L^{p}-cohomology and curvature pinching

P. Pansu

July 12, 2008

What is L^{p}-cohomology ?

```
topological space }\quad->\quad\mathrm{ cohomology
        manifold }->\mathrm{ de Rham cohomology
        metric space }\quad->\quad\mathrm{ cohomology with decay condition
Riemannian manifold }->\mathrm{ de Rham cohomology with decay condition
```


Definition

Let M be a Riemannian manifold. Let $p>1$. L^{p}-cohomology of M is the cohomology of the complex of L^{p}-differential forms on M whose exterior differentials are L^{p} as well,

$$
\begin{aligned}
H^{k, p} & =\text { closed } k \text {-forms in } L^{p} / d\left((k-1) \text {-forms in } L^{p}\right), \\
R^{k, p} & =\text { closed } k \text {-forms in } L^{p} / \text { closure of } d\left((k-1) \text {-forms in } L^{p}\right), \\
T^{k, p} & =\text { closure of } d\left((k-1) \text {-forms in } L^{p}\right) / d\left((k-1) \text {-forms in } L^{p}\right) .
\end{aligned}
$$

$R^{k, p}$ is called the reduced cohomology. $T^{k, p}$ is called the torsion.

Example : the real hyperbolic plane $H_{\mathbb{R}}^{2}$

Here $H^{0, p}=0=H^{2, p}$ for all p.
If $p=2$, since the Laplacian on L^{2} functions is bounded below, $T^{1,2}=0$. Therefore

$$
\begin{aligned}
H^{1,2} & =R^{1,2} \\
& =\left\{L^{2} \text { harmonic 1-forms }\right\} \\
& =\left\{\text { harmonic functions } h \text { on } H_{\mathbb{R}}^{2} \text { with } \nabla h \in L^{2}\right\} / \mathbb{R} .
\end{aligned}
$$

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the disk D.

$$
\begin{aligned}
H^{1,2} & =\left\{\text { harmonic functions } h \text { on } D \text { with } \nabla h \in L^{2}\right\} / \mathbb{R} \\
& =\left\{\text { Fourier series } \Sigma a_{n} e^{i n \theta} \text { with } a_{0}=0, \Sigma|n|\left|a_{n}\right|^{2}<+\infty\right\}
\end{aligned}
$$

which is Sobolev space $H^{1 / 2}(\mathbb{R} / 2 \pi \mathbb{Z})$ mod constants.

More generally, for $p>1, T^{1, p}=0$ and $H^{1, p}$ is equal to the Besov space $B_{p, p}^{1 / p}(\mathbb{R} / 2 \pi \mathbb{Z})$ mod constants.

Example : the real line \mathbb{R}

$H^{0, p}=0$.
$R^{1, p}=0$,
since every function in $L^{p}(\mathbb{R})$ can be approximated in L^{p} with derivatives of compactly supported functions. Therefore $H^{1, p}$ is only torsion.
$T^{1, p}$ is non zero and thus infinite dimensional.
Indeed, the 1 -form $\frac{d t}{t}$ (cut off near the origin) is in L^{p} for all $p>1$ but it is not the differential of a function in L^{p}.

What are our favourite spaces ?

- L ${ }^{p}$-cohomology has been used (L. Saper, S. Zucker) to study manifolds with thin ends, e.g. locally symmetric spaces of finite volume. The answer is related to the topology of a compactification.
- In this talk : manifolds with large ends, e.g. symmetric spaces themselves. L^{p}-cohomology is related to analytic features of a compactification.

In conclusion,

- L^{p}-cohomology tastes like harmonic analysis.
- We shall apply it to a problem in Riemannian geometry.
- Ideas from algebraic topology play a role.

Curvature pinching

Remark

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals $H_{\mathbb{R}}^{n}$, the complex numbers $H_{\mathbb{C}}^{m}$, the quaternions $H_{\mathbb{H}}^{m}$, and the octonions $H_{\mathbb{O}}^{2}$. Real hyperbolic space has sectional curvature -1 . Other rank one symmetric spaces are $-\frac{1}{4}$-pinched, i.e. their sectional curvature ranges between -1 and $-\frac{1}{4}$.

Definition

Define the optimal pinching $\delta(M)$ of a Riemannian manifold M as the least $\delta \geq-1$ such that G is bi-Lipschitz equivalent to a δ-pinched Riemannian manifold.

Question

Is it true that the optimal pinching of $H_{\mathbb{C}}^{m}, H_{\mathbb{H}}^{m}(m \geq 2)$ and $H_{\mathbb{O}}^{2}$ is $-\frac{1}{4}$?

L^{P}-cohomology of real hyperbolic spaces

$$
\mathrm{L}^{\mathrm{p}} \text {-cohomology of } \mathrm{H}_{\mathrm{R}}^{\mathrm{n}}
$$

$$
\text { exponent } \mathrm{p}=1
$$

$$
\mathrm{n}-1 / \mathrm{n}-2
$$

$$
\mathrm{n}-1 / 2 \quad \mathrm{n}-1
$$

$$
\text { degree } 0 \text { : }
$$

degree 1 :

degree 2 :

degree $\mathrm{n}-1$:

degree n :

non vanishing reduced cohomology
non vanishing torsion

Theorem

If M^{n} is simply connected and δ-pinched for some $\delta \in[-1,0)$, then

$$
p<1+\frac{n-k}{k-1} \sqrt{-\delta} \quad \Rightarrow \quad T^{k, p}(M)=0
$$

This is sharp. For instance, let $n=4, k=2, \delta=1 / 4$ and consider the semidirect product $G=\mathbb{R}^{3} \rtimes_{\alpha} \mathbb{R}$ where $\alpha=\operatorname{diag}(1,1,2)$.

- It admits a $-\frac{1}{4}$-pinched left-invariant Riemannian metric, therefore $\delta(G) \leq-\frac{1}{4}$.
- It has $T^{2, p}(G) \neq 0$ for $2<p \leq 4$. This implies that $\delta(G)=-\frac{1}{4}$.

Remark

Complex hyperbolic plane $H_{\mathbb{C}}^{2}$ is isometric to $G^{\prime}=$ Heis $^{3} \rtimes_{\alpha} \mathbb{R}$ where $\alpha=\operatorname{diag}(1,1,2)$ and Heis denotes the Heisenberg group. Therefore it is very close to G.

Theorem
$T^{2, p}\left(H_{\mathbb{C}}^{2}\right)=0$ for $2<p<4$.

Proof of torsion comparison theorem

Step 1. For p large, closed L^{p} forms admit boundary values.
Use the radial vectorfield $\xi=\frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_{t}, whose derivative is controlled by sectional curvature.
Use Poincaré's homotopy formula :
For α a closed k-form in L^{p},
$\phi_{t}^{*} \alpha=\alpha+d\left(\int_{0}^{t} \phi_{s}^{*} \iota{ }_{\xi} \alpha d s\right)$
has a limit as $t \rightarrow+\infty$ under the assumptions of the theorem.

Step 2. Boundary value determines cohomology class.
This boundary value map injects $H^{k, p}$ into a function space of closed forms on the ideal boundary, showing that $H^{k, p}$ is Hausdorff.

Proof of torsion vanishing for H_{C}^{2}

Switch point of view. Use horospherical coordinates. View $H_{\mathbb{C}}^{2}$ as a product Heis $\times \mathbb{R}$. Prove a Künneth type theorem.
Step 1. For $p \notin\{4 / 3,2,4\}$, differential forms α on $H_{\mathbb{C}}^{2}$ split into components α_{+}and α_{+}which are contracted (resp. expanded) by ϕ_{t}. Then
$h_{t}: \alpha \mapsto \int_{0}^{t} \phi_{s}^{*} \iota{ }_{\xi} \alpha_{+} d s-\int_{-t}^{0} \phi_{s}^{*} \iota{ }_{\xi} \alpha_{-} d s$
converges as $t \rightarrow+\infty$ to a bounded operator h on L^{p}. $P=1-d h-h d$ retracts the L^{p} de Rham complex onto a complex \mathcal{B} of differential forms on $H_{e i s}{ }^{3}$ with missing components and weakly regular coefficients.

Step 2. If $2<p<4$, this complex is nonzero in degrees 1 and 2 .
Let τ denote the invariant contact form on Heis ${ }^{3}$. Then \mathcal{B}^{1} consists of 1 -forms which are multiples of τ. Since

$$
d(f \tau)=d f \wedge \tau+f d \tau
$$

$d(f \tau)$ determines f, therefore $d: \mathcal{B}^{1} \rightarrow \mathcal{B}^{2}$ has closed range.

L^{p}-cohomology of $H_{\mathbb{C}}^{2}$

Subalgebra theorem

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra $\mathcal{R}_{p}(M)$ as the space of bounded functions u on M such that $d u \in L^{p}$, modulo $L^{p} \cap L^{\infty}$ functions.

Obviously, $u \in \mathcal{R}_{p}(M)$ implies $[d u] \in H^{1, p}(M)$.
Recall that cup-product \smile is well defined : $H^{k, q}(M) \times H^{\ell, r}(M) \rightarrow H^{k+\ell, p}(M)$ provided $\frac{1}{p}=\frac{1}{q}+\frac{1}{r}$.

Theorem

(Work in progress). Assume M^{n} is simply connected and δ-pinched for some $\delta \in(-1,0)$. Assume

$$
p<1+\frac{n-k}{k-1} \sqrt{-\delta}, \quad r<1+\frac{n-k+1}{k-2} \sqrt{-\delta} \quad \text { and } \quad \frac{1}{p}=\frac{1}{q}+\frac{1}{r} .
$$

Pick a class $\kappa \in H^{k-1, r}(M)$. Then the set of $u \in \mathcal{R}_{q}(M)$ such that $[d u] \smile \kappa=0$ in $H^{k, p}(M)$ is a subalgebra.

Example

$n=4, k=2, q=r=2 p$. For $\delta<-\frac{1}{4}$, the theorem applies for some $p>2$.

Failure of subalgebra theorem for $H_{\mathbb{C}}^{2}$

Proposition

(Work in progress). Let $2<p<4$. There exists a conical open set $U \subset H_{\mathbb{C}}^{2}$, a class $\kappa \in H^{1,2 p}(U)$ and a function $u \in \mathcal{R}_{2 p}(U)$ such that $[d u] \smile \kappa=0$ in $H^{2, p}(U)$ but $\left[d\left(u^{2}\right)\right] \smile \kappa \neq 0$ in $H^{2, p}(U)$.

Remark

This should imply that the optimal pinching for $H_{\mathbb{C}}^{2}$ is $-\frac{1}{4}$, provided subalgebra theorem localizes on conical open sets.

Proof

If $\alpha \in \mathcal{B}^{2}$ is a 2 -form, then $\alpha \in d \mathcal{B}^{1}$ implies that there exists a function f such that $\alpha=d f \wedge \tau+f d \tau$. Then $f=\frac{\tau \wedge \alpha}{\tau \wedge d \tau}$. Thus α satisfies a linear differential equation

$$
\alpha=d\left(\frac{\tau \wedge \alpha}{\tau \wedge d \tau} \tau\right)
$$

If $d u \wedge \beta$ is a solution, $d\left(u^{2}\right) \wedge \beta$ is not a solution, unless β is proportional to $d u$.

Example

In coordinates, if $\tau=d z-x d y$, one can take $u=x, \beta=d y$.

