# Quasiisometric embeddings of the Heisenberg group into $L^p$ , after Cheeger, Kleiner, Lee, Naor

P. Pansu

February 23, 2007

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Bourdon and Pajot's quasiisometric rigidity of Fuchsian buildings

Let X be the ideal boundary of a Fuchsian building. They produce a differential for quasiMöbius selfhomeomorphisms f of X, show that it has to be a similarity, and conclude that f is conformal, i.e. preserves a crossratio.

### Bonk and Kleiner's strategy for Cannon's conjecture.

Let G be a hyperbolic group whose ideal boundary is a topological 2-sphere.

- Find a Loewner metric in the conformal gauge by minimizing Assouad dimension over Ahlfors regular metrics.
- Show that such a metric is quasiMöbius to the round metric on the 2-sphere (done).

One has to investigate degenerating sequences of metrics in presence of a group action that dilates. Differentiability properties should show up.

# Results

### Theorem

(J. Cheeger, B. Kleiner, 2006). The Heisenberg group  $(\mathbb{H}, d)$  does not quasiisometricly embed in  $L^1$ .

## Theorem

(J. Lee, A. Naor, 2006). There is an equivalent metric d' on the Heisenberg group such that  $(\mathbb{H}, d'^{1/2})$  isometricly embeds into  $L^2$ .

The proof of Cheeger and Kleiner's theorem seems to me relevant to the present conference, since it develops a new concept of differentiability on metric spaces.

# Plan of lectures

- 1. Motivation from geometric group theory
- 2. Motivation from computer science
- 3. Earlier non embedding results
- 4. Proof of non embedding to  $L^1$

A map  $f : X \to Y$  between metric spaces is a uniform embedding if there exist a constant C and a function  $\phi$  that tends to  $+\infty$  at  $\infty$  such that for all  $x, x' \in X$ ,

$$\phi(d(x,x')) \leq d(f(x),f(x')) \leq C d(x,x').$$

### Theorem

(G. Yu, 2000). Groups with uniform embeddings into Hilbert spaces satisfy the coarse Baum-Connes conjecture.

### Theorem

(M. Gromov, 2003). There exist finitely presented groups with no uniform embeddings into Hilbert spaces.

This motivates the following quantitative measurement of uniform embeddings.

### Definition

The largest possible  $\phi$  in the above definition is called the compression of f.

### Question

Given a metric space X and a class of metric spaces  $\mathcal{Y}$ , what is the largest possible compression over all maps f of X to elements of  $\mathcal{Y}$ ?

### Theorem

(J. Bourgain, 1986, R. Tessera, 2006). Let  $\phi$  be the compression of some

 $\ell^p$ -embedding of a regular tree. Then  $\int_1^{+\infty} (rac{\phi(t)}{t})^{\max\{2,p\}} rac{dt}{t} < +\infty.$ 

Conversely, every increasing function satisfying  $\int_{1}^{+\infty} (\frac{\phi(t)}{t})^p \frac{dt}{t} < +\infty$  is bounded from above by the compression of some  $\ell^p$  embedding of an arbitrary space in the following list : regular trees, cocompact lattices in connected Lie groups, hyperbolic groups, wreath products  $F|\mathbb{Z}$  for finite F.

# Example

(Folklore). Trees embed into  $\ell^p$  with compression  $\phi(t) \ge t^{1/p}$ .

Indeed, fix an origin  $o \in T^0$  and isometricly embed the tree T to  $\ell^1(T^0)$  by mapping a vertex x to the characteristic function of the geodesic from o to x. Then map  $\ell^1(T^0)$  to  $\ell^p(T^0)$  in the obvious manner. This has compression  $t^{1/p}$ .

# Question

Are all useful uniform  $\ell^p$  embeddings obtained in this manner ?

For a while, it might have seemed so. Yu's *Property A*, a sufficient condition for a metric space to embed uniformly into  $L^2$ , works this way.

For several basic problems, the best known algorithm relies on efficiently embedding some finite metric space simultaneously in Euclidean space and in  $L^1$ . Which shall give an example soon, Sparsest Cut.

The best known approximate algorithm for Sparsest Cut, SDP (to be explained next), yields in the worst case, for an *n*-vertex graph, an answer which is wrong by a factor equal to  $L_n$  defined as follows.

### Notation

Consider all n-point metric spaces (X, d) such that  $(X, d^{1/2})$  embeds isometricly into Euclidean space. Let  $L_n$  be the smallest L such that every such metric space admits an L-Lipschitz and distance nondecreasing embedding into  $L^1$ .

This has lead M.X. Goemans (in 1997) and N. Linial (in 2002) to ask wether  $L_n$  could be bounded independently of n.

In 2005, S. Khot and N. Vishnoi provided a counterexample.

It turns out that balls in the Cayley graph of the integral Heisenberg group provide nicer counterexamples.

### Sparsest Cut

### Problem

Sparsest Cut, i.e. computing the Cheeger constant of a finite graph. A *cut* in a weighted graph G is a partition of vertices as  $G^0 = S \cup \overline{S}$ .

$$\Phi(S) = rac{\#\partial S}{\#S \# ar{S}}$$

and define the Cheeger constant  $\Phi^*(G) = \min_{\emptyset \subset S \subseteq G^0} \Phi(S).$ 

Computing  $\Phi^*$  is NP-hard. Computing an approximate solution S is a basic step in several useful algorithms.

Observe that

$$\Phi(S) = \frac{\sum_{edges \, uv} m(uv) |1_S(u) - 1_S(v)|}{\sum_u \sum_v |1_S(u) - 1_S(v)|}$$

Let  $d(u, v) = |1_S(u) - 1_S(v)|$ . This is a semi-metric on  $G^0$ , induced by a map to the 2-point set  $\{0,1\}$ . The convex hull of such semi-metrics consists exactly of all semi-metrics induced by maps to some  $L^1$ -space. Therefore

$$\Phi^* = \min_{\substack{d \text{ embeddable into } L^1}} \frac{\sum_{edges \, uv} \, m(uv) d(u, v)}{\sum_u \sum_v d(u, v)}$$
  
= 
$$\min\{\sum_{edges \, uv} \, m(uv) d(u, v) \, | \, d \text{ embeddable into } L^1, \, \sum_u \sum_v d(u, v) = 1\}.$$

Unfortunately, deciding wether a metric on a finite set is embeddable into  $L^1$  is NP-complete. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relax the problem by removing the  $L^1$ -embeddability condition. This leads to a linear programming problem, denoted by LP, for which there exist efficient algorithms. Let  $\Phi^{LP}$  denote the infimum.

### Theorem

(J. Bourgain, 1985). Every n-point metric space embeds into  $L^2$  (and thus into  $L^1$ ) with distorsion at most  $O(\log(n))$ .

## Corollary

(N. Linial, E. London, Y. Rabinovich, 1995). Bourgain's theorem can be made algorithmic, thus

$$\Phi^{LP} \leq \Phi^* \leq C \log(n) \Phi^{LP},$$

showing that LP computes efficiently  $\Phi^*$  up to a log(n) factor.

**Proof**. The  $L^1$ -embeddable metric d' which is  $O(\log(n))$  close to the solution d of LP satisfies

$$\Phi^* \leq \Phi(d') \leq C \log(n) \Phi^* = C \log(n) \Phi^{LP}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Remark

Bourgain's theorem is sharp, as shown by bounded degree expanders.

Observe that

$$\Phi(S) = \frac{\sum_{edges \, uv} m(uv) |1_S(u) - 1_S(v)|^2}{\sum_u \sum_v |1_S(u) - 1_S(v)|^2}.$$

Relax the problem by allowing real valued functions  $x : G^0 \to \mathbb{R}$  instead of  $\{0, 1\}$ -valued ones, keeping the constraint, satisfied by characteristic functions, that for all u, v and  $w \in G^0$ ,

$$|x(u) - x(v)|^2 \le |x(u) - x(w)|^2 + |x(w) - x(v)|^2.$$

This leads to a semidefinite programming problem, denoted by SDP. Let  $\Phi^{SDP} = \Phi(x)$  be the minimum. There exist again efficient algorithms for computing  $\Phi^{SDP}$ . Set  $d(u, v) = |x(u) - x(v)|^2$ . This is a distance on  $G^0$ , and  $d^{1/2}$  is induced by a map to Euclidean space. Therefore

$$\Phi^{SDP} = \min\{\sum_{edges \ uv} m(uv)d(u,v) \mid d \ distance, \ \sqrt{d} \ embeddable \ into \ L^2, \ \sum_{u} \sum_{v} d(u,v) = 1\}.$$

Clearly,

$$\Phi^{SDP} \leq \Phi^* \leq L_n \Phi^{SDP},$$

showing that  $\Phi^*$  can be efficiently computed up to a  $L_n$  factor.

## Theorem

(S. Arora, J. Lee, A. Naor, 2005). Let (X, d) be an n-point metric space. Assume that  $(X, d^{1/2})$  embeds isometricly into  $L^2$ . Then (X, d) also embeds into  $L^2$  with distorsion  $O(\sqrt{\log(n)}\log(\log(n)))$ . In other words,  $L_n = O(\sqrt{\log(n)}\log(\log(n)))$ .

# Remark

This is nearly sharp, since the vertex set of the  $\ell^1$  n-dimensional cube cannot embed into  $L^2$  with distorsion  $<\sqrt{n}$  (Enflo, 1969).

# Corollary

 $L_n = O(\sqrt{\log(n)} \log(\log(n))).$ Indeed,  $L^2$  embeds isometricly into  $L^1$ .

# Remark

Non-embeddability of Heisenberg group implies some lower bound on  $L_n$ . Cheeger, Kleiner and Naor claim that it can be made effective. Conjecturally,  $L_n = \Omega(\log(\log(n))^{\delta})$  for some  $\delta > 0$ .

# Conclusion

The SDP approach gives the best known solution for the general Sparsest Cut. In case all weights are equal, S. Arora, E. Hazan, S. Kale (2004) give a different polynomial algorithm which computes  $\Phi^*$  up to an  $O(\sqrt{\log(n)})$  factor.

# Previously known embedding facts about Heisenberg group and other PI spaces

### Theorem

(Semmes, 1996).  $\mathbbm{H}$  has no quasiisometric embeddings into finite dimensional Banach spaces.

(Pauls, 2001).  $\mathbb{H}$  has no quasiisometric embeddings into Hilbert spaces, or more generally, CAT(0) spaces.

(Cheeger-Kleiner, 2006).  $\mathbb{H}$  has no quasiisometric embeddings into Banach spaces which have the Radon-Nikodym property (this includes separable dual spaces).

## Definition

(Heinonen-Koskela, 1996). Say a metric measure space is PI if it is doubling and satisfies a (1, p)-Poincaré inequality

$$\oint_{B} |f - \oint_{B} f| \leq \text{const. diameter}(B) \left( \oint_{2B} |\nabla f|^{p} \right)^{1/p},$$

for all upper gradients  $|\nabla f|$  of f.

### Theorem

(Cheeger-Kleiner, 2006). PI spaces whose tangent cones have Hausdorff dimension greater that their topological dimension have no biLipschitz embeddings into Banach spaces which have good finite dimensional approximations. This includes  $\ell^1$ . However, among such spaces, there are examples which embed into  $L^1$ .

Heisenberg group  $\mathbb{H}$  is the 3-dimensional Lie group with Lie algebra spanned by  $\xi$ ,  $\eta$  and  $\zeta$  with  $[\xi, \eta] = \zeta$ . The left-invariant vectorfields  $\xi$  and  $\eta$  span a plane field H, Carnot distance d(x, x') is inf of length of curves tangent to H joining x to x'. Dilation  $\delta_t$  is automorphism induced by  $\delta_t(\xi) = t\xi$ ,  $\delta_t(\eta) = t\eta$ ,  $\delta_t(\zeta) = t^2\zeta$ . It multiplies Carnot distances by t.

Finiteness of Carnot distance follows from picture:



### Remark

- 1.  $d(x, x \exp(t^2 \zeta)) = td(1, \exp(\zeta)) = \text{const. } t.$
- 2. volume  $B(x, t) = t^4$  volume  $B(x, 1) = \text{const. } t^4$ , thus Hausdorff dimension is 4.

1. Horizontal derivatives exist almost everywhere.

This is what the Radon-Nikodym property is good for.

2. They are approximately continuous at a.e. point.

This is general for doubling spaces.

 At such a point x, d(f(x), f(x')) = o(d(x, x')) if x' belongs to the vertical line through x.

Let  $x' = x \exp(t^2 \zeta)$ , so that  $d(x, x') \sim t$ . Join x to x' along integral curves of  $\xi$ ,  $\eta$ ,  $-\xi$ ,  $-\eta$ , with endpoints  $x = x_0, x_1, x_2, x_3, x_4 = x'$ . Then

$$f(x_1) - f(x) \sim t\xi f(x), \quad f(x_3) - f(x_2) \sim -t\xi f(x),$$

thus

$$f(x_1) - f(x) + f(x_3) - f(x_2) = o(t).$$

ldem  $f(x_2) - f(x_1) + f(x') - f(x_3) = o(t)$ . Summing up yields f(x') - f(x) = o(t).



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Remark  $L^1$  is not Radon-Nikodym. Indeed,  $t \mapsto 1_{[0,t]}$ ,  $\mathbb{R}_+ \to L^1(\mathbb{R}_+)$ , is isometric, but nowhere differentiable.

## Scheme of proof

of L<sup>1</sup>-non embeddability.

- 1. To a map  $f: X \to L^1(Y, \nu)$ , there corresponds a canonical measured family of subsets  $S \subset X$ , generalizing level sets.
- 2. f has bounded variation if and only if almost every S has finite perimeter.
- 3. (Franchi, Serapioni, Serra-Cassano, 2001). If  $S \subset \mathbb{H}$  has finite perimeter, then at almost every boundary point,  $\delta_t$ -blown up copies of S converge to vertical half-spaces.
- Near good points, at small scales, f nearly factorizes via 𝔅/[𝔅, 𝔅], preventing f from being biLipschitz.

(日) (同) (三) (三) (三) (○) (○)

An elementary cut semi-metric on X is  $d_S(x, x') = |1_S(x) - 1_S(x')|$  for some cut  $S \subset X$ . A cut semi-metric is a sum of elementary cut semi-metrics, i.e.

$$d(x,x') = \int_{\{S\}} d_S(x,x') \, d\mu_d(S)$$

for some positive measure  $\mu_d$  on the set of cuts.

### Lemma

(P. Assouad, 1977). A semi-metric d on X is induced by a map  $f: X \to L^1(Y, \nu)$  if and only if it is a cut semi-metric.

# Corollary

L<sup>1</sup>-embeddable semi-metrics on X are closed under pointwise convergence.

In particular, a quasiisometric embedding of  $\mathbb H$  to  $L^1$  gives rise to biLipschitz embeddings.

**Proof of Assouad's lemma**,  $\Leftarrow$ . Assume *d* is a cut semi-metric. Fix  $o \in X$ . Let S(x) be the set of cuts separating *x* from *o*. Then  $x \mapsto 1_{S(x)}$  embeds (X, d) isometricly in  $L^1(\{S\}, \mu_d)$ .

The epigraph of a function  $u: Y \to \mathbb{R}$  is  $E_u = \{(y, t) \in Y \times \mathbb{R} \mid t^{-1}u(y) > 1\}$ .



Lemma If  $u, v \in L^1(Y, \nu), ||u - v||_{L^1} = (\nu \otimes dt)(E_u \Delta E_v).$ 

**Proof of Assound's lemma**,  $\Rightarrow$ . Let  $f : X \to L^1(Y, \nu)$ . To each  $(y, t) \in Y \times \mathbb{R}$ , there corresponds a cut  $S(y, t) = \{x \in X \mid (y, t) \in E_{f(x)}\} = \{x \in X \mid t^{-1}f(x)(y) > 1\}$ . Let  $\mu_f = S_*(\nu \otimes dt)$ . Then for all  $x, x' \in X$ ,

$$\begin{aligned} d(f(x), f(x')) &= \|f(x) - f(x')\|_{L^1} = (\nu \otimes dt)(E_{f(x)}\Delta E_{f(x')}) \\ &= \int_{Y \times \mathbb{R}} |1_{E_{f(x)}}(y, t) - 1_{E_{f(x')}}(y, t)| \, d\nu(y) \, dt \\ &= \int_{Y \times \mathbb{R}} |1_{S(y,t)}(x) - 1_{S(y,t)}(x')| \, d\nu(y) \, dt \\ &= \int_{\{S\}} |1_S(x) - 1_S(x')| \, d\mu_f(S). \end{aligned}$$

Let X be a PI space, Y a metric space. Say an  $L^1$  map  $f : X \to Y$  has bounded variation if it is the  $L^1$ -limit of a sequence of locally Lipschitz functions  $h_i$  with Lip $h_i$  bounded in  $L^1$ . The inf of limits of  $\int \text{Lip}h_i$  over all  $L^1$ -approximating sequences  $h_i$  is called the variation of f.

Say a subset  $S \subset X$  has finite perimeter if its characteristic function  $1_S$  has bounded variation. Its perimeter equals the variation of  $1_S$ .

For real valued BV functions h, the coarea formula reads

$$ext{variation}(h) = \int_{\mathbb{R}} ext{perimeter}(\{h > t\}) \, dt.$$

This extends to maps  $X \to L^1(Y, \nu)$  as follows.

### Theorem

(Cheeger-Kleiner). Let X be Pl. Let  $f \in L^1(X, L^1(Y, \nu))$ . Then f has bounded variation if and only if  $\mu_f$ -every cut has finite perimeter. Furthermore

$$\int_{\{S\}} \operatorname{perimeter}(S) d\mu_f(S) = \int_Y \operatorname{variation}(f(\cdot, y)) d\nu(y) \leq \operatorname{const. variation}(f).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Bad points

From now on,  $X = \mathbb{R}^n$  or  $X = \mathbb{H}$ . A *half-space* in  $\mathbb{H}$  is the inverse image of  $\mathbb{R}_+$  by a group homomorphism  $\mathbb{H} \to \mathbb{R}$  (it has to be vertical).

### Notation

For  $S \subset X$ ,  $x \in \partial S$ , let  $\alpha(S, x, r) = \min_{H \text{ half-space thru } x} \oint_{B(x,r)} |1_S - 1_H|$ . Say a point x is (s, P) had for S if there exists  $r \in P$  such that  $\alpha(S, x, r) \geq s$ . Denote the set of

x is  $(\epsilon, R)$ -bad for S if there exists r < R such that  $\alpha(S, x, r) > \epsilon$ . Denote the set of  $(\epsilon, R)$ -bad points for S by  $Bad_{\epsilon,R}(S)$ .

For each *S*, the perimeter of *S* is a measure  $\|\partial S\|$  on *X*, supported on the boundary of *S*. One can restrict it to bad points. Given a measure  $\mu$  on finite perimeter cuts, the *total bad perimeter measure*  $\lambda_{\mu,\epsilon,R}$  is defined on continuous functions *u* by

$$\int_X u(x) \, d\lambda_{\mu,\epsilon,R}(x) = \int_{\{S\}} \int_{Bad_{\epsilon,R}(S)} u(x) \, d\|\partial S\|(x) \, d\mu(S).$$

### Theorem

(Franchi, Serapioni, Serra-Cassano, 2001). Let *S* be a set of finite perimeter in  $\mathbb{H}$ . The mass of the perimeter measure restricted to  $Bad_{\epsilon,R}(S)$  tends to 0 as *R* tends to 0.

## Corollary

Let  $\mu$  be a measure on finite perimeter sets. The mass of  $\lambda_{\mu,\epsilon,R}$  tends to 0 as R tends to 0.

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Let  $\mu$  be a measure on finite perimeter cuts, let  $d_{\mu}$  be the corresponding cut semi-metric. Given  $x \in X$  and r > 0, let  $\delta^*_{x,r} d_{\mu}$  denote the distance composed with the dilation by r around point x.

### Theorem

(Cheeger-Kleiner). For a.e.  $x \in X$ , there exist measures  $\mu_r$  supported on half-space cuts such that  $\|\frac{1}{r}\delta^*_{x,r}d_{\mu} - d_{\mu_r}\|$  tends to 0 in  $L^1(X \times X)$ .

**Proof**. Differentiating the total bad perimeter measure yields near a.e. point x a set of almost full measure in B(x, r) of points where  $\mu$ -most cuts are close to half-spaces measurewise. For each such cut S, select the closest half-space HS(S), let  $\mu_r = (\delta_{x,r})_*\mu$ .

**Proof of nonembedding theorem.** If  $f : \mathbb{H} \to L^1$  is biLipschitz, with cut-measure  $\mu$ ,  $d_{\mu}(x', x'') = d(f(x'), f(x'')) \ge \text{const.}d(x', x'')$ , thus

$$\frac{1}{r}\delta_{x,r}^*d_{\mu}(x',x'') \geq \text{const.}d(x',x'').$$

On the other hand, a cut semi-metric concentrated on half-spaces satisfies

$$d_{\mu_r}(x',x'') = d_{\mu_r}(x' \text{ mod } Z(\mathbb{H}),x'' \text{ mod } Z(\mathbb{H})).$$

Such semi-metrics cannot be  $L^1$ -close.

We sketch the proof of Franchi, Serapioni and Serra-Cassano's rectifiability theorem. Again,  $X = \mathbb{R}^n$  or  $\mathbb{H}$ . Fix a finite perimeter set  $S \subset X$ . To define a unit normal along the boundary, the divergence formula is used. In  $\mathbb{H}$ , divergence is defined as follows : for  $\phi = \phi_{\xi}\xi + \phi_{\eta}\eta$ ,  $div(\phi) = \xi\phi_{\xi} + \eta\phi_{\eta}$ .

### Lemma

(De Giorgi, 1954). There exists a measurable horizontal unit vectorfield  $\nu$  such that for all smooth compactly supported horizontal vectorfields  $\phi$ ,

$$-\int_{\mathcal{S}} div(\phi) = \int_{X} \langle 
u, \phi 
angle d \| \partial \mathcal{S} \|$$

**Proof**. For Lipschitz functions *h*, divergence formula holds and implies

$$|\int_{\mathcal{S}} h \operatorname{div}(\phi)| \leq \|\phi\|_{L^{\infty}} \int_{X} \operatorname{Lip} h,$$

showing that  $\phi \mapsto -\int_{S} div(\phi)$  is a (vector valued) Radon measure with mass no greater than variation(*h*). This fact extends to arbitrary functions of bounded variation like  $1_{S}$ . In this case, the Radon measure is absolutely continuous with respect to perimeter measure, with  $\nu$  as a density (Riesz).

### Lemma

(Ambrosio, 2001). At  $\|\partial S\|$ -a.e. point x, the  $\|\partial S\|$ -mass of a ball B(x, r) is  $\sim r^3$ .

According to Federer, this implies that averages of the unit normals converge.

By compactness, dilates  $\delta_{x,1/r}(S)$  subconverge to some locally finite perimeter set E as  $r \to 0$ . Unit normals also subconverge  $\|\partial S\|$ -a.e., showing that the horizontal unit normal of E is a.e. constant.

### Lemma

A set E with locally finite perimeter whose horizontal unit normal of E is a.e. equal to  $\xi$  is a half-space

Indeed, travelling from the origin both sides along  $\eta$ -orbits and positively along  $\xi$ -orbits can reach exactly all points of a (vertical) half-space. This completes the proof.

More is known.

## Theorem

(Franchi, Serapioni and Serra-Cassano, 2001). Finite perimeter sets in  $\mathbb{H}$  are, up to sets of vanishing 3-dimensional Hausdorff measure, countable unions of compact pieces of surfaces defined by  $C^1$  equations g = 0 where the horizontal gradient of g does not vanish.