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Plan

Definition
Let G be the group of real points of an algebraic group. Let Γ be a finitely generated
group. Say a homomorphism φ : Γ → G is flexible if Zariski dense homomorphisms are
dense in a neighborhood of φ in Hom(Γ, G).

Problem
Determine which homomorphisms of surface groups to almost simple Lie groups are
flexible.

Plan of lecture
We survey (global) rigidity results concerning surface groups in semisimple Lie groups.

We complement them with new flexibility results.



Toledo invariants

Let X be a Hermitian symmetric space, with Kähler form Ω (the metric is normalized
so that the minimal sectional curvature equals −1). Let Σ be a closed surface of
negative Euler characteristic, let Γ = π1(Σ) act isometricly on X . Pick a smooth
equivariant map f̃ : Σ̃ → X .

Definition
Define the Toledo invariant of the action ρ : Γ → Isom(X ) by

Tρ =
1

2π

Z
Σ

f̃ ∗Ω.

Then

1. Tρ depends continuously on ρ.

2. There exists `X ∈ Q such that Tρ ∈ `X Z.

3. |Tρ| ≤ |χ(Σ)||rank(X )|.



Rigidity in rank 1

Example
When X = H1

C is a disk, inequality |Tρ| ≤ |χ(Σ)| is due to J. Milnor (1958).
Furthermore `X = 1, T takes all integer values between −|χ(Σ)| and |χ(Σ)|.

Theorem
(W. Goldman, 1980). Let X = H1

C. The level sets of T coincide with the connected
components of the character variety χ(Γ, PU(1, 1)). Furthermore |Tρ| = |χ(Σ)| if and
only if ρ(Γ) is discrete and cocompact in PU(1, 1) = Isom(H1

C).

Note that all components of χ(Γ, PU(1, 1)) have the same dimension 3|χ(Σ)|.

Theorem
(D. Toledo, 1979, 1989). Let X = Hn

C have rank 1. Then |Tρ| ≤ |χ(Σ)|. Furthermore,

|Tρ| = |χ(Σ)| if and only if ρ(Γ) stabilizes a complex geodesic H1
C in X and acts

cocompactly on it.

It follows that, for n ≥ 2, different components of χ(Γ, PU(n, 1)) can have different
dimensions.



Higher rank

Definition
Actions ρ such that |Tρ| = |χ(Σ)|rank(X ) are called maximal representations.

Examples
Pick cocompact actions ρ1, . . . , ρr of Γ on H1

C. Then the direct sum representation on

the polydisk (H1
C)r is maximal. When the polydisk is embedded in a larger symmetric

space of rank r, it remains maximal. It follows that all Hermitian symmetric spaces
admit maximal representations.

Proposition
(Toledo, 1987). In case X is Siegel’s upper half space (i.e. Isom(X ) = Sp(n, R)), such
actions can be deformed to become Zariski dense.

But this may fail for other Hermitian symmetric spaces.

Theorem
(L. Hernàndez Lamoneda, 1991, S. Bradlow, O. Garćıa-Prada, P. Gothen, 2003).
Maximal reductive representations of Γ to PU(p, q), p ≤ q, can be conjugated into
P(U(p, p)× U(q − p)).



Tube type

Gromov, Thurston, Domic-Toledo : Surfaces admit ideal triangulations. Tρ is the sum
of Kähler areas of ideal triangles in an ideal triangulation.
Observation : in Hn

C, the Kähler area of ideal triangles takes a full interval of values for
n > 1, whereas only one value for n = 1. In a polydisc, finitely many values.

Theorem
(J.-L. Clerc, B. Ørsted 2003). The Kähler area of an ideal triangle either takes a full
interval of values (non tube type case) or finitely many values (tube type case), in
both cases bounded by 1

2
rank(X ). Equality holds iff the triangle is contained in a

subsymmetric space of tube type.

Definition
Say a Hermitian symmetric space is of tube type if it can be realized as a domain in
Cn of the form Rn + iC where C ⊂ Rn is a proper open cone.

Examples
Siegel’s upper half spaces and Grassmannians with isometry groups PO(2, q) are of
tube type. The Grassmannian Dp,q , p ≤ q, with isometry group PU(p, q) is of tube
type iff p = q. Products of tube type spaces are of tube type, so polydisks are of tube
type.



Tube type rigidity

Theorem
(Burger, Iozzi, Wienhard, 2003). Let Γ be a closed surface group and X a Hermitian
symmetric space. Every maximal representation Γ → Isom(X ) stabilizes a tube type
subsymmetric space Y and is Zariski dense in Isom(Y ).

In particular, maximal representations of surface groups in non tube type Hermitian
symmetric spaces are globally rigid.

Examples
In case X is the n-ball D1,n (resp. Dp,q), one recovers Toledo’s (resp. Barlow et al.)
results.



Flexibility problem

Problem
Characterize flexible actions of closed surface groups on (non necessarily Hermitian)
symmetric spaces.

All previously known examples of flexibility can be obtained by bending representations.

Examples
(Burger, Iozzi, Wienhard). In a tube type Hermitian symmetric space, surface groups
stabilizing a maximal polydisk and acting diagonally on it (Toledo’s 1987 examples)
are flexible.

We shall give a somewhat computable flexibility criterion. When flexibility is proven,
deformations do not look like bending.



Flexibility theorem

Let G be a semisimple Lie group. Let Γ be the fundamental group of a closed surface
of high enough genus. Let φ : Γ → G be a homomorphism with reductive Zariski
closure. Let c be the center of the centralizer of φ(Γ). It splits the Lie algebra of G
into real root spaces gλ,R which carry natural symplectic structures. In particular, to
each pure imaginary root λ, there corresponds a symplectic representation ρλ and a
Toledo invariant Tλ.

Definition
Among the above roots, let P be the subset of pure imaginary roots λ such that ρλ is
a maximal representation with Tλ > 0. Say c is balanced with respect to φ if 0
belongs to the interior of the sum of the convex hull of the imaginary parts of
elements of P and the linear span of the real and imaginary parts of roots not in ±P.

Theorem
φ is flexible if and only if c is balanced with respect to φ.



Consequences

Corollary
If φ is not flexible, then one of the noncompact irreducible factors of the symmetric
space of a Levi factor of the Zariski closure of φ(Γ) is Hermitian of tube type, and the
action of Γ on this factor is a maximal representation.

In case G is of Hermitian type, this is close to a converse to the result by Burger et al.
(up to the restriction on genus).

Corollary
If G has real rank one, then φ is flexible, unless G is PU(m, 1) and φ(Γ) is discrete,
cocompact in a conjugate of P(U(1, 1)× U(m − 1)) ⊂ PU(m, 1).

This is an exact converse to Toledo’s theorem (up to the restriction on genus).

Work in progress
Classify all non flexible homomorphisms. Based on classification of root systems.

Easy cases : complex Lie groups, PSL(n, R), PSL(n, H), in which cases P = ∅.

Remark
1. The restriction on genus is probably irrelevant.
2. Non constructive : deformations are not given by explicit formulae nor geometric
constructions.



Tools

Theorem
(W. Goldman, 1985). If Γ is a surface group and ρ is reductive, then, in a
neighborhood of the conjugacy class of ρ, Hom(Γ, G)/G is analytically equivalent to

{u ∈ H1(Γ, gad◦ρ) | [u ^ u] = 0}/ZG (ρ(Γ)).

Here, smiling bracket denotes cup-product : H1(Γ, gad◦ρ) → H2(Γ, gad◦ρ).

Remark
This can prove flexibility without providing explicit deformations.

The dimension of H1(Γ, gad◦ρ) can be computed via Euler characteristic and Poincaré
duality: H2(Γ, g) = (H0(Γ, g∗))∗.

Cup-products can be computed thanks to

Theorem
(W. Meyer, 1972). Let (E , Ω) be a flat symplectic vector bundle over Σ. The
quadratic form Q(a) =

R
Σ Ω(a ^ a) on H1(Σ, E) is nondegenerate of signature

4c1(E , Ω).



Levi factors of centralizers

Notation
χ(Γ, G) = Hom(Γ, G)/G.

Proposition

I The dimension of χ(Γ, G) at points with trivial centralizers is |χ(Σ)|dim(G).

I If the genus of Σ is large enough, non Zariski dense homomorphisms form a
subset of χ(Γ, G) of dimension less than |χ(Σ)|dim(G).

I Therefore it is sufficient to prove density of smooth points in neighborhoods of
homomorphisms with nontrivial centralizers.

Proposition
Levi factors of centralizers are treated by explicitly deforming given cohomology
classes u such that [u ^ u] = 0.

Such deformations v , satisfying [v ^ u] = 0, [v ^ v ] = 0, are obtained as zeroes of
sections of bundles on the complex Grassmannian. They exist due to nonvanishing of
powers the top Chern class of the universal bundle (requires high genus).



Centers of centralizers

Let c denote the center of the centralizer of φ(Γ). g⊗C splits under c into root spaces
gλ. H1(Γ, g)⊗ C splits accordingly.

Lemma
[· ^ ·] vanishes on each H1(Γ, gλ).
H1(Γ, gλ) and H1(Γ, gµ) are orthogonal with respect to [· ^ ·] unless λ + µ = 0.

On each gλ,R = g ∩ (gλ ⊕ g−λ), all adZ , Z ∈ c are proportional. Therefore the
corresponding alternating forms (X , Y ) → Z · [X , Y ] are proportional to a single
symplectic form Ωλ. On H1(Γ, gλ,R), all Z · [· ^ ·] are proportional to the quadratic
form Qλ(u, u) =

R
Σ Ωλ(u ^ u). Let ρλ : Γ → Sp(gλ,R, Ωλ) denote the composed

symplectic linear representation, and Tλ the corresponding Toledo invariant. Meyer’s
formula yields

Lemma
If λ 6= 0, Qλ is nondegenerate and its index is equal to 4Tλ. Therefore

4|Tλ| ≤ dim(H1(Γ, gλ,R)) = −χ(Σ)dim(gλ,R).

In particular, Qλ is definite if and only if ρλ is a maximal representation.



End of proof

On H1(Γ, g), [· ^ ·] =
P

λ Qλλ. Smooth points of χ(Γ, G) correspond to classes
u =

P
λ uλ, uλ ∈ H1(Γ, gλ,R), such that [u ^ u] = 0 and uλ 6= 0 for a spanning set

of λ’s. If u is not a smooth point, too many uλ’s vanish, perturb them to nonzero
vλ’s. Indefinite quadratic forms Qλ allow arbitrary moves in the direction of λ, but
positive definite ones allow one to reach only points of a convex hull. If 0 belongs to
it, nonzero vλ’s can be found such that [v ^ v ] = 0.

The fact that the Zariski closure of φ(Γ) has to be Hermitian of tube type follows
from the following theorem.

Theorem
(Burger, Iozzi, Wienhard, 2007). Let S be a semisimple Lie group whose symmetric
space is Hermitian. Let ρ : Γ → S be a maximal representation of a surface group.
Then ρ is tight. Its Zariski closure H is reductive of Hermitian type. The embedding
H ↪→ S is tight. If S is of tube type, so is H.

Calculation of examples (e.g., rank one) relies on further obstructions for ρλ to be
definite : ρλ is not only symplectic, it must be unitary with respect to a Hermitian
form of vanishing signature.
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