Density of Zarisky density for surface groups, II

I. Kim, P. Pansu

February 8, 2012

I. Kim, P. Pansu Density of Zarisky density for surface groups, II

.⊒...>

Definition

Let G be the group of real points of an algebraic group. Let Γ be a finitely generated group. Say a homomorphism $\phi: \Gamma \to G$ is

- fully flexible if Zariski dense homomorphisms are dense in a neighborhood of φ in Hom(Γ, G).
- partially rigid if there are no Zariski dense homomorphisms in a neighborhood of ϕ in Hom(Γ , G).

Problem

Determine which homomorphisms of surface groups to reductive real algebraic groups are fully flexible, or partially rigid, or neither.

∃ ≥ >

Definition

Let G be the group of real points of an algebraic group. Let Γ be a finitely generated group. Say a homomorphism $\phi: \Gamma \to G$ is

- fully flexible if Zariski dense homomorphisms are dense in a neighborhood of φ in Hom(Γ, G).
- partially rigid if there are no Zariski dense homomorphisms in a neighborhood of ϕ in $Hom(\Gamma, G)$.

Problem

Determine which homomorphisms of surface groups to reductive real algebraic groups are fully flexible, or partially rigid, or neither.

The story started with W. Goldman's flexibility result for non-maximal surface groups in SU(2, 1) (1985). The full flexibility of surface groups in $SI(n, \mathbb{R})$ is due to O. Guichard (2007).

- A 🗐 🕨

No third option Balanced homomorphisms Classification

Theorem (No third option)

A homomorphism from a high genus surface group Γ to a reductive real algebraic group G is either fully flexible or partially rigid.

프 🖌 🛪 프 🛌

3

No third option Balanced homomorphisms Classification

Let G be semi-simple, $\phi: \Gamma \to G$ a reductive homomorphism. Let c be the center of the centralizer of $\phi(\Gamma)$. It splits the complexified Lie algebra of G into root spaces \mathfrak{g}_{λ} . When λ is pure imaginary, the sesquilinear Killing form $\overline{X} \cdot X$ on \mathfrak{g}_{λ} is non-degenerate, giving rise to a representation ρ_{λ} in $U(p_{\lambda}, q_{\lambda})$, and a Toledo invariant T_{λ} .

4 E b

No third option Balanced homomorphisms Classification

Let G be semi-simple, $\phi: \Gamma \to G$ a reductive homomorphism. Let c be the center of the centralizer of $\phi(\Gamma)$. It splits the complexified Lie algebra of G into root spaces \mathfrak{g}_{λ} . When λ is pure imaginary, the sesquilinear Killing form $\overline{X} \cdot X$ on \mathfrak{g}_{λ} is non-degenerate, giving rise to a representation ρ_{λ} in $U(p_{\lambda}, q_{\lambda})$, and a Toledo invariant T_{λ} .

Definition

Among the above roots, let P be the subset of pure imaginary roots λ such that ρ_{λ} is a maximal representation with $T_{\lambda} > 0$ and vanishing signature ($p_{\lambda} = q_{\lambda}$). Say c is balanced with respect to ϕ if 0 belongs to the interior of the sum of the convex hull of the imaginary parts of elements of P and the linear span of the real and imaginary parts of roots not in $\pm P$.

No third option Balanced homomorphisms Classification

Let G be semi-simple, $\phi: \Gamma \to G$ a reductive homomorphism. Let c be the center of the centralizer of $\phi(\Gamma)$. It splits the complexified Lie algebra of G into root spaces \mathfrak{g}_{λ} . When λ is pure imaginary, the sesquilinear Killing form $\overline{X} \cdot X$ on \mathfrak{g}_{λ} is non-degenerate, giving rise to a representation ρ_{λ} in $U(p_{\lambda}, q_{\lambda})$, and a Toledo invariant T_{λ} .

Definition

Among the above roots, let P be the subset of pure imaginary roots λ such that ρ_{λ} is a maximal representation with $T_{\lambda} > 0$ and vanishing signature ($p_{\lambda} = q_{\lambda}$). Say c is balanced with respect to ϕ if 0 belongs to the interior of the sum of the convex hull of the imaginary parts of elements of P and the linear span of the real and imaginary parts of roots not in $\pm P$.

Theorem (Fully flexible \Leftrightarrow balanced)

A homomorphism ϕ of a high genus surface group to a semisimple real algebraic group is fully flexible if and only if c is balanced with respect to ϕ .

No third option Balanced homomorphisms Classification

Theorem (Hernandez, Bradlow-García-Prada-Gothen, Burger-Iozzi-Wienhard)

Maximal representations in simple real algebraic groups whose symmetric space is Hermitian and not of tube type are partially rigid: they factor through tube type Hermitian subgroups.

- A 🗐 🕨

No third option Balanced homomorphisms Classification

Theorem (Hernandez, Bradlow-García-Prada-Gothen, Burger-lozzi-Wienhard)

Maximal representations in simple real algebraic groups whose symmetric space is Hermitian and not of tube type are partially rigid: they factor through tube type Hermitian subgroups.

Theorem (Classification)

Converse holds for classical simple real algebraic groups (i.e. real forms of $Sl(n, \mathbb{C})$, $O(n, \mathbb{C})$ or $Sp(n, \mathbb{C})$).

In other words, flexibility is the rule unless G = SU(p,q), q > p and $\phi(\Gamma)$ is contained in and maximal in a conjugate of $S(U(p,p) \times U(q-p)) \subset SU(p,q)$, or $G = SO^*(2n)$, n odd, and $\phi(\Gamma)$ is contained in and maximal in a conjugate of $SO^*(2n-2) \times SO(2) \subset SO^*(2n)$.

- - E - E

No third option Balanced homomorphisms Classification

Theorem (Hernandez, Bradlow-García-Prada-Gothen, Burger-lozzi-Wienhard)

Maximal representations in simple real algebraic groups whose symmetric space is Hermitian and not of tube type are partially rigid: they factor through tube type Hermitian subgroups.

Theorem (Classification)

Converse holds for classical simple real algebraic groups (i.e. real forms of $SI(n, \mathbb{C})$, $O(n, \mathbb{C})$ or $Sp(n, \mathbb{C})$).

In other words, flexibility is the rule unless G = SU(p,q), q > p and $\phi(\Gamma)$ is contained in and maximal in a conjugate of $S(U(p,p) \times U(q-p)) \subset SU(p,q)$, or $G = SO^*(2n)$, n odd, and $\phi(\Gamma)$ is contained in and maximal in a conjugate of $SO^*(2n-2) \times SO(2) \subset SO^*(2n)$.

Remark

1. The restriction on genus is probably irrelevant.

2. Non constructive : deformations are not given by explicit formulae nor geometric constructions.

Tools Why high genus ? Centers of centralizers End of proof

Theorem

(W. Goldman, 1985). If Γ is a surface group and ρ is reductive, then, in a neighborhood of the conjugacy class of ρ , Hom (Γ, G) is analytically equivalent to

$$\{u \in H^1(\Gamma, \mathfrak{g}_{ad \circ \rho}) \,|\, [u \smile u] = 0\}.$$

Here, smiling bracket denotes cup-product : $H^1(\Gamma, \mathfrak{g}_{ad \circ \rho}) \rightarrow H^2(\Gamma, \mathfrak{g}_{ad \circ \rho})$.

∃ ≥ >

Tools Why high genus ? Centers of centralizers End of proof

Theorem

(W. Goldman, 1985). If Γ is a surface group and ρ is reductive, then, in a neighborhood of the conjugacy class of ρ , Hom (Γ, G) is analytically equivalent to

$$\{u \in H^1(\Gamma, \mathfrak{g}_{ad \circ \rho}) \,|\, [u \smile u] = 0\}.$$

Here, smiling bracket denotes cup-product : $H^1(\Gamma, \mathfrak{g}_{ad \circ \rho}) \rightarrow H^2(\Gamma, \mathfrak{g}_{ad \circ \rho})$.

Remark

This can prove flexibility without providing explicit deformations.

∃ ≥ >

Tools Why high genus ? Centers of centralizers End of proof

Theorem

(W. Goldman, 1985). If Γ is a surface group and ρ is reductive, then, in a neighborhood of the conjugacy class of ρ , $Hom(\Gamma, G)$ is analytically equivalent to

$$\{u \in H^1(\Gamma, \mathfrak{g}_{ad \circ \rho}) \,|\, [u \smile u] = 0\}.$$

Here, smiling bracket denotes cup-product : $H^1(\Gamma, \mathfrak{g}_{ad \circ \rho}) \rightarrow H^2(\Gamma, \mathfrak{g}_{ad \circ \rho})$.

Remark

This can prove flexibility without providing explicit deformations.

The dimension of $H^1(\Gamma, \mathfrak{g}_{ado\rho})$ can be computed via Euler characteristic and Poincaré duality: $H^2(\Gamma, \mathfrak{g}) = (H^0(\Gamma, \mathfrak{g}^*))^*$.

- A 🗐 🕨

Tools Why high genus ? Centers of centralizers End of proof

Theorem

(W. Goldman, 1985). If Γ is a surface group and ρ is reductive, then, in a neighborhood of the conjugacy class of ρ , $Hom(\Gamma, G)$ is analytically equivalent to

$$\{u \in H^1(\Gamma, \mathfrak{g}_{ad \circ \rho}) \,|\, [u \smile u] = 0\}.$$

Here, smiling bracket denotes cup-product : $H^1(\Gamma, \mathfrak{g}_{ad \circ \rho}) \rightarrow H^2(\Gamma, \mathfrak{g}_{ad \circ \rho})$.

Remark

This can prove flexibility without providing explicit deformations.

The dimension of $H^1(\Gamma, \mathfrak{g}_{ado\rho})$ can be computed via Euler characteristic and Poincaré duality: $H^2(\Gamma, \mathfrak{g}) = (H^0(\Gamma, \mathfrak{g}^*))^*$.

Cup-products can be computed thanks to

Theorem

(W. Meyer, 1972). Let (E, Ω) be a flat symplectic vector bundle over Σ . The quadratic form $Q(a) = \int_{\Sigma} \Omega(a \smile a)$ on $H^1(\Sigma, E)$ is nondegenerate of signature $4c_1(E, \Omega)$.

Tools Why high genus ? Centers of centralizers End of proof

Proposition

• The dimension of $Hom(\Gamma,G)$ at points with trivial centralizers is $(|\chi(\Sigma)|+1){\rm dim}(G).$

- ∢ ≣ ▶

3 N

< 🗇 🕨

э

Tools Why high genus ? Centers of centralizers End of proof

Proposition

- The dimension of Hom(Γ , G) at points with trivial centralizers is $(|\chi(\Sigma)| + 1)\dim(G)$.
- If the genus of Σ is large enough, non Zariski dense homomorphisms form a subset of Hom(Γ, G) of dimension less than (|χ(Σ)| + 1)dim(G).

글 > - - 글 >

Proposition

- The dimension of Hom(Γ,G) at points with trivial centralizers is $(|\chi(\Sigma)|+1)\mathrm{dim}(G).$
- If the genus of Σ is large enough, non Zariski dense homomorphisms form a subset of Hom(Γ , G) of dimension less than $(|\chi(\Sigma)| + 1)\dim(G)$.
- Therefore it is sufficient to prove density of smooth points in neighborhoods of homomorphisms with nontrivial centralizers.

글 > - - 글 >

Proposition

- The dimension of Hom(Γ,G) at points with trivial centralizers is $(|\chi(\Sigma)|+1)\mathrm{dim}(G).$
- If the genus of Σ is large enough, non Zariski dense homomorphisms form a subset of Hom(Γ , G) of dimension less than $(|\chi(\Sigma)| + 1)\dim(G)$.
- Therefore it is sufficient to prove density of smooth points in neighborhoods of homomorphisms with nontrivial centralizers.

Proposition

Levi factors of centralizers are treated by explicitly deforming given cohomology classes u such that $[u \smile u] = 0$.

Such deformations v, satisfying $[v \smile u] = 0$, $[v \smile v] = 0$, are obtained as zeroes of sections of bundles on the Grassmannian of symplectic subspaces of $H^1(\Gamma, \mathbb{R})$. They exist due to nonvanishing of powers the top Chern class of the universal bundle. This requires a high dimensional Grassmannian and thus high genus.

・ 同下 ・ ヨト ・ ヨト

Tools Why high genus ? Centers of centralizers End of proof

Let \mathfrak{c} denote the center of the centralizer of $\phi(\Gamma)$. $\mathfrak{g} \otimes \mathbb{C}$ splits under \mathfrak{c} into root spaces \mathfrak{g}_{λ} . $H^1(\Gamma, \mathfrak{g}) \otimes \mathbb{C}$ splits accordingly.

Lemma

 $[\cdot \smile \cdot]$ vanishes on each $H^1(\Gamma, \mathfrak{g}_{\lambda})$. $H^1(\Gamma, \mathfrak{g}_{\lambda})$ and $H^1(\Gamma, \mathfrak{g}_{\mu})$ are orthogonal with respect to $[\cdot \smile \cdot]$ unless $\lambda + \mu = 0$.

★ Ξ ►

Tools Why high genus ? Centers of centralizers End of proof

Let \mathfrak{c} denote the center of the centralizer of $\phi(\Gamma)$. $\mathfrak{g} \otimes \mathbb{C}$ splits under \mathfrak{c} into root spaces \mathfrak{g}_{λ} . $H^1(\Gamma, \mathfrak{g}) \otimes \mathbb{C}$ splits accordingly.

Lemma

 $[\cdot \smile \cdot]$ vanishes on each $H^1(\Gamma, \mathfrak{g}_{\lambda})$. $H^1(\Gamma, \mathfrak{g}_{\lambda})$ and $H^1(\Gamma, \mathfrak{g}_{\mu})$ are orthogonal with respect to $[\cdot \smile \cdot]$ unless $\lambda + \mu = 0$.

On each $\mathfrak{g}_{\lambda,\mathbb{R}} = \mathfrak{g} \cap (\mathfrak{g}_{\lambda} \oplus \mathfrak{g}_{-\lambda})$, all ad_{Z} , $Z \in \mathfrak{c}$ are proportional. Therefore the corresponding alternating forms $(X, Y) \to Z \cdot [X, Y]$ are proportional to the symplectic form $\Omega_{\lambda} = \Im m(s_{\lambda})$. On $H^{1}(\Gamma, \mathfrak{g}_{\lambda,\mathbb{R}})$, all $Z \cdot [\cdot \smile \cdot]$ are proportional to the quadratic form $Q_{\lambda}(u, u) = \int_{\Sigma} \Omega_{\lambda}(u \smile u)$.

- A 🖻 🕨

Tools Why high genus ? Centers of centralizers End of proof

Let \mathfrak{c} denote the center of the centralizer of $\phi(\Gamma)$. $\mathfrak{g} \otimes \mathbb{C}$ splits under \mathfrak{c} into root spaces \mathfrak{g}_{λ} . $H^1(\Gamma, \mathfrak{g}) \otimes \mathbb{C}$ splits accordingly.

Lemma

 $[\cdot \smile \cdot]$ vanishes on each $H^1(\Gamma, \mathfrak{g}_{\lambda})$. $H^1(\Gamma, \mathfrak{g}_{\lambda})$ and $H^1(\Gamma, \mathfrak{g}_{\mu})$ are orthogonal with respect to $[\cdot \smile \cdot]$ unless $\lambda + \mu = 0$.

On each $\mathfrak{g}_{\lambda,\mathbb{R}} = \mathfrak{g} \cap (\mathfrak{g}_{\lambda} \oplus \mathfrak{g}_{-\lambda})$, all ad_Z , $Z \in \mathfrak{c}$ are proportional. Therefore the corresponding alternating forms $(X, Y) \to Z \cdot [X, Y]$ are proportional to the symplectic form $\Omega_{\lambda} = \Im m(s_{\lambda})$. On $H^1(\Gamma, \mathfrak{g}_{\lambda,\mathbb{R}})$, all $Z \cdot [\cdot \smile \cdot]$ are proportional to the quadratic form $Q_{\lambda}(u, u) = \int_{\Sigma} \Omega_{\lambda}(u \smile u)$. Let $\rho_{\lambda} : \Gamma \to Sp(\mathfrak{g}_{\lambda,\mathbb{R}}, \Omega_{\lambda})$ denote the composed symplectic linear representation, and T_{λ} the corresponding Toledo invariant. Meyer's formula yields

Lemma

If $\lambda \neq 0$, Q_{λ} is nondegenerate and its index is equal to $4T_{\lambda}$. Therefore

$$4|T_{\lambda}| \leq \dim(H^{1}(\Gamma, \mathfrak{g}_{\lambda, \mathbb{R}})) = -\chi(\Sigma)\dim(\mathfrak{g}_{\lambda, \mathbb{R}}).$$

In particular, Q_{λ} is definite if and only if ρ_{λ} is a maximal representation.

* @ ト * ヨト * ヨト

On $H^1(\Gamma, \mathfrak{g})$, $[\cdot \smile \cdot] = \sum_{\lambda} Q_{\lambda} \lambda$. Smooth points of $\chi(\Gamma, G)$ correspond to classes $u = \sum_{\lambda} u_{\lambda}$, $u_{\lambda} \in H^1(\Gamma, \mathfrak{g}_{\lambda,\mathbb{R}})$, such that $[u \smile u] = 0$ and $u_{\lambda} \neq 0$ for a spanning set of λ 's. If u is not a smooth point, too many u_{λ} 's vanish, perturb them to nonzero v_{λ} 's. Indefinite quadratic forms Q_{λ} allow arbitrary moves in the direction of λ , but positive definite ones allow one to reach only points of a convex hull. If 0 belongs to it, nonzero v_{λ} 's can be found such that $[v \smile v] = 0$.

- E - E

On $H^1(\Gamma, \mathfrak{g})$, $[\cdot \smile \cdot] = \sum_{\lambda} Q_{\lambda} \lambda$. Smooth points of $\chi(\Gamma, G)$ correspond to classes $u = \sum_{\lambda} u_{\lambda}$, $u_{\lambda} \in H^1(\Gamma, \mathfrak{g}_{\lambda,\mathbb{R}})$, such that $[u \smile u] = 0$ and $u_{\lambda} \neq 0$ for a spanning set of λ 's. If u is not a smooth point, too many u_{λ} 's vanish, perturb them to nonzero v_{λ} 's. Indefinite quadratic forms Q_{λ} allow arbitrary moves in the direction of λ , but positive definite ones allow one to reach only points of a convex hull. If 0 belongs to it, nonzero v_{λ} 's can be found such that $[v \smile v] = 0$.

Real or C-linear roots have vanishing Toledo invariant. Let λ be pure imaginary with Q_{λ} definite. Then Toledo invariant equals

$$T_\lambda = rac{|\chi(\Gamma)|}{2}(m{p}_\lambda + m{q}_\lambda).$$

Milnor-Wood inequality implies that

$$|T_{\lambda}| \leq |\chi(\Gamma)|\operatorname{rank}(U(p_{\lambda},q_{\lambda})) = |\chi(\Gamma)|\min\{p_{\lambda},q_{\lambda}\}).$$

This implies $p_{\lambda} = q_{\lambda}$. Whence the definition of *P*.

- A 🖻 🕨

When *G* is classical, one can determine centers of centralizers of reductive subgroups *H*, and the root space decomposition, to a large extent. Indeed, $G \subset Gl(V)$ is the full automorphism group of a bilinear (resp. sesquilinear) form on the standard representation *V*. If

$$V = \bigoplus I_{\ell}$$

is the root space decomposition of the standard representation, the decomposition of the adjoint representation

$$\mathfrak{g} \subset \mathit{End}(V) = igoplus \mathit{Hom}(I_\ell, I_{\ell'})$$

under *H* follows, with roots $\ell - \ell'$.

- - E - E

When *G* is classical, one can determine centers of centralizers of reductive subgroups *H*, and the root space decomposition, to a large extent. Indeed, $G \subset Gl(V)$ is the full automorphism group of a bilinear (resp. sesquilinear) form on the standard representation *V*. If

$$V = \bigoplus I_{\ell}$$

is the root space decomposition of the standard representation, the decomposition of the adjoint representation

$$\mathfrak{g} \subset \mathit{End}(V) = igoplus \mathit{Hom}(I_\ell, I_{\ell'})$$

under *H* follows, with roots $\ell - \ell'$.

- - E - E

The following theorem plays a crucial role.

Theorem (Burger-Iozzi-Wienhard, 2007)

Let S be a semisimple Lie group whose symmetric space is Hermitian. Let $\rho : \Gamma \to S$ be a maximal representation of a surface group. Then ρ is tight. Its Zariski closure H is reductive of Hermitian type. The embedding $H \hookrightarrow S$ is tight. If S is of tube type, so is H.

- A 🗐 🕨

The following theorem plays a crucial role.

Theorem (Burger-Iozzi-Wienhard, 2007)

Let S be a semisimple Lie group whose symmetric space is Hermitian. Let $\rho : \Gamma \to S$ be a maximal representation of a surface group. Then ρ is tight. Its Zariski closure H is reductive of Hermitian type. The embedding $H \hookrightarrow S$ is tight. If S is of tube type, so is H.

Example: G = SU(p, q).

Let *H* be the Zariski closure of $\phi(\Gamma)$. A root $\ell - \ell'$ belongs to *P* iff the sesquilinear Γ action on $Hom(I_{\ell'}, I_{\ell})$ is maximal and positive. Since this action factors through $U(I_{\ell'}) \times U(I_{\ell})$, the morphism $U(I_{\ell'}) \times U(I_{\ell}) \rightarrow U(Hom(I_{\ell'}, I_{\ell}))$ is tight, this implies that either $U(I_{\ell'})$ or $U(I_{\ell})$ is compact, the Γ action on the other factor is maximal. The noncompact factor must be of tube type and therefore its signature vanishes.

4 E b

The following theorem plays a crucial role.

Theorem (Burger-Iozzi-Wienhard, 2007)

Let S be a semisimple Lie group whose symmetric space is Hermitian. Let $\rho : \Gamma \to S$ be a maximal representation of a surface group. Then ρ is tight. Its Zariski closure H is reductive of Hermitian type. The embedding $H \hookrightarrow S$ is tight. If S is of tube type, so is H.

Example: G = SU(p, q).

Let *H* be the Zariski closure of $\phi(\Gamma)$. A root $\ell - \ell'$ belongs to *P* iff the sesquilinear Γ action on $Hom(I_{\ell'}, I_{\ell})$ is maximal and positive. Since this action factors through $U(I_{\ell'}) \times U(I_{\ell})$, the morphism $U(I_{\ell'}) \times U(I_{\ell}) \rightarrow U(Hom(I_{\ell'}, I_{\ell}))$ is tight, this implies that either $U(I_{\ell'})$ or $U(I_{\ell})$ is compact, the Γ action on the other factor is maximal. The noncompact factor must be of tube type and therefore its signature vanishes.

Assume that c is not balanced with respect to ϕ . Then one shows that there exists one root ℓ' such that all $\ell - \ell'$ belong to P. This implies that ϕ falls into $S(U(p,p) \times U(q-p))$. Also, Toledo invariants sum up with correct signs, showing that ϕ is maximal in $S(U(p,p) \times U(q-p))$.

4 B K 4 B K