Metric problems concerning nilpotent groups

P. Pansu

November 13th, 2010

.⊒...>

We present four open problems about maps between nilpotent groups.

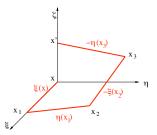
- (Continuation of Tessera's talk). Heisenberg groups do not biLipschitz embed in *l*₂. But snowflaked versions do. Want bounds on distorsions, dimensions of such embeddings.
- **2** Gromov's Hölder homeomorphism problem and a variant.

Image: Second second

Definition

Heisenberg group Heis³ is the 3-dimensional Lie group with Lie algebra spanned by ξ , η and ζ with $[\xi, \eta] = \zeta$. The left-invariant vectorfields ξ and η span a plane field H, Carnot-Carathéodory distance $d_{cc}(x, x')$ is inf of length of curves tangent to H joining x to x'. Dilation δ_t is automorphism induced by $\delta_t(\xi) = t\xi$, $\delta_t(\eta) = t\eta$, $\delta_t(\zeta) = t^2\zeta$. It multiplies Carnot distances by t.

Finiteness of Carnot distance follows from picture:



∃ >

Translation and dilation invariance implies

$$d_{cc}(x, x \exp(t^2 \zeta)) = t d_{cc}(1, \exp(\zeta)) = \text{const. } t.$$

- **2** volume $B(x, r) = r^4$ volume $B(x, 1) = \text{const. } r^4$, thus Hausdorff dimension is 4.
- **()** The same number of balls of radius r/2 suffice to cover every ball B(x, r).

Heisenberg group in its Carnot-Carathéodory metric gives a sharp approximation of the word metric on the *integral Heisenberg group*

$$\textit{Heis}_{\mathbb{Z}} = \{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} ; x, y, z \in \mathbb{Z} \}.$$

In general, if Γ is a finitely generated nilpotent group, given a finite generating system, the word metric space (Γ , d_w) admits an asymptotic cone, which is a *Carnot group*. A Carnot group is a nilpotent Lie group equipped with a Carnot-Carathéodory metric homogeneous under dilations.

Dimension of snowflake embeddings Distorsion of snowflake embeddings Laakso spaces

Definition

The doubling dimension $\dim(X)$ of a (doubling) metric space X is the least d such that for all R, every R-ball can be covered by $2^d R/2$ -balls.

Example

1. \mathbb{R}^n , Heisⁿ (n odd) have doubling dimension linear in n.

2. The Internet network equipped with its latency metric is believed to have low dimension.

Theorem

(Assouad 1983). For every $\epsilon \in (0, 1)$ and d > 0, there exist $D(d, \epsilon)$ and $N(d, \epsilon)$ such that for every d-dimensional metric space X, the snowflaked metric $(X, d_X^{1-\epsilon})$ embeds in ℓ_2^N with distorsion $\leq D$.

So snowflaked Heisenberg group does biLipschitz embed in ℓ_2 .

Question

Give sharp bounds on D and N.

Theorem

(Gupta, Krauthgamer, Lee 2003; Lee, Mendel, Naor 2004). In Assouad's theorem, one can take $N = O(\frac{d \log d}{\epsilon})$ and $D = O(\frac{d}{\sqrt{\epsilon}})$.

Unclear wether dimension bound is sharp or not.

Question

What is the minimal dimension $N(\epsilon)$ of a Euclidean space in which (Heis³, $d_{cc}^{1-\epsilon}$) admits a biLipschitz embedding ?

Remark

 $N(\epsilon) > 4.$

Indeed, the Hausdorff dimension of $(Heis^3, d_{cc}^{1-\epsilon})$ is $\frac{4}{1-\epsilon} > 4$.

- 4 同 6 4 日 6 4 日 6

Dimension of snowflake embeddings Distorsion of snowflake embeddings Laakso spaces

Theorem

(Gupta, Krauthgamer, Lee 2003; Lee, Mendel, Naor 2004). In Assouad's theorem, one can take $N = O(\frac{d \log d}{\epsilon})$ and $D = O(\frac{d}{\sqrt{\epsilon}})$. For fixed d, the distorsion bound is sharp (Lee, Mendel, Naor 2004): $(1 - \epsilon)$ -snowflaked Laakso spaces require distorsion $\Omega(\frac{1}{\sqrt{\epsilon}})$ when embedded in ℓ_2 .

Dependance on d? Heisenberg groups do not help. Indeed, (*Lee, Naor 2006*): (*Heis*ⁿ, $d_c^{1-\epsilon}$) embed in ℓ_2 with distorsion $O(\frac{1}{\sqrt{\epsilon}})$ independant on n.

Question

What is the minimal distorsion of a biLipschitz embedding of (Heis³, $d_{cc}^{1-\epsilon}$) in ℓ_2 ?

· < 프 > < 프 >

Dimension of snowflake embeddings Distorsion of snowflake embeddings Laakso spaces

Laakso graphs

문에 비용에 다

Proof (Lee, Mendel, Naor 2004) that $1 - \epsilon$ -snowflaked Laakso graph $(G_i, d_i^{1-\epsilon})$ requires distorsion $D_j \ge \Omega(\frac{1}{\sqrt{\epsilon}})$ when embedded in ℓ_2 .

Image: Second second

By induction on *j*. Show that $D_j^2 \ge 4^{-\epsilon}D_{j-1}^2 + \frac{1}{4}$. In rescaled Laakso graph, *uavb* is a unit square with a diagonal of length 2. When mapped to a quadrilateral u'a'v'b' in Euclidean space in a distance nondecreasing manner, parallelogram inequality

$$|u' - v'|^2 + |a' - b'|^2 \le |u' - a'|^2 + |a' - v'|^2 + |v' - b'|^2 + |b' - u'|^2$$

implies

$$4\frac{|u'-v'|^2}{|u-v|^2} + \frac{|a'-b'|^2}{|a-b|^2} \le \frac{|u'-a'|^2}{|u-a|^2} + \frac{|a'-v'|^2}{|a-v|^2} + \frac{|v'-b'|^2}{|v-b|^2} + \frac{|b'-u'|^2}{|b-u|^2},$$

or

$$4^{1-\epsilon} \frac{|u'-v'|^2}{|u-v|^{2(1-\epsilon)}} + \frac{|a'-b'|^2}{|a-b|^{2(1-\epsilon)}} \leq \frac{|u'-a'|^2}{|u-a|^{2(1-\epsilon)}} + \frac{|a'-v'|^2}{|a-v|^{2(1-\epsilon)}} + \frac{|v'-b'|^2}{|v-b|^{2(1-\epsilon)}} + \frac{|b'-u'|^2}{|b-u|^{2(1-\epsilon)}} + \frac{|b'-b'|^2}{|b-u|^{2(1-\epsilon)}} + \frac{|b'-b'|^2}{|b-u|^{|$$

Question

(Gromov 1993). Let G be a Carnot group of dimension n. For which $\alpha \in (0, 1)$ does there exist locally a homeomorphism $\mathbb{R}^n \to G$ which is C^{α} -Hölder continuous ?

Definition

Let X, Y be metric spaces. Let $Holder(X, Y) = \sup\{\alpha \in (0, 1) \mid \exists \text{ locally a } C^{\alpha}-H\"{o}lder \text{ continuous homeomorphism } X \to Y \text{ whose inverse is Lipschitz } \}.$

Example

If G is a r-step Carnot group, the exponential map $\mathfrak{g} = Lie(G) \rightarrow G$ is locally $C^{1/r}$ -Hölder continuous and its inverse is Lipschitz. Thus $Holder(\mathbb{R}^n, G) \geq 1/r$.

Proposition

Let G have dimension n and Hausdorff dimension Q. Then Holder(\mathbb{R}^n, G) $\leq \frac{n}{Q}$.

- 4 同 ト 4 回 ト

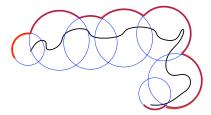
Proposition

Let G have dimension n and Hausdorff dimension Q. Then Holder(\mathbb{R}^n, G) $\leq \frac{n-1}{Q-1}$.

Proof. Use the Varopoulos (1985) isoperimetric inequality for piecewise smooth domains $D \subset M$,

$$vol(D)^{Q-1/Q} \leq const. \mathcal{H}^{Q-1}(\partial D).$$

It follows that the boundary of any non smooth domain Ω has Hausdorff dimension at least Q-1. Indeed, cover $\partial\Omega$ with balls B_j and apply (*) to $\Omega \cup \bigcup B_j$. This gives a lower bound on $\mathcal{H}^{Q-1}(\partial(\bigcup B_j)) \leq \sum \mathcal{H}^{Q-1}(\partial B_j) \leq const. \sum diameter(B_j)^{Q-1}$.



글 🕨 🖌 글 🕨

Proposition

(Gromov 1993). Let n = 2m + 1, let Heisⁿ denote n-dimensional Heisenberg group. Let $V \subset$ Heisⁿ be a subset of topological dimension m + 1. Then the Hausdorff dimension of V is at least m + 2. It follows that Holder $(\mathbb{R}^n, \text{Heis}^n) \leq \frac{m+1}{m+2}$.

Proof. According to topological dimension theory (Alexandrov), there exists an *m*-dimensional polyhedron *P* and a continuous map $f : P \to Heis^n$ such that every map sufficiently C^0 -close to *f* hits *V*.

Gromov approximates f with piecewise *horizontal* maps which sweep an open set U. This gives rise to a local projection $p: U \to \mathbb{R}^{m+1}$ such that for every ball B, the tube $p^{-1}(p(B))$ has volume $\leq \text{const. diameter}(B)^{m+2}$.

Cover V with balls B_j . The corresponding tubes $T_j = p^{-1}(p(B_j))$ cover U. Then the volume of U is less than $\sum \text{diameter}(B_j)^{m+2}$, which shows that $\dim_{Hau}(V) \ge m+2$.

Theorem

(Gromov 1993). Let G be a generic Carnot group of dimension n, Hausdorff dimension Q, with an h-dimensional distribution. Let $k \le h$ be such that $h - k \ge (n - h)k$. Then Holder $(\mathbb{R}^n, G) \le \frac{n-k}{Q-k}$.

Curvature pinching

Curvature pinching

Visual metrics Curvature versus Hölder homeomorphisms Conformal Hölder exponent Conformal dimension Advertisement

Definition

Let M be a Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching $\delta(M)$ of M as the least $\delta \ge -1$ such that M is quasiisometric to a δ -pinched simply connected Riemannian manifold.

Example

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals $H^m_{\mathbb{R}}$, the complex numbers $H^m_{\mathbb{C}}$, the quaternions $H^m_{\mathbb{H}}$, and the octonions $H^2_{\mathbb{O}}$. Real hyperbolic space has sectional curvature -1. Other rank one symmetric spaces are $-\frac{1}{4}$ -pinched.

Question

What is the optimal pinching of $H^m_{\mathbb{C}}$?

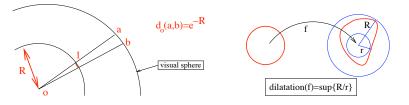
Curvature pinching Visual metrics Curvature versus Hölder homeomorphisms Conformal Hölder exponent Conformal dimension Advertisement

Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff distance is finite. The visual boundary of a negatively curved manifold is the set of asymptoticity classes of geodesic rays.

Facts.

- The visual boundary, seen from a point o, is a sphere (use polar coordinates).
- It carries a visual metric d_o.
- Different visual metrics d_o and $d_{o'}$ are equivalent.
- Quasiisometries between negatively curved Riemannian manifolds induce *quasisymmetric* maps between ideal boundaries.



Curvature pinching Visual metrics **Curvature versus Hölder homeomorphisms** Conformal Hölder exponent Conformal dimension Advertisement

Example

If *M* is a rank one symmetric space, the visual metrics on its ideal boundary are locally equivalent to Carnot-Carathéodory metrics on Carnot groups.

Proposition

Let M be a simply connected δ -pinched Riemannian manifold. Equip the ideal boundary ∂M of M with a visual metric. The natural homeomorphism $S^{n-1} \rightarrow \partial M$ is C^{α} with $\alpha = \sqrt{-\delta}$, and its inverse is Lipschitz. Therefore Holder($\mathbb{R}^{n-1}, \partial M$) $\geq \sqrt{-\delta}$.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with exponents ranging from $\sqrt{-\delta}$ to 1 (Rauch comparison theorem, 1950's).

Question

Let G be a Carnot group. Let $\alpha > 1/2$. Does there exist quasisymmetricly equivalent metrics on G which locally admit C^{α} homeomorphisms from Euclidean space ? With Lipschitz inverses ?

If no, then optimal pinching of $H^m_{\mathbb{C}}$ is $-\frac{1}{4}$.

- 本間 と く ヨ と く ヨ と

Curvature pinching Visual metrics Curvature versus Hölder homeomorphisms Conformal Hölder exponent Conformal dimension Advertisement

Definition

Let $f : X \to Y$ be a homeomorphism. The conformal Hölder exponent CHolder(f) of f is the supremum of α 's such that for all $\ell > 0$, there exists L > 0 such that for all x, x', x'' in X,

 $d(f(x), f(x'')) \leq \ell d(f(x), f(x')) \Rightarrow d(x, x'') \leq L d(x, x')^{\alpha}.$

Let CHolder(X, Y) denote the supremum of α 's such that there locally exist homeomorphisms $X \to Y$ with conformal Hölder exponents $\geq \alpha$.

Lemma

1. If $f : X \to Y$ is C^{α} and f^{-1} is C^{β} , then $CHolder(f) \ge \alpha\beta$. In particular, $Holder(X, Y) \le CHolder(X, Y)$. 2. Let $f : X \to Y$ and $g : Y \to Z$ be homeomorphisms. Assume that g is quasisymmetric. Then $CHolder(g \circ f) = CHolder(f)$.

Curvature pinching Visual metrics Curvature versus Hölder homeomorphisms Conformal Hölder exponent Conformal dimension Advertisement

Definition

Let X be a compact metric space. The conformal dimension of X is the infimum of Hausdorff dimensions of metric spaces quasisymmetricly equivalent to X.

Example

(Pansu 1990). Carnot groups have conformal dimension equal to their Hausdorff dimension.

Corollary

Let G be a Carnot group of dimension n and Hausdorff dimension Q. Then $CHolder(\mathbb{R}^n,G)\leq \frac{n}{Q}$.

Theorem

(Pansu 2009). The optimal pinching of $H^2_{\mathbb{C}}$ is $-\frac{1}{4}$.

Gives some hope for $CHolder(\mathbb{R}^3, Heis^3) = \frac{1}{2}$ and therefore $Holder(\mathbb{R}^3, Heis^3) = \frac{1}{2}$.

イロト イポト イヨト イヨト

Curvature pinching Visual metrics Curvature versus Hölder homeomorphisms Conformal Hölder exponent Conformal dimension Advertisement

Metric geometry, algorithms and groups

Paris, january 10th - april 8th, 2011

Institut Henri Poincaré

Organizers: Guy Kindler (Jerusalem), James Lee (U. Washington), Claire Mathieu (Brown), Ryan O'Donnell (Carnegie Mellon), Pierre Pansu (Paris-Sud/ENS), Nicolas Schabanel (LIAFA-CNRS), Lior Silberman (Vancouver)

Workshops: january 17-21 : embeddings, algorithms, complexity march 21-25 : expanders, derandomization

In between : courses (Valette, Linial, Pisier, Maurey, Breuillard, Cordero-Erausquin, Lang, Wenger, Silberman, Peres, Gamburd, Wigderson + computer scientists)

Search the web: pansu metric