Differential forms and the Hölder homeomorphism problem, after Gromov and Rumin

P. Pansu

February 1st, 2012

P. Pansu Differential forms and the Hölder homeomorphism problem, after Gromov a

Question

(Gromov 1993). Let M be an n-dimensional sub-Riemannian manifold. For which $\alpha \in (0,1)$ does there exist locally a homeomorphism $\mathbb{R}^n \to M$ which is C^{α} -Hölder continuous ?

э

4 B 6 4 B 6

Question

(Gromov 1993). Let M be an n-dimensional sub-Riemannian manifold. For which $\alpha \in (0,1)$ does there exist locally a homeomorphism $\mathbb{R}^n \to M$ which is C^{α} -Hölder continuous ?

Definition

Let $\alpha(M) = \sup \{ \alpha \in (0,1) \mid \exists \text{ locally a homeomorphism } \mathbb{R}^n \to M \}.$

E > - - E - b

Question

(Gromov 1993). Let M be an n-dimensional sub-Riemannian manifold. For which $\alpha \in (0,1)$ does there exist locally a homeomorphism $\mathbb{R}^n \to M$ which is C^{α} -Hölder continuous ?

Definition

Let $\alpha(M) = \sup\{\alpha \in (0,1) \mid \exists \text{ locally a homeomorphism } \mathbb{R}^n \to M\}.$

Example

If G is a r-step Carnot group, the exponential map $\mathfrak{g} = \text{Lie}(G) \to G$ is locally $C^{1/r}$ -Hölder continuous. Thus $\alpha(M) \ge 1/r$.

3 N

Question

(Gromov 1993). Let M be an n-dimensional sub-Riemannian manifold. For which $\alpha \in (0,1)$ does there exist locally a homeomorphism $\mathbb{R}^n \to M$ which is C^{α} -Hölder continuous ?

Definition

Let $\alpha(M) = \sup\{\alpha \in (0,1) \mid \exists \text{ locally a homeomorphism } \mathbb{R}^n \to M\}.$

Example

If G is a r-step Carnot group, the exponential map $\mathfrak{g} = Lie(G) \rightarrow G$ is locally $C^{1/r}$ -Hölder continuous. Thus $\alpha(M) \ge 1/r$.

Theorem (Gromov 1993)

Let M be sub-Riemannian, with Hausdorff dimension Q. Then $\alpha(M) \leq \frac{n-1}{Q-1}$. Let M be a 2m + 1-dimensional contact manifold. Then $\alpha(M) \leq \frac{m+1}{m+2}$ ($\leq \frac{2m}{2m+1}$).

イロト イポト イヨト イヨト

Gromov's proof uses Hausdorff dimension of subset of given topological dimension: if all subsets of topological dimension k have Hausdorff dimension $\geq k'$, then $\alpha(M) \leq \frac{k}{k'}$.

-

Gromov's proof uses Hausdorff dimension of subset of given topological dimension: if all subsets of topological dimension k have Hausdorff dimension $\geq k'$, then $\alpha(M) \leq \frac{k}{k'}$.

To get lower bounds on Hausdorff dimension of subsets, Gromov constructs local foliations by horizontal submanifolds. If there are enough such dimension k foliations, all subsets of topological dimension n - k have Hausdorff dimension $\geq Q - k$, therefore $\alpha(M) \leq \frac{n-k}{Q-k}$.

Gromov's proof uses Hausdorff dimension of subset of given topological dimension: if all subsets of topological dimension k have Hausdorff dimension $\geq k'$, then $\alpha(M) \leq \frac{k}{k'}$.

To get lower bounds on Hausdorff dimension of subsets, Gromov constructs local foliations by horizontal submanifolds. If there are enough such dimension k foliations, all subsets of topological dimension n - k have Hausdorff dimension $\geq Q - k$, therefore $\alpha(M) \leq \frac{n-k}{Q-k}$.

Constructing horizontal curves amounts to solving a system of PDE's. If k = 1, it is an ODE, the method applies to all (equiregular) sub-Riemannian manifolds. Gromov solves the relevant PDE for contact 2m + 1-manifolds and k = m, and, more generally, for generic *h*-dimensional distributions, and *k* such that $h - k \ge (n - h)k$.

Gromov's proof uses Hausdorff dimension of subset of given topological dimension: if all subsets of topological dimension k have Hausdorff dimension $\geq k'$, then $\alpha(M) \leq \frac{k}{k'}$.

To get lower bounds on Hausdorff dimension of subsets, Gromov constructs local foliations by horizontal submanifolds. If there are enough such dimension k foliations, all subsets of topological dimension n - k have Hausdorff dimension $\geq Q - k$, therefore $\alpha(M) \leq \frac{n-k}{Q-k}$.

Constructing horizontal curves amounts to solving a system of PDE's. If k = 1, it is an ODE, the method applies to all (equiregular) sub-Riemannian manifolds. Gromov solves the relevant PDE for contact 2m + 1-manifolds and k = m, and, more generally, for generic *h*-dimensional distributions, and *k* such that $h - k \ge (n - h)k$.

Today, I describe an alternative method, due again to Gromov, but based on Rumin's theory of differential forms on sub-Riemannian manifolds. A motivation to further study this theory in this seminar.

Definition Metric weights

Definition

On a metric space X, a (straight) q-cochain of size ϵ is a function c on q + 1-uples of diameter $\leq \epsilon$. Its ϵ -absolute value is

 $|c|_{\epsilon} = \sup\{c(\Delta); diam(\Delta) < \epsilon\}.$

In other words, straight cochains of size ϵ coincide with simplicial cochains on the simplicial complex whose vertices are points of X and a q-face joins q + 1 vertices as soon as all pairwise distances are $< \epsilon$. Therefore, they form a complex C_{ϵ} . There is a dual complex of chains $C_{..\epsilon}$.

Lemma

Assume X is a manifold with boundary, or bi-Hölder homeomorphic to such, then the inductive limit complex $\lim_{\epsilon} C_{\epsilon}^{\cdot}$ computes cohomology.

Definition

Given a cohomology class κ and a number $\nu > 0$, one can define the ν -norm

 $\|\kappa\|_{\nu} = \liminf_{\epsilon \to 0} \epsilon^{-\nu} \inf\{|c|_{\epsilon} \mid \text{ cochains } c \text{ of size } \epsilon \text{ representing } \kappa\}.$

- - E - N

Definition Metric weights Hölder covariance

Definition

Let X be a metric space, let $q \in \mathbb{N}$. Define the metric weight $MW_q(X)$ as the supremum of numbers ν such that there exist arbitrarily small open sets $U \subset M$ and nonzero straight cohomology classes $\kappa \in H^q(U, \mathbb{R})$ with finite ν -norm $\|\kappa\|_{\nu} < +\infty$.

Proposition

In a Riemannian manifold with boundary, all straight cocycles c representing a nonzero class κ of degree q satisfy $|c|_{\epsilon} \geq const.(\kappa) \epsilon^{q}$. In other words, $\|\kappa\|_{q} > 0$.

Proof. Fix a cycle c' such that $\kappa(c') > 0$. Subdivide it as follows : fill simplices with geodesic singular simplices, subdivide them and keep only their vertices. This does not change the homology class. The number of simplices of size ϵ thus generated is $\leq \text{const.}(c') \epsilon^{-q}$. For any representative c of size ϵ of κ ,

$$\kappa(c') = c(c') \leq \text{const.} \ \epsilon^{-q} |c|_{\epsilon}. \ q.e.d.$$

Corollary

Euclidean n-space has $MW_q \leq q$ for all $q = 1, \ldots, n-1$.

Definition Metric weights Hölder covariance

Proposition

Let $f: X \to Y$ be a C^{α} -Hölder continuous homeomorphism. Let $\kappa \in H^q(Y, \mathbb{R})$. Then

$$\|\kappa\|_{\nu} < +\infty \Rightarrow \|f^*\kappa\|_{\nu\alpha} < +\infty.$$

In particular, $MW_q(X) \ge \alpha MW_q(Y)$.

Proof. If σ is a straight simplex of size ϵ in X, $f(\sigma)$ has size $\epsilon' \leq ||f||_{C^{\alpha}} \epsilon^{\alpha}$ in Y. If c is a representative of κ , f^*c is a representative of $f^*\kappa$, and

$$\begin{split} \epsilon^{\prime-\nu}|c|_{\epsilon'} &\geq \epsilon^{\prime-\nu}|c(f(\sigma))| \\ &= \epsilon^{\prime-\nu}|f^*c(\sigma)| \\ &\geq \|f\|_{C^{\alpha}}^{-\nu}\epsilon^{-\nu\alpha}|f^*c(\sigma)|. \end{split}$$

Therefore

$$\epsilon^{-\nu\alpha}|f^*c|_{\epsilon} \leq \|f\|_{\mathcal{C}^{\alpha}}^{\nu} \epsilon'^{-\nu}|c|_{\epsilon'}.$$

This leads to

$$\|f^*\kappa\|_{\nu\alpha} \leq \|f\|_{\mathcal{C}^{\alpha}}^{\nu} \|\kappa\|_{\nu}. \ q.e.d.$$

3 N

Gromov's Hölder homeomorphism problem Cochains Differential forms Estimates on algebraic weights	Weights of differential forms Algebraic versus metric weights Algebraic weights
---	---

Let G be a Carnot group with Lie algebra g. Left-invariant differential forms on G split into homogeneous components under the dilations δ_{ϵ_r}

$$\Lambda^*\mathfrak{g}^*=\bigoplus_w\Lambda^{*,w}\quad\text{where}\quad\Lambda^{*,w}=\{\alpha\,|\,\delta_\epsilon^*\alpha=\epsilon^w\alpha\}.$$

Therefore Lie algebra cohomology splits $H^q(\mathfrak{g}) = \bigoplus_w H^{q,w}(\mathfrak{g})$.

Example

If $G = Heis^{2m+1}$ is the Heisenberg group, for each degree $q \neq 0$, 2m + 1,

$$\Lambda^q \mathcal{G}^* = \Lambda^{q,q} \oplus \Lambda^{q,q+1},$$

where $\Lambda^{q,q} = \Lambda^q(V^1)^*$ and $\Lambda^{q,q+1} = \Lambda^{q-1}(V^1)^* \otimes (V^2)^*$.

This gradation by weight depends on the group structure. What remains for general sub-Riemannian manifolds is a filtration.

Definition

Let (M, Δ) be a sub-Riemannian manifold, $m \in M$. Say a q-form α on $T_m M$ has weight $\geq w$ if it vanishes on q-vectors of $\Delta^{i_1} \otimes \cdots \otimes \Delta^{i_q}$ whenever $i_1 + \cdots + i_q < w$. If (M, Δ) is equiregular, such forms constitute a subbundle $\Lambda^{q, \geq w} T^*M$. The space of its smooth sections is denoted by $\Omega^{*, \geq w}$.

Note that each $\Omega^{*,\geq w}$ is a differential ideal in Ω^* .

Weights of differential forms Algebraic versus metric weights Algebraic weights

Proposition

Let M be an equiregular sub-Riemannian manifold. Let $U \subset M$ be a bounded open set with smooth boundary. Let ω be a closed differential form on U of weight $\geq w$. Then, for every ϵ small enough, the cohomology class $\kappa \in H^q(U, \mathbb{R})$ of ω can be represented by a straight cocycle c_{ϵ} (maybe defined on a slightly smaller homotopy equivalent open set) such that $|c_{\epsilon}|_{\epsilon} \leq const. \epsilon^w$. In other words, $||\kappa||_w < +\infty$.

Proof. In the case of a Carnot group *G*. Use the exponential map to push affine simplices in the Lie algebra to the group. Fill in all straight simplices in *G* of unit Carnot-Carathéodory size with such affine singular simplices. Apply δ_{ϵ} and obtain a filling σ_{ϵ} for each straight simplex σ in *G* of Carnot-Carathéodory size ϵ . Define a straight cochain c_{ϵ} of size ϵ on *U* by

$$c_\epsilon(\sigma) = \int_{\sigma_\epsilon} \omega$$

Since ω is closed, Stokes theorem shows that c_{ϵ} is a cocycle. Its cohomology class in $H^q(U', \mathbb{R}) \simeq H^q(U, \mathbb{R})$ is the same as ω 's. Furthermore,

$$|c_{\epsilon}(\sigma)| = \int_{\sigma_1} \delta^*_{\epsilon} \omega \leq V \|\delta^*_{\epsilon} \omega\|_{\infty} \leq \operatorname{const.}(\omega) \epsilon^w. \ q.e.d.$$

Gromov's Hölder homeomorphism problem Cochains Differential forms Estimates on algebraic weights Uniferential forms Algebraic weights

Definition

Let M be a sub-Riemannian manifold. Define the algebraic weight $AW_q(M)$ as the largest w such that there exists arbitrarily small open sets with smooth boundary $U \subset M$ and nonzero classes in $H^q(U, \mathbb{R})$ which can be represented by closed differential forms of weight $\geq w$.

Remark

Equiregular sub-Riemannian manifolds satisfy $MW_q \ge AW_q$.

Corollary

Let M be a sub-Riemannian manifold. Then for all q = 1, ..., n - 1, $\alpha(M) \leq \frac{q}{AW_a}$.

So our goal now is to show that for certain sub-Riemannian manifolds, for certain degrees q, in every open set, every closed differential q-form is cohomologous to a form of high weight.

As a warm up, let us treat codimension 1 forms.

Proposition (Gromov)

Let (M, Δ) be a sub-Riemannian manifold of Hausdorff dimension Q. Every closed n - 1-form is cohomologous to a form of weight $\geq Q - 1$. Thus $AW_{n-1}(M) = Q - 1$.

Proof. The filtration of $\Delta \subset \Delta^2 \subset \cdots \subset TM$ induces a filtration $A^{n-1} = \mathcal{F}^1 \subset \mathcal{F}^2 \subset \cdots \subset \Omega^{n-1}$ as follows : $\alpha \in \mathcal{F}^j$ if and only if there exist an *n*-form ω and a vectorfield $Z \subset \Delta^j$ such that $\alpha = \iota_Z \omega$. We show that for all $j \ge 1$, $\mathcal{F}^{j+1} \subset \mathcal{F}^j + im(d)$. Let ω be an *n*-form and X, Y be vectorfields such that $X \in \Delta$, $Y \in \Delta^j$. Then, using Lie derivatives, $\mathcal{L}_X(\iota_Y\omega) = \iota_{\mathcal{L}_X(Y)}\omega + \iota_Y(\mathcal{L}_X\omega)\iota_{[X,Y]}\omega \mod \mathcal{F}^j$. Thanks to Cartan's formula, $\mathcal{L}_X(\iota_Y\omega) = d(\iota_X\iota_Y\omega) + \iota_Xd(\iota_Y\omega) \in im(d) + \mathcal{F}^j$. Therefore $\iota_{[X,Y]}\omega \in im(d) + \mathcal{F}^j$. Let $\alpha \in \mathcal{F}^{j+1}$, $\alpha = \iota_Z\omega$ with $Z \in \Delta^{j+1}$. Write $Z = \sum_{\ell} a_\ell[X_\ell, Y_\ell]$ where a_ℓ are functions, X_ℓ , Y_ℓ are vectorfields, $X_\ell \in \Delta$, $Y_\ell \in \Delta^j$. Then $\alpha = \sum_{\ell} \iota_{[X_\ell, Y_\ell]}\omega_\ell$ (where $\omega_\ell = a_\ell\omega$), therefore $\alpha \in im(d) + \mathcal{F}^j$. This shows that $\mathcal{F}^{j+1} \subset \mathcal{F}^j + im(d)$. The bracket generating assumption, $\Delta^r = TM$, implies that $\Omega^{n-1} = \mathcal{F}^r \subset im(d) + \mathcal{F}^1 = im(d) + A^{n-1}$. Given a closed n - 1-form ϕ , the equation

$$d\psi = -\phi \mod A^{n-1}$$

admits a smooth solution $\beta \in \Omega^{n-2}$. Then $\phi + d\psi \in A^{n-1}$ is a horizontal form, q.e.d.

Rumin's complex is a subcomplex of the de Rham complex, homotopic to it, consisting of differential forms of preferably high weights. The construction requires to invert the weight 0 component d_0 of d. d_0 identifies with the exterior differential on left-invariant forms on tangent Lie algebras \mathfrak{g}_m . So one needs that the cohomology $m \mapsto H^{q,w}(\mathfrak{g}_m)$ be constant, whence the word equihomological. It turns out that the obstruction for cohomologing q-forms towards weight > w is $H^{q,w}(\mathfrak{g}_m)$.

Theorem (Rumin 2005)

Let M be a equihomological sub-Riemannian manifold. Assume that there exists a point $m \in M$ such that, in the cohomology of the tangent Lie algebra \mathfrak{g}_m , $H^{q,w'}(\mathfrak{g}_m) = 0$ for all w' < w. Then $AW_q(M) \ge w$.

On Carnot groups, the grading of cohomology is compatible with Poincaré duality, $H^{q,w}(\mathfrak{g}) = H^{n-q,Q-w}(\mathfrak{g})$. So

$$\exists m \; H^{n-q}(\mathfrak{g}_m) = H^{n-q, \leq Q-w}(\mathfrak{g}_m) \quad \Rightarrow \quad AW_q(M) \geq w.$$

Example

Degree n-1. On any Carnot Lie algebra \mathfrak{g} , closed 1-forms belong to $(V^1)^* = \Lambda^{1,1}$, so $H^1(\mathfrak{g}) = H^{1,1}(\mathfrak{g})$, and $AW_{n-1}(M) \ge Q-1$.

・ロト ・周ト ・ヨト ・ヨト

More examples

Example

Contact case. Closed m-forms belong to $\Lambda^{m,m}$. Therefore $H^m(\mathfrak{g}) = H^{m,m}(\mathfrak{g})$, and $AW_{m+1}(M) \geq m+2.$

Indeed, if $\omega \in \Lambda^{m,m+1}$, $\omega = \theta \wedge \phi$ where $\theta \in (V^2)^*$, $\phi \in \Lambda^{m-1,m-1}$, $(d\omega)^{m+1,m+1} = (d\theta) \land \phi \neq 0$ since $d\theta$ is symplectic on Δ .

- 4 B b - 4 B b

3

Rumin's complex More examples

Example

Contact case. Closed m-forms belong to $\Lambda^{m,m}$. Therefore $H^m(\mathfrak{g}) = H^{m,m}(\mathfrak{g})$, and $AW_{m+1}(M) > m+2.$

Indeed, if $\omega \in \Lambda^{m,m+1}$, $\omega = \theta \wedge \phi$ where $\theta \in (V^2)^*$, $\phi \in \Lambda^{m-1,m-1}$, $(d\omega)^{m+1,m+1} = (d\theta) \land \phi \neq 0$ since $d\theta$ is symplectic on Δ .

Example

Generic sub-Riemannian case. Let $h = dim(\Delta)$ and k be such that $h - k \ge (n - h)k$. Then $H^k(\mathfrak{g}_m) = H^{k,k}(\mathfrak{g}_m)$, thus $AW(M) \ge Q - k$.

Let θ be a \mathbb{R}^{n-h} -valued 1-form defining Δ . Say a k-plane $S \subset \Delta_m$ is *isotropic* if $d\theta_{|S} = 0$. Say S is regular if the map $\Delta_m \to Hom(S, \mathbb{R}^{n-h})$, $u \mapsto (\iota_u d\theta)_{|S}$ is onto. h - k > (n - h)k is a necessary condition for existence of regular isotropic horizontal k-planes. It is generically sufficient. When it holds, closed left-invariant k-forms have to be of weight k, so $H^k(\mathfrak{g}_m) = H^{k,k}(\mathfrak{g}_m)$ for $m \in M$.

Remark

The method just exposed seems to cover all presently known results on the Hölder homeomorphism problem.

- A 🖻 🕨

- A 🗐 🗅