Curvature pinching and Hölder homeomorphisms from Euclidean spaces to Heisenberg groups

P. Pansu

April 2, 2010

Isoperimetric inequality

Question

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which $lpha \in (0,1)$ does there exist locally a homeomorphism $\mathbb{R}^n o M$ which is C^{lpha} -Hölder continuous ?

- 4 E b

- A 🗐 🕨

э

Question

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which $lpha \in (0,1)$ does there exist locally a homeomorphism $\mathbb{R}^n o M$ which is C^{lpha} -Hölder continuous ?

Definition

Let $\alpha(M) = \sup \{ \alpha \in (0,1) \mid \exists \text{ locally a homeomorphism } \mathbb{R}^n \to M \}.$

- 4 E b

-

Question

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which $\alpha \in (0,1)$ does there exist locally a homeomorphism $\mathbb{R}^n \to M$ which is C^{α} -Hölder continuous ?

Definition

Let $\alpha(M) = \sup \{ \alpha \in (0,1) \mid \exists \text{ locally a homeomorphism } \mathbb{R}^n \to M \}.$

Example

If G is a r-step Carnot group, the exponential map $\mathfrak{g} = Lie(G) \rightarrow G$ is locally $C^{1/r}$ -Hölder continuous. Thus $\alpha(M) \ge 1/r$.

- 4 E b

Question

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which $\alpha \in (0,1)$ does there exist locally a homeomorphism $\mathbb{R}^n \to M$ which is C^{α} -Hölder continuous ?

Definition

Let $\alpha(M) = \sup\{\alpha \in (0,1) \mid \exists \text{ locally a homeomorphism } \mathbb{R}^n \to M\}.$

Example

If G is a r-step Carnot group, the exponential map $\mathfrak{g} = Lie(G) \rightarrow G$ is locally $C^{1/r}$ -Hölder continuous. Thus $\alpha(M) \ge 1/r$.

Proposition

Let M have Hausdorff dimension Q. Then $\alpha(M) \leq \frac{n}{Q}$.

Isoperimetric inequality Horizontal submanifolds

Proposition

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then $\alpha(M) \leq \frac{n-1}{Q-1}$.

ъ

3 N

Э

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then $\alpha(M) \leq \frac{n-1}{Q-1}$.

Proof. Use the isoperimetric inequality for piecewise smooth domains $D \subset M$,

$$\operatorname{vol}(D)^{Q-1/Q} \leq \operatorname{const.} \mathcal{H}^{Q-1}(\partial D).$$

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then $\alpha(M) \leq \frac{n-1}{Q-1}$.

Proof. Use the isoperimetric inequality for piecewise smooth domains $D \subset M$,

$$\operatorname{vol}(D)^{Q-1/Q} \leq \operatorname{const.} \mathcal{H}^{Q-1}(\partial D).$$

It follows that the boundary of any non smooth domain Ω has Hausdorff dimension at least Q-1. Indeed, cover $\partial\Omega$ with balls B_j and apply (*) to $\Omega \cup \bigcup B_j$. This gives a lower bound on $\mathcal{H}^{Q-1}(\partial(\bigcup B_j)) \leq \sum \mathcal{H}^{Q-1}(\partial B_j) \leq const. \sum diameter(B_j)^{Q-1}$.

(Gromov 1993). Let \mathbb{H}^m denote 2m + 1-dimensional Heisenberg group. Let $V \subset \mathbb{H}^m$ be a subset of topological dimension m + 1. Then the Hausdorff dimension of V is at least m + 2. It follows that $\alpha(\mathbb{H}^m) \leq \frac{m+1}{m+2}$.

A 10

글 🖌 🖌 글

(Gromov 1993). Let \mathbb{H}^m denote 2m + 1-dimensional Heisenberg group. Let $V \subset \mathbb{H}^m$ be a subset of topological dimension m + 1. Then the Hausdorff dimension of V is at least m + 2. It follows that $\alpha(\mathbb{H}^m) \leq \frac{m+1}{m+2}$.

Proof. According to topological dimension theory (Alexandrov), there exists an *m*-dimensional polyhedron *P* and a continuous map $f : P \to \mathbb{H}^m$ such that every map sufficiently C^0 -close to *f* hits *V*.

Gromov approximates f with piecewise *horizontal* maps which sweep an open set U. This gives rise to a local projection $p: U \to \mathbb{R}^{m+1}$ such that for every ball B, the tube $p^{-1}(p(B))$ has volume $\leq \text{const. diameter}(B)^{m+2}$.

Cover V with balls B_j . The corresponding tubes $T_j = p^{-1}(p(B_j))$ cover U. Then the volume of U is less than $\sum \text{diameter}(B_j)^{m+2}$, which shows that $\dim_{H_{au}}(V) \ge m+2$.

(Gromov 1993). Let \mathbb{H}^m denote 2m + 1-dimensional Heisenberg group. Let $V \subset \mathbb{H}^m$ be a subset of topological dimension m + 1. Then the Hausdorff dimension of V is at least m + 2. It follows that $\alpha(\mathbb{H}^m) \leq \frac{m+1}{m+2}$.

Proof. According to topological dimension theory (Alexandrov), there exists an *m*-dimensional polyhedron P and a continuous map $f: P \to \mathbb{H}^m$ such that every map sufficiently C^0 -close to f hits V.

Gromov approximates f with piecewise *horizontal* maps which sweep an open set U. This gives rise to a local projection $p: U \to \mathbb{R}^{m+1}$ such that for every ball B, the tube $p^{-1}(p(B))$ has volume \leq const. diameter $(B)^{m+2}$.

Cover V with balls B_i . The corresponding tubes $T_i = p^{-1}(p(B_i))$ cover U. Then the volume of U is less than $\sum \text{diameter}(B_i)^{m+2}$, which shows that $\dim_{Hau}(V) \ge m+2$.

Theorem

(Gromov 1993). Let M be a generic subRiemannian manifold of dimension n. Hausdorff dimension Q, with an h-dimensional distribution. Let k < h be such that $h-k \ge (n-h)k$. Then $\alpha(M) \le \frac{n-k}{Q-k}$.

< 3 b - A - E - N

Curvature pinching

Definition

Let M be a Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching $\delta(M)$ of M as the least $\delta \ge -1$ such that M is biLipschitz to a δ -pinched simply connected Riemannian manifold.

Curvature pinching

Definition

Let M be a Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching $\delta(M)$ of M as the least $\delta \ge -1$ such that M is biLipschitz to a δ -pinched simply connected Riemannian manifold.

Example

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals $H^m_{\mathbb{R}}$, the complex numbers $H^m_{\mathbb{C}}$, the quaternions $H^m_{\mathbb{H}}$, and the octonions $H^2_{\mathbb{O}}$. Real hyperbolic space has sectional curvature -1. Other rank one symmetric spaces are $-\frac{1}{4}$ -pinched.

Curvature pinching

Definition

Let M be a Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching $\delta(M)$ of M as the least $\delta \ge -1$ such that M is biLipschitz to a δ -pinched simply connected Riemannian manifold.

Example

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals $H^n_{\mathbb{R}}$, the complex numbers $H^m_{\mathbb{C}}$, the quaternions $H^m_{\mathbb{H}}$, and the octonions $H^2_{\mathbb{O}}$. Real hyperbolic space has sectional curvature -1. Other rank one symmetric spaces are $-\frac{1}{4}$ -pinched.

Question

Is it true that the optimal pinching of $H^m_{\mathbb{C}}$, $H^m_{\mathbb{H}}$ (m ≥ 2) and $H^2_{\mathbb{O}}$ is $-\frac{1}{4}$?

Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff distance is finite. The visual boundary of a negatively curved manifold is the set of asymptoticity classes of geodesic rays.

-

Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff distance is finite. The visual boundary of a negatively curved manifold is the set of asymptoticity classes of geodesic rays.

Facts.

- The visual boundary, seen from a point *o*, is a sphere (use polar coordinates).
- It carries a visual metric d_o.
- Different visual metrics d_o and $d_{o'}$ are equivalent.
- BiLipschitz maps between negatively curved Riemannian manifolds induce *quasisymmetric* maps between ideal boundaries.

Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff distance is finite. The visual boundary of a negatively curved manifold is the set of asymptoticity classes of geodesic rays.

Facts.

- The visual boundary, seen from a point o, is a sphere (use polar coordinates).
- It carries a visual metric d_o.
- Different visual metrics d_o and $d_{o'}$ are equivalent.
- BiLipschitz maps between negatively curved Riemannian manifolds induce *quasisymmetric* maps between ideal boundaries.

Example

If M is a rank one symmetric space, the visual metrics on its ideal boundary are equivalent to subRiemannian metrics.

Example

If M is a rank one symmetric space, the visual metrics on its ideal boundary are equivalent to subRiemannian metrics.

Proposition

Let M be a simply connected δ -pinched Riemannian manifold. Then visual metrics on the ideal boundary of M are C^{α} -Hölder equivalent to the round metric, with $\alpha = \sqrt{-\delta}$.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with exponents ranging from $\sqrt{-\delta}$ to 1 (Rauch comparison theorem, 1950's).

Example

If M is a rank one symmetric space, the visual metrics on its ideal boundary are equivalent to subRiemannian metrics.

Proposition

Let M be a simply connected δ -pinched Riemannian manifold. Then visual metrics on the ideal boundary of M are C^{α} -Hölder equivalent to the round metric, with $\alpha = \sqrt{-\delta}$.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with exponents ranging from $\sqrt{-\delta}$ to 1 (Rauch comparison theorem, 1950's).

Question

Let M be a nonRiemannian subRiemannian manifold. Does there exist quasisymmetricly equivalent metrics on M which are locally C^{α}-Hölder equivalent to a Riemannian metric, with $\alpha > 1/2$?

★ Ξ ►

Main theorem

Theorem

The optimal pinching of $H^2_{\mathbb{C}}$ is equal to $-\frac{1}{4}$.

▲ ∃ ▶ < E э

Theorem

The optimal pinching of $H^2_{\mathbb{C}}$ is equal to $-\frac{1}{4}$.

Scheme of proof

- Define, in a biLipschitz-invariant manner, families \mathcal{R}_p , p > 1, of algebras of functions on 4-dimensional negatively curved manifolds M, and, given $u \in \mathcal{R}_p$, a vectorsubspace $\mathcal{S}_p(u) \subset \mathcal{R}_p$.
- If M is δ -pinched and $p < 2 + 4\sqrt{-\delta}$, then for every u, $S_p(u)$ is a subalgebra of \mathcal{R}_p .
- If $M = H^2_{\mathbb{C}}$, for all $p \in (4, 8)$, there exists (locally) $u \in \mathcal{R}_p$ such that $S_p(u)$ is not a subalgebra of \mathcal{R}_p .

 \mathcal{R}_p can be viewed as a quasisymmetrically invariant function space on the visual boundary of M. However, $\mathcal{S}_p(u)$ does not seem to be definable directly in terms of the visual boundary only.

★ Ξ ►

Royden algebra Boundary values for differential forms

L^p-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

 $H^{k,p}$ = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

3 N ∃ ≥ > 3

L^p-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

$$H^{k,p}$$
 = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

$$\mathbb{R}^{k,p}$$
 = closed k-forms in $L^p/closure$ of $d((k-1)-forms$ in $L^p)$,

$$-k,p$$
 = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$.

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

L^p-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

$$H^{k,p}$$
 = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

$$\mathbb{R}^{k,p}$$
 = closed k-forms in $L^p/closure$ of $d((k-1)-forms$ in $L^p)$,

$$-k,p = closure of d((k-1)-forms in L^p)/d((k-1)-forms in L^p).$$

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

Example

The real line \mathbb{R} .

L^p-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

$$H^{k,p}$$
 = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

$$\mathbb{R}^{k,p}$$
 = closed k-forms in $L^p/closure$ of $d((k-1)-forms$ in $L^p)$,

$$^{-k,p}$$
 = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$.

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

Example

The real line \mathbb{R} .

 $H^{0,p} = 0.$

Examples Royden algebra Boundary values for differential forms

L^p-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

 $H^{k,p}$ = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

$$R^{k,p}$$
 = closed k-forms in $L^p/closure$ of $d((k-1)-forms$ in $L^p)$,

$$-k,p$$
 = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$.

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

Example

The real line \mathbb{R} .

 $H^{0,p} = 0$

 $R^{1,p} = 0$, since every function in $L^p(\mathbb{R})$ can be approximated in L^p with derivatives of compactly supported functions. Therefore $H^{1,p}$ is only torsion.

- - E - N

L^p-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

 $H^{k,p}$ = closed k-forms in $L^p/d((k-1)$ -forms in $L^p)$,

$$R^{k,p}$$
 = closed k-forms in $L^p/closure$ of $d((k-1)-forms$ in $L^p)$,

$$-k,p = closure of d((k-1)-forms in L^p)/d((k-1)-forms in L^p).$$

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

Example

The real line \mathbb{R} .

 $H^{0,p} = 0.$

 $R^{1,p} = 0$, since every function in $L^p(\mathbb{R})$ can be approximated in L^p with derivatives of compactly supported functions. Therefore $H^{1,p}$ is only torsion.

 $T^{1,p}$ is non zero and thus infinite dimensional.

イロト イポト イヨト イヨト

L^p-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

 $H^{k,p}$ = closed k-forms in $L^p/d((k-1)$ -forms in $L^p)$,

$$R^{k,p}$$
 = closed k-forms in $L^p/closure$ of $d((k-1)-forms$ in $L^p)$,

$$-k,p = closure of d((k-1)-forms in L^p)/d((k-1)-forms in L^p).$$

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

Example

The real line \mathbb{R} .

 $H^{0,p} = 0.$

 $R^{1,p} = 0$, since every function in $L^p(\mathbb{R})$ can be approximated in L^p with derivatives of compactly supported functions. Therefore $H^{1,p}$ is only torsion.

 $T^{1,p}$ is non zero and thus infinite dimensional. Indeed, the 1-form $\frac{dt}{t}$ (cut off near the origin) is in L^p for all p > 1 but it is not the differential of a function in L^p .

Examples

Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of H^2_{Γ}

Example : the real hyperbolic plane $H^2_{\mathbb{R}}$

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*.

Examples

Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of H^2_{\Box}

Example : the real hyperbolic plane $H^2_{\mathbb{R}}$

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$H^{1,2} = R^{1,2}$$

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^{P} -cohomology of H^{2}_{C}

Example : the real hyperbolic plane $H^2_{\mathbb{R}}$

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$H^{1,2} = R^{1,2}$$

= {L² harmonic 1-forms}

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^{P} -cohomology of H^{2}_{C}

Example : the real hyperbolic plane $H^2_{\mathbb{R}}$

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$H^{1,2} = R^{1,2}$$

= {L² harmonic 1-forms}

= {harmonic functions h on $H^2_{\mathbb{R}}$ with $\nabla h \in L^2$ }/ \mathbb{R} .

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of $H^2_{\mathbb{C}}$

Example : the real hyperbolic plane $H^2_{\mathbb{R}}$

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{aligned} H^{1,2} &= R^{1,2} \\ &= \{L^2 \text{ harmonic 1-forms}\} \\ &= \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R} \,. \end{aligned}$$

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the disk D.

$$H^{1,2}$$
 = {harmonic functions h on D with $\nabla h \in L^2$ }/ \mathbb{R}

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of $H^2_{\mathbb{C}}$

Example : the real hyperbolic plane $H^2_{\mathbb{R}}$

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{array}{lll} H^{1,2} &=& R^{1,2} \\ &=& \{L^2 \text{ harmonic 1-forms}\} \\ &=& \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R} \,. \end{array}$$

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the disk D.

$$\begin{split} H^{1,2} &= \{ \text{harmonic functions } h \text{ on } D \text{ with } \nabla h \in L^2 \} / \mathbb{R} \\ &= \{ \text{Fourier series } \Sigma a_n e^{in\theta} \text{ with } a_0 = 0, \Sigma |n| |a_n|^2 < +\infty \}, \end{split}$$

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of $H^2_{\mathbb{C}}$

Example : the real hyperbolic plane $H^2_{\mathbb{R}}$

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{array}{lll} H^{1,2} &=& R^{1,2} \\ &=& \{L^2 \text{ harmonic 1-forms}\} \\ &=& \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R} \,. \end{array}$$

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the disk D.

$$\begin{split} H^{1,2} &= \{ \text{harmonic functions } h \text{ on } D \text{ with } \nabla h \in L^2 \} / \mathbb{R} \\ &= \{ \text{Fourier series } \Sigma a_n e^{in\theta} \text{ with } a_0 = 0, \Sigma |n| |a_n|^2 < +\infty \}, \end{split}$$

which is Sobolev space $H^{1/2}(\mathbb{R}/2\pi\mathbb{Z})$ mod constants.

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of $H^2_{\mathbb{C}}$

Example : the real hyperbolic plane $H^2_{\mathbb{R}}$

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{array}{lll} H^{1,2} &=& R^{1,2} \\ &=& \{L^2 \text{ harmonic 1-forms}\} \\ &=& \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R} \,. \end{array}$$

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the disk D.

$$\begin{split} H^{1,2} &= \{ \text{harmonic functions } h \text{ on } D \text{ with } \nabla h \in L^2 \} / \mathbb{R} \\ &= \{ \text{Fourier series } \Sigma a_n e^{in\theta} \text{ with } a_0 = 0, \Sigma |n| |a_n|^2 < +\infty \}, \end{split}$$

which is Sobolev space $H^{1/2}(\mathbb{R}/2\pi\mathbb{Z})$ mod constants.

More generally, for p > 1, $T^{1,p} = 0$ and $H^{1,p}$ is equal to the Besov space $B_{p,p}^{1/p}(\mathbb{R}/2\pi\mathbb{Z})$ mod constants.

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^p have boundary values u_{∞} on the visual boundary. The cohomology class $[du] \in H^{1,p}(M)$ vanishes if and only if u_{∞} is constant.

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^p have boundary values u_{∞} on the visual boundary. The cohomology class $[du] \in H^{1,p}(M)$ vanishes if and only if u_{∞} is constant.

Indeed, since volume in polar coordinates grows exponentially, and $L^p(e^t dt) \subset L^1(dt)$, the radial derivative belongs to L^1 , so $u_{\infty}(\theta) = \lim_{t \to \infty} u(\theta, t)$ exists a.e. If $u_{\infty} = 0$, Sobolev inequality $||u||_{L^p} \leq ||du||_{L^p}$ applies, and [du] = 0.

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^p have boundary values u_{∞} on the visual boundary. The cohomology class $[du] \in H^{1,p}(M)$ vanishes if and only if u_{∞} is constant.

Indeed, since volume in polar coordinates grows exponentially, and $L^{p}(e^{t} dt) \subset L^{1}(dt)$, the radial derivative belongs to L^{1} , so $u_{\infty}(\theta) = \lim_{t \to \infty} u(\theta, t)$ exists a.e. If $u_{\infty} = 0$, Sobolev inequality $||u||_{L^{p}} \leq ||du||_{L^{p}}$ applies, and [du] = 0.

This suggests

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra $\mathcal{R}_p(M)$ as the space of L^{∞} functions u on M such that $du \in L^p$, modulo $L^p \cap L^{\infty}$ functions.

Then $\mathcal{R}_p(M)$ identifies with an algebra of functions on the visual boundary of M. If M is a symmetric space, $\mathcal{R}_p(M)$ is a (possibly anisotropic) Besov space.

Royden algebra Subalgebra theorem Boundary values for differential forms

Remark

L^p-cohomology is biLipschitz invariant. Wedge product α , $\beta \mapsto \alpha \land \beta$ induces cup-product $[\alpha] \smile [\beta] : H^{k,p} \times H^{k',p} \to H^{k+k',p/2}$ in a biLipschitz invariant manner.

Definition

Let M be a simply connected negatively curved manifold, let p > 2, let $u \in \mathcal{R}_p(M)$. Define

$$S_p(u) = \{ v \in \mathcal{R}_p(M) | [dv] \smile [du] = 0 \in H^{2, p/2}(M) \}.$$

3 N

Examples Royden algebra Subalgebra theorem

Remark

L^p-cohomology is biLipschitz invariant. Wedge product α , $\beta \mapsto \alpha \land \beta$ induces cup-product $[\alpha] \sim [\beta] : H^{k,p} \times H^{k',p} \to H^{k+k',p/2}$ in a biLipschitz invariant manner.

Definition

Let M be a simply connected negatively curved manifold, let p > 2, let $u \in \mathcal{R}_p(M)$. Define

$$S_p(u) = \{ v \in \mathcal{R}_p(M) | [dv] \smile [du] = 0 \in H^{2,p/2}(M) \}.$$

Remark: As a function space on the visual boundary, \mathcal{R}_{p} is a quasisymmetric invariant. Not so clear for $S_p(u)$.

Theorem

If dim(M) = 4, M is δ -pinched and $p < 2 + 4\sqrt{-\delta}$, then for all $u \in \mathcal{R}_p(M)$, $\mathcal{S}_p(u)$ is a subalgebra of $\mathcal{R}_p(M)$.

- 4 E b

Examples Royden algebra Subalgebra Boundary values for differential forms L^P -cohomology of $H^2_{\mathbb{C}}$

Step 1. For q = p/2 small, closed L^q 2-forms admit boundary values.

メロト メ得ト メヨト メヨト

э

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of $H^2_{\mathbb{C}}$

Step 1. For q = p/2 small, closed L^q 2-forms admit boundary values. Use the radial vectorfield $\xi = \frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_t , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^q ,

$$\phi_t^* \alpha = \alpha + d \left(\int_0^t \phi_s^* \iota_\xi \alpha \, ds \right)$$

has a limit as $t \to +\infty$ under the assumptions of the theorem.

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of $H^2_{\mathbb{C}}$

Step 1. For q = p/2 small, closed L^q 2-forms admit boundary values. Use the radial vectorfield $\xi = \frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_t , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^q ,

$$\phi_t^* \alpha = \alpha + d \left(\int_0^t \phi_s^* \iota_\xi \alpha \, ds \right)$$

has a limit as $t \to +\infty$ under the assumptions of the theorem.

Step 2. Boundary value determines cohomology class.

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of $H^2_{\mathbb{C}}$

Step 1. For q = p/2 small, closed L^q 2-forms admit boundary values. Use the radial vectorfield $\xi = \frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_t , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^q ,

$$\phi_t^* \alpha = \alpha + d \left(\int_0^t \phi_s^* \iota_\xi \alpha \, ds \right)$$

has a limit as $t \to +\infty$ under the assumptions of the theorem.

Step 2. Boundary value determines cohomology class.

Step 3. This implies $S_p(u)$ is a subalgebra.

Examples Royden algebra Subalgebra theorem Boundary values for differential forms L^p -cohomology of $H^2_{\mathbb{C}}$

Step 1. For q = p/2 small, closed L^q 2-forms admit boundary values. Use the radial vectorfield $\xi = \frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_t , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^q ,

$$\phi_t^* \alpha = \alpha + d \left(\int_0^t \phi_s^* \iota_\xi \alpha \, ds \right)$$

has a limit as $t \to +\infty$ under the assumptions of the theorem.

Step 2. Boundary value determines cohomology class.

Step 3. This implies $S_p(u)$ is a subalgebra. Let $v, v' \in S_p(u)$. Then $[dv] \smile [du]$ vanishes if and only if its boundary value $dv_{\infty} \wedge du_{\infty} = 0$ a.e. Then $v'_{\infty} dv_{\infty} \wedge du_{\infty} + v_{\infty} dv'_{\infty} \wedge du_{\infty} = 0$ a.e., showing that $[d(vv')] \smile [du] = 0$, i.e. $vv' \in S_p(u)$.

 L^p -cohomology of H^2_{C}

Now we compute $H^{2,q}(H^2_{\mathbb{C}})$ for 2 < q = p/2 < 4.

-

3 N

э

Now we compute $H^{2,q}(H^2_{\mathbb{C}})$ for 2 < q = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View $H^2_{\mathbb{C}}$ as a product $\mathbb{H}^1 \times \mathbb{R}$. Prove a Künneth type theorem.

-

Now we compute $H^{2,q}(H^2_{\mathbb{C}})$ for 2 < q = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View $H^2_{\mathbb{C}}$ as a product $\mathbb{H}^1 \times \mathbb{R}$. Prove a Künneth type theorem.

For $q \notin \{4/3, 2, 4\}$, differential forms α on $H^2_{\mathbb{C}}$ split into components α_+ and α_+ which are contracted (resp. expanded) by ϕ_t . Then

$$h_t: \alpha \mapsto \int_0^t \phi_s^* \iota_{\xi} \alpha_+ \, ds - \int_{-t}^0 \phi_s^* \iota_{\xi} \alpha_- \, ds$$

converges as $t \to +\infty$ to a bounded operator h on L^q . P = 1 - dh - hdretracts the L^q de Rham complex onto a complex \mathcal{B} of differential forms on \mathbb{H}^1 with missing components and weakly regular coefficients.

Step 2. If 2 < q < 4, this complex is nonzero in degrees 1 and 2. \mathcal{B}^1 consists of 1-forms which are multiples of τ .

-

-

Step 2. If 2 < q < 4, this complex is nonzero in degrees 1 and 2. \mathcal{B}^1 consists of 1-forms which are multiples of τ .

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a differential equation.

Let τ denote the invariant contact form on \mathbb{H}^1 . If $\alpha \in \mathcal{B}^2$ is a 2-form, then $\alpha \in d\mathcal{B}^1$ if and only if α satisfies the linear differential equation

$$\alpha = d(\frac{\tau \wedge \alpha}{\tau \wedge d\tau}\tau).$$

If $dv \wedge du$ is a solution, $d(v^2) \wedge du$ is not a solution, unless dv is proportional to du.

Step 2. If 2 < q < 4, this complex is nonzero in degrees 1 and 2. \mathcal{B}^1 consists of 1-forms which are multiples of τ .

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a differential equation.

Let τ denote the invariant contact form on \mathbb{H}^1 . If $\alpha \in \mathcal{B}^2$ is a 2-form, then $\alpha \in d\mathcal{B}^1$ if and only if α satisfies the linear differential equation

$$\alpha = d(\frac{\tau \wedge \alpha}{\tau \wedge d\tau}\tau).$$

If $dv \wedge du$ is a solution, $d(v^2) \wedge du$ is not a solution, unless dv is proportional to du.

Failure of the subalgebra theorem for $H^2_{\mathbb{C}}$.

In coordinates (x, y, z) on \mathbb{H}^1 , one can take (locally) u = y and v = x. Then $dv \wedge du$ belongs to $d\mathcal{B}^1$, whereas $d(v^2) \wedge du$ does not. So for $4 , <math>\mathcal{S}_p(u)$ is not (locally) a subalgebra of $\mathcal{R}_p(H^2_{\mathbb{C}})$.