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Results
Proof of balancedness criterion

Classical groups

Definition

Let G be the group of real points of an algebraic group. Let Γ be a finitely generated
group. Say a homomorphism φ : Γ→ G is

fully flexible if Zariski dense homomorphisms are dense in a neighborhood of φ in
Hom(Γ,G).

partially rigid if there are no Zariski dense homomorphisms in a neighborhood of
φ in Hom(Γ,G).

Problem

Determine which homomorphisms of surface groups to reductive real algebraic groups
are fully flexible, or partially rigid, or neither.

The story started with W. Goldman’s flexibility result for non-maximal surface groups
in SU(2, 1) (1985). The full flexibility of surface groups in Sl(n,R) is due to O.
Guichard (2007).
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No third option
Balanced homomorphisms
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Theorem (No third option)

A homomorphism from a high genus surface group Γ to a reductive real algebraic
group G is either fully flexible or partially rigid.

partially rigid
neither fully flexible nor partially rigid

fully flexible

{
x2 + y2 − tz − t2 = 0,
x2 + y2 + z2 − t2 = 0.
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Let G be semi-simple, φ : Γ→ G a reductive homomorphism. Let c be the center of
the centralizer of φ(Γ). It splits the complexified Lie algebra of G into root spaces gλ.
When λ is pure imaginary, the sesquilinear Killing form X̄ · X on gλ is non-degenerate,
giving rise to a representation ρλ in U(pλ, qλ), and a Toledo invariant Tλ.

Definition

Among the above roots, let P be the subset of pure imaginary roots λ such that ρλ is
a maximal representation with Tλ > 0 and vanishing signature (pλ = qλ). Say c is
balanced with respect to φ if 0 belongs to the interior of the sum of the convex hull of
the imaginary parts of elements of P and the linear span of the real and imaginary
parts of roots not in ±P.

Theorem (Fully flexible ⇔ balanced)

A homomorphism φ of a high genus surface group to a semisimple real algebraic group
is fully flexible if and only if c is balanced with respect to φ.
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Theorem (Hernandez, Bradlow-Garćıa-Prada-Gothen, Burger-Iozzi-Wienhard)

Maximal representations in simple real algebraic groups whose symmetric space is
Hermitian and not of tube type are partially rigid: they factor through tube type
Hermitian subgroups.

Theorem (Classification)

Converse holds for classical simple real algebraic groups (i.e. real forms of Sl(n,C),
O(n,C) or Sp(n,C)).

In other words, flexibility is the rule unless G = SU(p, q), q > p and φ(Γ) is contained
in and maximal in a conjugate of S(U(p, p)× U(q − p)) ⊂ SU(p, q), or
G = SO∗(2n), n odd, and φ(Γ) is contained in and maximal in a conjugate of
SO∗(2n − 2)× SO(2) ⊂ SO∗(2n).

Remark

1. The restriction on genus is probably irrelevant.
2. Non constructive : deformations are not given by explicit formulae nor geometric
constructions.
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Theorem (Hernandez, Bradlow-Garćıa-Prada-Gothen, Burger-Iozzi-Wienhard)

Maximal representations in simple real algebraic groups whose symmetric space is
Hermitian and not of tube type are partially rigid: they factor through tube type
Hermitian subgroups.

Theorem (Classification)

Converse holds for classical simple real algebraic groups (i.e. real forms of Sl(n,C),
O(n,C) or Sp(n,C)).

In other words, flexibility is the rule unless G = SU(p, q), q > p and φ(Γ) is contained
in and maximal in a conjugate of S(U(p, p)× U(q − p)) ⊂ SU(p, q), or
G = SO∗(2n), n odd, and φ(Γ) is contained in and maximal in a conjugate of
SO∗(2n − 2)× SO(2) ⊂ SO∗(2n).

Remark

1. The restriction on genus is probably irrelevant.
2. Non constructive : deformations are not given by explicit formulae nor geometric
constructions.

I. Kim, P. Pansu Density of Zarisky density for surface groups, II



Results
Proof of balancedness criterion

Classical groups

No third option
Balanced homomorphisms
Classification
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Theorem

(W. Goldman, 1985). If Γ is a surface group and ρ is reductive, then, in a
neighborhood of the conjugacy class of ρ, Hom(Γ,G) is analytically equivalent to

{u ∈ H1(Γ, gad◦ρ) | [u ^ u] = 0}.

Here, smiling bracket denotes cup-product : H1(Γ, gad◦ρ)→ H2(Γ, gad◦ρ).

Remark

This can prove flexibility without providing explicit deformations.

The dimension of H1(Γ, gad◦ρ) can be computed via Euler characteristic and Poincaré
duality: H2(Γ, g) = (H0(Γ, g∗))∗.

Cup-products can be computed thanks to

Theorem

(W. Meyer, 1972). Let (E ,Ω) be a flat symplectic vector bundle over Σ. The
quadratic form Q(a) =

∫
Σ Ω(a ^ a) on H1(Σ,E) is nondegenerate of signature

4c1(E ,Ω).
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Proposition

The dimension of Hom(Γ,G) at points with trivial centralizers is
(|χ(Σ)|+ 1)dim(G).

If the genus of Σ is large enough, non Zariski dense homomorphisms form a
subset of Hom(Γ,G) of dimension less than (|χ(Σ)|+ 1)dim(G).

Therefore it is sufficient to prove density of smooth points in neighborhoods of
homomorphisms with nontrivial centralizers.

Proposition

Levi factors of centralizers are treated by explicitly deforming given cohomology
classes u such that [u ^ u] = 0.

Such deformations v , satisfying [v ^ u] = 0, [v ^ v ] = 0, are obtained as zeroes of
sections of bundles on the Grassmannian of symplectic subspaces of H1(Γ,R). They
exist due to nonvanishing of powers the top Chern class of the universal bundle. This
requires a high dimensional Grassmannian and thus high genus.
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Let c denote the center of the centralizer of φ(Γ). g⊗C splits under c into root spaces
gλ. H1(Γ, g)⊗ C splits accordingly.

Lemma

[·^ ·] vanishes on each H1(Γ, gλ).
H1(Γ, gλ) and H1(Γ, gµ) are orthogonal with respect to [·^ ·] unless λ+ µ = 0.

On each gλ,R = g ∩ (gλ ⊕ g−λ), all adZ , Z ∈ c are proportional. Therefore the
corresponding alternating forms (X ,Y )→ Z · [X ,Y ] are proportional to the
symplectic form Ωλ = =m(sλ). On H1(Γ, gλ,R), all Z · [·^ ·] are proportional to the
quadratic form Qλ(u, u) =

∫
Σ Ωλ(u ^ u). Let ρλ : Γ→ Sp(gλ,R,Ωλ) denote the

composed symplectic linear representation, and Tλ the corresponding Toledo
invariant. Meyer’s formula yields

Lemma

If λ 6= 0, Qλ is nondegenerate and its index is equal to 4Tλ. Therefore

4|Tλ| ≤ dim(H1(Γ, gλ,R)) = −χ(Σ)dim(gλ,R).

In particular, Qλ is definite if and only if ρλ is a maximal representation.
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On H1(Γ, g), [·^ ·] =
∑
λ Qλλ. Smooth points of χ(Γ,G) correspond to classes

u =
∑
λ uλ, uλ ∈ H1(Γ, gλ,R), such that [u ^ u] = 0 and uλ 6= 0 for a spanning set

of λ’s. If u is not a smooth point, too many uλ’s vanish, perturb them to nonzero
vλ’s. Indefinite quadratic forms Qλ allow arbitrary moves in the direction of λ, but
positive definite ones allow one to reach only points of a convex hull. If 0 belongs to
it, nonzero vλ’s can be found such that [v ^ v ] = 0.

Real or C-linear roots have vanishing Toledo invariant. Let λ be pure imaginary with
Qλ definite. Then Toledo invariant equals

Tλ =
|χ(Γ)|

2
(pλ + qλ).

Milnor-Wood inequality implies that

|Tλ| ≤ |χ(Γ)|rank(U(pλ, qλ)) = |χ(Γ)|min{pλ, qλ}).

This implies pλ = qλ. Whence the definition of P.
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When G is classical, one can determine centers of centralizers of reductive subgroups
H, and the root space decomposition, to a large extent. Indeed, G ⊂ Gl(V ) is the full
automorphism group of a bilinear (resp. sesquilinear) form on the standard
representation V . If

V =
⊕

I`

is the root space decomposition of the standard representation, the decomposition of
the adjoint representation

g ⊂ End(V ) =
⊕

Hom(I`, I`′ )

under H follows, with roots `− `′.
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The following theorem plays a crucial role.

Theorem (Burger-Iozzi-Wienhard, 2007)

Let S be a semisimple Lie group whose symmetric space is Hermitian. Let ρ : Γ→ S
be a maximal representation of a surface group. Then ρ is tight. Its Zariski closure H
is reductive of Hermitian type. The embedding H ↪→ S is tight. If S is of tube type,
so is H.

Example: G = SU(p, q).
Let H be the Zariski closure of φ(Γ). A root `− `′ belongs to P iff the sesquilinear Γ
action on Hom(I`′ , I`) is maximal and positive. Since this action factors through
U(I`′ )× U(I`), the morphism U(I`′ )× U(I`)→ U(Hom(I`′ , I`)) is tight, this implies
that either U(I`′ ) or U(I`) is compact, the Γ action on the other factor is maximal.
The noncompact factor must be of tube type and therefore its signature vanishes.

Assume that c is not balanced with respect to φ. Then one shows that there exists
one root `′ such that all `− `′ belong to P. This implies that φ falls into
S(U(p, p)× U(q − p)). Also, Toledo invariants sum up with correct signs, showing
that φ is maximal in S(U(p, p)× U(q − p)).
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is reductive of Hermitian type. The embedding H ↪→ S is tight. If S is of tube type,
so is H.

Example: G = SU(p, q).
Let H be the Zariski closure of φ(Γ). A root `− `′ belongs to P iff the sesquilinear Γ
action on Hom(I`′ , I`) is maximal and positive. Since this action factors through
U(I`′ )× U(I`), the morphism U(I`′ )× U(I`)→ U(Hom(I`′ , I`)) is tight, this implies
that either U(I`′ ) or U(I`) is compact, the Γ action on the other factor is maximal.
The noncompact factor must be of tube type and therefore its signature vanishes.

Assume that c is not balanced with respect to φ. Then one shows that there exists
one root `′ such that all `− `′ belong to P. This implies that φ falls into
S(U(p, p)× U(q − p)). Also, Toledo invariants sum up with correct signs, showing
that φ is maximal in S(U(p, p)× U(q − p)).

I. Kim, P. Pansu Density of Zarisky density for surface groups, II
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