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Plan

First talk
1. Motivation : Sard’s theorem
2. Elementary properties of semi-algebraic sets
3. Entropy
4. Multidimensional variations
Second talk
1. Quantitative Sard theorem
2. Proofs
3. Quantitative singularity theory



Sard’s theorem

Theorem. Let f : Rn  → R be of class Ck,
k≥n. Let ∑(f) be the set of critical
points and ∆(f)=f(∑(f)) be the set of
critical values. Then ∆(f) has measure
zero.

Remark. Differentiability assumption
k≥n is sharp (Whitney).



Bézout’s theorem

Theorem. Let f : Rn  → R be a
polynomial of degree d. Then the
number of critical values of f is less
than (d-1)n .



Goal

Find an intermediate result between
Bézout and Sard, giving, for a
smooth function, a quantitative
estimate on the size of ∆(f).



Method

• Prove a variant of Bezout’s theorem
which is more stable under small
perturbations.

• Approximate a function of class Ck

with a polynomial of degree k.



Nearly critical values

Notation. Given r > 0 and c > 0, let
∑(f,c,r)={x ; |x| < r and  |gradxf | < c}

and
∆(f,c,r)=f(∑(f,c,r)).



Stable Bézout theorem

Theorem 1 (Y. Yomdin).
Let f : Rn → R be a polynomial of

degree d. Then ∆(f,c,r) can be
covered by N intervals of length cr,
where N depends only on n and d.



Quantitative Sard theorem

Notation. If f is of class Ck, let
Rk(f)= rk  sup {|Dkf(x)| ; |x|<r}.

Theorem 2 (Y. Yomdin). Let ε < Rk(f). Then the set
∆(f,r) of critical values of f can be covered with

N (Rk(f)/ε)n/k

intervals of length ε, where N depends only on n and
k.



Consequences

Corollary. If k≥n, the critical values of f have
measure 0.

Corollary. Let k > n. If 0≤f≤1and q1-n/k >
N(Rk(f))n/k, there is a non near-critical value
of the form p/q, 0≤p≤q.



Proof of thm 2 from thm 1
Let r’=r(ε/Rk(f))1/k.
Cover the r-ball in Rn with (r/r’)n r’-balls Bj. On each

of them, approximate f with its degree k Taylor
polynomial gj at the center. On Bj,
|f- gj | ≤ (r’/r)k Rk(f) = ε,   |grad f - grad gj | ≤ ε/r’.

Therefore critical points of f are c-critical points of gj
with c = ε/r’, and critical values of f are contained
in the ε-neighborhood of ∪j∆(gj,c,r), i.e. covered
with N(r/r’)n intervals of length 3ε.



Elementary properties of semi-
algebraic sets

The proof of theorem 1 relies on three properties of
semi-algebraic sets, i.e. sets defined by
polynomial equations and inequations.

We measure the complexity of such a set with
• the number n of variables,
• the number of equations and inequations,
• the maximum degree of the polynomials
involved in its definition.



Connected components

Lemma 1 (Descartes,…).
The number of connected components of a

semi-algebraic subset of Rn can be bounded
in terms of its complexity only.



Curve selection lemma

Lemma 2.
Let A ⊂ Rn be semi-algebraic. Let x and y sit

in the same connected component of A.
Then there exists a semi-algebraic curve in
A joining x to y, whose complexity depends
only on that of A.



Length estimate

Lemma 3.
Let γ be a semi-algebraic curve contained in a

ball of radius r in Rn. Then
length of γ ≤ K r

where K depends only on the complexity of γ.



Proof of theorem 1

Let f be a polynomial of degree d, ∑(f,c,r) its c-
critical points in a ball of radius r (its complexity
is ≤ 2d).

Goal : estimate the diameter of f(∑(f,c,r)).

Lemma 1 : can assume ∑(f,c,r) connected.
Lemma 2 : can replace ∑(f,c,r) with a curve γ.
Lemma 3 : γ has length ≤ Kr.
On γ, |grad f | ≤ c so length f(γ) ≤ Kcr.



Proofs of lemmas 1 and 2

Thom’s lemma.
Let ¶  be a finite collection of polynomials on

R which is stable under derivation. Then
any subset of R of the form

∩P in ¶ {P ≥ or ≤ or = 0}
is connected.



Proof of Lemma 3

By lemma 1, for every hyperplane π, #(γ∩π)
is bounded by the complexity K of γ.

By Crofton’s formula,
length(γ) = ∫ #(γ∩π) dπ
≤ K vol{π ; π∩B(r) ≠ ø}

≤ K r.



• Goal : collect tools for a generalization
of the quantitative Sard theorem to
maps Rn → Rm.

• Keywords : entropy, multidimensional
variation.



Entropy

Definition (Kolmogorov). Let X ⊂ Rn , let
ε > 0. Denote by

M(X, ε)
the minimal number of ε-balls needed to

cover X.
The entropy of X is log M(X, ε).



Entropy versus volume

If  X is a smooth k-manifold,
Volk(X) = constn lim ε→0 εk M(X, ε).

For X arbitrary, let Xε = ε-neighborhood of X in Rn.
Then

M(X, 2ε) ≤ constn ε-n vol(Xε).

Nevertheless, there is more information in M(X, ε)
than in volume only. If M(X, ε) is small, X cannot
contain a grid.



Multidimensional variations
Definition (Vitushkin). Let X ⊂ Rn , 0 ≤ k ≤ n. The

k-th variation Vk(X) of X is the integral of the
number of connected components of the
intersections of X with n-k planes.

Easy : V0(X) is the number of connected components
of X, Vn(X) = voln(X).

Case of C2 submanifolds of dimension d :
Vk(X) < ∞ for all k, Vk(X) = 0 for k > d.

Crofton : Vd(X) = vold(X).



Link with Lipschitz-Killing
curvatures

The k-th Lipschitz-Killing curvature of a smooth
submanifold X is

Λk(X)= ∫ {n-k planes} χ(X∩π) dπ ,
where χ denotes Euler characteristic.

If X is a smooth convex set in R3, V1(X) = Λ1(X) is
the integral of mean curvature of the boundary.

If X is a closed surface, V1(X) ≤ const ∫X |k1|+|k2|
where k1 and k2 are principal curvatures.



Entropy/variations inequality

Weyl’s formula. Let X be a smooth submanifold, Xε
its tubular neighborhood. Then for ε small enough,

Voln(Xε) = ∑k=0,..,n Λn-k(X) εk .
This implies M(X, ε) ≤ ∑k=0,..,n Λn-k(X) εk-n .

Lemma 4 (Ivanov, Zerner). Let X ⊂ Rn be compact.
Then for all  ε > 0,

M(X, ε) ≤ constn ∑k=0,..,n Vk(X) ε-k .



Towards higher dimensional
quantitative Sard theorem

• Approximate Ck-smooth map with
polynomial.

• Estimate the size of near critical values for a
polynomial.

• Size = entropy M(X,ε).
• Lemma 4. M(X, ε) ≤ constn ∑k=0,..,n Vk(X) ε-k ,

where Vk(X) is k-dimensional variation.



Behaviour of variations under
polynomial maps

Lemma 5 (Yomdin). Let A ⊂ Rn be semi-
algebraic, let f : Rn → Rm be a polynomial.
Assume that the k-th jacobian satisfies

   Jk(f) ≤ c  along A. Then
Vk(f(A)) ≤ K c Vk(A)

where K depends on the complexity of A and
the degree of f only.



Stable Bézout theorem

Theorem 3 (Yomdin). Let f : Rn → Rm be a
polynomial. Given Λ={λ1≥λ2≥…≥λn}, let
∑(f,Λ,r) = points in a ball of radius r where
the eigenvalues of √DfTDf are less than λ1,
λ2,…, λn . Then

Vk(f(∑(f,Λ,r) )) ≤ K λ1λ2…λk rk

where K depends on the degree of f only.



Quantitative Sard theorem

Theorem 4 (Yomdin). Let f : Rn → Rm be of
class Ck. Let Rk(f) = sup |Dkf| on a ball of
radius r.

If ε ≤ Rk(f), then
M(f(∑(X,Λ,r)), ε)   ≤

K ∑i=0..min(n,m) λ1λ2…λi (r/ε)i (Rk(f)/ε)(n-i)/k .



Proof of Lemma 4
• Let X ⊂ Rn, let B be a unit ball. Let Vk(X,B)

denote the integral over n-k planes π of the
number of components of X∩π which are
contained in B.

• Show that if X contains the center of B,
∑k=0..n Vk(X,B) ≥ 1.

• If M disjoint unit balls have their centers on X,
then

M ≤ ∑k=0..n Vk(X) .



Proof of relative variation
estimate (n=2)

• Let C be the connected component of X
containing the center of B. If C⊂B, then

V0(X,B) ≥ 1.
• Otherwise,  ∏={lines π intersecting B(1/2)} has

large measure. If for half the π in ∏ some
connected component of π∩X intersecting B(1/2)
is contained in B, then V1(X,B) ≥ 1.

• Otherwise for half the π in ∏, length(X∩π) ≥ 1/2 ,
therefore V2(X,B) = area(X∩B) ≥ 1.



Proof of Lemma 5 (1/3)

1. Vk(f(A)) ≤ ∫ V0(A∩f-1(π)) dπ.
2. V0(A∩f-1(π)) ≤ K depending on the

complexity of A and the degree of f only.
3. V0(A∩f-1(π)) = 0 unless f(A) intersects π.

Therefore
Vk(f(A)) ≤ K ∫ k-planes thru origin volk((Pπ’of)(A))dπ’.



Proof of Lemma 5 (2/3)

Assume k = dim A = dim (Pπ’of)(A).
Then   Jkf ≤ c   implies

volk((Pπ’of)(A)) ≤ c volk(A),
thus

Vk(f(A)) ≤ K’ c volk(A) = K’ c Vk(A).

In general, replace A with C⊂A.



Proof of Lemma 5 (3/3)

Semi-algebraic axiom of choice. Let f : Rn → Rm

be a polynomial, let A⊂Rn be semi-algebraic.
There exists a semi-algebraic set C⊂A whose
complexity is bounded by that of A, such that
dim(C) = dim(f(A)) and f(C) = f(A).

Lemma. Let C⊂A be semi-algebraic. Then
Vk(C) ≤ K Vk(A)

where K depends on the complexity of C only.



Quantitative singularity theory

Motto :
• Semi-algebraic algorithms are feasable far

away from singularities.
• Normal forms near singularities are

computable.



Example : axiom of choice

Problem : Given a smooth map f : R2 → R2,
find a triangulation such that f is a
homeomorphism on each face.

Use Quantitative Sard Theorem to estimate
the probability that f have only folds and
cusps with large normal form
neighborhoods.



Whitney’s cusp



Inverting a cusp

Use standard algorithms away from folds and cusps.

Use normal forms
(x,y) → (x2,y) near folds,
(x,y) → (x3-3xy,y) near cusps.

Difficulty : given a near-singular point, choose the
corresponding « center » singular point.
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