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Question

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which
α ∈ (0, 1) does there exist locally a homeomorphism Rn → M which is Cα-Hölder
continuous ?

Definition

Let α(M) = sup{α ∈ (0, 1) | ∃ locally a homeomorphism Rn → M}.

Example

If G is a r-step Carnot group, the exponential map g = Lie(G) → G is locally
C1/r -Hölder continuous. Thus α(M) ≥ 1/r .

Proposition

Let M have Hausdorff dimension Q. Then α(M) ≤ n
Q

.
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Proposition

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then α(M) ≤ n−1
Q−1

.

Proof. Use the isoperimetric inequality for piecewise smooth domains D ⊂ M,

vol(D)Q−1/Q ≤ const.HQ−1(∂D).

It follows that the boundary of any non smooth domain Ω has Hausdorff dimension at
least Q − 1. Indeed, cover ∂Ω with balls Bj and apply (*) to Ω ∪

S
Bj . This gives a

lower bound on HQ−1(∂(
S

Bj )) ≤
P
HQ−1(∂Bj ) ≤ const.

P
diameter(Bj )

Q−1.
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Proposition

(Gromov 1993). Let Hm denote 2m + 1-dimensional Heisenberg group. Let V ⊂ Hm

be a subset of topological dimension m + 1. Then the Hausdorff dimension of V is at
least m + 2. It follows that α(Hm) ≤ m+1

m+2
.

Proof. According to topological dimension theory (Alexandrov), there exists an
m-dimensional polyhedron P and a continuous map f : P → Hm such that every map
sufficiently C0-close to f hits V .

Gromov approximates f with piecewise horizontal maps which sweep an open set U.
This gives rise to a local projection p : U → Rm+1 such that for every ball B, the tube
p−1(p(B)) has volume ≤ const. diameter(B)m+2.

Cover V with balls Bj . The corresponding tubes Tj = p−1(p(Bj )) cover U. Then the
volume of U is less than

P
diameter(Bj )

m+2, which shows that dimHau(V ) ≥ m + 2.

Theorem

(Gromov 1993). Let M be a generic subRiemannian manifold of dimension n,
Hausdorff dimension Q, with an h-dimensional distribution. Let k ≤ h be such that
h − k ≥ (n − h)k. Then α(M) ≤ n−k

Q−k
.
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Curvature pinching

Definition

Let M be a Riemannian manifold. Let −1 ≤ δ < 0. Say M is δ-pinched if sectional
curvature ranges between −1 and δ. Define the optimal pinching δ(M) of M as the
least δ ≥ −1 such that M is biLipschitz to a δ-pinched simply connected Riemannian
manifold.

Example

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals
Hn

R, the complex numbers Hm
C , the quaternions Hm

H , and the octonions H2
O.

Real hyperbolic space has sectional curvature −1. Other rank one symmetric spaces
are − 1

4
-pinched.

Question

Is it true that the optimal pinching of Hm
C , Hm

H (m ≥ 2) and H2
O is − 1

4
?
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Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff
distance is finite. The visual boundary of a negatively curved manifold is the set of
asymptoticity classes of geodesic rays.

Facts.

The visual boundary, seen from a point o, is a sphere (use polar coordinates).

It carries a visual metric do .

Different visual metrics do and do′ are equivalent.

BiLipschitz maps between negatively curved Riemannian manifolds induce
quasisymmetric maps between ideal boundaries.

1
R visual sphere

o

d (a,b)=e!R
o

b
a

distorsion(f)=sup{R/r}

R

r

f
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P. Pansu Curvature pinching and Hölder homeomorphisms from Euclidean spaces to Heisenberg groups
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Example

If M is a rank one symmetric space, the visual metrics on its ideal boundary are
equivalent to subRiemannian metrics.

Proposition

Let M be a simply connected δ-pinched Riemannian manifold. Then visual metrics on
the ideal boundary of M are Cα-Hölder equivalent to the round metric, with
α =

√
−δ.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with
exponents ranging from

√
−δ to 1 (Rauch comparison theorem, 1950’s).

Question

Let M be a nonRiemannian subRiemannian manifold. Does there exist
quasisymmetricly equivalent metrics on M which are locally Cα-Hölder equivalent to a
Riemannian metric, with α > 1/2 ?
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P. Pansu Curvature pinching and Hölder homeomorphisms from Euclidean spaces to Heisenberg groups
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Theorem

The optimal pinching of H2
C is equal to − 1

4
.

Scheme of proof

Define, in a biLipschitz-invariant manner, families Rp , p > 1, of algebras of
functions on 4-dimensional negatively curved manifolds M, and, given u ∈ Rp , a
vectorsubspace Sp(u) ⊂ Rp .

If M is δ-pinched and p < 2 + 4
√
−δ, then for every u, Sp(u) is a subalgebra of

Rp .

If M = H2
C, for all p ∈ (4, 8), there exists (locally) u ∈ Rp such that Sp(u) is not

a subalgebra of Rp .

Rp can be viewed as a quasisymmetrically invariant function space on the visual
boundary of M. However, Sp(u) does not seem to be definable directly in terms of the
visual boundary only.
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Lp-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. Lp-cohomology of M is the cohomology
of the complex of Lp-differential forms on M whose exterior differentials are Lp as well,

Hk,p = closed k-forms in Lp/d((k − 1)-forms in Lp),

Rk,p = closed k-forms in Lp/closure of d((k − 1)-forms in Lp),

T k,p = closure of d((k − 1)-forms in Lp)/d((k − 1)-forms in Lp).

Rk,p is called the reduced cohomology. T k,p is called the torsion.

Example

The real line R.

H0,p = 0.

R1,p = 0, since every function in Lp(R) can be approximated in Lp with derivatives of
compactly supported functions. Therefore H1,p is only torsion.

T 1,p is non zero and thus infinite dimensional. Indeed, the 1-form dt
t

(cut off near the
origin) is in Lp for all p > 1 but it is not the differential of a function in Lp .
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Example

The real line R.

H0,p = 0.
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Example : the real hyperbolic plane H2
R

Here H0,p = 0 = H2,p for all p.

If p = 2, since the Laplacian on L2 functions is bounded below, T 1,2 = 0. Therefore

H1,2 = R1,2

= {L2 harmonic 1-forms}
= {harmonic functions h on H2

R with ∇h ∈ L2}/R .

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H1,2 = {harmonic functions h on D with ∇h ∈ L2}/R
= {Fourier series Σane

inθ with a0 = 0, Σ|n| |an|2 < +∞},

which is Sobolev space H1/2(R/2πZ) mod constants.

More generally, for p > 1, T 1,p = 0 and H1,p is equal to the Besov space

B
1/p
p,p (R/2πZ) mod constants.
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Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on
M whose differential belongs to Lp have boundary values u∞ on the visual boundary.
The cohomology class [du] ∈ H1,p(M) vanishes if and only if u∞ is constant.

Indeed, since volume in polar coordinates grows exponentially, and Lp(et dt) ⊂ L1(dt),
the radial derivative belongs to L1, so u∞(θ) = limt→∞ u(θ, t) exists a.e. If u∞ = 0,
Sobolev inequality ‖u‖Lp ≤ ‖du‖Lp applies, and [du] = 0.

This suggests

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra
Rp(M) as the space of L∞ functions u on M such that du ∈ Lp , modulo Lp ∩ L∞

functions.

Then Rp(M) identifies with an algebra of functions on the visual boundary of M. If
M is a symmetric space, Rp(M) is a (possibly anisotropic) Besov space.
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Remark

Lp-cohomology is biLipschitz invariant. Wedge product α, β 7→ α ∧ β induces

cup-product [α] ^ [β] : Hk,p × Hk′,p → Hk+k′,p/2 in a biLipschitz invariant manner.

Definition

Let M be a simply connected negatively curved manifold, let p > 2, let u ∈ Rp(M).
Define

Sp(u) = {v ∈ Rp(M) | [dv ] ^ [du] = 0 ∈ H2,p/2(M)}.

Remark: As a function space on the visual boundary, Rp is a quasisymmetric
invariant. Not so clear for Sp(u).

Theorem

If dim(M) = 4, M is δ-pinched and p < 2 + 4
√
−δ, then for all u ∈ Rp(M), Sp(u) is

a subalgebra of Rp(M).
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Step 1. For q = p/2 small, closed Lq

2-forms admit boundary values.

Use the radial vectorfield ξ = ∂
∂r

in
polar coordinates and its flow φt , whose
derivative is controlled by sectional
curvature.

Use Poincaré’s homotopy formula :
For α a closed 2-form in Lq ,

φ∗t α = α + d

„Z t

0
φ∗s ιξα ds

«
has a limit as t → +∞ under the
assumptions of the theorem.

!

geodesics

spheres

Step 2. Boundary value determines cohomology class.

Step 3. This implies Sp(u) is a subalgebra.
Let v , v ′ ∈ Sp(u). Then [dv ] ^ [du] vanishes if and only if its boundary value
dv∞ ∧ du∞ = 0 a.e. Then v ′∞dv∞ ∧ du∞ + v∞dv ′∞ ∧ du∞ = 0 a.e., showing that
[d(vv ′)] ^ [du] = 0, i.e. vv ′ ∈ Sp(u).
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Now we compute H2,q(H2
C) for 2 < q = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View H2
C as a product

H1 × R. Prove a Künneth type theorem.

For q /∈ {4/3, 2, 4}, differential forms α
on H2

C split into components α+ and
α+ which are contracted (resp.
expanded) by φt . Then

ht : α 7→
Z t

0
φ∗s ιξα+ ds−

Z 0

−t
φ∗s ιξα− ds

converges as t → +∞ to a bounded
operator h on Lq . P = 1− dh − hd
retracts the Lq de Rham complex onto
a complex B of differential forms on H1

with missing components and weakly
regular coefficients.

!

horospheres

geodesics
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Step 2. If 2 < q < 4, this complex is nonzero in degrees 1 and 2.
B1 consists of 1-forms which are multiples of τ .

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a
differential equation.
Let τ denote the invariant contact form on H1. If α ∈ B2 is a 2-form, then α ∈ dB1 if
and only if α satisfies the linear differential equation

α = d(
τ ∧ α

τ ∧ dτ
τ).

If dv ∧ du is a solution, d(v2) ∧ du is not a solution, unless dv is proportional to du.

Failure of the subalgebra theorem for H2
C.

In coordinates (x , y , z) on H1, one can take (locally) u = y and v = x . Then dv ∧ du
belongs to dB1, whereas d(v2) ∧ du does not. So for 4 < p = 2q < 8, Sp(u) is not
(locally) a subalgebra of Rp(H2

C).
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Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a
differential equation.
Let τ denote the invariant contact form on H1. If α ∈ B2 is a 2-form, then α ∈ dB1 if
and only if α satisfies the linear differential equation

α = d(
τ ∧ α

τ ∧ dτ
τ).

If dv ∧ du is a solution, d(v2) ∧ du is not a solution, unless dv is proportional to du.

Failure of the subalgebra theorem for H2
C.

In coordinates (x , y , z) on H1, one can take (locally) u = y and v = x . Then dv ∧ du
belongs to dB1, whereas d(v2) ∧ du does not. So for 4 < p = 2q < 8, Sp(u) is not
(locally) a subalgebra of Rp(H2

C).
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