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Pledge in favor of analysis on metric spaces

Bourdon and Pajot’s quasiisometric rigidity of Fuchsian buildings

Let X be the ideal boundary of a Fuchsian building. They produce a differential for
quasiMöbius selfhomeomorphisms f of X , show that it has to be a similarity, and
conclude that f is conformal, i.e. preserves a crossratio.

Bonk and Kleiner’s strategy for Cannon’s conjecture.

Let G be a hyperbolic group whose ideal boundary is a topological 2-sphere.

I Find a Loewner metric in the conformal gauge by minimizing Assouad dimension
over Ahlfors regular metrics.

I Show that such a metric is quasiMöbius to the round metric on the 2-sphere
(done).

One has to investigate degenerating sequences of metrics in presence of a group action
that dilates. Differentiability properties should show up.



Results

Theorem
(J. Cheeger, B. Kleiner, 2006). The Heisenberg group (H, d) does not quasiisometricly
embed in L1.

Theorem
(J. Lee, A. Naor, 2006). There is an equivalent metric d ′ on the Heisenberg group
such that (H, d ′1/2) isometricly embeds into L2.

The proof of Cheeger and Kleiner’s theorem seems to me relevant to the present
conference, since it develops a new concept of differentiability on metric spaces.

Plan of lectures

1. Motivation from geometric group theory

2. Motivation from computer science

3. Earlier non embedding results

4. Proof of non embedding to L1



Motivation from geometric group theory

Definition
A map f : X → Y between metric spaces is a uniform embedding if there exist a
constant C and a function φ that tends to +∞ at ∞ such that for all x, x ′ ∈ X,

φ(d(x , x ′)) ≤ d(f (x), f (x ′)) ≤ C d(x , x ′).

Theorem
(G. Yu, 2000). Groups with uniform embeddings into Hilbert spaces satisfy the coarse
Baum-Connes conjecture.

Theorem
(M. Gromov, 2003). There exist finitely presented groups with no uniform embeddings
into Hilbert spaces.

This motivates the following quantitative measurement of uniform embeddings.

Definition
The largest possible φ in the above definition is called the compression of f .

Question
Given a metric space X and a class of metric spaces Y, what is the largest possible
compression over all maps f of X to elements of Y ?



Examples of Hilbert and `p embeddings

Theorem
(J. Bourgain, 1986, R. Tessera, 2006). Let φ be the compression of some

`p-embedding of a regular tree. Then

Z +∞

1
(
φ(t)

t
)max{2,p} dt

t
< +∞.

Conversely, every increasing function satisfying

Z +∞

1
(
φ(t)

t
)p

dt

t
< +∞ is bounded

from above by the compression of some `p embedding of an arbitrary space in the
following list : regular trees, cocompact lattices in connected Lie groups, hyperbolic
groups, wreath products F |Z for finite F .

Example
(Folklore). Trees embed into `p with compression φ(t) ≥ t1/p .

Indeed, fix an origin o ∈ T 0 and isometricly embed the tree T to `1(T 0) by mapping
a vertex x to the characteristic function of the geodesic from o to x . Then map
`1(T 0) to `p(T 0) in the obvious manner. This has compression t1/p .

Question
Are all useful uniform `p embeddings obtained in this manner ?

For a while, it might have seemed so. Yu’s Property A, a sufficient condition for a
metric space to embed uniformly into L2, works this way.



Motivation from computer science

For several basic problems, the best known algorithm relies on efficiently embedding
some finite metric space simultaneously in Euclidean space and in L1. Which shall give
an example soon, Sparsest Cut.

The best known approximate algorithm for Sparsest Cut, SDP (to be explained next),
yields in the worst case, for an n-vertex graph, an answer which is wrong by a factor
equal to Ln defined as follows.

Notation
Consider all n-point metric spaces (X , d) such that (X , d1/2) embeds isometricly into
Euclidean space. Let Ln be the smallest L such that every such metric space admits
an L-Lipschitz and distance nondecreasing embedding into L1.

This has lead M.X. Goemans (in 1997) and N. Linial (in 2002) to ask wether Ln could
be bounded independantly of n.

In 2005, S. Khot and N. Vishnoi provided a counterexample.

It turns out that balls in the Cayley graph of the integral Heisenberg group provide
nicer counterexamples.



Sparsest Cut

Problem
Sparsest Cut, i.e. computing the Cheeger constant of a finite graph.

A cut in a weighted graph G is a partition of vertices as G0 = S ∪ S̄ .

Φ(S) =
#∂S

#S #S̄
,

and define the Cheeger constant Φ∗(G) = min
∅(S(G0

Φ(S).

Computing Φ∗ is NP-hard. Computing an approximate solution S is a basic step in
several useful algorithms.

Observe that

Φ(S) =

P
edges uv m(uv)|1S (u)− 1S (v)|P

u

P
v |1S (u)− 1S (v)|

.

Let d(u, v) = |1S (u)− 1S (v)|. This is a semi-metric on G0, induced by a map to the
2-point set {0, 1}. The convex hull of such semi-metrics consists exactly of all
semi-metrics induced by maps to some L1-space. Therefore

Φ∗ = min
d embeddable into L1

P
edges uv m(uv)d(u, v)P

u

P
v d(u, v)

= min{
X

edges uv

m(uv)d(u, v) | d embeddable into L1,
X

u

X
v

d(u, v) = 1}.

Unfortunately, deciding wether a metric on a finite set is embeddable into L1 is
NP-complete.



A linear programming approach to Sparsest Cut

Relax the problem by removing the L1-embeddability condition. This leads to a linear
programming problem, denoted by LP, for which there exist efficient algorithms. Let
ΦLP denote the infimum.

Theorem
(J. Bourgain, 1985). Every n-point metric space embeds into L2 (and thus into L1)
with distorsion at most O(log(n)).

Corollary
(N. Linial, E. London, Y. Rabinovich, 1995). Bourgain’s theorem can be made
algorithmic, thus

ΦLP ≤ Φ∗ ≤ C log(n)ΦLP ,

showing that LP computes efficiently Φ∗ up to a log(n) factor.

Proof. The L1-embeddable metric d ′ which is O(log(n)) close to the solution d of LP

satisfies
Φ∗ ≤ Φ(d ′) ≤ C log(n)Φ∗ = C log(n)ΦLP .

Remark
Bourgain’s theorem is sharp, as shown by bounded degree expanders.



A semidefinite programming approach to Sparsest Cut

Observe that

Φ(S) =

P
edges uv m(uv)|1S (u)− 1S (v)|2P

u

P
v |1S (u)− 1S (v)|2

.

Relax the problem by allowing real valued functions x : G0 → R instead of
{0, 1}-valued ones, keeping the constraint, satisfied by characteristic functions, that
for all u, v and w ∈ G0,

|x(u)− x(v)|2 ≤ |x(u)− x(w)|2 + |x(w)− x(v)|2.

This leads to a semidefinite programming problem, denoted by SDP. Let ΦSDP = Φ(x)
be the minimum. There exist again efficient algorithms for computing ΦSDP .
Set d(u, v) = |x(u)− x(v)|2. This is a distance on G0, and d1/2 is induced by a map
to Euclidean space. Therefore

ΦSDP = min{
X

edges uv

m(uv)d(u, v) | d distance,
√

d embeddable into L2,
X

u

X
v

d(u, v) = 1}.

Clearly,

ΦSDP ≤ Φ∗ ≤ LnΦ
SDP ,

showing that Φ∗ can be efficiently computed up to a Ln factor.



Estimating Ln

Theorem
(S. Arora, J. Lee, A. Naor, 2005). Let (X , d) be an n-point metric space. Assume
that (X , d1/2) embeds isometricly into L2. Then (X , d) also embeds into L2 with

distorsion O(
p

log(n) log(log(n))). In other words, Ln = O(
p

log(n) log(log(n))).

Remark
This is nearly sharp, since the vertex set of the `1 n-dimensional cube cannot embed
into L2 with distorsion <

√
n (Enflo, 1969).

Corollary
Ln = O(

p
log(n) log(log(n))).

Indeed, L2 embeds isometricly into L1.

Remark
Non-embeddability of Heisenberg group implies some lower bound on Ln. Cheeger,
Kleiner and Naor claim that it can be made effective. Conjecturally,
Ln = Ω(log(log(n))δ) for some δ > 0.

Conclusion
The SDP approach gives the best known solution for the general Sparsest Cut. In
case all weights are equal, S. Arora, E. Hazan, S. Kale (2004) give a different

polynomial algorithm which computes Φ∗ up to an O(
p

log(n)) factor.



Previously known embedding facts about Heisenberg group and other PI
spaces

Theorem
(Semmes, 1996). H has no quasiisometric embeddings into finite dimensional Banach
spaces.
(Pauls, 2001). H has no quasiisometric embeddings into Hilbert spaces, or more
generally, CAT (0) spaces.
(Cheeger-Kleiner, 2006). H has no quasiisometric embeddings into Banach spaces
which have the Radon-Nikodym property (this includes separable dual spaces).

Definition
(Heinonen-Koskela, 1996). Say a metric measure space is PI if it is doubling and
satisfies a (1, p)-Poincaré inequalityI

B
|f −

I
B

f | ≤ const. diameter(B)

„I
2B
|∇f |p

«1/p

,

for all upper gradients |∇f | of f .

Theorem
(Cheeger-Kleiner, 2006). PI spaces whose tangent cones have Hausdorff dimension
greater that their topological dimension have no biLipschitz embeddings into Banach
spaces which have good finite dimensional approximations. This includes `1. However,
among such spaces, there are examples which embed into L1.



Facts about Heisenberg group

Definition
Heisenberg group H is the 3-dimensional Lie group with Lie algebra spanned by ξ, η
and ζ with [ξ, η] = ζ. The left-invariant vectorfields ξ and η span a plane field H,
Carnot distance d(x , x ′) is inf of length of curves tangent to H joining x to x ′.
Dilation δt is automorphism induced by δt(ξ) = tξ, δt(η) = tη, δt(ζ) = t2ζ. It
multiplies Carnot distances by t.

Finiteness of Carnot distance follows from picture:
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Remark

1. d(x , x exp(t2ζ)) = td(1, exp(ζ)) = const. t.

2. volumeB(x , t) = t4volumeB(x , 1) = const. t4, thus Hausdorff dimension is 4.



Proof of nonembeddability of Heisenberg group into RNP Banach spaces

1. Horizontal derivatives exist almost everywhere.

This is what the Radon-Nikodym property is good for.

2. They are approximately continuous at a.e. point.

This is general for doubling spaces.

3. At such a point x, d(f (x), f (x ′)) = o(d(x , x ′)) if x ′ belongs to the vertical line
through x .

Let x ′ = x exp(t2ζ), so that d(x , x ′) ∼ t. Join x to x ′

along integral curves of ξ, η, −ξ, −η, with endpoints
x = x0, x1, x2, x3, x4 = x ′. Then

f (x1)− f (x) ∼ tξf (x), f (x3)− f (x2) ∼ −tξf (x),

thus
f (x1)− f (x) + f (x3)− f (x2) = o(t).

Idem f (x2)− f (x1) + f (x ′)− f (x3) = o(t). Summing
up yields f (x ′)− f (x) = o(t).
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Scheme of proof of L1-non embeddability

Remark
L1 is not Radon-Nikodym.

Indeed, t 7→ 1[0,t], R+ → L1(R+), is isometric, but nowhere differentiable.

Scheme of proof
of L1-non embeddability.

1. To a map f : X → L1(Y , ν), there corresponds a canonical measured family of
subsets S ⊂ X , generalizing level sets.

2. f has bounded variation if and only if almost every S has finite perimeter.

3. (Franchi, Serapioni, Serra-Cassano, 2001). If S ⊂ H has finite perimeter, then at
almost every boundary point, δt -blown up copies of S converge to vertical
half-spaces.

4. Near good points, at small scales, f nearly factorizes via H/[H, H], preventing f
from being biLipschitz.



Cut semi-metrics

Definition
An elementary cut semi-metric on X is dS (x , x ′) = |1S (x)− 1S (x ′)| for some cut
S ⊂ X. A cut semi-metric is a sum of elementary cut semi-metrics, i.e.

d(x , x ′) =

Z
{S}

dS (x , x ′) dµd (S)

for some positive measure µd on the set of cuts.

Lemma
(P. Assouad, 1977). A semi-metric d on X is induced by a map f : X → L1(Y , ν) if
and only if it is a cut semi-metric.

Corollary
L1-embeddable semi-metrics on X are closed under pointwise convergence.

In particular, a quasiisometric embedding of H to L1 gives rise to biLipschitz
embeddings.

Proof of Assouad’s lemma, ⇐. Assume d is a cut semi-metric. Fix o ∈ X . Let S(x)
be the set of cuts separating x from o. Then x 7→ 1S(x) embeds (X , d) isometricly in

L1({S}, µd ).



The cut measure

Definition
The epigraph of a function u : Y → R is Eu = {(y , t) ∈ Y × R | t−1u(y) > 1}.

t

y

u

y

tE E

E Eu v

v

Lemma
If u, v ∈ L1(Y , ν), ||u − v ||L1 = (ν ⊗ dt)(Eu∆Ev ).

Proof of Assouad’s lemma, ⇒. Let f : X → L1(Y , ν). To each (y , t) ∈ Y × R, there
corresponds a cut S(y , t) = {x ∈ X | (y , t) ∈ Ef (x)} = {x ∈ X | t−1f (x)(y) > 1}. Let
µf = S∗(ν ⊗ dt). Then for all x , x ′ ∈ X ,

d(f (x), f (x ′)) = ||f (x)− f (x ′)||L1 = (ν ⊗ dt)(Ef (x)∆Ef (x′))

=

Z
Y×R

|1Ef (x)
(y , t)− 1Ef (x′)

(y , t)| dν(y) dt

=

Z
Y×R

|1S(y,t)(x)− 1S(y,t)(x
′)| dν(y) dt

=

Z
{S}

|1S (x)− 1S (x ′)| dµf (S).



Bounded variation

Definition
Let X be a PI space, Y a metric space. Say an L1 map f : X → Y has bounded
variation if it is the L1-limit of a sequence of locally Lipschitz functions hi with Liphi

bounded in L1. The inf of limits of
R

Liphi over all L1-approximating sequences hi is
called the variation of f .

Say a subset S ⊂ X has finite perimeter if its characteristic function 1S has bounded
variation. Its perimeter equals the variation of 1S .

For real valued BV functions h, the coarea formula reads

variation(h) =

Z
R

perimeter({h > t}) dt.

This extends to maps X → L1(Y , ν) as follows.

Theorem
(Cheeger-Kleiner). Let X be PI. Let f ∈ L1(X , L1(Y , ν)). Then f has bounded
variation if and only if µf -every cut has finite perimeter. FurthermoreZ
{S}

perimeter(S) dµf (S) =

Z
Y

variation(f (·, y)) dν(y) ≤ const. variation(f ).



Bad points

From now on, X = Rn or X = H. A half-space in H is the inverse image of R+ by a
group homomorphism H → R (it has to be vertical).

Notation
For S ⊂ X, x ∈ ∂S, let α(S , x , r) = min

H half−space thru x

I
B(x,r)

|1S − 1H |. Say a point

x is (ε, R)-bad for S if there exists r < R such that α(S , x , r) > ε. Denote the set of
(ε, R)-bad points for S by Badε,R(S).

For each S , the perimeter of S is a measure ||∂S || on X , supported on the boundary of
S . One can restrict it to bad points. Given a measure µ on finite perimeter cuts, the
total bad perimeter measure λµ,ε,R is defined on continuous functions u byZ

X
u(x) dλµ,ε,R(x) =

Z
{S}

Z
Badε,R (S)

u(x) d ||∂S ||(x) dµ(S).

Theorem
(Franchi, Serapioni, Serra-Cassano, 2001). Let S be a set of finite perimeter in H. The
mass of the perimeter measure restricted to Badε,R(S) tends to 0 as R tends to 0.

Corollary
Let µ be a measure on finite perimeter sets. The mass of λµ,ε,R tends to 0 as R tends
to 0.



Approximating a cut measure by a half-space cut measure

Let µ be a measure on finite perimeter cuts, let dµ be the corresponding cut
semi-metric. Given x ∈ X and r > 0, let δ∗x,rdµ denote the distance composed with
the dilation by r around point x .

Theorem
(Cheeger-Kleiner). For a.e. x ∈ X, there exist measures µr supported on half-space
cuts such that || 1

r
δ∗x,rdµ − dµr || tends to 0 in L1(X × X ).

Proof. Differentiating the total bad perimeter measure yields near a.e. point x a set of
almost full measure in B(x , r) of points where µ-most cuts are close to half-spaces
measurewise. For each such cut S , select the closest half-space HS(S), let
µr = (δx,r )∗µ.

Proof of nonembedding theorem. If f : H → L1 is biLipschitz, with cut-measure µ,
dµ(x ′, x ′′) = d(f (x ′), f (x ′′)) ≥ const.d(x ′, x ′′), thus

1

r
δ∗x,rdµ(x ′, x ′′) ≥ const.d(x ′, x ′′).

On the other hand, a cut semi-metric concentrated on half-spaces satisfies

dµr (x
′, x ′′) = dµr (x

′ mod Z(H), x ′′ mod Z(H)).

Such semi-metrics cannot be L1-close.



Unit normals for finite perimeter sets

We sketch the proof of Franchi, Serapioni and Serra-Cassano’s rectifiability theorem.
Again, X = Rn or H. Fix a finite perimeter set S ⊂ X . To define a unit normal along
the boundary, the divergence formula is used. In H, divergence is defined as follows :
for φ = φξξ + φηη, div(φ) = ξφξ + ηφη .

Lemma
(De Giorgi, 1954). There exists a measurable horizontal unit vectorfield ν such that
for all smooth compactly supported horizontal vectorfields φ,

−
Z

S
div(φ) =

Z
X
〈ν, φ〉d ||∂S ||.

Proof. For Lipschitz functions h, divergence formula holds and implies

|
Z

S
h div(φ)| ≤ ||φ||L∞

Z
X

Liph,

showing that φ 7→ −
R
S div(φ) is a (vector valued) Radon measure with mass no

greater than variation(h). This fact extends to arbitrary functions of bounded
variation like 1S . In this case, the Radon measure is absolutely continuous with
respect to perimeter measure, with ν as a density (Riesz).



Rectifiability of finite perimeter sets

Lemma
(Ambrosio, 2001). At ||∂S ||-a.e. point x, the ||∂S ||-mass of a ball B(x , r) is ∼ r3.

According to Federer, this implies that averages of the unit normals converge.

By compactness, dilates δx,1/r (S) subconverge to some locally finite perimeter set E
as r → 0. Unit normals also subconverge ||∂S ||-a.e., showing that the horizontal unit
normal of E is a.e. constant.

Lemma
A set E with locally finite perimeter whose horizontal unit normal of E is a.e. equal to
ξ is a half-space

Indeed, travelling from the origin both sides along η-orbits and positively along ξ-orbits
can reach exactly all points of a (vertical) half-space. This completes the proof.

More is known.

Theorem
(Franchi, Serapioni and Serra-Cassano, 2001). Finite perimeter sets in H are, up to
sets of vanishing 3-dimensional Hausdorff measure, countable unions of compact
pieces of surfaces defined by C1 equations g = 0 where the horizontal gradient of g
does not vanish.


