G-trace of a G equivariant operator P on H is the num-
ber

Trace o P = Z {ei|Ples).
i€G\I

Example 10.3 Let M cover a compact manifold M. Let F’ and F” be vector-
bundles on M equipped with hermitian metrics, let P’ : C®°(M, E') — C*°(M, F’)
be a determined elliptic operator.

Let L be a line bundle on M equipped with a metric and a unitary connection
V with I'-invariant curvature form w. We assume that, as in Chapter 9, a central
extension G of I' lifts to V-preserving transformations of the bundle L. Then G
acts on the twisted bundles F = E'® L, F' = F' ® L and the preserves the twisted
operator P = P/ @ V over M. We call such an operator a projectively invariant
operator on M .

A G-invariant Hilbert basis of the space H of IL? sections of F on M is obtained
as follows: pick a fundamental domain U for T in M, a Hilbert basis (e;) of L?
sections of E’ over U, and its translates by G

Let IT be the orthogonal projection on the L? kernel of P. Then II is G-
equivariant, it has a smooth kernel

J
p(z,y) € Hom (E, ® Ly, B, ® Ly).
Along the diagonal, p(z, z) € End EL. Then
Trace gII = / Trace p(z, z) dz.
M
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Theorem 10.4 Let M be a compact manifold. Let P be a projectively invariant
operator on M arising from a determined elliptic operator P' on M. Then the G-
index of P is given by

LZIndezGPz/ Tp: A exp(—)
M 27

where Ip: denotes the Atiyah-Bott-Patodi index form of P'.

Proof Theorem 10.4 is a particular case of the L? index theorem for G-
invariant operators, where G is a Lie group (with countably many components)
acting properly and freely on M with a compact quotient. Although they do
not state the theorem in this generality (and we won't either), A. Connes and
H Moscovici {1982] provide all the necessary ingredients.

The proof follows the heat equation method of M. Atiyah, R. Bott and V
Patodi [1973]. For simplicity let us denote by A either P*P or PP*. One first
shows that e™*2 has a finite G-trace. Then, that

L?Index ¢ P = Trace g et ¥ — Trace g e tFF",

Finally, that Trace g e~** has an asymptotic expansion as ¢ tends to zero of the
following form

k N
Tracege™ = Z t3 /_ Fu; + o(t%)
j=—m M
where dim M = 2m, p; is a quantity locally computable from the symbol of P in
any coordinate chart and f any cut-off function on M such that for all z € M,
J flg7z)dg = 1. The formula for 14; is the same as in the compact case, and thus

for P = P’ ® V one finds
tio(P*P) — po(PP*) = top degree component of Zp: A exp(;),
Yis
which proves the theorem. O

Here is how the necessary information on the heat kernel is obtained. The main
technical trick is an averaging procedure

AvT:/ g 1Tgdyg,
G

first defined for nonnegative self adjoint operators 7 with compactly supported
Schwartz kernel, then extended by continuity to a domain which is invariant under
left or right multiplication with bounded G-invariant operators. Its key properties
are is
Trace g AvT = TraceT and Av(RTQ) = RAv(T)Q
for @ and R bounded, G-invariant. ~
If f is a non negative compactly supported function such that for all z € M,

[#a9rd=1,

then fe~2 € Dom Av and e *® = Av fe™'2 5o

Trace g e~ *® = Trace f 2
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is finite.
The McKean-Singer cancellation formula
L?Index ¢ P = Trace ¢ e PP _ Trace ¢ e~ tPF”

follows, as in the compact case, from the fact that, orthogonally to Ker A, P gor
rather the unitary part of its polar decomposition) conjugates e *F ¥ to e *FF".

The asymptotic expansion for Trace g e ** follows from the corresponding ex-
pansion for f e~** (see for example Gilkey [1984] Chapter 3). Note that P. Gilkey'’s
method for constructing a parametrix @5 (holomorphic in A) for A— X involves cut-
offs anyway. For each k, one obtains operators @ which have compactly supported
kernels and satisfy

Qr(A-N) = +Ry
where R, is smoothing with L' norm
| R ||e< const. (14X 7F71)

A contour integration (Mellin transform) yields an operator

1
E(t) = %/e'”‘Q,\ dX

which has a smooth compactly supported kernel, satisfies

| E(t) = f et ||x< const. t*

and whose trace has an asymptotic expansion with locally computable coefficients.

This gives the asymptotic expansion for Trace f e~t2 and thus for Trace ge 2.
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