Singularities

How to keep away from them after Y. Yomdin

Pierre Pansu, Université Paris-Sud

Plan

First talk

- 1. Motivation : Sard's theorem
- 2. Elementary properties of semi-algebraic sets
- 3. Entropy
- 4. Multidimensional variations

Second talk

- 1. Quantitative Sard theorem
- 2. Proofs
- 3. Quantitative singularity theory

Sard's theorem

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be of class \mathbb{C}^k , $k \ge n$. Let $\Sigma(f)$ be the set of critical points and $\Delta(f)=f(\Sigma(f))$ be the set of critical values. Then $\Delta(f)$ has measure zero.

Remark. Differentiability assumption k≥n is sharp (Whitney).

Bézout's theorem

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a polynomial of degree d. Then the number of critical values of f is less than $(d-1)^n$.

Goal

Find an intermediate result between Bézout and Sard, giving, for a smooth function, a quantitative estimate on the size of $\Delta(f)$.

Method

- Prove a variant of Bezout's theorem which is more stable under small perturbations.
- Approximate a function of class C^k with a polynomial of degree k.

Nearly critical values

Notation. Given r > 0 and c > 0, let $\sum(f,c,r)=\{x ; |x| < r \text{ and } |grad_x f| < c\}$ and

$$\Delta(\mathbf{f},\mathbf{c},\mathbf{r}) = \mathbf{f}(\Sigma(\mathbf{f},\mathbf{c},\mathbf{r})).$$

Stable Bézout theorem

Theorem 1 (Y. Yomdin). Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a polynomial of degree d. Then $\Delta(f,c,r)$ can be covered by N intervals of length cr, where N depends only on n and d.

Quantitative Sard theorem

Notation. If f is of class C^k , let $R_k(f) = r^k \sup \{|D^k f(x)|; |x| < r\}.$

Theorem 2 (Y. Yomdin). Let $\varepsilon < R_k(f)$. Then the set $\Delta(f,r)$ of critical values of f can be covered with $N (R_k(f)/\varepsilon)^{n/k}$

intervals of length ε, where N depends only on n and k.

Consequences

Corollary. If k≥n, the critical values of f have measure 0.

Corollary. Let k > n. If $0 \le f \le 1$ and $q^{1-n/k} > N(R_k(f))^{n/k}$, there is a non near-critical value of the form p/q, $0 \le p \le q$.

Proof of thm 2 from thm 1

Let $r'=r(\varepsilon/R_k(f))^{1/k}$.

Cover the r-ball in Rⁿ with (r/r')ⁿ r'-balls B_j. On each of them, approximate f with its degree k Taylor polynomial g_j at the center. On B_j, lf- g_j | ≤ (r'/r)^k R_k(f) = ε, lgrad f - grad g_j | ≤ ε/r'.
Therefore critical points of f are c-critical points of g_j with c = ε/r', and critical values of f are contained in the ε-neighborhood of U_jΔ(g_j,c,r), i.e. covered with N(r/r')ⁿ intervals of length 3ε.

Elementary properties of semialgebraic sets

The proof of theorem 1 relies on three properties of semi-algebraic sets, i.e. sets defined by polynomial equations and inequations.

We measure the *complexity* of such a set with

- the number n of variables,
- the number of equations and inequations,
- the maximum degree of the polynomials involved in its definition.

Connected components

Lemma 1 (Descartes,...).

The number of connected components of a semi-algebraic subset of \mathbf{R}^n can be bounded in terms of its complexity only.

Curve selection lemma

Lemma 2.

Let $A \subset \mathbb{R}^n$ be semi-algebraic. Let x and y sit in the same connected component of A. Then there exists a semi-algebraic curve in A joining x to y, whose complexity depends only on that of A.

Length estimate

Lemma 3.

Let γ be a semi-algebraic curve contained in a ball of radius r in \mathbb{R}^n . Then length of $\gamma \leq K$ r where K depends only on the complexity of γ .

Proof of theorem 1

- Let f be a polynomial of degree d, $\sum(f,c,r)$ its ccritical points in a ball of radius r (its complexity is $\leq 2d$).
- Goal : estimate the diameter of $f(\Sigma(f,c,r))$.

Lemma 1 : can assume $\sum(f,c,r)$ connected. Lemma 2 : can replace $\sum(f,c,r)$ with a curve γ . Lemma 3 : γ has length \leq Kr. On γ , lgrad f l \leq c so length $f(\gamma) \leq$ Kcr.

Proofs of lemmas 1 and 2

Thom's lemma.

Let \P be a finite collection of polynomials on \mathbf{R} which is stable under derivation. Then any subset of \mathbf{R} of the form

$$\bigcap_{P \text{ in } \P} \{ P \ge \text{ or } \le \text{ or } = 0 \}$$

is connected.

Proof of Lemma 3

By lemma 1, for every hyperplane π , $\#(\gamma \cap \pi)$ is bounded by the complexity K of γ . By Crofton's formula, length(γ) = $\int \#(\gamma \cap \pi) d\pi$ $\leq K \operatorname{vol}\{\pi; \pi \cap B(r) \neq \emptyset\}$ $\leq K r$. • Goal : collect tools for a generalization of the quantitative Sard theorem to maps $\mathbb{R}^n \to \mathbb{R}^m$.

• Keywords : entropy, multidimensional variation.

Entropy

Definition (Kolmogorov). Let $X \subset \mathbf{R}^n$, let $\epsilon > 0$. Denote by

$M(X, \epsilon)$

the minimal number of ε-balls needed to cover X.

The *entropy* of X is $\log M(X, \varepsilon)$.

Entropy versus volume

If X is a smooth k-manifold, $Vol_k(X) = const_n \lim_{\epsilon \to 0} \epsilon^k M(X, \epsilon).$ For X arbitrary, let $X_{\epsilon} = \epsilon$ -neighborhood of X in \mathbb{R}^n . Then

$$M(X, 2\varepsilon) \leq const_n \varepsilon^{-n} vol(X_{\varepsilon}).$$

Nevertheless, there is more information in $M(X, \varepsilon)$ than in volume only. If $M(X, \varepsilon)$ is small, X cannot contain a grid.

Multidimensional variations

Definition (Vitushkin). Let $X \subset \mathbb{R}^n$, $0 \le k \le n$. The *k-th variation* $V_k(X)$ of X is the integral of the number of connected components of the intersections of X with n-k planes.

Easy : $V_0(X)$ is the number of connected components of X, $V_n(X) = vol_n(X)$.

Case of C^2 submanifolds of dimension d :

 $V_k(X) < \infty$ for all k, $V_k(X) = 0$ for k > d. Crofton : $V_d(X) = vol_d(X)$.

Link with Lipschitz-Killing curvatures

The k-th Lipschitz-Killing curvature of a smooth submanifold X is

$$\Lambda_k(X) = \int_{\{n-k \text{ planes}\}} \chi(X \cap \pi) \, d\pi \, ,$$

where χ denotes Euler characteristic.

If X is a smooth *convex* set in \mathbb{R}^3 , $V_1(X) = \Lambda_1(X)$ is the integral of mean curvature of the boundary. If X is a closed surface, $V_1(X) \leq \text{const} \int_X |k_1| + |k_2|$ where k_1 and k_2 are principal curvatures.

Entropy/variations inequality

Weyl's formula. Let X be a smooth submanifold, X_{ε} its tubular neighborhood. Then for ε small enough, $\operatorname{Vol}_{n}(X_{\varepsilon}) = \sum_{k=0,..,n} \Lambda_{n-k}(X) \varepsilon^{k}$. This implies $M(X, \varepsilon) \leq \sum_{k=0,..,n} \Lambda_{n-k}(X) \varepsilon^{k-n}$.

Lemma 4 (Ivanov, Zerner). Let $X \subset \mathbb{R}^n$ be compact. Then for all $\varepsilon > 0$, $M(X, \varepsilon) \le \text{const}_n \sum_{k=0,..,n} V_k(X) \varepsilon^{-k}$.

Towards higher dimensional quantitative Sard theorem

- Approximate C^k-smooth map with polynomial.
- Estimate the size of near critical values for a polynomial.
- Size = entropy $M(X,\varepsilon)$.
- Lemma 4. $M(X, \varepsilon) \le \text{const}_n \sum_{k=0,..,n} V_k(X) \varepsilon^{-k}$, where $V_k(X)$ is k-dimensional variation.

Behaviour of variations under polynomial maps

Lemma 5 (Yomdin). Let $A \subset \mathbb{R}^n$ be semialgebraic, let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a polynomial. Assume that the k-th jacobian satisfies $J_k(f) \le c$ along A. Then $V_k(f(A)) \le K c V_k(A)$

where K depends on the complexity of A and the degree of f only.

Stable Bézout theorem

Theorem 3 (Yomdin). Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a polynomial. Given $\Lambda = \{\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n\}$, let $\Sigma(f,\Lambda,r) = \text{points in a ball of radius } r$ where the eigenvalues of $\sqrt{D}f^T Df$ are less than λ_1 , $\lambda_2, \ldots, \lambda_n$. Then

$$V_k(f(\Sigma(f,\Lambda,r))) \le K \lambda_1 \lambda_2 \dots \lambda_k r^k$$

where K depends on the degree of f only.

Quantitative Sard theorem

- **Theorem 4** (Yomdin). Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be of class C^k . Let $R_k(f) = \sup |D_k f|$ on a ball of radius r.
- If $\varepsilon \leq R_k(f)$, then $M(f(\Sigma(X,\Lambda,r)), \varepsilon) \leq K \sum_{i=0..min(n,m)} \lambda_1 \lambda_2 \dots \lambda_i (r/\varepsilon)^i (R_k(f)/\varepsilon)^{(n-i)/k}$.

Proof of Lemma 4

- Let $X \subset \mathbb{R}^n$, let B be a unit ball. Let $V_k(X,B)$ denote the integral over n-k planes π of the number of components of $X \cap \pi$ which are contained in B.
- Show that if X contains the center of B,

 $\sum_{k=0..n} V_k(X,B) \geq 1.$

• If M disjoint unit balls have their centers on X, then

 $M \leq \sum_{k=0..n} V_k(X)$.

Proof of relative variation estimate (n=2)

• Let C be the connected component of X containing the center of B. If C⊂B, then

 $V_0(X,B) ≥ 1.$

- Otherwise, $\prod = \{ \text{lines } \pi \text{ intersecting } B(1/2) \}$ has large measure. If for half the π in \prod some connected component of $\pi \cap X$ intersecting B(1/2)is contained in B, then $V_1(X,B) \ge 1$.
- Otherwise for half the π in \prod , length $(X \cap \pi) \ge 1/2$, therefore $V_2(X,B) = area(X \cap B) \ge 1$.

Proof of Lemma 5 (1/3)

- 1. $V_k(f(A)) ≤ \int V_0(A \cap f^{-1}(\pi)) d\pi$.
- 2. $V_0(A \cap f^{-1}(\pi)) \le K$ depending on the complexity of A and the degree of f only.
- 3. $V_0(A \cap f^{-1}(\pi)) = 0$ unless f(A) intersects π .

Therefore

 $V_k(f(A)) \le K \int_{k-\text{planes thru origin}} vol_k((P_{\pi'}of)(A))d\pi'.$

Proof of Lemma 5 (2/3)

Assume k = dim A = dim $(P_{\pi'}of)(A)$. Then $J_k f \le c$ implies $vol_k((P_{\pi'}of)(A)) \le c vol_k(A),$

thus

$$V_k(f(A)) \le K' \operatorname{cvol}_k(A) = K' \operatorname{c} V_k(A).$$

In general, replace A with $C \subset A$.

Proof of Lemma 5 (3/3)

Semi-algebraic axiom of choice. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a polynomial, let $A \subset \mathbb{R}^n$ be semi-algebraic. There exists a semi-algebraic set $C \subset A$ whose complexity is bounded by that of A, such that $\dim(C) = \dim(f(A))$ and f(C) = f(A).

Lemma. Let C \subset A be semi-algebraic. Then $V_k(C) \le K V_k(A)$

where K depends on the complexity of C only.

Quantitative singularity theory

Motto :

- Semi-algebraic algorithms are feasable far away from singularities.
- Normal forms near singularities are computable.

Example : axiom of choice

Problem : Given a smooth map $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, find a triangulation such that f is a homeomorphism on each face.

Use Quantitative Sard Theorem to estimate the probability that f have only folds and cusps with large normal form neighborhoods.

Inverting a cusp

Use standard algorithms away from folds and cusps.

Use normal forms $(x,y) \rightarrow (x^2,y)$ near folds, $(x,y) \rightarrow (x^3-3xy,y)$ near cusps.

Difficulty : given a near-singular point, choose the corresponding « center » singular point.

References

- Y. Yomdin, *The geometry of critical and near-critical values of differentiable mappings*, Math. Ann. **264**, 495-515 (1983).
- G. Comte, Y. Yomdin, *Tame geometry with applications in smooth analysis*, book, to appear.
- R. Benedetti, J.-J. Risler, *Real algebraic and semi-algebraic sets*, Hermann (1990).
- A.G. Vitushkin, On multidimensional variations, Gostehisdat (1955).
- L.D. Ivanov, Variazii mnozhestv i funksii, Nauka (1975).