# $L^p$ -cohomology and curvature pinching

P. Pansu

August 25th, 2011

Goal: explain how a tool from quantitative topology ( $L^p$ -cohomology) helps in solving a question in Riemannian geometry (optimal curvature pinching).

Let M be a Riemannian manifold. Let p>1.  $L^p$ -cohomology of M is the cohomology of the complex of  $L^p$ -differential forms on M whose exterior differentials are  $L^p$  as well,

 $H^{k,p}$  = closed k-forms in  $L^p/d((k-1)$ -forms in  $L^p)$ ,

 $R^{k,p} = {\it closed} \ k{\it -forms} \ {\it in} \ L^p/{\it closure} \ {\it of} \ d((k-1){\it -forms} \ {\it in} \ L^p),$ 

 $T^{k,p} = closure \ of \ d((k-1)-forms \ in \ L^p)/d((k-1)-forms \ in \ L^p).$ 

 $R^{k,p}$  is called the reduced cohomology.  $T^{k,p}$  is called the torsion.

#### Remark

If M is compact,  $L^p$ -cohomology equals cohomology.

## Remark

For (uniformly) contractible spaces,  $L^p$ -cohomology is quasiisometry invariant. Wedge product  $\alpha$ ,  $\beta \mapsto \alpha \land \beta$  induces cup-product  $[\alpha] \smile [\beta] : H^{k,p} \times H^{k',p} \to H^{k+k',p/2}$  in a quasiisometry invariant manner.

 $H^{k,p} = closed \ k$ -forms in  $L^p/d((k-1)-forms \ in \ L^p)$ ,  $R^{k,p} = closed \ k$ -forms in  $L^p/$  closure of  $d((k-1)-forms \ in \ L^p)$ ,

 $T^{k,p} = closure \ of \ d((k-1)-forms \ in \ L^p)/d((k-1)-forms \ in \ L^p).$ 

# Example

The real line  $\mathbb{R}$ .

 $H^{0,p} = 0.$ 

 $R^{1,p}=0$ , since every function in  $L^p(\mathbb{R})$  can be approximated in  $L^p$  with derivatives of compactly supported functions. Therefore  $H^{1,p}$  is only torsion.

 $T^{1,p}$  is non zero and thus infinite dimensional. Indeed, the 1-form  $\frac{dt}{t}$  (cut off near the origin) is in  $L^p$  for all p>1 but it is not the differential of a function in  $L^p$ .

$$H^{k,p}=$$
 closed k-forms in  $L^p/d((k-1)-$ forms in  $L^p)$ ,  $R^{k,p}=$  closed k-forms in  $L^p/$  closure of  $d((k-1)-$ forms in  $L^p)$ ,  $T^{k,p}=$  closure of  $d((k-1)-$ forms in  $L^p)/d((k-1)-$ forms in  $L^p)$ .

# Example

The real hyperbolic plane  $H_{\mathbb{R}}^2$ .

Here  $H^{0,p}=0=H^{2,p}$  for all p. If p=2, since the Laplacian on  $L^2$  functions is bounded below,  $T^{1,2}=0$ . Therefore

$$\begin{array}{lll} H^{1,2} & = & R^{1,2} \\ & = & \left\{ L^2 \text{ harmonic 1-forms} \right\} \\ & = & \left\{ \text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2 \right\} / \mathbb{R} \,. \end{array}$$

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the disk  $\it D.$ 

$$\begin{array}{lll} H^{1,2} & = & \{ \text{harmonic functions } h \text{ on } D \text{ with } \nabla h \in L^2 \} / \mathbb{R} \\ & = & \{ \text{Fourier series } \sum a_n e^{in\theta} \text{ with } a_0 = 0, \sum |n| \, |a_n|^2 < + \infty \}, \end{array}$$

which is Sobolev space  $H^{1/2}(\mathbb{R}/2\pi\mathbb{Z})$  mod constants.



# Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to  $L^p$  have boundary values  $u_\infty$  on the visual boundary. The cohomology class  $[du] \in H^{1,p}(M)$  vanishes if and only if  $u_\infty$  is constant.

Indeed, since volume in polar coordinates grows exponentially, and  $L^p(e^t\,dt)\subset L^1(dt)$ , the radial derivative belongs to  $L^1$ , so  $u_\infty(\theta)=\lim_{t\to\infty}u(\theta,t)$  exists a.e. If  $u_\infty=0$ , Sobolev inequality  $\|u\|_{L^p}\leq \|du\|_{L^p}$  applies, and [du]=0.

This suggests

#### Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra  $\mathcal{R}_p(M)$  as the space of  $L^\infty$  functions u on M such that  $du \in L^p$ , modulo  $L^p \cap L^\infty$  functions.

Then  $\mathcal{R}_{\rho}(M)$  identifies with an algebra of functions on the visual boundary of M. If M is homogeneous,  $\mathcal{R}_{\rho}(M)$  is a (possibly anisotropic) Besov space.

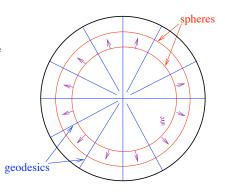
Step 1. For q small, closed  $L^q$  2-forms admit boundary values.

Use the radial vectorfield  $\xi=\frac{\partial}{\partial r}$  in polar coordinates and its flow  $\phi_t$ , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For  $\alpha$  a closed 2-form in  $L^q$ ,

$$\phi_t^* \alpha = \alpha + d \left( \int_0^t \phi_s^* \iota_\xi \alpha \, ds \right)$$

has a limit as  $t \to +\infty$  under some curvature pinching assumption.



Step 2. Boundary value determines cohomology class.

#### Theorem

If  $\dim(M)=4$ , M is  $\delta$ -pinched and  $q<1+2\sqrt{-\delta}$ , then a boundary value operator is defined, it injects  $H^{2,q}$  into closed forms on the boundary. In particular,  $T^{2,q}=0$ .

 $\delta$ -pinched means sectional curvature  $\in [-1, \delta]$ .

Let M be a Riemannian manifold. Let  $-1 \le \delta < 0$ . Say M is  $\delta$ -pinched if sectional curvature ranges between -1 and  $\delta$ . Define the optimal pinching  $\delta(M)$  of M as the least  $\delta \ge -1$  such that M is quasiisometric to a  $\delta$ -pinched simply connected Riemannian manifold.

# Example

Let  $M = \mathbb{R}^4$  with metric  $dt^2 + e^t dx^2 + e^t dy^2 + e^{2t} dz^2$ . Then  $\delta(M) = -\frac{1}{4}$ .

**Proof**. M is  $-\frac{1}{4}$ -pinched.  $T^{2,q}(M) \neq 0$  for 2 < q < 4.

#### Theorem

If dim(M) = 4, M is  $\delta$ -pinched and  $q < 1 + 2\sqrt{-\delta}$ , then  $T^{2,q} = 0$ .

## Remark

For (uniformly) contractible spaces, L<sup>p</sup>-cohomology is quasiisometry invariant.

Let M be a Riemannian manifold. Let  $-1 \le \delta < 0$ . Say M is  $\delta$ -pinched if sectional curvature ranges between -1 and  $\delta$ . Define the optimal pinching  $\delta(M)$  of M as the least  $\delta \ge -1$  such that M is quasiisometric to a  $\delta$ -pinched simply connected Riemannian manifold.

# Example

Let  $M=\mathbb{R}^4$  with metric  $dt^2+e^tdx^2+e^tdy^2+e^{2t}dz^2$ . Then  $\delta(M)=-\frac{1}{4}$ .

M is isometric to a left-invariant metric on the Lie group  $\mathbb{R} \ltimes \mathbb{R}^3$ .

# Example

Let  $M=\mathbb{R}^4$  with metric  $dt^2+e^tdx^2+e^tdy^2+e^{2t}(dz-xdy)^2$ . Then M is  $-\frac{1}{4}$ -pinched, but  $T^{2,q}(M)=0$  for  $2\leq q<4$ .

M is isometric to a left-invariant metric on the Lie group  $\mathbb{R} \ltimes Heis$ . M is isometric to *complex hyperbolic plane*  $H^2_{\mathbb{C}}$ .

Complex hyperbolic space  $H^m_{\mathbb C}$  is a metric on the ball in  $\mathbb C^m$  which is invariant under all holomorphic automorphisms. In  $H^m_{\mathbb C}$ , every geodesic is contained in a complex line (a totally geodesic plane of curvature -1). Every plane orthogonal to a complex line integrates into a totally geodesic plane of curvature  $-\frac{1}{4}$ .

Spheres in  $H^m_{\mathbb{C}}$  are homogeneous under conjugates of  $\tilde{U}(m)$ . Horospheres are homogeneous under Heisenberg group  $Heis^{m-1}$ .

There are quaternionic  $H_{\mathbb{H}}^m$  and octonionic  $H_{\mathbb{Q}}^2$  siblings.

All are  $-\frac{1}{4}$ -pinched.

Together with ordinary hyperbolic space  $H^n_{\mathbb{R}}$ , these constitute the list of all negatively curved symmetric spaces (i.e. geodesic inversion is an isometry), E. Cartan, 1925.

And also the list of all noncompact Riemannian manifolds with 2-point transitive isometry groups, J. Tits, 1955.

All have compact quotients.

#### Question

Is it true that the optimal pinching of  $H^m_{\mathbb C}$ ,  $H^m_{\mathbb H}$   $(m\geq 2)$  and  $H^2_{\mathbb O}$  is  $-\frac{1}{4}$ ?

If one sticks to Riemannian manifolds admitting a compact quotient, the answer has been known since the 1980's, including the equality case.

#### Fact

Let N be a compact quotient of  $H^m_{\mathbb{C}}$ ,  $H^m_{\mathbb{H}}$   $(m \ge 2)$  or  $H^2_{\mathbb{O}}$ . If a metric on N is  $-\frac{1}{4}$ -pinched, then it lifts to a symmetric metric.

#### This is due to

- M. Ville, 1984 for  $H_{\mathbb{C}}^2$  (estimate on a characteristic class),
- L. Hernández-Lamoneda, 1991, and independently S.T. Yau and F. Zheng, 1991 for  $H_F^m$ ,
- N. Mok, Y.T. Siu and S.K. Yeung, 1993, and independently J. Jost and S.T. Yau, 1993 for other spaces (harmonic maps).

#### Theorem

The optimal pinching of  $H^2_{\mathbb{C}}$  is equal to  $-\frac{1}{4}$ .

# Scheme of proof

- Recall Royden algebras  $\mathcal{R}_p(M)$ , p > 1, are quasi-isometry invariants.
- Given  $u \in \mathcal{R}_p$ , define a vectorsubspace  $\mathcal{S}_p(u) \subset \mathcal{R}_p$ , in a quasi-isometry invariant manner.
- If M is  $\delta$ -pinched and  $p < 2 + 4\sqrt{-\delta}$ , then for every u,  $S_p(u)$  is a subalgebra of  $\mathcal{R}_p$ .
- If  $M = H^2_{\mathbb{C}}$ , for all  $p \in (4,8)$ , there exists (locally)  $u \in \mathcal{R}_p$  such that  $\mathcal{S}_p(u)$  is not a subalgebra of  $\mathcal{R}_p$ .

### Definition

Let M be a simply connected negatively curved manifold, let p>4, let  $u\in\mathcal{R}_p(M)$ . Define

$$S_p(u) = \{ v \in \mathcal{R}_p(M) \mid [dv] \smile [du] = 0 \in H^{2,p/2}(M) \}.$$



Let M be a simply connected negatively curved manifold, let p>4, let  $u\in\mathcal{R}_p(M)$ . Define

$$S_p(u) = \{ v \in \mathcal{R}_p(M) \mid [dv] \smile [du] = 0 \in H^{2,p/2}(M) \}.$$

#### Theorem

If M is 4-dimensional,  $\delta$ -pinched and  $p < 2 + 4\sqrt{-\delta}$ , then for every u,  $S_p(u)$  is a subalgebra of  $\mathcal{R}_p(M)$ .

**Proof**. Let  $v, v' \in \mathcal{S}_p(u)$ . Then  $[dv] \smile [du]$  vanishes if and only if its boundary value  $dv_\infty \wedge du_\infty = 0$  a.e. Then  $v'_\infty dv_\infty \wedge du_\infty + v_\infty dv'_\infty \wedge du_\infty = 0$  a.e., showing that  $[d(vv')] \smile [du] = 0$ , i.e.  $vv' \in \mathcal{S}_p(u)$ .

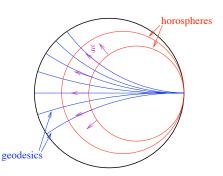
Now we compute  $H^{2,q}(H^2_{\mathbb{C}})$  for 2 < q = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View  $H^2_{\mathbb{C}}$  as a product  $\mathbb{H}^1 \times \mathbb{R}$ . Prove a Künneth type theorem.

For  $q \notin \{4/3,2,4\}$ , differential forms  $\alpha$  on  $H^2_{\mathbb{C}}$  split into components  $\alpha_+$  and  $\alpha_+$  which are contracted (resp. expanded) by  $\phi_t$ . Then

$$h_t: \alpha \mapsto \int_0^t \phi_s^* \iota_\xi \alpha_+ \, ds - \int_{-t}^0 \phi_s^* \iota_\xi \alpha_- \, ds$$

converges as  $t \to +\infty$  to a bounded operator h on  $L^q$ . P=1-dh-hd retracts the  $L^q$  de Rham complex onto a complex  $\mathcal B$  of differential forms on  $\mathbb H^1$  with missing components and weakly regular coefficients.



Step 2. If 2 < q < 4, this complex is nonzero in degrees 1 and 2.  $\mathcal{B}^1$  consists of 1-forms which are multiples of the left-invariant contact form  $\tau$  on  $\mathbb{H}^1$ .

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a differential equation.

If  $\alpha\in\mathcal{B}^2$  is a 2-form, then  $\alpha\in d\mathcal{B}^1$  if and only if  $\alpha$  satisfies the linear differential equation

$$\alpha = d(\frac{\tau \wedge \alpha}{\tau \wedge d\tau}\tau).$$

If  $dv \wedge du$  is a solution,  $d(v^2) \wedge du$  is not a solution, unless dv is proportional to du.

# Failure of the subalgebra theorem for $H^2_{\mathbb{C}}$ .

In coordinates (x,y,z) on  $\mathbb{H}^1$ , one can take (locally) u=y and v=x. Then  $dv \wedge du = -d\tau$  belongs to  $d\mathcal{B}^1$ , whereas  $d(v^2) \wedge du$  does not. So for  $4 , <math>\mathcal{S}_p(u)$  is not (locally) a subalgebra of  $\mathcal{R}_p(H^2_{\mathbb{C}})$ .

# Other rank one symmetric spaces.

The comparison theorem works for all of them: in the definition of  $\mathcal{S}_\kappa$ , replace du by a cohomology class  $\kappa$  of degree 1, resp. 3 resp. 7. Steps 1 and 2 of the  $L^q$  computation in degree 2 resp. 4 resp. 8 are unchanged. It turns out that for all spaces but  $H^2_{\mathbb{C}}$ , the differential equation of Step 3 is a consequence of  $d\alpha=0$ , so  $\mathcal{S}_\kappa$  is an algebra in these cases