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Plan

First talk

1. Motivation : Sard’s theorem

2. Elementary properties of semi-algebraic sets
3. Entropy

4. Multidimensional variations

Second talk
1. Quantitative Sard theorem
2. Proofs

3. Quantitative singularity theory



Sard’s theorem

Theorem. Let f: R — R be of class Ck,
k>n. Let > (f) be the set of critical
points and A(f)=1(> (1)) be the set of
critical values. Then A(f) has measure
ZEero.

Remark. Differentiability assumption
k=n 1s sharp (Whitney).



Bézout’s theorem

Theorem. Letf: R® - R bea

polynomial of degree d. Then the
number of critical values of f 1s less
than (d-1)".



Goal

Find an intermediate result between
Bézout and Sard, giving, for a
smooth function, a quantitative
estimate on the size of A(f).



Method

e Prove a variant of Bezout’s theorem
which 1s more stable under small
perturbations.

o Approximate a function of class CX
with a polynomial of degree k.



Nearly critical values

Notation. Givenr >0 and ¢c >0, let
2(t,c,r)={x; Ixl <rand lgrad f|<c}
and
A(f,c,r)=1(3(f,c,r)).



Stable Bézout theorem

Theorem 1 (Y. Yomdin).

Letf: R" — R be a polynomial of

degree d. Then A(f,c,r) can be

covered by N 1ntervals of length cr,
where N depends only on n and d.



Quantitative Sard theorem

Notation. If f is of class Ck, let
R, (f)=r* sup {IDX(x)l ; IxI<r}.

Theorem 2 (Y. Yomdin). Let € < R, (). Then the set
A(f,r) of critical values of f can be covered with

N (R (f)/e)vk

intervals of length €, where N depends only on n and
k.



Consequences

Corollary. If k=n, the critical values of f have
measure 0.

Corollary. Let k > n. If O<f<land q'""k>
N(R, (f))"k, there is a non near-critical value
of the form p/q, O<p=q.



Proof of thm 2 from thm 1

Let r’=r(e/R,(f))Vk

Cover the r-ball in R" with (1/r")" r’-balls B;. On each
of them, approximate f with its degree k Taylor
polynomial g; at the center. On B,;,

If- g | < ('/r)* R (f) =¢, Igradf- grad g;| <e/r’.

Theretore critical points of f are c-critical points of g;
with ¢ = ¢/r’, and critical values of f are contained
in the e-neighborhood of UjA(gj,c,r), 1.e. covered
with N(r/r’)" intervals of length 3e.




Elementary properties of semi-
algebraic sets

The proof of theorem 1 relies on three properties of
semi-algebraic sets, 1.e. sets defined by
polynomial equations and inequations.

We measure the complexity of such a set with
 the number n of variables,
e the number of equations and inequations,

e the maximum degree of the polynomials
involved 1n its definition.



Connected components

Lemma 1 (Descartes,...).

The number of connected components of a
semi-algebraic subset of R” can be bounded
in terms of its complexity only.



Curve selection lemma

Lemma 2.

Let A C R" be semi-algebraic. Let x and y sit
in the same connected component of A.
Then there exists a semi-algebraic curve in
A joining x to y, whose complexity depends
only on that of A.



Length estimate

Lemma 3.

Let y be a semi-algebraic curve contained in a
ball of radius r in R™. Then

lengthof y <Kr
where K depends only on the complexity of y.



Proof of theorem 1

Let f be a polynomial of degree d, >.(f,c,r) its c-
critical points 1n a ball of radius r (its complexity
1s < 2d).

Goal : estimate the diameter of £f(3(f,c.r)).

Lemma 1 : can assume ) (f,c,r) connected.
Lemma 2 : can replace X (f,c,r) with a curve Y.

Lemma 3 : y has length < K.
On vy, Igrad f | < ¢ so length f(y) < Kcr.



Proofs of lemmas 1 and 2

Thom’s lemma.

Let Y be a finite collection of polynomials on
R which 1s stable under derivation. Then
any subset of R of the form

MNpngiPzor=or=0}

1S connected.



Proof of Lemma 3

By lemma 1, for every hyperplane m, #(yM)
1s bounded by the complexity K of y.

By Crofton’s formula,
length(y) = [ #(yN) d
<K vol{m ; tNB(r) Z ¢}
<Kr.



* Goal : collect tools for a generalization
of the quantitative Sard theorem to

maps R* — R™,

e Keywords : entropy, multidimensional
variation.



Entropy

Definition (Kolmogorov). Let X C R", let
¢ > 0. Denote by
M(X, ¢€)

the minimal number of e-balls needed to
cover X.

The entropy of X 1s log M(X, ¢).



Entropy versus volume

If X 1s a smooth k-manifold,
Vol (X) = const, lim __,, ek M(X, ¢).
For X arbitrary, let X, = e-neighborhood of X in R".
Then
M(X, 2¢) < const, €™ vol(X,).

Nevertheless, there 1s more information in M(X, €)
than in volume only. If M(X, ¢€) 1s small, X cannot

contain a grid.



Multidimensional variations

Definition (Vitushkin). Let X C R ,0 <k <n. The
k-th variation V,(X) of X 1s the integral of the
number of connected components of the
intersections of X with n-k planes.

Easy : V,(X) 1s the number of connected components
of X, V (X) = vol (X).

Case of C? submanifolds of dimension d :
V,(X) < o« for all k, V(X) =0 for k > d.
Crofton : V4(X) = vol (X).



Link with Lipschitz-Killing
curvatures

The k-th Lipschitz-Killing curvature of a smooth
submanifold X 1s

Ak(X)= f {n-k planes} X(Xﬂ.’ﬂi) drt >
where y denotes Euler characteristic.

If X is a smooth convex set in R?, V(X)) = A;(X) is
the integral of mean curvature of the boundary.

If X is a closed surface, V,(X) < const [y Ik |+,
where k,; and k, are principal curvatures.



Entropy/variations inequality

Weyl’s formula. Let X be a smooth submanifold, X,
its tubular neighborhood. Then for € small enough,

VOln(Xe) = Zk=0,..,n An—k(X) Sk y
This implies M(X, €) <3, A (X) gk .

Lemma 4 (Ivanov, Zerner). Let X C R" be compact.
Then for all € >0,

M(X, €) =const, 3, , Vi(X) ek,



Towards higher dimensional
quantitative Sard theorem

Approximate Ck-smooth map with
polynomual.

Estimate the size of near critical values for a
polynomual.

Size = entropy M(X,¢).

Lemma 4. M(X, ¢) <const, ¥, , Vi(X) €&,
where V,(X) 1s k-dimensional variation.



Behaviour of variations under
polynomial maps

Lemma S (Yomdin). Let A C R" be semi-
algebraic, let f : R® — R™ be a polynomual.
Assume that the k-th jacobian satisfies

J () <c along A. Then
Vi(tf(A)) =K ¢ Vi (A)

where K depends on the complexity of A and
the degree of f only.



Stable Bézout theorem

Theorem 3 (Yomdin). Letf: R" — Rmbe a
polynomial. Given A={A=A,>...2A_}, let
> (f,A,r) = points in a ball of radius r where
the eigenvalues of VDfTDf are less than A,
Ay,..., A, . Then

V.ECEA) ) =K MM, A T
where K depends on the degree of f only.



Quantitative Sard theorem

Theorem 4 (Yomdin). Let f : R® — Rm be of
class Ck. Let R, (f) = sup ID,fl on a ball of
radius r.

If ¢ <R (f), then
M(Z(X,A D), €) <
K 3o minnm MAo- Ay (17e) (R (£)/e) Dk



Proof of Lemma 4

e Let X CR? let B be a unit ball. Let V, (X,B)

denote the integral over n-k planes 7t of the
number of components of XMzt which are

contained in B.
e Show that if X contains the center of B,
Yo Vi(X,B) = 1.

e [f M disjoint unit balls have their centers on X,
then

M = 200 Vi(X) .



Proof of relative variation
estimate (n=2)

e Let C be the connected component of X
containing the center of B. If CCB, then

V,(X,B) = 1.

e Otherwise, [[={lines  intersecting B(1/2)} has
large measure. It for half the 7t in [] some
connected component of wMX intersecting B(1/2)
1s contained in B, then V(X,B) = 1.

e Otherwise for half the i in [], length(XM) = 1/2
therefore V,(X,B) = area(XMB) = 1.



Proof of Lemma 5 (1/3)

1. V,.(f(A)) =J V,(ANf1(m)) do.
2. V,(ANfl(m)) < K depending on the
complexity of A and the degree of f only.

3. V4(ANf!(m)) = 0 unless f(A) intersects .

Theretore
Vk(f(A)) =K f k-planes thru origin VOlk((Pn’Of)(A))dﬂ:, .



Proof of Lemma 5 (2/3)

Assume k = dim A = dim (P_.of)(A).
Then J f<c implies
vol, ((P,.0t)(A)) < ¢ vol (A),
thus
V. (f(A)) =K’ c vol,(A) =K’ ¢ V. (A).

In general, replace A with CCA.



Proof of Lemma 5 (3/3)

Semi-algebraic axiom of choice. Let f : R — Rm
be a polynomial, let ACR™ be semi-algebraic.
There exists a semi-algebraic set CCA whose

complexity 1s bounded by that of A, such that
dim(C) = dim(f(A)) and 1(C) = f(A).

Lemma. Let CCA be semi-algebraic. Then
Vi(©) =K Vi(A)
where K depends on the complexity of C only.



Quantitative singularity theory

Motto :

* Semi-algebraic algorithms are feasable far
away from singularities.

 Normal forms near singularities are
computable.



Example : axiom of choice

Problem : Given a smooth map f : R? — R2,
find a triangulation such that f 1s a
homeomorphism on each face.

Use Quantitative Sard Theorem to estimate
the probability that f have only folds and
cusps with large normal form
neighborhoods.



Whitney’s cusp
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Inverting a cusp

Use standard algorithms away from folds and cusps.

Use normal forms
(x,y) — (x2,y) near folds,

(x,y) — (x3-3xy,y) near cusps.

Difficulty : given a near-singular point, choose the
corresponding « center » singular point.
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