Singularities

How to keep away from them after Y. Yomdin

Pierre Pansu, Université Paris-Sud

Plan

First talk

1. Motivation : Sard's theorem
2. Elementary properties of semi-algebraic sets
3. Entropy
4. Multidimensional variations

Second talk

1. Quantitative Sard theorem
2. Proofs
3. Quantitative singularity theory

Sard's theorem

Theorem. Let $\mathrm{f}: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}$ be of class C^{k}, $\mathrm{k} \geq \mathrm{n}$. Let $\sum(\mathrm{f})$ be the set of critical points and $\Delta(\mathrm{f})=\mathrm{f}(\Sigma(\mathrm{f}))$ be the set of critical values. Then $\Delta(f)$ has measure zero.
Remark. Differentiability assumption $\mathrm{k} \geq \mathrm{n}$ is sharp (Whitney).

Bézout's theorem

Theorem. Let $\mathrm{f}: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}$ be a polynomial of degree d . Then the number of critical values of f is less than (d-1) .

Goal

Find an intermediate result between Bézout and Sard, giving, for a smooth function, a quantitative estimate on the size of $\Delta(f)$.

Method

- Prove a variant of Bezout's theorem which is more stable under small perturbations.
- Approximate a function of class C^{k} with a polynomial of degree k .

Nearly critical values

Notation. Given $r>0$ and $\mathrm{c}>0$, let
$\sum(\mathrm{f}, \mathrm{c}, \mathrm{r})=\left\{\mathrm{x} ;|\mathrm{x}|<\mathrm{r}\right.$ and $\left.\left|\operatorname{grad}_{\mathrm{x}} \mathrm{f}\right|<\mathrm{c}\right\}$ and

$$
\Delta(\mathrm{f}, \mathrm{c}, \mathrm{r})=\mathrm{f}\left(\sum(\mathrm{f}, \mathrm{c}, \mathrm{r})\right)
$$

Stable Bézout theorem

Theorem 1 (Y. Yomdin).
Let $\mathrm{f}: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}$ be a polynomial of degree d. Then $\Delta(\mathrm{f}, \mathrm{c}, \mathrm{r})$ can be covered by N intervals of length cr , where N depends only on n and d .

Quantitative Sard theorem

Notation. If f is of class C^{k}, let

$$
\mathrm{R}_{\mathrm{k}}(\mathrm{f})=\mathrm{r}^{\mathrm{k}} \sup \left\{\left|\mathrm{D}^{\mathrm{k}}(\mathrm{x})\right| ;|\mathrm{x}|<\mathrm{r}\right\} .
$$

Theorem 2 (Y. Yomdin). Let $\varepsilon<R_{k}(f)$. Then the set $\Delta(f, r)$ of critical values of f can be covered with

$$
\mathrm{N}\left(\mathrm{R}_{\mathrm{k}}(\mathrm{f}) / \varepsilon\right)^{\mathrm{n} / \mathrm{k}}
$$

intervals of length ε, where N depends only on n and k.

Consequences

Corollary. If $k \geq n$, the critical values of f have measure 0 .

Corollary. Let $\mathrm{k}>\mathrm{n}$. If $0 \leq f \leq 1$ and $\mathrm{q}^{1-\mathrm{n} / \mathrm{k}}>$ $N\left(R_{k}(f)\right)^{n / k}$, there is a non near-critical value of the form $\mathrm{p} / \mathrm{q}, 0 \leq \mathrm{p} \leq \mathrm{q}$.

Proof of thm 2 from thm 1

Let $r^{\prime}=r\left(\varepsilon / R_{k}(f)\right)^{1 / k}$.
Cover the r-ball in \mathbf{R}^{n} with $\left(\mathrm{r} / \mathrm{r}^{\prime}\right)^{\mathrm{n}} \mathrm{r}^{\prime}$-balls B_{j}. On each of them, approximate f with its degree k Taylor polynomial g_{j} at the center. On B_{j},
$\left|f-g_{j}\right| \leq\left(r^{\prime} / r\right)^{k} R_{k}(f)=\varepsilon, \quad \operatorname{grad} f-\operatorname{grad} g_{j} \mid \leq \varepsilon / r^{\prime}$.
Therefore critical points of f are c-critical points of g_{j} with $c=\varepsilon / r$, and critical values of f are contained in the ε-neighborhood of $\cup_{j} \Delta\left(g_{j}, c, r\right)$, i.e. covered with $\mathrm{N}\left(\mathrm{r} / \mathrm{r}^{\prime}\right)^{\mathrm{n}}$ intervals of length 3ε.

Elementary properties of semialgebraic sets

The proof of theorem 1 relies on three properties of semi-algebraic sets, i.e. sets defined by polynomial equations and inequations.

We measure the complexity of such a set with

- the number n of variables,
- the number of equations and inequations,
- the maximum degree of the polynomials involved in its definition.

Connected components

Lemma 1 (Descartes,...).
The number of connected components of a semi-algebraic subset of \mathbf{R}^{n} can be bounded in terms of its complexity only.

Curve selection lemma

Lemma 2.

Let $\mathrm{A} \subset \mathbf{R}^{\mathrm{n}}$ be semi-algebraic. Let x and y sit in the same connected component of A . Then there exists a semi-algebraic curve in A joining x to y, whose complexity depends only on that of A.

Length estimate

Lemma 3.

Let γ be a semi-algebraic curve contained in a ball of radius r in \mathbf{R}^{n}. Then
length of $\gamma \leq \mathrm{Kr}$
where K depends only on the complexity of γ.

Proof of theorem 1

Let f be a polynomial of degree $\mathrm{d}, \Sigma(\mathrm{f}, \mathrm{c}, \mathrm{r})$ its ccritical points in a ball of radius r (its complexity is $\leq 2 \mathrm{~d}$).
Goal : estimate the diameter of $f\left(\sum(f, c, r)\right)$.

Lemma 1 : can assume $\sum(\mathrm{f}, \mathrm{c}, \mathrm{r})$ connected.
Lemma 2 : can replace $\sum(\mathrm{f}, \mathrm{c}, \mathrm{r})$ with a curve γ.
Lemma $3: \gamma$ has length $\leq \mathrm{Kr}$.
On $\gamma, \operatorname{|grad} \mathrm{f} \mid \leq \mathrm{c}$ so length $\mathrm{f}(\gamma) \leq$ Kcr.

Proofs of lemmas 1 and 2

Thom's lemma.

Let IJ be a finite collection of polynomials on \mathbf{R} which is stable under derivation. Then any subset of \mathbf{R} of the form

$$
\cap_{\text {Ping }}\{P \geq \text { or } \leq \text { or }=0\}
$$

is connected.

Proof of Lemma 3

By lemma 1, for every hyperplane π, \#($\gamma \cap \pi)$ is bounded by the complexity K of γ.
By Crofton's formula,

$$
\begin{gathered}
\text { length }(\gamma)=\int \#(\gamma \cap \pi) \mathrm{d} \pi \\
\leq \mathrm{K} \operatorname{vol}\{\pi ; \pi \cap \mathrm{B}(\mathrm{r}) \neq \emptyset\} \\
\leq \mathrm{K} \mathrm{r}
\end{gathered}
$$

- Goal : collect tools for a generalization of the quantitative Sard theorem to maps $\mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$.
- Keywords : entropy, multidimensional variation.

Entropy

Definition (Kolmogorov). Let $\mathrm{X} \subset \mathbf{R}^{\mathrm{n}}$, let $\varepsilon>0$. Denote by

$$
\mathrm{M}(\mathrm{X}, \varepsilon)
$$

the minimal number of ε-balls needed to cover X.
The entropy of X is $\log M(X, \varepsilon)$.

Entropy versus volume

If X is a smooth k -manifold,

$$
\operatorname{Vol}_{k}(X)=\operatorname{const}_{n} \lim _{\varepsilon \rightarrow 0} \varepsilon^{k} M(X, \varepsilon)
$$

For X arbitrary, let $X_{\varepsilon}=\varepsilon$-neighborhood of X in \mathbf{R}^{n}.
Then

$$
\mathrm{M}(\mathrm{X}, 2 \varepsilon) \leq \operatorname{const}_{\mathrm{n}} \varepsilon^{-\mathrm{n}} \operatorname{vol}\left(\mathrm{X}_{\varepsilon}\right)
$$

Nevertheless, there is more information in $\mathrm{M}(\mathrm{X}, \varepsilon)$ than in volume only. If $\mathrm{M}(\mathrm{X}, \varepsilon)$ is small, X cannot contain a grid.

Multidimensional variations

Definition (Vitushkin). Let $\mathrm{X} \subset \mathbf{R}^{\mathrm{n}}, 0 \leq \mathrm{k} \leq \mathrm{n}$. The k-th variation $\mathrm{V}_{\mathrm{k}}(\mathrm{X})$ of X is the integral of the number of connected components of the intersections of X with $\mathrm{n}-\mathrm{k}$ planes.

Easy: $\mathrm{V}_{0}(\mathrm{X})$ is the number of connected components of $X, V_{n}(X)=\operatorname{vol}_{n}(X)$.
Case of C^{2} submanifolds of dimension d :

$$
\begin{gathered}
\mathrm{V}_{\mathrm{k}}(\mathrm{X})<\infty \text { for all } \mathrm{k}, \mathrm{~V}_{\mathrm{k}}(\mathrm{X})=0 \text { for } \mathrm{k}>\mathrm{d} . \\
\text { Crofton }: \mathrm{V}_{\mathrm{d}}(\mathrm{X})=\operatorname{vol}_{\mathrm{d}}(\mathrm{X}) .
\end{gathered}
$$

Link with Lipschitz-Killing curvatures

The k-th Lipschitz-Killing curvature of a smooth submanifold X is

$$
\Lambda_{\mathrm{k}}(\mathrm{X})=\int_{\{n-\mathrm{k} \text { planes }\}} \chi(\mathrm{X} \cap \pi) \mathrm{d} \pi
$$

where χ denotes Euler characteristic.

If X is a smooth convex set in $\mathbf{R}^{3}, \mathrm{~V}_{1}(\mathrm{X})=\Lambda_{1}(\mathrm{X})$ is the integral of mean curvature of the boundary. If X is a closed surface, $V_{1}(X) \leq$ const $\int_{X}\left|k_{1}\right|+\left|k_{2}\right|$ where k_{1} and k_{2} are principal curvatures.

Entropy/variations inequality

Weyl's formula. Let X be a smooth submanifold, X_{ε} its tubular neighborhood. Then for ε small enough,

$$
\operatorname{Vol}_{\mathrm{n}}\left(\mathrm{X}_{\varepsilon}\right)=\sum_{\mathrm{k}=0, ., \mathrm{n}} \Lambda_{\mathrm{n}-\mathrm{k}}(\mathrm{X}) \varepsilon^{\mathrm{k}}
$$

This implies $\mathrm{M}(\mathrm{X}, \varepsilon) \leq \sum_{\mathrm{k}=0, \ldots, \mathrm{n}} \Lambda_{\mathrm{n}-\mathrm{k}}(\mathrm{X}) \varepsilon^{\mathrm{k}-\mathrm{n}}$.

Lemma 4 (Ivanov, Zerner). Let $\mathrm{X} \subset \mathbf{R}^{\mathrm{n}}$ be compact.
Then for all $\varepsilon>0$,

$$
\mathrm{M}(\mathrm{X}, \varepsilon) \leq \operatorname{const}_{\mathrm{n}} \sum_{\mathrm{k}=0, \ldots, \mathrm{n}} \mathrm{~V}_{\mathrm{k}}(\mathrm{X}) \varepsilon^{-\mathrm{k}}
$$

Towards higher dimensional quantitative Sard theorem

- Approximate C^{k}-smooth map with polynomial.
- Estimate the size of near critical values for a polynomial.
- Size = entropy $\mathrm{M}(\mathrm{X}, \varepsilon)$.
- Lemma 4. $\mathrm{M}(\mathrm{X}, \varepsilon) \leq$ const $_{\mathrm{n}} \sum_{\mathrm{k}=0, \ldots, \mathrm{n}} \mathrm{V}_{\mathrm{k}}(\mathrm{X}) \varepsilon^{-\mathrm{k}}$, where $\mathrm{V}_{\mathrm{k}}(\mathrm{X})$ is k-dimensional variation.

Behaviour of variations under polynomial maps

Lemma 5 (Yomdin). Let $\mathrm{A} \subset \mathbf{R}^{\mathrm{n}}$ be semialgebraic, let $\mathrm{f}: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$ be a polynomial. Assume that the k-th jacobian satisfies $\mathrm{J}_{\mathrm{k}}(\mathrm{f}) \leq \mathrm{c}$ along A . Then

$$
\mathrm{V}_{\mathrm{k}}(\mathrm{f}(\mathrm{~A})) \leq \mathrm{K} \mathrm{c}_{\mathrm{k}}(\mathrm{~A})
$$

where K depends on the complexity of A and the degree of fonly.

Stable Bézout theorem

Theorem 3 (Yomdin). Let $\mathrm{f}: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$ be a polynomial. Given $\Lambda=\left\{\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}\right\}$, let $\Sigma(\mathrm{f}, \Lambda, \mathrm{r})=$ points in a ball of radius r where the eigenvalues of $\sqrt{ } \mathrm{Df}^{\mathrm{T}} \mathrm{Df}$ are less than λ_{1}, $\lambda_{2}, \ldots, \lambda_{\mathrm{n}}$. Then
$\mathrm{V}_{\mathrm{k}}\left(\mathrm{f}\left(\sum(\mathrm{f}, \Lambda, \mathrm{r})\right)\right) \leq \mathrm{K} \lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{k}} \mathrm{r}^{\mathrm{k}}$
where K depends on the degree of f only.

Quantitative Sard theorem

Theorem 4 (Yomdin). Let $\mathrm{f}: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$ be of class C^{k}. Let $R_{k}(f)=\sup \mid D_{k} f l$ on a ball of radius r .

$$
\text { If } \varepsilon \leq R_{k}(f) \text {, then }
$$

$$
\mathrm{M}\left(\mathrm{f}\left(\sum(\mathrm{X}, \Lambda, \mathrm{r})\right), \varepsilon\right) \leq
$$

$$
\mathrm{K} \sum_{\mathrm{i}=0 . . \min (\mathrm{n}, \mathrm{~m})} \lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{i}}(\mathrm{r} / \varepsilon)^{\mathrm{i}}\left(\mathrm{R}_{\mathrm{k}}(\mathrm{f}) / \varepsilon\right)^{(\mathrm{n}-\mathrm{i}) / \mathrm{k}} .
$$

Proof of Lemma 4

- Let $\mathrm{X} \subset \mathbf{R}^{\mathrm{n}}$, let B be a unit ball. Let $\mathrm{V}_{\mathrm{k}}(\mathrm{X}, \mathrm{B})$ denote the integral over $n-k$ planes π of the number of components of $\mathrm{X} \cap \pi$ which are contained in B.
- Show that if X contains the center of B ,

$$
\sum_{\mathrm{k}=0 . \mathrm{n}} \mathrm{~V}_{\mathrm{k}}(\mathrm{X}, \mathrm{~B}) \geq 1
$$

- If M disjoint unit balls have their centers on X, then

$$
\mathrm{M} \leq \sum_{\mathrm{k}=0 . . \mathrm{n}} \mathrm{~V}_{\mathrm{k}}(\mathrm{X}) .
$$

Proof of relative variation estimate ($\mathrm{n}=2$)

- Let C be the connected component of X containing the center of B . If $\mathrm{C} \subset \mathrm{B}$, then

$$
\mathrm{V}_{0}(\mathrm{X}, \mathrm{~B}) \geq 1 .
$$

- Otherwise, $\Pi=\{$ lines π intersecting $B(1 / 2)\}$ has large measure. If for half the π in Π some connected component of $\pi \cap \mathrm{X}$ intersecting $\mathrm{B}(1 / 2)$ is contained in B , then $\mathrm{V}_{1}(\mathrm{X}, \mathrm{B}) \geq 1$.
- Otherwise for half the π in Π, length $(\mathrm{X} \cap \pi) \geq 1 / 2$, therefore $\mathrm{V}_{2}(\mathrm{X}, \mathrm{B})=\operatorname{area}(\mathrm{X} \cap \mathrm{B}) \geq 1$.

Proof of Lemma $5(1 / 3)$

1. $\mathrm{V}_{\mathrm{k}}(\mathrm{f}(\mathrm{A})) \leq \int \mathrm{V}_{0}\left(\mathrm{~A} \cap \mathrm{f}^{-1}(\pi)\right) \mathrm{d} \pi$.
2. $\mathrm{V}_{0}\left(\mathrm{~A} \cap \mathrm{f}^{-1}(\pi)\right) \leq \mathrm{K}$ depending on the complexity of A and the degree of f only.
3. $V_{0}\left(A \cap f^{-1}(\pi)\right)=0$ unless $f(A)$ intersects π.

Therefore

$$
\mathrm{V}_{\mathrm{k}}(\mathrm{f}(\mathrm{~A})) \leq \mathrm{K} \int_{\mathrm{k} \text {-planes thru origin }} \operatorname{vol}_{\mathrm{k}}\left(\left(\mathrm{P}_{\pi^{\prime}} \cdot \mathrm{of}\right)(\mathrm{A})\right) \mathrm{d} \pi^{\prime} .
$$

Proof of Lemma 5 (2/3)

Assume $\mathrm{k}=\operatorname{dim} \mathrm{A}=\operatorname{dim}\left(\mathrm{P}_{\pi}, o f\right)(\mathrm{A})$.
Then $\mathrm{J}_{\mathrm{k}} \mathrm{f} \leq \mathrm{c}$ implies

$$
\operatorname{vol}_{\mathrm{k}}\left(\left(\mathrm{P}_{\pi}, o f\right)(\mathrm{A})\right) \leq{\mathrm{c} \operatorname{vol}_{\mathrm{k}}(\mathrm{~A}),}
$$

thus

$$
\mathrm{V}_{\mathrm{k}}(\mathrm{f}(\mathrm{~A})) \leq \mathrm{K}^{\prime} \mathrm{c} \operatorname{vol}_{\mathrm{k}}(\mathrm{~A})=\mathrm{K}^{\prime} \mathrm{c} \mathrm{~V}_{\mathrm{k}}(\mathrm{~A}) .
$$

In general, replace A with $\mathrm{C} \subset \mathrm{A}$.

Proof of Lemma 5 (3/3)

Semi-algebraic axiom of choice. Let $\mathrm{f}: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$ be a polynomial, let $\mathrm{A} \subset \mathbf{R}^{\mathrm{n}}$ be semi-algebraic. There exists a semi-algebraic set CCA whose complexity is bounded by that of A, such that $\operatorname{dim}(C)=\operatorname{dim}(f(A))$ and $f(C)=f(A)$.

Lemma. Let CCA be semi-algebraic. Then

$$
\mathrm{V}_{\mathrm{k}}(\mathrm{C}) \leq \mathrm{K} \mathrm{~V}_{\mathrm{k}}(\mathrm{~A})
$$

where K depends on the complexity of C only.

Quantitative singularity theory

Motto :

- Semi-algebraic algorithms are feasable far away from singularities.
- Normal forms near singularities are computable.

Example : axiom of choice

Problem : Given a smooth map f: $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, find a triangulation such that f is a homeomorphism on each face.

Use Quantitative Sard Theorem to estimate the probability that f have only folds and cusps with large normal form neighborhoods.

Whitney's cusp

Inverting a cusp

Use standard algorithms away from folds and cusps.

Use normal forms
$(x, y) \rightarrow\left(x^{2}, y\right)$ near folds, $(x, y) \rightarrow\left(x^{3}-3 x y, y\right)$ near cusps.

Difficulty : given a near-singular point, choose the corresponding « center» singular point.

References

Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264, 495-515 (1983).
G. Comte, Y. Yomdin, Tame geometry with applications in smooth analysis, book, to appear.
R. Benedetti, J.-J. Risler, Real algebraic and semi-algebraic sets, Hermann (1990).
A.G. Vitushkin, On multidimensional variations, Gostehisdat (1955).
L.D. Ivanov, Variazii mnozhestv i funksii, Nauka (1975).

