L^p-cohomology and curvature pinching

P. Pansu

July 12, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

topological space	\rightarrow	cohomology
manifold	\rightarrow	de Rham cohomology
metric space	\rightarrow	cohomology with decay condition
Riemannian manifold	\rightarrow	de Rham cohomology with decay condition

Definition

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{array}{lll} H^{1,2} &=& R^{1,2} \\ &=& \{L^2 \text{ harmonic 1-forms}\} \\ &=& \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R}. \end{array}$$

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the disk D.

$$\begin{aligned} H^{1,2} &= \{ \text{harmonic functions } h \text{ on } D \text{ with } \nabla h \in L^2 \} / \mathbb{R} \\ &= \{ \text{Fourier series } \Sigma a_n e^{in\theta} \text{ with } a_0 = 0, \Sigma |n| |a_n|^2 < +\infty \}, \end{aligned}$$

which is Sobolev space $H^{1/2}(\mathbb{R}/2\pi\mathbb{Z})$ mod constants.

More generally, for p > 1, $T^{1,p} = 0$ and $H^{1,p}$ is equal to the Besov space $B_{p,p}^{1/p}(\mathbb{R}/2\pi\mathbb{Z})$ mod constants.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $H^{0,p} = 0.$

 $R^{1,p} = 0,$

since every function in $L^{p}(\mathbb{R})$ can be approximated in L^{p} with derivatives of compactly supported functions. Therefore $H^{1,p}$ is only torsion.

 $T^{1,p}$ is non zero and thus infinite dimensional.

Indeed, the 1-form $\frac{dt}{t}$ (cut off near the origin) is in L^p for all p > 1 but it is not the differential of a function in L^p .

 L^p-cohomology has been used (L. Saper, S. Zucker) to study manifolds with thin ends, e.g. locally symmetric spaces of finite volume. The answer is related to the topology of a compactification.

• In this talk : manifolds with large ends, e.g. symmetric spaces themselves. L^{p} -cohomology is related to analytic features of a compactification.

In conclusion,

- L^p-cohomology tastes like harmonic analysis.
- We shall apply it to a problem in Riemannian geometry.
- Ideas from algebraic topology play a role.

Remark

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals $H^m_{\mathbb{R}}$, the complex numbers $H^m_{\mathbb{C}}$, the quaternions $H^m_{\mathbb{H}}$, and the octonions $H^2_{\mathbb{O}}$. Real hyperbolic space has sectional curvature -1. Other rank one symmetric spaces are $-\frac{1}{4}$ -pinched, i.e. their sectional curvature ranges between -1 and $-\frac{1}{4}$.

Definition

Define the optimal pinching $\delta(M)$ of a Riemannian manifold M as the least $\delta \ge -1$ such that G is bi-Lipschitz equivalent to a δ -pinched Riemannian manifold.

Question

Is it true that the optimal pinching of $H^m_{\mathbb{C}}$, $H^m_{\mathbb{H}}$ $(m \ge 2)$ and $H^2_{\mathbb{O}}$ is $-\frac{1}{4}$?

L^p-cohomology of real hyperbolic spaces

Theorem

If M^n is simply connected and δ -pinched for some $\delta \in [-1, 0)$, then

$$p < 1 + rac{n-k}{k-1}\sqrt{-\delta} \quad \Rightarrow \quad T^{k,p}(M) = 0.$$

This is sharp. For instance, let n = 4, k = 2, $\delta = 1/4$ and consider the semidirect product $G = \mathbb{R}^3 \rtimes_{\alpha} \mathbb{R}$ where $\alpha = diag(1, 1, 2)$.

- ▶ It admits a $-\frac{1}{4}$ -pinched left-invariant Riemannian metric, therefore $\delta(G) \leq -\frac{1}{4}$.
- ▶ It has $T^{2,p}(G) \neq 0$ for $2 . This implies that <math>\delta(G) = -\frac{1}{4}$.

Remark

Complex hyperbolic plane $H^2_{\mathbb{C}}$ is isometric to $G' = \text{Heis}^3 \rtimes_{\alpha} \mathbb{R}$ where $\alpha = \text{diag}(1, 1, 2)$ and Heis denotes the Heisenberg group. Therefore it is very close to G.

Theorem $T^{2,p}(H^2_{\mathbb{C}}) = 0$ for 2 .

Step 1. For p large, closed L^p forms admit boundary values. Use the radial vectorfield $\xi = \frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_t , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed *k*-form in L^p ,

$$\phi_t^* \alpha = \alpha + d \left(\int_0^t \phi_s^* \iota_\xi \alpha \, ds \right)$$

has a limit as $t \to +\infty$ under the assumptions of the theorem.

geodesics spheres

Step 2. Boundary value determines cohomology class.

This boundary value map injects $H^{k,p}$ into a function space of closed forms on the ideal boundary, showing that $H^{k,p}$ is Hausdorff.

くして、 山 ・ 山 ・ 山 ・ ・ 山 ・ ・ 日 ・

Switch point of view. Use horospherical coordinates. View $H^2_{\mathbb{C}}$ as a product $Heis \times \mathbb{R}$. Prove a Künneth type theorem.

Step 1. For $p \notin \{4/3, 2, 4\}$, differential forms α on $H_{\mathbb{C}}^2$ split into components α_+ and α_+ which are contracted (resp. expanded) by ϕ_t . Then

$$h_t: \alpha \mapsto \int_0^t \phi_s^* \iota_{\xi} \alpha_+ \, ds - \int_{-t}^0 \phi_s^* \iota_{\xi} \alpha_- \, ds$$

converges as $t \to +\infty$ to a bounded operator h on L^p . P = 1 - dh - hdretracts the L^p de Rham complex onto a complex \mathcal{B} of differential forms on $Heis^3$ with missing components and weakly regular coefficients.

Step 2. If 2 , this complex is nonzero in degrees 1 and 2. $Let <math>\tau$ denote the invariant contact form on *Heis*³. Then \mathcal{B}^1 consists of 1-forms which are multiples of τ . Since

$$d(f\tau) = df \wedge \tau + f \, d\tau,$$

 $d(f\tau)$ determines f, therefore $d: \mathcal{B}^1 \to \mathcal{B}^2$ has closed range.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra $\mathcal{R}_p(M)$ as the space of bounded functions u on M such that $du \in L^p$, modulo $L^p \cap L^{\infty}$ functions.

Obviously, $u \in \mathcal{R}_p(M)$ implies $[du] \in H^{1,p}(M)$. Recall that cup-product \smile is well defined : $H^{k,q}(M) \times H^{\ell,r}(M) \to H^{k+\ell,p}(M)$ provided $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$.

Theorem

(Work in progress). Assume M^n is simply connected and δ -pinched for some $\delta \in (-1, 0)$. Assume

$$p < 1 + rac{n-k}{k-1}\sqrt{-\delta}, \quad r < 1 + rac{n-k+1}{k-2}\sqrt{-\delta} \quad and \quad rac{1}{p} = rac{1}{q} + rac{1}{r}.$$

Pick a class $\kappa \in H^{k-1,r}(M)$. Then the set of $u \in \mathcal{R}_q(M)$ such that $[du] \smile \kappa = 0$ in $H^{k,p}(M)$ is a subalgebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

n = 4, k = 2, q = r = 2p. For $\delta < -\frac{1}{4}$, the theorem applies for some p > 2.

Proposition

(Work in progress). Let $2 . There exists a conical open set <math>U \subset H^2_{\mathbb{C}}$, a class $\kappa \in H^{1,2p}(U)$ and a function $u \in \mathcal{R}_{2p}(U)$ such that $[du] \smile \kappa = 0$ in $H^{2,p}(U)$ but $[d(u^2)] \smile \kappa \neq 0$ in $H^{2,p}(U)$.

Remark

This should imply that the optimal pinching for $H^2_{\mathbb{C}}$ is $-\frac{1}{4}$, provided subalgebra theorem localizes on conical open sets.

Proof

If $\alpha \in \mathcal{B}^2$ is a 2-form, then $\alpha \in d\mathcal{B}^1$ implies that there exists a function f such that $\alpha = df \wedge \tau + f \, d\tau$. Then $f = \frac{\tau \wedge \alpha}{\tau \wedge d\tau}$. Thus α satisfies a linear differential equation

$$\alpha = d(\frac{\tau \wedge \alpha}{\tau \wedge d\tau}\tau).$$

If $du \wedge \beta$ is a solution, $d(u^2) \wedge \beta$ is not a solution, unless β is proportional to du.

Example

In coordinates, if $\tau = dz - x dy$, one can take u = x, $\beta = dy$.