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Gromov’s Holder homeomorphism problem

Isoperimetric inequality
Horizontal submanifolds

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which
a € (0,1) does there exist locally a homeomorphism R" — M which is C*-Hélder
continuous ?
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Gromov’s Holder homeomorphism problem

Isoperimetric inequality
Horizontal submanifolds

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which
a € (0,1) does there exist locally a homeomorphism R" — M which is C*-Hélder
continuous ?

Definition

Let a(M) = sup{c € (0,1) |3 locally a homeomorphism R" — M}.

Curvature pinching and Holder homeomorphisms from Euclidean spaces to



Gromov’s Holder homeomorphism problem

Isoperimetric inequality
Horizontal submanifolds

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which
a € (0,1) does there exist locally a homeomorphism R" — M which is C*-Hélder
continuous ?

Definition

Let a(M) = sup{c € (0,1) |3 locally a homeomorphism R" — M}.

If G is a r-step Carnot group, the exponential map g = Lie(G) — G is locally
CY/r-Hélder continuous. Thus c(M) > 1/r.
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Gromov’s Holder homeomorphism problem

Isoperimetric inequality
Horizontal submanifolds

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which
a € (0,1) does there exist locally a homeomorphism R" — M which is C*-Hélder
continuous ?

Definition

Let a(M) = sup{c € (0,1) |3 locally a homeomorphism R" — M}.

If G is a r-step Carnot group, the exponential map g = Lie(G) — G is locally
CY/r-Hélder continuous. Thus c(M) > 1/r.

Proposition

Let M have Hausdorff dimension Q. Then o(M) < 5.
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Gromov’s Holder homeomorphism problem n AR n
Isoperimetric inequality

Horizontal submanifolds

Proposition

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then a(M) < g;_ll
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Gromov’s Holder homeomorphism problem n n
Isoperimetri equality

Horizontal submanifolds

Proposition

n—1

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then a(M) < o=i-

Proof. Use the isoperimetric inequality for piecewise smooth domains D C M,

vol(D)Q~Y @ < const. HO~1(OD).
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Gromov’s Holder homeomorphism problem n AR n
Isoperimetric inequality

Horizontal submanifolds

Proposition

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then a(M) < 5;_11

Proof. Use the isoperimetric inequality for piecewise smooth domains D C M,

vol(D)Q~Y @ < const. HO~1(OD).

It follows that the boundary of any non smooth domain Q has Hausdorff dimension at
least Q — 1. Indeed, cover 9Q with balls B;j and apply (*) to QU (J B;. This gives a
lower bound on He~1(9(U B;)) < S HR1(0B)) < const. 3~ diameter(B;)?1.
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Gromov’s Holder homeomorphism problem _ 5 mn 5
Isoperimetric inequality

Horizontal submanifolds

Proposition

(Gromov 1993). Let H™ denote 2m + 1-dimensional Heisenberg group. Let V C H™
be a subset of topological dimension m 4+ 1. Then the Hausdorff dimension of V is at

+1
least m + 2. It follows that o(H™) < 5.
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Gromov’s Holder homeomorphism problem _ 5 mn 5
Isoperimetric inequality

Horizontal submanifolds

Proposition

(Gromov 1993). Let H™ denote 2m + 1-dimensional Heisenberg group. Let V C H™
be a subset of topological dimension m 4+ 1. Then the Hausdorff dimension of V is at

+1
least m + 2. It follows that o(H™) < 5.

Proof. According to topological dimension theory (Alexandrov), there exists an
m-dimensional polyhedron P and a continuous map f : P — H™ such that every map
sufficiently C%close to f hits V.

Gromov approximates f with piecewise horizontal maps which sweep an open set U.
This gives rise to a local projection p : U — R™*1! such that for every ball B, the tube
p~1(p(B)) has volume < const. diameter(B)™+2,

Cover V with balls B;. The corresponding tubes T; = p~1(p(B;)) cover U. Then the
volume of U is less than 3" diameter(B;)™+2, which shows that dimp, (V) > m + 2.
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Gromov’s Holder homeomorphism problem 5 mn 5
Isoperimetric inequality

Horizontal submanifolds

Proposition

(Gromov 1993). Let H™ denote 2m + 1-dimensional Heisenberg group. Let V C H™
be a subset of topological dimension m 4+ 1. Then the Hausdorff dimension of V is at

+1
least m + 2. It follows that o(H™) < 5.

Proof. According to topological dimension theory (Alexandrov), there exists an
m-dimensional polyhedron P and a continuous map f : P — H™ such that every map
sufficiently C%close to f hits V.

Gromov approximates f with piecewise horizontal maps which sweep an open set U.
This gives rise to a local projection p : U — R™*1! such that for every ball B, the tube
p~1(p(B)) has volume < const. diameter(B)™+2,

Cover V with balls B;. The corresponding tubes T; = p~1(p(B;)) cover U. Then the
volume of U is less than 3" diameter(B;)™+2, which shows that dimp, (V) > m + 2.

(Gromov 1993). Let M be a generic subRiemannian manifold of dimension n,
Hausdorff dimension @, with an h-dimensional distribution. Let k < h be such that
h—k > (n—h)k. Then o(M) < =K.
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Visual metrics
Curvature pinching Curvatu rsus Holder homeomorphisms
Main theorem

Curvature pinching

Definition

Let M be a Riemannian manifold. Let —1 < 6 < 0. Say M is d-pinched if sectional
curvature ranges between —1 and §. Define the optimal pinching §(M) of M as the
least § > —1 such that M is biLipschitz to a d-pinched simply connected Riemannian
manifold.
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Visual metrics
Curvature pinching Curvature versus Holder homeomorphisms
Main theorem

Curvature pinching

Definition

Let M be a Riemannian manifold. Let —1 < 6 < 0. Say M is d-pinched if sectional
curvature ranges between —1 and §. Define the optimal pinching §(M) of M as the
least § > —1 such that M is biLipschitz to a d-pinched simply connected Riemannian
manifold.

Example

| A\

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals
Hﬂ’é, the complex numbers Hg, the quaternions H?', and the octonions Hé.

Real hyperbolic space has sectional curvature —1. Other rank one symmetric spaces
are f%-pinched.
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Curvature pinching Curvature v Hélder homeomorphisms
Main the

Curvature pinching

Definition

Let M be a Riemannian manifold. Let —1 < 6 < 0. Say M is d-pinched if sectional
curvature ranges between —1 and §. Define the optimal pinching §(M) of M as the
least § > —1 such that M is biLipschitz to a d-pinched simply connected Riemannian
manifold.

Example

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals
H]ﬁ, the complex numbers Hg, the quaternions H?', and the octonions Hé.

Real hyperbolic space has sectional curvature —1. Other rank one symmetric spaces
are 7%-pinched.

Is it true that the optimal pinching of HY, Hf (m > 2) and Hé is —% ?
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Visual metrics
Curvature pinching Curvature vi s Holder homeomorphisms
Main theorem

Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff
distance is finite. The visual boundary of a negatively curved manifold is the set of
asymptoticity classes of geodesic rays.
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Visual me
Curvature pinching Curvature versus Holder homeomorphisms
Main theore

Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff
distance is finite. The visual boundary of a negatively curved manifold is the set of
asymptoticity classes of geodesic rays.

Facts.
@ The visual boundary, seen from a point o, is a sphere (use polar coordinates).
@ It carries a visual metric d,.

o Different visual metrics d, and d, are equivalent.

BiLipschitz maps between negatively curved Riemannian manifolds induce
quasisymmetric maps between ideal boundaries.

visual sphere
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Visual me
Curvature pinching Curvature versus Holder homeomorphisms
Main theore

Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff
distance is finite. The visual boundary of a negatively curved manifold is the set of
asymptoticity classes of geodesic rays.

Facts.
@ The visual boundary, seen from a point o, is a sphere (use polar coordinates).
@ It carries a visual metric d,.

o Different visual metrics d, and d, are equivalent.

BiLipschitz maps between negatively curved Riemannian manifolds induce
quasisymmetric maps between ideal boundaries.

visual sphere



Visual metri
Curvature pinching Curvature versus Holder homeomorphisms
Main theorem

If M is a rank one symmetric space, the visual metrics on its ideal boundary are
equivalent to subRiemannian metrics.
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Visual metrics
Curvature pinching Curvature versus Holder homeomorphisms

Main theorem

Example

If M is a rank one symmetric space, the visual metrics on its ideal boundary are
equivalent to subRiemannian metrics.

Proposition

| A\

Let M be a simply connected §-pinched Riemannian manifold. Then visual metrics on
the ideal boundary of M are C*-Hélder equivalent to the round metric, with

a=+/—9.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with
exponents ranging from /—¢ to 1 (Rauch comparison theorem, 1950’s).
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Visual metrics
Curvature pinching Curvature versus Holder homeomorphisms
Main theorem

Example

If M is a rank one symmetric space, the visual metrics on its ideal boundary are
equivalent to subRiemannian metrics.

Proposition

Let M be a simply connected §-pinched Riemannian manifold. Then visual metrics on
the ideal boundary of M are C*-Hélder equivalent to the round metric, with

a=+/—9.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with
exponents ranging from /—¢ to 1 (Rauch comparison theorem, 1950’s).

Let M be a nonRiemannian subRiemannian manifold. Does there exist
quasisymmetricly equivalent metrics on M which are locally C*-Hélder equivalent to a
Riemannian metric, with o > 1/2 ?
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Visual metri
Curvature pinching Curvature versus Holder homeomorphisms
Main theorem

The optimal pinching of H2 is equal to —%.
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Visual metril
Curvature pinching Curvature versus Holder homeomorphisms
Main theorem

The optimal pinching of H2 is equal to —%.

Scheme of proof

o Define, in a biLipschitz-invariant manner, families Rp, p > 1, of algebras of
functions on 4-dimensional negatively curved manifolds M, and, given u € Ry, a
vectorsubspace Sp(u) C Rp.

o If M is §-pinched and p < 2+ 4/—9, then for every u, Sp(u) is a subalgebra of
Rp.

o If M = H2, for all p € (4,8), there exists (locally) u € R, such that Sp(u) is not
a subalgebra of R,.

Rp can be viewed as a quasisymmetrically invariant function space on the visual
boundary of M. However, S,(u) does not seem to be definable directly in terms of the
visual boundary only.

Curvature pinching and Holder homeomorphisms from Euclidean spaces to



Royden al
Subalgebra th
LP-cohomology Boundary valu

ifferential forms
LP-cohomology of HZ

LP-cohomology

Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HkP = closed k-forms in LP/d((k — 1)-forms in LP),

Curvature pi
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Examples
Royden algel
Subalg m

LP-cohomology Boundary val or differential forms
LP-cohomology of HZ

LP-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HkP = closed k-forms in LP/d((k — 1)-forms in LP),
RNP = closed k-forms in LP/closure of d((k — 1)-forms in LP),
TkP  —

closure of d((k — 1)-forms in LP)/d((k — 1)-forms in LP).

Rk:P s called the reduced cohomology. Tk s called the torsion.

P. Pansu
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LP-cohomology Boundary for differential forms
LP-cohomology of H2

LP-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HkP = closed k-forms in LP/d((k — 1)-forms in LP),
RNP = closed k-forms in LP/closure of d((k — 1)-forms in LP),
TP = closure of d((k — 1)-forms in LP)/d((k — 1)-forms in LP).

Rk:P s called the reduced cohomology. Tk s called the torsion.

<

The real line R.

P. Pansu
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Royden algebra
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LP-cohomology Boundary for differential forms
LP-cohomology of H2

LP-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HkP = closed k-forms in LP/d((k — 1)-forms in LP),
RNP = closed k-forms in LP/closure of d((k — 1)-forms in LP),
TP = closure of d((k — 1)-forms in LP)/d((k — 1)-forms in LP).

Rk:P s called the reduced cohomology. Tk s called the torsion.

The real line R.

HOP = 0.
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LP-cohomology of HZ

LP-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HkP = closed k-forms in LP/d((k — 1)-forms in LP),
RNP = closed k-forms in LP/closure of d((k — 1)-forms in LP),
TP = closure of d((k — 1)-forms in LP)/d((k — 1)-forms in LP).

Rk:P s called the reduced cohomology. Tk s called the torsion.

The real line R.

HOP = 0.

RL:P =0, since every function in LP(R) can be approximated in LP with derivatives of
compactly supported functions. Therefore H1:P is only torsion.
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LP-cohomology Boundary val or differential forms
LP-cohomology of HZ

LP-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HkP = closed k-forms in LP/d((k — 1)-forms in LP),
RNP = closed k-forms in LP/closure of d((k — 1)-forms in LP),
TP = closure of d((k — 1)-forms in LP)/d((k — 1)-forms in LP).

Rk:P s called the reduced cohomology. Tk s called the torsion.

The real line R.

HOP = 0.

RL:P =0, since every function in LP(R) can be approximated in LP with derivatives of
compactly supported functions. Therefore H1:P is only torsion.

TYP s non zero and thus infinite dimensional.
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LP-cohomology Boundary val or differential forms

LP-cohomology of HZ

LP-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HkP = closed k-forms in LP/d((k — 1)-forms in LP),
RNP = closed k-forms in LP/closure of d((k — 1)-forms in LP),
TP = closure of d((k — 1)-forms in LP)/d((k — 1)-forms in LP).

Rk:P s called the reduced cohomology. Tk s called the torsion.

The real line R.

HOP = 0.

RL:P =0, since every function in LP(R) can be approximated in LP with derivatives of
compactly supported functions. Therefore H1:P is only torsion.

TYP is non zero and thus infinite dimensional. Indeed, the 1-form % (cut off near the

origin) is in LP for all p > 1 but it is not the differential of a function in LP.

P. Pansu Curvature pinching and Holder homeomorphisms from Euclidean spaces to



Examples

LP-cohomology BL)Illl(jdl'y values for differential forms

LP-cohomology of HZ

Example : the real hyperbolic plane H2

Here H%P = 0 = H%P for all p.
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Examples

LP-cohomology Boundary values for differential forms

LP-cohomology of HZ

Example : the real hyperbolic plane H2

Here H%P = 0 = H%P for all p.
If p =2, since the Laplacian on L2 functions is bounded below, T}2 = 0. Therefore

H12 - RL2
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LP-cohomology ifferential forms
LP-cohomology of H2

Example : the real hyperbolic plane H%

Here H%P = 0 = H%P for all p.
If p =2, since the Laplacian on L2 functions is bounded below, T}2 = 0. Therefore

H12 - RL2

{L? harmonic 1-forms}
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LP-cohomology of HZ

Example : the real hyperbolic plane H%

Here H%P = 0 = H%P for all p.

If p =2, since the Laplacian on L2 functions is bounded below, T}2 = 0. Therefore
H2 — Rl2

{L? harmonic 1-forms}

{harmonic functions h on H32 with Vh € L?}/R.
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Examples
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Subalgebra th: n
LP-cohomology Boundary v for differential forms

LP-cohomology of HZ

Example : the real hyperbolic plane H%

Here H%P = 0 = H%P for all p.

If p =2, since the Laplacian on L2 functions is bounded below, T}2 = 0. Therefore
H2 — Rl2

{L? harmonic 1-forms}

{harmonic functions h on H32 with Vh € L?}/R.

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H»? = {harmonic functions h on D with Vh € L?}/R
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Roydei
Subalgebra th: n
LP-cohomology Boundary v for differential forms

LP-cohomology of HZ

Example : the real hyperbolic plane H%

Here H%P = 0 = H%P for all p.

If p =2, since the Laplacian on L2 functions is bounded below, T}2 = 0. Therefore
H2 — Rl2

{L? harmonic 1-forms}

{harmonic functions h on H32 with Vh € L?}/R.

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H1,2

{harmonic functions h on D with Vh € L?}/R

{Fourier series ane™ with ag = 0, X|n| |an|? < +o0},
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LP-cohomology a or differential forms
LP-cohomology of HZ

Example : the real hyperbolic plane H%

Here H%P = 0 = H%P for all p.

If p =2, since the Laplacian on L2 functions is bounded below, T}2 = 0. Therefore
H2 — Rl2

{L? harmonic 1-forms}

{harmonic functions h on H32 with Vh € L?}/R.

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H2 {harmonic functions h on D with Vh € L?}/R

{Fourier series ane™ with ag = 0, X|n| |an|? < +o0},

which is Sobolev space H'/2(R/277Z) mod constants.
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LP-cohomology a or differential forms
LP-cohomology of HZ

Example : the real hyperbolic plane H%

Here H%P = 0 = H%P for all p.

If p =2, since the Laplacian on L2 functions is bounded below, T}2 = 0. Therefore
H2 — Rl2

{L? harmonic 1-forms}

{harmonic functions h on H32 with Vh € L?}/R.

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H2 {harmonic functions h on D with Vh € L?}/R

{Fourier series ane™ with ag = 0, X|n| |an|? < +o0},

which is Sobolev space H'/2(R/277Z) mod constants.

More generally, for p > 1, T1P = 0 and H? is equal to the Besov space
B;ZPP(R/%rZ) mod constants.
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Royden algebra
Subalgebra th

LP-cohomology Boundary values for differential forms
LP-cohomology of H2

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on
M whose differential belongs to LP have boundary values us, on the visual boundary.
The cohomology class [du] € HY'P(M) vanishes if and only if uso is constant.
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LP-cohomology Boundary values for differential forms
LP-cohomology of H2

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on
M whose differential belongs to LP have boundary values us, on the visual boundary.
The cohomology class [du] € HY'P(M) vanishes if and only if uso is constant.

Indeed, since volume in polar coordinates grows exponentially, and LP(et dt) C L1(dt),
the radial derivative belongs to L1, 50 uso(0) = lim—oo u(8, t) exists a.e. If uso =0,
Sobolev inequality ||ul|p < ||dul|.p applies, and [du] = 0.
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LP-cohomology or differential forms
LP-cohomology of HZ

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on
M whose differential belongs to LP have boundary values us, on the visual boundary.
The cohomology class [du] € HY'P(M) vanishes if and only if uso is constant.

Indeed, since volume in polar coordinates grows exponentially, and LP(et dt) C L1(dt),
the radial derivative belongs to L1, 50 uso(0) = lim—oo u(8, t) exists a.e. If uso =0,
Sobolev inequality ||ul|p < ||dul|.p applies, and [du] = 0.

This suggests

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra
Rp(M) as the space of L>° functions u on M such that du € LP, modulo LP N L*°
functions.

Then R,(M) identifies with an algebra of functions on the visual boundary of M. If
M is a symmetric space, Rp(M) is a (possibly anisotropic) Besov space.
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Royden algebra
Subalgebra theorem

LP-cohomology Boundary values for differential forms

LP-cohomology of HZ

Remark

LP-cohomology is biLipschitz invariant. Wedge product «, 3 — o A B induces
cup-product [a] — [B] : HXP x HK'sp — HK+K'P/2 in g bilipschitz invariant manner.

Definition

| A\

Let M be a simply connected negatively curved manifold, let p > 2, let u € Rp(M).
Define

Sp(u) = {v € Rp(M) | [dv] — [du] = 0 € H>P/2(M)}.

A\
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Royden algebra
Subalgebra theorem

LP-cohomology Boundary values for differential forms
LP-cohomology of H2

Remark

LP-cohomology is biLipschitz invariant. Wedge product «, 3 — o A B induces
cup-product [a] — [B] : HXP x HK'sp — HK+K'P/2 in g bilipschitz invariant manner.

Definition

| A

Let M be a simply connected negatively curved manifold, let p > 2, let u € Rp(M).
Define

Sp(u) = {v € Rp(M) | [dv] — [du] = 0 € H>P/2(M)}.

A\

Remark: As a function space on the visual boundary, R, is a quasisymmetric
invariant. Not so clear for Sp(u).

If dim(M) = 4, M is é-pinched and p < 2 + 4\/—4, then for all u € Rp(M), Sp(u) is
a subalgebra of Rp(M).
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Royden algebra

LP-cohomology Boundary values kor differential forms
LP-cohomology of H2

Step 1. For q = p/2 small, closed L9
2-forms admit boundary values.
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Boundary values for differential forms
LP-cohomology of H2

Step 1. For q = p/2 small, closed L9
2-forms admit boundary values.

Use the radial vectorfield £ = % in
polar coordinates and its flow ¢:, whose
derivative is controlled by sectional

curvature.

Use Poincaré’'s homotopy formula :
For a a closed 2-form in L9,

t
pfa=a+d (/ ¢:L§ads)
0

has a limit as t — +o00 under the
assumptions of the theorem.

geodesics

Curvature pi
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LP-cohomology Boundary values for differential forms
LP-cohomology of H2

Step 1. For q = p/2 small, closed L9
2-forms admit boundary values.

Use the radial vectorfield £ = % in
polar coordinates and its flow ¢:, whose
derivative is controlled by sectional

curvature.

Use Poincaré’'s homotopy formula :
For a a closed 2-form in L9,

t
pfa=a+d (/ ¢:L§ads)
0

has a limit as t — +o00 under the geodesics
assumptions of the theorem.

Step 2. Boundary value determines cohomology class.
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LP-cohomology undary values for differential forms
ohomology of H2

Step 1. For q = p/2 small, closed L9
2-forms admit boundary values.

Use the radial vectorfield £ = % in
polar coordinates and its flow ¢:, whose
derivative is controlled by sectional

curvature.

Use Poincaré’'s homotopy formula :

For a a closed 2-form in L9,

t
pfa=a+d (/ ¢:L§ads)
0

has a limit as t — +o00 under the geodesics
assumptions of the theorem.

Step 2. Boundary value determines cohomology class.

Step 3. This implies Sp(u) is a subalgebra.
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LP-cohomology Boundary values for differential forms
LP-cohomology of H2

Step 1. For q = p/2 small, closed L9
2-forms admit boundary values.

Use the radial vectorfield £ = % in
polar coordinates and its flow ¢:, whose
derivative is controlled by sectional

curvature.

Use Poincaré’'s homotopy formula :
For a a closed 2-form in L9,

t
pfa=a+d (/ ¢:L§ads)
0

has a limit as t — +o00 under the geodesics
assumptions of the theorem.

Step 2. Boundary value determines cohomology class.

Step 3. This implies Sp(u) is a subalgebra.

Let v, v/ € Sp(u). Then [dv] — [du] vanishes if and only if its boundary value

dVoo A duse = 0 a.e. Then v/ dvee A duss + Voo dVi, A duss = 0 a.e., showing that
[d(w')] — [du] =0, i.e. W € Sp(u).
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Now we compute H29(H2) for 2 < g = p/2 < 4.
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LP-cohomology of

Now we compute H29(H2) for 2 < g = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View H(% as a product
H! x R. Prove a Kiinneth type theorem.
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LP-cohomology Boundary values for g;iﬂ(‘lt"fi(ﬂ forms
LP-cohomology of H&

Now we compute H29(H2) for 2 < g = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View H(% as a product
H! x R. Prove a Kiinneth type theorem.
For g ¢ {4/3,2,4}, differential forms o
on Hé split into components a4 and
a4+ which are contracted (resp.
expanded) by ¢¢. Then

horospheres
/

t 0
ht ;o — / Pareay ds—/ st ds
0 —t

converges as t — +o0o to a bounded
operator hon L9. P=1— dh— hd
retracts the L9 de Rham complex onto
a complex B of differential forms on H!
with missing components and weakly  geqdesics
regular coefficients.
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Step 2. If2 < q < 4, this complex is nonzero in degrees 1 and 2.
B! consists of 1-forms which are multiples of 7.
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Step 2. If2 < q < 4, this complex is nonzero in degrees 1 and 2.
B! consists of 1-forms which are multiples of 7.

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a
differential equation.

Let 7 denote the invariant contact form on H!. If o € B2 is a 2-form, then o € dB! if
and only if « satisfies the linear differential equation

TAQ

—_—T).
TANdT

a=d(

If dv A du is a solution, d(v2) A du is not a solution, unless dv is proportional to du.
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LP-cohomology Boundary v: differential forms
LP-cohomology of H&

Step 2. If2 < q < 4, this complex is nonzero in degrees 1 and 2.
B! consists of 1-forms which are multiples of 7.

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a
differential equation.

Let 7 denote the invariant contact form on H!. If o € B2 is a 2-form, then o € dB! if
and only if « satisfies the linear differential equation

TAQ
TANdT

7).
If dv A du is a solution, d(v2) A du is not a solution, unless dv is proportional to du.

Failure of the subalgebra theorem for Hé.

In coordinates (x, y, z) on H!, one can take (locally) u =y and v = x. Then dv A du
belongs to dBB!, whereas d(v?) A du does not. So for 4 < p = 2q < 8, Sp(u) is not
(locally) a subalgebra of Rp(H2).
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