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Plan

Definition
Let G be the group of real points of an algebraic group. Let Γ be a finitely generated
group. Say a non Zariski dense homomorphism ρ : Γ → G is flexible if it is a limit of
Zariski dense homomorphisms, locally rigid otherwise.

Problem
Determine which homomorphisms of surface groups to almost simple Lie groups are
locally rigid.

Plan of lecture
We survey (global) rigidity results concerning surface groups in semisimple Lie groups.

We complement them with new flexibility results.



Toledo invariants

Let X be a Hermitean symmetric space, with Kähler form Ω (the metric is normalized
so that the minimal sectional curvature equals −1). Let Σ be a closed surface of
negative Euler characteristic, let Γ = π1(Σ) act isometricly on X . Pick a smooth
equivariant map f̃ : Σ̃ → X .

Definition
Define the Toledo invariant of the action ρ : Γ → Isom(X ) by

Tρ =
1

2π

Z
Σ

f̃ ∗Ω.

Then

1. Tρ depends continuously on ρ.

2. There exists `X ∈ Q such that Tρ ∈ `X Z.

3. |Tρ| ≤ |χ(Σ)||rank(X )|.



Rigidity in rank 1

Example
When X = H1

C is a line, inequality |Tρ| ≤ |χ(Σ)| is due to J. Milnor (1958).
Furthermore `X = 1, T takes all integer values between −|χ(Σ)| and |χ(Σ)|.

Theorem
(W. Goldman, 1980). Let X = H1

C. The level sets of T coincide with the connected
components of the character variety χ(Γ, PU(1, 1)). Furthermore |Tρ| = |χ(Σ)| if and
only if ρ(Γ) is discrete and cocompact in PU(1, 1) = Isom(H1

C).

Note that all components of χ(Γ, PU(1, 1)) have the same dimension 3|χ(Σ)|.

Theorem
(D. Toledo, 1979, 1989). Let X = Hn

C have rank 1. Then |Tρ| ≤ |χ(Σ)|. Furthermore,

|Tρ| = |χ(Σ)| if and only if ρ(Γ) stabilizes a complex geodesic H1
C in X and acts

cocompactly on it.

It follows that, for n ≥ 2, different components of χ(Γ, PU(n, 1)) can have different
dimensions.



Higher rank

Definition
Actions ρ such that |Tρ| = |χ(Σ)|rank(X ) are called maximal representations.

Example
Pick cocompact actions ρ1, . . . , ρr of Γ on H1

C. Then the direct sum representation on

the polydisk (H1
C)r is maximal. When the polydisk is embedded in a larger symmetric

space of rank r, it remains maximal. It follows that all Hermitean symmetric spaces
admit maximal representations.

Proposition
(Toledo, 1987). In case X is Siegel’s upper half space (i.e. Isom(X ) = Sp(n, R)), such
actions can be deformed to become Zariski dense.

In fact, this can be achieved by bending (Burger, Iozzi, Wienhard, 2005).
But this may fail for other Hermitean symmetric spaces.

Theorem
(L. Hernàndez Lamoneda, 1991, S. Bradlow, O. Garćıa-Prada, P. Gothen, 2003).
Maximal reductive representations of Γ to PU(p, q), p ≤ q, can be conjugated into
P(U(p, p)× U(q − p)).



Tube type

Definition
Say a Hermitean symmetric space is of tube type if it can be realized as a domain in
Cn of the form Rn + iC where C ⊂ Rn is a proper open cone.

Example
Siegel’s upper half spaces and Grassmannians with isometry groups PO(2, q) are of
tube type.
The Grassmannian Dp,q , p ≤ q, with isometry group PU(p, q) is of tube type iff
p = q.
The Grassmannian with isometry group SO∗(2n) is of tube type iff n is even.
The exceptional Hermitean symmetric space of dimension 27 is of tube type, the other
one (of dimension 16) is not.
Products of tube type spaces are of tube type, so polydisks are of tube type.

Lemma
All maximal tube type subsymmetric spaces in a Hermitean symmetric space are
conjugate.

Example
The maximal tube type subsymmetric space in Dp,q is Dp,p .



Tube type rigidity

Theorem
(Burger, Iozzi, Wienhard, 2003). Let Γ be a closed surface group and X a Hermitean
symmetric space. Every maximal representation Γ → Isom(X ) stabilizes a tube type
subsymmetric space Y and is Zariski dense in Isom(Y ).

In particular, maximal representations of surface groups in non tube type Hermitean
symmetric spaces are globally rigid.

Example
In case X is the n-ball D1,n (resp. Dp,q), one recovers Toledo’s (resp. Barlow et al.)
results.

Proof.

1. Surfaces admit ideal triangulations.

2. Ideal triangles in Hermitean symmetric spaces have their endpoints on the Shilov
boundary, in general position.

3. The Kähler area of an ideal triangle either takes an full interval of values (non
tube type case) or finitely many values (tube type case), in both cases bounded
by 1

2
rank(X ) (Clerc-Ørsted).

4. Equality holds iff the triangle is contained in a subsymmetric space of tube type.



Flexibility problem

Problem
Characterize locally rigid actions of closed surface groups on (non necessarily
Hermitean) symmetric spaces.

All previously known examples of flexibility can be obtained by bending representations.

Example
(Burger, Iozzi, Wienhard). In a tube type Hermitean symmetric space, a surface group
stabilizing a maximal polydisk and acting diagonally on it is flexible.



Flexibility results

Theorem
Amenable representations of surface groups into semisimple Lie groups are flexible,
provided genus is high enough, and up to restricting to a finite index subgroup.

Theorem
Let G be a simple Lie group. Let H ⊂ G be a semisimple subgroup. Let Γ be the
fundamental group of a closed surface of genus ≥ dim(G)2. Let ρ : Γ → H be a
Zariski dense homomorphism.

1. Let s be a semisimple Levi summand of the centralizer of H. Then ρ is flexible in
the semisimple group G ′ = H exp(s), i.e., can be approximated by Zariski dense
homomorphisms ρ′ : Γ → G ′.

2. If such a ρ′ is locally rigid in G, then the symmetric space of noncompact type
associated to G ′ is Hermitean of tube type, and the representation ρ′ : Γ → G ′ is
maximal.

3. If the centralizer z of G ′ in G is 1-dimensional, then ρ′ is locally rigid in G if and
only if G ′ is Hermitean of tube type and the induced symplectic representation on
g/(z⊕ g′) is maximal.



Comments

1. In case G is of Hermitean type and the Zariski closure of the homomorphism is
semisimple with a, this is an exact converse to the result by Burger et al (up to the
restriction on genus).

Example
If G = SU(p, q), H = SU(p, p), then G ′ = S(U(p, p)×U(q− p)) has a 1-dimensional
centralizer. Only one pair of nonzero opposite roots. If genus is ≥ (p + q)2, Zariski
dense representations to SU(p, p) are locally rigid in SU(p, q) if and only if they are
maximal.

2. Viewed as a rigidity result, the last statement is not fully satisfactory. Indeed, ρ′

could be flexible while ρ is locally rigid.

3. Work in progress : it should be possible to merge both theorems into a more
general one where no assumption is made on representations.

4. The restriction on genus is probably irrelevant.

5. Non constructive : deformations are not given by explicit formulae nor geometric
constructions.



Tools

Theorem
(W. Goldman, 1985). If Γ is a surface group and ρ is reductive, then, in a
neighborhood of the conjugacy class of ρ, Hom(Γ, G)/G is analytically equivalent to

{u ∈ H1(Γ, gad◦ρ) | [u, u] = 0}/ZG (ρ(Γ)).

Here, bracket denotes cup-product H1(Γ, gad◦ρ) → H2(Γ, gad◦ρ).

Remark
This can prove flexibility without providing explicit deformations.

The dimension of H1(Γ, gad◦ρ) can be computed via Euler characteristic and Poincaré
duality: H2(Γ, g) = (H0(Γ, g∗))∗.

Cup-products can be computed thanks to

Theorem
(W. Meyer, 1972). Let (E , Ω) be a flat symplectic vector bundle over Σ. The
quadratic form Q(a) =

R
Σ Ω(a ^ a) on H1(Σ, E) is nondegenerate of signature

4c1(E , Ω).



Flexibility: general remarks

Notation
χ(Γ, G) = Hom(Γ, G)/G.

Remark

I The dimension of χ(Γ, G) at points with trivial centralizers is |χ(Σ)|dim(G).

I If the genus of Σ is large enough, non Zariski dense homomorphisms form a
subset of χ(Γ, G) of dimension less than |χ(Σ)|dim(G).

I Therefore it is sufficient to prove density of smooth points in neighborhoods of
homomorphisms with nontrivial centralizers.

Remark
Semisimple centralizers z are treated by writing explicit cohomology classes u such
that [u, u] = 0, [·, ·] is a submersion at u and u has trivial stabilizer in z.

Indeed, Γ acts trivially on z. Pick suitable u ∈ H1(Γ)⊗ z = H1(Γ, z) ⊂ H1(Γ, g).

This allows to jump from H to G ′ = H exp(s), whose centralizer is split abelian.



Split abelian centralizers

If centralizer z is split abelian, g⊗ C splits under z into G ′-invariant root spaces gλ.
H1(Γ, g)⊗ C splits accordingly.

Lemma
[·, ·] vanishes on each H1(Γ, gλ).
H1(Γ, gλ) and H1(Γ, gµ) are orthogonal with respect to [·, ·] unless λ + µ = 0.

On each gλ,R = g ∩ (gλ ⊕ g−λ), all adZ , Z ∈ z are proportional. Therefore the
corresponding alternating forms (X , Y ) → Z · [X , Y ] are proportional to a single
G ′-invariant symplectic form Ωλ. On H1(Γ, gλ,R), all Z · [·, ·] are proportional to the
quadratic form Qλ(u, u) =

R
Σ Ωλ(u ^ u). Let ρλ : Γ → Sp(gλ,R, Ωλ) denote the

composed symplectic linear representation, and Eλ the corresponding symplectic
vectorbundle over Σ. Meyer’s formula yields

Lemma
If λ 6= 0, Qλ is nondegenerate and its index is equal to 4c1(Eλ). Therefore

4|c1(Eλ)| ≤ dim(H1(Γ, gλ)) = −χ(Σ)rank(Eλ).

In particular, Qλ is definite if and only if ρλ is a maximal representation.

If all inequalities are strict, pick in each H1(Γ, gλ), λ 6= 0, a nonzero uλ such that
Qλ(uλ) = 0. Then u =

P
uλ satisfies [u, u] = 0, [·, ·] is a submersion at u, u has

trivial stabilizer in z. Therefore u represents a smooth point of χ(Γ, G) nearby ρ′.



One-dimensional centralizers

If dim(z) = 1, then the scalar quadratic form [·, ·] =
P

λ>0 λQλ is definite if and only
if

4|
X
λ>0

c1(Eλ)| = −χ(Σ)
X
λ>0

rank(Eλ) = −χ(Σ)dim(g/(z⊕ g′)),

i.e. if and only if the symplectic representation on g/(z⊕ g′) is maximal.

Remark
g/(z⊕ g′) is the tangent space to the adjoint orbit of z, equipped with the
Kirillov-Kostant-Souriau symplectic structure.

The fact that G ′ has to be Hermitean of tube type follows from the following theorem.

Theorem
(Burger, Iozzi, Wienhard, 2007). Let S be a semisimple Lie group whose symmetric
space is Hermitean. Let ρ : Γ → S be a maximal representation of a surface group.
Then ρ is tight. Its Zariski closure G ′ is reductive of Hermitian type. The embedding
G ′ ↪→ S is tight. If S is of tube type, so is G ′.



Amenable representations

In semisimple Lie groups G = KAN, maximal amenable subgroups are, up to
conjugacy, of the form G ′ = K ′A′N′ where A′ ⊂ A, N′ ⊂ N, the centralizer of A can
be written MA, and K ′ = K ∩M. Furthermore, a′ is generated by its intersection with
the Weyl chamber a+ of a.

When conjugated by a one parameter subgroup of exp(a+), a homomorphism
ρ : Γ → G ′ converges to a homomorphism ρ′ : Γ → K ′A′. Thus density of Zariski
dense homomorphisms in a neighborhood of ρ′ implies the same property for ρ.

Up to finite index, one can deform ρ′ so that its Zariski closure contains K ′. Indeed,
there is no rigidity in compact connected semisimple Lie groups. Write K ′

0 as a central
extension of a semisimple group. Since such central extensions are classified by
discrete H2 groups, small deformations lift from base to extension, so Zariski dense
deformations exist in K ′

0 as well. To pass from K ′ to K ′
0 may require restricting to a

finite index subgroup.

Once this is done, the centralizer of ρ′ is A′, which is split abelian. Since one can use
equivariant maps which factor through flats to define the bundles Eλ, their first Chern
classes vanish, no maximal representation is encountered, and flexibility holds.


