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Question

(Gromov 1993). Let M be an n-dimensional sub-Riemannian manifold. For which
α ∈ (0, 1) does there exist locally a homeomorphism Rn → M which is Cα-Hölder
continuous ?

Definition

Let α(M) = sup{α ∈ (0, 1) | ∃ locally a homeomorphism Rn → M}.

Example

If G is a r-step Carnot group, the exponential map g = Lie(G) → G is locally
C1/r -Hölder continuous. Thus α(M) ≥ 1/r .

Theorem (Gromov 1993)

Let M be sub-Riemannian, with Hausdorff dimension Q. Then α(M) ≤ n−1
Q−1

.

Let M be a 2m + 1-dimensional contact manifold. Then α(M) ≤ m+1
m+2

(≤ 2m
2m+1

).
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P. Pansu Differential forms and the Hölder homeomorphism problem, after Gromov and Rumin
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Gromov’s proof uses Hausdorff dimension of subset of given topological dimension: if
all subsets of topological dimension k have Hausdorff dimension ≥ k ′, then
α(M) ≤ k

k′ .

To get lower bounds on Hausdorff dimension of subsets, Gromov constructs local
foliations by horizontal submanifolds. If there are enough such dimension k foliations,
all subsets of topological dimension n − k have Hausdorff dimension ≥ Q − k,
therefore α(M) ≤ n−k

Q−k
.

Constructing horizontal curves amounts to solving a system of PDE’s. If k = 1, it is
an ODE, the method applies to all (equiregular) sub-Riemannian manifolds. Gromov
solves the relevant PDE for contact 2m + 1-manifolds and k = m, and, more generally,
for generic h-dimensional distributions, and k such that h − k ≥ (n − h)k.

Today, I describe an alternative method, due again to Gromov, but based on Rumin’s
theory of differential forms on sub-Riemannian manifolds. A motivation to further
study this theory in this seminar.
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Definition

On a metric space X, a (straight) q-cochain of size ε is a function c on q + 1-uples of
diameter ≤ ε. Its ε-absolute value is

|c|ε = sup{c(∆) ; diam(∆) ≤ ε}.

In other words, straight cochains of size ε coincide with simplicial cochains on the
simplicial complex whose vertices are points of X and a q-face joins q + 1 vertices as
soon as all pairwise distances are ≤ ε. Therefore, they form a complex C.

ε. There is a
dual complex of chains C.,ε.

Lemma

Assume X is a manifold with boundary, or bi-Hölder homeomorphic to such, then the
inductive limit complex lim−→ C·ε computes cohomology.

Definition

Given a cohomology class κ and a number ν > 0, one can define the ν-norm

||κ||ν = lim inf
ε→0

ε−ν inf{|c|ε | cochains c of size ε representing κ}.
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Hölder covariance

Definition

Let X be a metric space, let q ∈ N. Define the metric weight MWq(X ) as the
supremum of numbers ν such that there exist arbitrarily small open sets U ⊂ M and
nonzero straight cohomology classes κ ∈ Hq(U,R) with finite ν-norm ||κ||ν < +∞.

Proposition

In a Riemannian manifold with boundary, all straight cocycles c representing a
nonzero class κ of degree q satisfy |c|ε ≥ const.(κ) εq . In other words, ||κ||q > 0.

Proof. Fix a cycle c ′ such that κ(c ′) > 0. Subdivide it as follows : fill simplices with
geodesic singular simplices, subdivide them and keep only their vertices. This does not
change the homology class. The number of simplices of size ε thus generated is
≤ const.(c ′) ε−q . For any representative c of size ε of κ,

κ(c ′) = c(c ′) ≤ const. ε−q |c|ε. q.e.d .

Corollary

Euclidean n-space has MWq ≤ q for all q = 1, . . . , n − 1.
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Proposition

Let f : X → Y be a Cα-Hölder continuous homeomorphism. Let κ ∈ Hq(Y ,R). Then

||κ||ν < +∞⇒ ||f ∗κ||να < +∞.

In particular, MWq(X ) ≥ αMWq(Y ).

Proof. If σ is a straight simplex of size ε in X , f (σ) has size ε′ ≤ ||f ||Cα εα in Y . If c
is a representative of κ, f ∗c is a representative of f ∗κ, and

ε′−ν |c|ε′ ≥ ε′−ν |c(f (σ))|
= ε′−ν |f ∗c(σ)|
≥ ||f ||−ν

Cα ε
−να|f ∗c(σ)|.

Therefore

ε−να|f ∗c|ε ≤ ||f ||νCα ε
′−ν |c|ε′ .

This leads to

||f ∗κ||να ≤ ||f ||νCα ||κ||ν . q.e.d .
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Let G be a Carnot group with Lie algebra g. Left-invariant differential forms on G
split into homogeneous components under the dilations δε,

Λ∗g∗ =
M
w

Λ∗,w where Λ∗,w = {α | δ∗εα = εwα}.

Therefore Lie algebra cohomology splits Hq(g) =
L

w Hq,w (g).

Example

If G = Heis2m+1 is the Heisenberg group, for each degree q 6= 0, 2m + 1,

ΛqG∗ = Λq,q ⊕ Λq,q+1,

where Λq,q = Λq(V 1)∗ and Λq,q+1 = Λq−1(V 1)∗ ⊗ (V 2)∗.

This gradation by weight depends on the group structure. What remains for general
sub-Riemannian manifolds is a filtration.

Definition

Let (M,∆) be a sub-Riemannian manifold, m ∈ M. Say a q-form α on TmM has
weight ≥ w if it vanishes on q-vectors of ∆i1 ⊗ · · · ⊗∆iq whenever i1 + · · ·+ iq < w.
If (M,∆) is equiregular, such forms constitute a subbundle Λq,≥wT∗M. The space of
its smooth sections is denoted by Ω∗,≥w .

Note that each Ω∗,≥w is a differential ideal in Ω∗.
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Proposition

Let M be an equiregular sub-Riemannian manifold. Let U ⊂ M be a bounded open set
with smooth boundary. Let ω be a closed differential form on U of weight ≥ w. Then,
for every ε small enough, the cohomology class κ ∈ Hq(U,R) of ω can be represented
by a straight cocycle cε (maybe defined on a slightly smaller homotopy equivalent
open set) such that |cε|ε ≤ const. εw . In other words, ||κ||w < +∞.

Proof. In the case of a Carnot group G . Use the exponential map to push affine
simplices in the Lie algebra to the group. Fill in all straight simplices in G of unit
Carnot-Carathéodory size with such affine singular simplices. Apply δε and obtain a
filling σε for each straight simplex σ in G of Carnot-Carathéodory size ε. Define a
straight cochain cε of size ε on U by

cε(σ) =

Z
σε

ω.

Since ω is closed, Stokes theorem shows that cε is a cocycle. Its cohomology class in
Hq(U′,R) ' Hq(U,R) is the same as ω’s. Furthermore,

|cε(σ)| =
Z

σ1

δ∗εω ≤ V ||δ∗εω||∞ ≤ const.(ω) εw . q.e.d .
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Definition

Let M be a sub-Riemannian manifold. Define the algebraic weight AWq(M) as the
largest w such that there exists arbitrarily small open sets with smooth boundary
U ⊂ M and nonzero classes in Hq(U,R) which can be represented by closed
differential forms of weight ≥ w.

Remark

Equiregular sub-Riemannian manifolds satisfy MWq ≥ AWq .

Corollary

Let M be a sub-Riemannian manifold. Then for all q = 1, . . . , n − 1, α(M) ≤ q
AWq

.

So our goal now is to show that for certain sub-Riemannian manifolds, for certain
degrees q, in every open set, every closed differential q-form is cohomologous to a
form of high weight.
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As a warm up, let us treat codimension 1 forms.

Proposition (Gromov)

Let (M,∆) be a sub-Riemannian manifold of Hausdorff dimension Q. Every closed
n − 1-form is cohomologous to a form of weight ≥ Q − 1. Thus AWn−1(M) = Q − 1.

Proof. The filtration of ∆ ⊂ ∆2 ⊂ · · · ⊂ TM induces a filtration
An−1 = F1 ⊂ F2 ⊂ · · · ⊂ Ωn−1 as follows : α ∈ F j if and only if there exist an
n-form ω and a vectorfield Z ⊂ ∆j such that α = ιZω. We show that for all j ≥ 1,
F j+1 ⊂ F j + im(d).
Let ω be an n-form and X , Y be vectorfields such that X ∈ ∆, Y ∈ ∆j . Then, using
Lie derivatives, LX (ιYω) = ιLX (Y )ω + ιY (LXω)ι[X ,Y ]ω mod F j . Thanks to Cartan’s

formula, LX (ιYω) = d(ιX ιYω) + ιX d(ιYω) ∈ im(d) + F j . Therefore
ι[X ,Y ]ω ∈ im(d) + F j .

Let α ∈ F j+1, α = ιZω with Z ∈ ∆j+1. Write Z =
P

` a`[X`,Y`] where a` are
functions, X`, Y` are vectorfields, X` ∈ ∆, Y` ∈ ∆j . Then α =

P
` ι[X`,Y`]ω` (where

ω` = a`ω), therefore α ∈ im(d) + F j . This shows that F j+1 ⊂ F j + im(d).
The bracket generating assumption, ∆r = TM, implies that
Ωn−1 = F r ⊂ im(d) +F1 = im(d) + An−1. Given a closed n− 1-form φ, the equation

dψ = −φ mod An−1

admits a smooth solution β ∈ Ωn−2. Then φ+ dψ ∈ An−1 is a horizontal form. q.e.d.
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Rumin’s complex is a subcomplex of the de Rham complex, homotopic to it,
consisting of differential forms of preferably high weights. The construction requires to
invert the weight 0 component d0 of d . d0 identifies with the exterior differential on
left-invariant forms on tangent Lie algebras gm. So one needs that the cohomology
m 7→ Hq,w (gm) be constant, whence the word equihomological. It turns out that the
obstruction for cohomologing q-forms towards weight > w is Hq,w (gm).

Theorem (Rumin 2005)

Let M be a equihomological sub-Riemannian manifold. Assume that there exists a
point m ∈ M such that, in the cohomology of the tangent Lie algebra gm,

Hq,w′
(gm) = 0 for all w ′ < w. Then AWq(M) ≥ w.

On Carnot groups, the grading of cohomology is compatible with Poincaré duality,
Hq,w (g) = Hn−q,Q−w (g). So

∃m Hn−q(gm) = Hn−q,≤Q−w (gm) ⇒ AWq(M) ≥ w .

Example

Degree n− 1. On any Carnot Lie algebra g, closed 1-forms belong to (V 1)∗ = Λ1,1, so
H1(g) = H1,1(g), and AWn−1(M) ≥ Q − 1.
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Example

Contact case. Closed m-forms belong to Λm,m. Therefore Hm(g) = Hm,m(g), and
AWm+1(M) ≥ m + 2.

Indeed, if ω ∈ Λm,m+1, ω = θ ∧ φ where θ ∈ (V 2)∗, φ ∈ Λm−1,m−1,
(dω)m+1,m+1 = (dθ) ∧ φ 6= 0 since dθ is symplectic on ∆.

Example

Generic sub-Riemannian case. Let h = dim(∆) and k be such that h − k ≥ (n − h)k.
Then Hk (gm) = Hk,k (gm), thus AW (M) ≥ Q − k.

Let θ be a Rn−h-valued 1-form defining ∆. Say a k-plane S ⊂ ∆m is isotropic if
dθ|S = 0. Say S is regular if the map ∆m → Hom(S ,Rn−h), u 7→ (ιudθ)|S is onto.
h − k ≥ (n − h)k is a necessary condition for existence of regular isotropic horizontal
k-planes. It is generically sufficient. When it holds, closed left-invariant k-forms have
to be of weight k, so Hk (gm) = Hk,k (gm) for m ∈ M.

Remark

The method just exposed seems to cover all presently known results on the Hölder
homeomorphism problem.
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