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What is Lp-cohomology ?

topological space → cohomology

manifold → de Rham cohomology

metric space → cohomology with decay condition

Riemannian manifold → de Rham cohomology with decay condition

Definition
Let M be a Riemannian manifold. Let p > 1. Lp-cohomology of M is the cohomology
of the complex of Lp-differential forms on M whose exterior differentials are Lp as well,

Hk,p = closed k-forms in Lp/d((k − 1)-forms in Lp),

Rk,p = closed k-forms in Lp/closure of d((k − 1)-forms in Lp),

T k,p = closure of d((k − 1)-forms in Lp)/d((k − 1)-forms in Lp).

Rk,p is called the reduced cohomology. T k,p is called the torsion.



Example : the real hyperbolic plane H2
R

Here H0,p = 0 = H2,p for all p.
If p = 2, since the Laplacian on L2 functions is bounded below, T 1,2 = 0. Therefore

H1,2 = R1,2

= {L2 harmonic 1-forms}
= {harmonic functions h on H2

R with ∇h ∈ L2}/R .

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H1,2 = {harmonic functions h on D with ∇h ∈ L2}/R
= {Fourier series Σane

inθ with a0 = 0, Σ|n| |an|2 < +∞},

which is Sobolev space H1/2(R/2πZ) mod constants.

More generally, for p > 1, T 1,p = 0 and H1,p is equal to the Besov space

B
1/p
p,p (R/2πZ) mod constants.



Example : the real line R

H0,p = 0.

R1,p = 0,
since every function in Lp(R) can be approximated in Lp with derivatives of compactly
supported functions. Therefore H1,p is only torsion.

T 1,p is non zero and thus infinite dimensional.
Indeed, the 1-form dt

t
(cut off near the origin) is in Lp for all p > 1 but it is not the

differential of a function in Lp .



What are our favourite spaces ?

I Lp-cohomology has been used (L. Saper, S. Zucker) to study manifolds with thin
ends, e.g. locally symmetric spaces of finite volume. The answer is related to the
topology of a compactification.

I In this talk : manifolds with large ends, e.g. symmetric spaces themselves.
Lp-cohomology is related to analytic features of a compactification.

In conclusion,

I Lp-cohomology tastes like harmonic analysis.

I We shall apply it to a problem in Riemannian geometry.

I Ideas from algebraic topology play a role.



Curvature pinching

Remark
Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals
Hn

R, the complex numbers Hm
C , the quaternions Hm

H , and the octonions H2
O.

Real hyperbolic space has sectional curvature −1. Other rank one symmetric spaces
are − 1

4
-pinched, i.e. their sectional curvature ranges between −1 and − 1

4
.

Definition
Define the optimal pinching δ(M) of a Riemannian manifold M as the least δ ≥ −1
such that G is bi-Lipschitz equivalent to a δ-pinched Riemannian manifold.

Question
Is it true that the optimal pinching of Hm

C , Hm
H (m ≥ 2) and H2

O is − 1
4

?
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Lp-torsion and pinching

Theorem
If Mn is simply connected and δ-pinched for some δ ∈ [−1, 0), then

p < 1 +
n − k

k − 1

√
−δ ⇒ T k,p(M) = 0.

This is sharp. For instance, let n = 4, k = 2, δ = 1/4 and consider the semidirect
product G = R3 oα R where α = diag(1, 1, 2).

I It admits a − 1
4
-pinched left-invariant Riemannian metric, therefore δ(G) ≤ − 1

4
.

I It has T 2,p(G) 6= 0 for 2 < p ≤ 4. This implies that δ(G) = − 1
4
.

Remark
Complex hyperbolic plane H2

C is isometric to G ′ = Heis3 oα R where α = diag(1, 1, 2)
and Heis denotes the Heisenberg group. Therefore it is very close to G.

Theorem
T 2,p(H2

C) = 0 for 2 < p < 4.



Proof of torsion comparison theorem

Step 1. For p large, closed Lp forms
admit boundary values.
Use the radial vectorfield ξ = ∂

∂r
in

polar coordinates and its flow φt , whose
derivative is controlled by sectional
curvature.

Use Poincaré’s homotopy formula :
For α a closed k-form in Lp ,

φ∗t α = α + d

„Z t

0
φ∗s ιξα ds

«
has a limit as t → +∞ under the
assumptions of the theorem.

!

geodesics

spheres

Step 2. Boundary value determines cohomology class.
This boundary value map injects Hk,p into a function space of closed forms on the
ideal boundary, showing that Hk,p is Hausdorff.



Proof of torsion vanishing for H2
C

Switch point of view. Use horospherical coordinates. View H2
C as a product Heis × R.

Prove a Künneth type theorem.
Step 1. For p /∈ {4/3, 2, 4}, differential
forms α on H2

C split into components
α+ and α+ which are contracted (resp.
expanded) by φt . Then

ht : α 7→
Z t

0
φ∗s ιξα+ ds−

Z 0

−t
φ∗s ιξα− ds

converges as t → +∞ to a bounded
operator h on Lp . P = 1− dh − hd
retracts the Lp de Rham complex onto
a complex B of differential forms on
Heis3 with missing components and
weakly regular coefficients.

!

horospheres

geodesics

Step 2. If 2 < p < 4, this complex is nonzero in degrees 1 and 2.
Let τ denote the invariant contact form on Heis3. Then B1 consists of 1-forms which
are multiples of τ . Since

d(f τ) = df ∧ τ + f dτ,

d(f τ) determines f , therefore d : B1 → B2 has closed range.



Lp-cohomology of H2
C
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Subalgebra theorem

Definition
(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra
Rp(M) as the space of bounded functions u on M such that du ∈ Lp , modulo
Lp ∩ L∞ functions.

Obviously, u ∈ Rp(M) implies [du] ∈ H1,p(M).
Recall that cup-product ^ is well defined : Hk,q(M)× H`,r (M) → Hk+`,p(M)
provided 1

p
= 1

q
+ 1

r
.

Theorem
(Work in progress). Assume Mn is simply connected and δ-pinched for some
δ ∈ (−1, 0). Assume

p < 1 +
n − k

k − 1

√
−δ, r < 1 +

n − k + 1

k − 2

√
−δ and

1

p
=

1

q
+

1

r
.

Pick a class κ ∈ Hk−1,r (M). Then the set of u ∈ Rq(M) such that [du] ^ κ = 0 in
Hk,p(M) is a subalgebra.

Example
n = 4, k = 2, q = r = 2p. For δ < − 1

4
, the theorem applies for some p > 2.



Failure of subalgebra theorem for H2
C

Proposition
(Work in progress). Let 2 < p < 4. There exists a conical open set U ⊂ H2

C, a class

κ ∈ H1,2p(U) and a function u ∈ R2p(U) such that [du] ^ κ = 0 in H2,p(U) but
[d(u2)] ^ κ 6= 0 in H2,p(U).

Remark
This should imply that the optimal pinching for H2

C is − 1
4
, provided subalgebra

theorem localizes on conical open sets.

Proof
If α ∈ B2 is a 2-form, then α ∈ dB1 implies that there exists a function f such that

α = df ∧ τ + f dτ . Then f =
τ ∧ α

τ ∧ dτ
. Thus α satisfies a linear differential equation

α = d(
τ ∧ α

τ ∧ dτ
τ).

If du ∧ β is a solution, d(u2) ∧ β is not a solution, unless β is proportional to du.

Example
In coordinates, if τ = dz − x dy, one can take u = x, β = dy.
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