Negative curvature pinching

P. Pansu

November 7th, 2013

< 17 ►

< ∃⇒

Definition

Let M be a Riemannian manifold. Let $0 < \delta \leq 1$. Say M is δ -pinched if sectional curvature ranges between δ and 1. Define the optimal pinching $\delta(M)$ of M as the largest $\delta \leq 1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

< - 17 →

∃ ⊳

Definition

Let M be a Riemannian manifold. Let $0 < \delta \leq 1$. Say M is δ -pinched if sectional curvature ranges between δ and 1. Define the optimal pinching $\delta(M)$ of M as the largest $\delta \leq 1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

Example

Spheres and their quotients have $\delta(M) = 1$.

Definition

Let M be a Riemannian manifold. Let $0 < \delta \leq 1$. Say M is δ -pinched if sectional curvature ranges between δ and 1. Define the optimal pinching $\delta(M)$ of M as the largest $\delta \leq 1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

Example

Spheres and their quotients have $\delta(M) = 1$.

Example

Projective spaces over the complexes, quaternions and octonions have $\delta(M) \geq \frac{1}{4}$.

Indeed, in their canonical (Fubini-Study) metric, lines are totally geodesic of curvature 1 and real projective subspaces are totally geodesic of curvature $\frac{1}{4}$. Other sectional curvatures lie in between.

Theorem (Berger, Klingenberg 1959)

Let M be a $\frac{1}{4}$ -th pinched even dimensional simply connected Riemannian manifold. Then

- either M is homeomorphic to a sphere,
- or M is isometric to a projective space.

This implies that the optimal pinching for projective spaces equals $\frac{1}{4}$. Proof: cover *M* with two geodesic balls, use angle comparison theorems.

Theorem (Berger, Klingenberg 1959)

Let M be a $\frac{1}{4}$ -th pinched even dimensional simply connected Riemannian manifold. Then

- either M is homeomorphic to a sphere,
- or M is isometric to a projective space.

This implies that the optimal pinching for projective spaces equals $\frac{1}{4}$. Proof: cover *M* with two geodesic balls, use angle comparison theorems.

Recent improvement:

Theorem (Brendle, Schoen 2007)

Let M be a $\frac{1}{4}$ -pinched Riemannian manifold. Then

- either M is diffeomorphic to a quotient of the sphere,
- or M is isometric to a projective space.

Proof : " $M \times \mathbb{R}$ has nonnegative isotropic curvature" is preserved by the Ricci flow. And this follows from $\frac{1}{4}$ -pinching.

- E - E

< ∃ →

Compact case Non compact case

Definition

Let M be a compact Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching of M as the least $\delta \ge -1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

- A 🖻 🕨

Compact case Non compact case

Definition

Let M be a compact Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching of M as the least $\delta \ge -1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.

Complex hyperbolic space $H^m_{\mathbb{C}}$ is a metric on the ball in \mathbb{C}^m which is invariant under all holomorphic automorphisms.

Spheres in $H^m_{\mathbb{C}}$ are homogeneous under conjugates of U(m). Horospheres are homogeneous under Heisenberg group $Heis^{m-1}$.

< 🗇 🕨

- 4 E b

Compact case Non compact case

Definition

Let M be a compact Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching of M as the least $\delta \ge -1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.

Complex hyperbolic space $H^m_{\mathbb{C}}$ is a metric on the ball in \mathbb{C}^m which is invariant under all holomorphic automorphisms.

Spheres in $H^m_{\mathbb{C}}$ are homogeneous under conjugates of U(m). Horospheres are homogeneous under Heisenberg group $Heis^{m-1}$. There are quaternionic $H^m_{\mathbb{H}}$ and octonionic $H^2_{\mathbb{C}}$ siblings.

- 4 E b

Definition

Let M be a compact Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching of M as the least $\delta \ge -1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.

Complex hyperbolic space $H^m_{\mathbb{C}}$ is a metric on the ball in \mathbb{C}^m which is invariant under all holomorphic automorphisms.

Spheres in $H^m_{\mathbb{C}}$ are homogeneous under conjugates of U(m). Horospheres are homogeneous under Heisenberg group $Heis^{m-1}$. There are quaternionic $H^m_{\mathbb{H}}$ and octonionic $H^2_{\mathbb{O}}$ siblings. All are $-\frac{1}{4}$ -pinched.

Definition

Let M be a compact Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching of M as the least $\delta \ge -1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.

Complex hyperbolic space $H^m_{\mathbb{C}}$ is a metric on the ball in \mathbb{C}^m which is invariant under all holomorphic automorphisms.

Spheres in $H^m_{\mathbb{C}}$ are homogeneous under conjugates of U(m). Horospheres are homogeneous under Heisenberg group $Heis^{m-1}$.

There are quaternionic $H^m_{\mathbb{H}}$ and octonionic $H^2_{\mathbb{O}}$ siblings.

All are $-\frac{1}{4}$ -pinched.

Together with ordinary hyperbolic space $H_{\mathbb{R}}^n$, these constitute the list of all negatively curved symmetric spaces (i.e. geodesic inversion is an isometry), E. Cartan, 1925.

Definition

Let M be a compact Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching of M as the least $\delta \ge -1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.

Complex hyperbolic space $H^m_{\mathbb{C}}$ is a metric on the ball in \mathbb{C}^m which is invariant under all holomorphic automorphisms.

Spheres in $H^m_{\mathbb{C}}$ are homogeneous under conjugates of U(m). Horospheres are homogeneous under Heisenberg group $Heis^{m-1}$.

There are quaternionic $H^m_{\mathbb{H}}$ and octonionic $H^2_{\mathbb{O}}$ siblings.

All are $-\frac{1}{4}$ -pinched.

Together with ordinary hyperbolic space $H^n_{\mathbb{R}}$, these constitute the list of all negatively curved symmetric spaces (i.e. geodesic inversion is an isometry), E. Cartan, 1925. And also the list of all noncompact Riemannian manifolds with 2-point transitive isometry groups, J. Tits, 1955.

_ ∢ ≣ ▶

Definition

Let M be a compact Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching of M as the least $\delta \ge -1$ such that M is diffeomorphic to a δ -pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.

Complex hyperbolic space $H^m_{\mathbb{C}}$ is a metric on the ball in \mathbb{C}^m which is invariant under all holomorphic automorphisms.

Spheres in $H^m_{\mathbb{C}}$ are homogeneous under conjugates of U(m). Horospheres are homogeneous under Heisenberg group $Heis^{m-1}$.

There are quaternionic $H^m_{\mathbb{H}}$ and octonionic $H^2_{\mathbb{O}}$ siblings.

All are $-\frac{1}{4}$ -pinched.

Together with ordinary hyperbolic space $H_{\mathbb{R}}^n$, these constitute the list of all negatively curved symmetric spaces (i.e. geodesic inversion is an isometry), E. Cartan, 1925. And also the list of all noncompact Riemannian manifolds with 2-point transitive isometry groups, J. Tits, 1955.

All have compact quotients M which have $\delta(M) \leq -\frac{1}{4}$.

イロト イポト イヨト イヨト

Theorem (Many people)

Let N be a compact quotient of $H^m_{\mathbb{C}}$, $H^m_{\mathbb{H}}$ $(m \ge 2)$ or $H^2_{\mathbb{O}}$. If a metric on N is $-\frac{1}{4}$ -pinched, then it lifts to a symmetric metric.

This is due to

- M. Ville, 1984 for $H^2_{\mathbb{C}}$ (pointwise estimate on the characteristic class $\chi 3\sigma$),
- L. Hernández-Lamoneda, 1991, and independently S.T. Yau and F. Zheng, 1991 for $H^m_{\mathbb{C}}$ (harmonic maps),
- N. Mok, Y.T. Siu and S.K. Yeung, 1993, and independently J. Jost and S.T. Yau, 1993 for other spaces (harmonic maps).

Theorem (Many people)

Let N be a compact quotient of $H^m_{\mathbb{C}}$, $H^m_{\mathbb{H}}$ $(m \ge 2)$ or $H^2_{\mathbb{O}}$. If a metric on N is $-\frac{1}{4}$ -pinched, then it lifts to a symmetric metric.

This is due to

- M. Ville, 1984 for $H^2_{\mathbb{C}}$ (pointwise estimate on the characteristic class $\chi 3\sigma$),
- L. Hernández-Lamoneda, 1991, and independently S.T. Yau and F. Zheng, 1991 for $H^m_{\mathbb{C}}$ (harmonic maps),
- N. Mok, Y.T. Siu and S.K. Yeung, 1993, and independently J. Jost and S.T. Yau, 1993 for other spaces (harmonic maps).

Harmonic map approach based on vanishing theorem: if M is compact Kähler (resp. quaternionic, octonionic Kähler), N is $-\frac{1}{4}$ -pinched,

 $f: M \rightarrow N$ harmonic $\Rightarrow f$ pluriharmonic.

(non linear Hodge theory).

- ₹ ∃ ►

_ ∢ ≣ ▶

Compact case Non compact case

Definition

Let M be a complete simply connected Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching $\delta(M)$ of M as the least $\delta \ge -1$ such that M is quasi-isometric to a δ -pinched complete simply connected Riemannian manifold.

< 🗇 🕨

3 N

∃ ⊳

Compact case Non compact case

Definition

Let M be a complete simply connected Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching $\delta(M)$ of M as the least $\delta \ge -1$ such that M is quasi-isometric to a δ -pinched complete simply connected Riemannian manifold.

Question

Is it true that the optimal pinching of $H^m_{\mathbb{C}}$, $H^m_{\mathbb{H}}$ $(m \ge 2)$ and $H^2_{\mathbb{O}}$ is $-\frac{1}{4}$?

・ロト ・ 同ト ・ ヨト ・ ヨト

Compact case Non compact case

Definition

Let M be a complete simply connected Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching $\delta(M)$ of M as the least $\delta \ge -1$ such that M is quasi-isometric to a δ -pinched complete simply connected Riemannian manifold.

Question

Is it true that the optimal pinching of $H^m_{\mathbb{C}}$, $H^m_{\mathbb{H}}$ $(m \ge 2)$ and $H^2_{\mathbb{O}}$ is $-\frac{1}{4}$?

Remark

Complex hyperbolic plane $H^2_{\mathbb{C}}$ can be viewed as \mathbb{R}^4 with metric $dt^2 + e^t dx^2 + e^t dy^2 + e^{2t} (dz - xdy)^2$.

イロト イポト イヨト イヨト

Compact case Non compact case

Definition

Let M be a complete simply connected Riemannian manifold. Let $-1 \le \delta < 0$. Say M is δ -pinched if sectional curvature ranges between -1 and δ . Define the optimal pinching $\delta(M)$ of M as the least $\delta \ge -1$ such that M is quasi-isometric to a δ -pinched complete simply connected Riemannian manifold.

Question

Is it true that the optimal pinching of $H^m_{\mathbb{C}}$, $H^m_{\mathbb{H}}$ $(m \ge 2)$ and $H^2_{\mathbb{O}}$ is $-\frac{1}{4}$?

Remark

Complex hyperbolic plane $H^2_{\mathbb{C}}$ can be viewed as \mathbb{R}^4 with metric $dt^2 + e^t dx^2 + e^t dy^2 + e^{2t} (dz - xdy)^2$.

Theorem

Let $M = \mathbb{R}^4$ with metric $dt^2 + e^t dx^2 + e^t dy^2 + e^{2t} dz^2$. Then $\delta(M) = -\frac{1}{4}$.

M is isometric to a left-invariant metric on a Lie group of the form $\mathbb{R} \ltimes \mathbb{R}^3$.

Positive curvature pinching Negative curvature pinching	Examples Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

 $H^{k,p}$ = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

< ∃ →

э

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

$$H^{k,p}$$
 = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

$$\mathbb{R}^{k,p}$$
 = closed k-forms in $L^p/closure$ of $d((k-1)-forms$ in $L^p)$,

$$T^{k,p}$$
 = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$.

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

∃ ⊳

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

$$H^{k,p}$$
 = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

 $R^{k,p}$ = closed k-forms in $L^p/$ closure of d((k-1)-forms in $L^p)$,

$$T^{k,p}$$
 = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$.

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

Remark

If M is compact, L^p-cohomology equals cohomology.

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

Let M be a Riemannian manifold. Let p > 1. L^p -cohomology of M is the cohomology of the complex of L^p -differential forms on M whose exterior differentials are L^p as well,

$$H^{k,p}$$
 = closed k-forms in $L^p/d((k-1)-forms in L^p)$,

 $R^{k,p}$ = closed k-forms in L^p /closure of d((k-1)-forms in $L^p)$,

$$T^{k,p}$$
 = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$.

 $R^{k,p}$ is called the reduced cohomology. $T^{k,p}$ is called the torsion.

Remark

If M is compact, L^p-cohomology equals cohomology.

Remark

For (uniformly) contractible spaces, L^p -cohomology is quasi-isometry invariant. Wedge product α , $\beta \mapsto \alpha \land \beta$ induces cup-product $[\alpha] \smile [\beta] : H^{k,p} \times H^{k',p} \to H^{k+k',p/2}$ in a quasi-isometry invariant manner.

- 4 同 6 4 回 6 4 回 6

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

$$\begin{split} H^{k,p} &= \textit{closed } k\textit{-forms in } L^p / d((k-1) - \textit{forms in } L^p), \\ R^{k,p} &= \textit{closed } k\textit{-forms in } L^p / \textit{closure of } d((k-1) - \textit{forms in } L^p), \\ T^{k,p} &= \textit{closure of } d((k-1) - \textit{forms in } L^p) / d((k-1) - \textit{forms in } L^p). \end{split}$$

Example

The real line \mathbb{R} .

(本間) (本語) (本語) (語)

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

$$\begin{split} H^{k,p} &= \textit{closed } k\textit{-forms in } L^p / d((k-1) - \textit{forms in } L^p), \\ R^{k,p} &= \textit{closed } k\textit{-forms in } L^p / \textit{closure of } d((k-1) \textit{-forms in } L^p), \\ T^{k,p} &= \textit{closure of } d((k-1) \textit{-forms in } L^p) / d((k-1) \textit{-forms in } L^p). \end{split}$$

Example

The real line \mathbb{R} .

 $H^{0,p} = 0.$

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

 $H^{k,p} = closed \ k$ -forms in $L^p/d((k-1)-forms \ in \ L^p)$, $R^{k,p} = closed \ k$ -forms in $L^p/$ closure of d((k-1)-forms in $L^p)$, $T^{k,p} = closure \ of \ d((k-1)-forms \ in \ L^p)/d((k-1)-forms \ in \ L^p)$.

Example

The real line \mathbb{R} .

 $H^{0,p} = 0.$

 $R^{1,p} = 0$, since every function in $L^p(\mathbb{R})$ can be approximated in L^p with derivatives of compactly supported functions. Therefore $H^{1,p}$ is only torsion.

★ 문 ► ★ 문 ►

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

 $H^{k,p} = closed \ k$ -forms in $L^p/d((k-1)-forms \ in \ L^p)$, $R^{k,p} = closed \ k$ -forms in $L^p/$ closure of d((k-1)-forms in $L^p)$, $T^{k,p} = closure \ of \ d((k-1)-forms \ in \ L^p)/d((k-1)-forms \ in \ L^p)$.

Example

The real line \mathbb{R} .

 $H^{0,p} = 0.$

 $R^{1,p} = 0$, since every function in $L^p(\mathbb{R})$ can be approximated in L^p with derivatives of compactly supported functions. Therefore $H^{1,p}$ is only torsion.

 $T^{1,p}$ is non zero and thus infinite dimensional.

・ 同 ト ・ ヨ ト ・ ヨ ト

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

 $H^{k,p} = closed \ k$ -forms in $L^p/d((k-1)-forms \ in \ L^p)$, $R^{k,p} = closed \ k$ -forms in $L^p/$ closure of d((k-1)-forms in $L^p)$, $T^{k,p} = closure \ of \ d((k-1)-forms \ in \ L^p)/d((k-1)-forms \ in \ L^p)$.

Example

The real line \mathbb{R} .

 $H^{0,p} = 0.$

 $R^{1,p} = 0$, since every function in $L^p(\mathbb{R})$ can be approximated in L^p with derivatives of compactly supported functions. Therefore $H^{1,p}$ is only torsion.

 $T^{1,p}$ is non zero and thus infinite dimensional. Indeed, the 1-form $\frac{dt}{t}$ (cut off near the origin) is in L^p for all p > 1 but it is not the differential of a function in L^p .

Examples Boundary values: 1-forms Boundary values: higher deg

).

- ∢ ≣ →

- - E - E

Definition

$$H^{k,p} = closed \ k$$
-forms in $L^p/d((k-1)-forms \ in \ L^p)$,
 $R^{k,p} = closed \ k$ -forms in $L^p/$ closure of $d((k-1)$ -forms in $L^p)$,
 $T^{k,p} = closure \ of \ d((k-1)-forms \ in \ L^p)/d((k-1)-forms \ in \ L^p)$

Example

The real hyperbolic plane $H^2_{\mathbb{R}}$.

Examples Boundary values: 1-forms Boundary values: higher degrees

).

< ∃→

- 4 E b

Definition

$$H^{k,p} = closed \ k$$
-forms in $L^p/d((k-1)-forms \ in \ L^p)$,
 $R^{k,p} = closed \ k$ -forms in $L^p/$ closure of $d((k-1)$ -forms in $L^p)$,
 $T^{k,p} = closure \ of \ d((k-1)-forms \ in \ L^p)/d((k-1)-forms \ in \ L^p)$

Example

The real hyperbolic plane $H^2_{\mathbb{R}}$.

Here $H^{0,p} = 0 = H^{2,p}$ for all *p*.

Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Definition

$$H^{k,p} = closed k$$
-forms in $L^p/d((k-1)-forms in L^p)$,
 $R^{k,p} = closed k$ -forms in $L^p/closure$ of $d((k-1)-forms in L^p)$,
 $T^{k,p} = closure$ of $d((k-1)-forms in L^p)/d((k-1)-forms in L^p)$.

Example

The real hyperbolic plane $H^2_{\mathbb{R}}$.

Here $H^{0,p} = 0 = H^{2,p}$ for all p. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$H^{1,2} = R^{1,2}$$

Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Definition

$$H^{k,p} = closed k$$
-forms in $L^p/d((k-1)-forms in L^p)$,
 $R^{k,p} = closed k$ -forms in $L^p/$ closure of $d((k-1)$ -forms in $L^p)$,
 $T^{k,p} = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$$

Example

The real hyperbolic plane $H^2_{\mathbb{R}}$.

Here $H^{0,p} = 0 = H^{2,p}$ for all p. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$H^{1,2} = R^{1,2}$$

= {L² harmonic 1-forms

Examples Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Definition

$$H^{k,p} = closed k$$
-forms in $L^p/d((k-1)-forms in L^p)$,
 $R^{k,p} = closed k$ -forms in $L^p/closure$ of $d((k-1)-forms in L^p)$,
 $T^{k,p} = closure$ of $d((k-1)-forms in L^p)/d((k-1)-forms in L^p)$.

Example

The real hyperbolic plane $H^2_{\mathbb{R}}$.

Here $H^{0,p} = 0 = H^{2,p}$ for all p. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{array}{lll} H^{1,2} &=& R^{1,2} \\ &=& \{L^2 \text{ harmonic 1-forms}\} \\ &=& \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R} \,. \end{array}$$

-

Examples Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Definition

$$H^{k,p} = closed k$$
-forms in $L^p/d((k-1)-forms in L^p)$,
 $R^{k,p} = closed k$ -forms in $L^p/$ closure of $d((k-1)$ -forms in $L^p)$,
 $T^{k,p} = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$$

Example

The real hyperbolic plane $H^2_{\mathbb{R}}$.

Here $H^{0,p} = 0 = H^{2,p}$ for all p. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{array}{lll} H^{1,2} &=& R^{1,2} \\ &=& \{L^2 \text{ harmonic 1-forms}\} \\ &=& \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R} \,. \end{array}$$

Using conformal invariance, switch from hyperbolic metric to Euclidean metric on the disk D.

 $H^{1,2}$ = {harmonic functions h on D with $\nabla h \in L^2$ }/ \mathbb{R}

- A 🖻 🕨

∃ >

Examples Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Definition

$$H^{k,p} = closed k$$
-forms in $L^p/d((k-1)-forms in L^p)$,
 $R^{k,p} = closed k$ -forms in $L^p/$ closure of $d((k-1)$ -forms in $L^p)$,
 $T^{k,p} = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$$

Example

The real hyperbolic plane $H^2_{\mathbb{R}}$.

Here $H^{0,p} = 0 = H^{2,p}$ for all p. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{array}{lll} H^{1,2} &=& R^{1,2} \\ &=& \{L^2 \text{ harmonic 1-forms}\} \\ &=& \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R} \,. \end{array}$$

Using conformal invariance, switch from hyperbolic metric to Euclidean metric on the disk D.

$$\begin{aligned} H^{1,2} &= \{ \text{harmonic functions } h \text{ on } D \text{ with } \nabla h \in L^2 \} / \mathbb{R} \\ &= \{ \text{Fourier series } \Sigma a_n e^{in\theta} \text{ with } a_0 = 0, \Sigma |n| |a_n|^2 < +\infty \}, \end{aligned}$$

∃ ⊳

Examples Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Definition

$$H^{k,p} = closed k$$
-forms in $L^p/d((k-1)-forms in L^p)$,
 $R^{k,p} = closed k$ -forms in $L^p/$ closure of $d((k-1)$ -forms in $L^p)$,
 $T^{k,p} = closure of $d((k-1)$ -forms in $L^p)/d((k-1)$ -forms in $L^p)$$

Example

The real hyperbolic plane $H^2_{\mathbb{R}}$.

Here $H^{0,p} = 0 = H^{2,p}$ for all p. If p = 2, since the Laplacian on L^2 functions is bounded below, $T^{1,2} = 0$. Therefore

$$\begin{array}{lll} H^{1,2} &=& R^{1,2} \\ &=& \{L^2 \text{ harmonic 1-forms}\} \\ &=& \{\text{harmonic functions } h \text{ on } H^2_{\mathbb{R}} \text{ with } \nabla h \in L^2\}/\mathbb{R} \,. \end{array}$$

Using conformal invariance, switch from hyperbolic metric to Euclidean metric on the disk D.

$$\begin{aligned} H^{1,2} &= \{ \text{harmonic functions } h \text{ on } D \text{ with } \nabla h \in L^2 \} / \mathbb{R} \\ &= \{ \text{Fourier series } \Sigma a_n e^{in\theta} \text{ with } a_0 = 0, \Sigma |n| |a_n|^2 < +\infty \}, \end{aligned}$$

which is Sobolev space $H^{1/2}(\mathbb{R}/2\pi\mathbb{Z})$ mod constants.

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^p have boundary values u_{∞} on the visual boundary. The cohomology class $[du] \in H^{1,p}(M)$ vanishes if and only if u_{∞} is constant.

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^p have boundary values u_{∞} on the visual boundary. The cohomology class $[du] \in H^{1,p}(M)$ vanishes if and only if u_{∞} is constant.

Indeed, since volume in polar coordinates grows exponentially, and $L^p(e^t dt) \subset L^1(dt)$, the radial derivative belongs to L^1 , so $u_{\infty}(\theta) = \lim_{t \to \infty} u(\theta, t)$ exists a.e. If $u_{\infty} = 0$, Sobolev inequality $||u||_{L^p} \leq ||du||_{L^p}$ applies, and [du] = 0.

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
Speculation	Boundary values: higher degrees
opeculation	i mening for a nontogeneous space

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^p have boundary values u_{∞} on the visual boundary. The cohomology class $[du] \in H^{1,p}(M)$ vanishes if and only if u_{∞} is constant.

Indeed, since volume in polar coordinates grows exponentially, and $L^{p}(e^{t} dt) \subset L^{1}(dt)$, the radial derivative belongs to L^{1} , so $u_{\infty}(\theta) = \lim_{t \to \infty} u(\theta, t)$ exists a.e. If $u_{\infty} = 0$, Sobolev inequality $||u||_{L^{p}} \leq ||du||_{L^{p}}$ applies, and [du] = 0.

This suggests

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra $\mathcal{R}_p(M)$ as the space of L^{∞} functions u on M such that $du \in L^p$, modulo $L^p \cap L^{\infty}$ functions.

Then $\mathcal{R}_{\rho}(M)$ identifies with an algebra of functions on the visual boundary of M. If M is homogeneous, $\mathcal{R}_{\rho}(M)$ is a (possibly anisotropic) Besov space.

(人間) (人) (人) (人) (人)

Positive curvature pinching Negative curvature pinching L^P-cohomology Speculation Pinching for a homogeneous space

Step 1. For q small, closed L^q 2-forms admit boundary values.

3

Examples Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Step 1. For q small, closed L^q 2-forms admit boundary values.

Use the radial vectorfield $\xi = \frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_t , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^q ,

$$\phi_t^* \alpha = \alpha + d \left(\int_0^t \phi_s^* \iota_\xi \alpha \, \mathrm{d} s \right)$$

has a limit as $t \to +\infty$ under some curvature pinching assumption.

- ∢ ⊒ ▶

Examples Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Step 1. For q small, closed L^q 2-forms admit boundary values.

Use the radial vector field $\xi = \frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_t , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^q ,

$$\phi_t^* \alpha = \alpha + d \left(\int_0^t \phi_s^* \iota_\xi \alpha \, \mathrm{d} s \right)$$

has a limit as $t \to +\infty$ under some curvature pinching assumption.

Step 2. Boundary value determines cohomology class.

< 17 ►

- 4 E b

- ∢ ⊒ →

Examples Boundary values: 1-forms Boundary values: higher degrees Pinching for a homogeneous space

Step 1. For q small, closed L^q 2-forms admit boundary values.

Use the radial vector field $\xi=\frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_t , whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^q ,

$$\phi_t^* \alpha = \alpha + d \left(\int_0^t \phi_s^* \iota_\xi \alpha \, \mathrm{d} s \right)$$

has a limit as $t \to +\infty$ under some curvature pinching assumption.

イロト イポト イヨト イヨト

Step 2. Boundary value determines cohomology class.

Theorem

If dim(M) = 4, M is δ -pinched and $q < 1 + 2\sqrt{-\delta}$, then a boundary value operator is defined, it injects $H^{2,q}$ into closed forms on the boundary. In particular, $T^{2,q} = 0$.

 δ -pinched means sectional curvature $\in [-1, \delta]$.

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

Back to the left-invariant metric on the Lie group $\mathbb{R}\ltimes\mathbb{R}^3$ where \mathbb{R} acts on \mathbb{R}^3 by

$$egin{pmatrix} e^t & 0 & 0 \ 0 & e^t & 0 \ 0 & 0 & e^{2t} \end{pmatrix}.$$

Theorem

Let
$$M = \mathbb{R}^4$$
 with metric $dt^2 + e^t dx^2 + e^t dy^2 + e^{2t} dz^2$. Then $\delta(M) = -\frac{1}{4}$.

Indeed, one constructs explicit nonzero classes in $T^{2,q}(M)$ for 2 < q < 4.

글 > 글

Positive curvature pinching	Examples
Negative curvature pinching	Boundary values: 1-forms
L ^p -cohomology	Boundary values: higher degrees
Speculation	Pinching for a homogeneous space

Back to the left-invariant metric on the Lie group $\mathbb{R}\ltimes\mathbb{R}^3$ where \mathbb{R} acts on \mathbb{R}^3 by

$$egin{pmatrix} e^t & 0 & 0 \ 0 & e^t & 0 \ 0 & 0 & e^{2t} \end{pmatrix}.$$

Theorem

Let
$$M = \mathbb{R}^4$$
 with metric $dt^2 + e^t dx^2 + e^t dy^2 + e^{2t} dz^2$. Then $\delta(M) = -\frac{1}{4}$.

Indeed, one constructs explicit nonzero classes in $T^{2,q}(M)$ for 2 < q < 4. Unfortunately, this does not work with H^2_{Γ} .

Theorem

 $T^{2,q}(H^2_{\mathbb{C}}) = 0$ for 2 < q < 4.

Recall that $H^2_{\mathbb{C}}$ can be viewed as \mathbb{R}^4 with metric $dt^2 + e^t dx^2 + e^t dy^2 + e^{2t} (dz - xdy)^2$.

< ≣ >

Positive curvature pinching Negative curvature pinching <i>L^P</i> -cohomology Speculation	Using the multiplicative structure The subalgebra phenomenon ? $L^P\text{-}{\rm cohomology}$ of $H^2_{\mathbb{C}}$
---	--

Here is a strategy for proving that the optimal pinching of $H^2_{\mathbb{C}}$ is equal to $-\frac{1}{4}$.

(4回) (4回) (4回)

æ

Positive curvature pinching Negative curvature pinching <i>L^p</i> -cohomology Speculation	Using the multiplicative structure The subalgebra phenomenon ? $L^{P}\text{-}\mathrm{cohomology}$ of $H^{\mathbb{C}}_{\mathbb{C}}$
--	--

Here is a strategy for proving that the optimal pinching of $H^2_{\mathbb{C}}$ is equal to $-\frac{1}{4}$.

Scheme of proof

- Recall Royden algebras $\mathcal{R}_p(M)$, p > 1, are quasi-isometry invariants.
- Given $u \in \mathcal{R}_p$, define a vectorsubspace $S_p(u) \subset \mathcal{R}_p$, in a quasi-isometry invariant manner.
- If M is δ -pinched and $p < 2 + 4\sqrt{-\delta}$, then for every u, $S_p(u)$ is a subalgebra of \mathcal{R}_p .
- If $M = H^2_{\mathbb{C}}$, for all $p \in (4, 8)$, there exists (locally) $u \in \mathcal{R}_p$ such that $S_p(u)$ is not a subalgebra of \mathcal{R}_p .

Here is a strategy for proving that the optimal pinching of $H^2_{\mathbb{C}}$ is equal to $-\frac{1}{4}$.

Scheme of proof

- Recall Royden algebras $\mathcal{R}_p(M)$, p > 1, are quasi-isometry invariants.
- Given $u \in \mathcal{R}_p$, define a vectorsubspace $S_p(u) \subset \mathcal{R}_p$, in a quasi-isometry invariant manner.
- If M is δ -pinched and $p < 2 + 4\sqrt{-\delta}$, then for every u, $S_p(u)$ is a subalgebra of \mathcal{R}_p .
- If $M = H^2_{\mathbb{C}}$, for all $p \in (4, 8)$, there exists (locally) $u \in \mathcal{R}_p$ such that $S_p(u)$ is not a subalgebra of \mathcal{R}_p .

Definition

Let M be a simply connected negatively curved manifold, let p > 4, let $u \in \mathcal{R}_p(M)$. Define

$$S_p(u) = \{ v \in \mathcal{R}_p(M) \mid [dv] \smile [du] = 0 \in H^{2,p/2}(M) \}.$$

∃ >

Here is a strategy for proving that the optimal pinching of $H^2_{\mathbb{C}}$ is equal to $-\frac{1}{4}$.

Scheme of proof

- Recall Royden algebras $\mathcal{R}_p(M)$, p > 1, are quasi-isometry invariants.
- Given $u \in \mathcal{R}_p$, define a vectorsubspace $S_p(u) \subset \mathcal{R}_p$, in a quasi-isometry invariant manner.
- If M is δ -pinched and $p < 2 + 4\sqrt{-\delta}$, then for every u, $S_p(u)$ is a subalgebra of \mathcal{R}_p .
- If $M = H^2_{\mathbb{C}}$, for all $p \in (4, 8)$, there exists (locally) $u \in \mathcal{R}_p$ such that $S_p(u)$ is not a subalgebra of \mathcal{R}_p .

Definition

Let M be a simply connected negatively curved manifold, let p > 4, let $u \in \mathcal{R}_p(M)$. Define

$$S_p(u) = \{ v \in \mathcal{R}_p(M) \mid [dv] \smile [du] = 0 \in H^{2,p/2}(M) \}.$$

- A 🖻 🕨

Definition

Let M be a simply connected negatively curved manifold, let p > 4, let $u \in \mathcal{R}_p(M)$. Define

$$S_p(u) = \{ v \in \mathcal{R}_p(M) \mid [dv] \smile [du] = 0 \in H^{2,p/2}(M) \}.$$

Conjecture

If M is 4-dimensional, δ -pinched and $p < 2 + 4\sqrt{-\delta}$, then for every u, $S_p(u)$ is a subalgebra of $\mathcal{R}_p(M)$.

Naive attempt. Let $v, v' \in S_p(u)$. Then $[dv] \smile [du]$ vanishes if and only if its boundary value $dv_{\infty} \wedge du_{\infty} = 0$ a.e. Then $v'_{\infty} dv_{\infty} \wedge du_{\infty} + v_{\infty} dv'_{\infty} \wedge du_{\infty} = 0$ a.e., showing that $[d(vv')] \smile [du] = 0$, i.e. $vv' \in S_p(u)$.

- 4 同 6 4 日 6 4 日 6

Definition

Let M be a simply connected negatively curved manifold, let p > 4, let $u \in \mathcal{R}_p(M)$. Define

$$S_p(u) = \{ v \in \mathcal{R}_p(M) \, | \, [dv] \smile [du] = 0 \in H^{2, p/2}(M) \}.$$

Conjecture

If M is 4-dimensional, δ -pinched and $p < 2 + 4\sqrt{-\delta}$, then for every u, $S_p(u)$ is a subalgebra of $\mathcal{R}_p(M)$.

Naive attempt. Let $v, v' \in S_p(u)$. Then $[dv] \smile [du]$ vanishes if and only if its boundary value $dv_{\infty} \wedge du_{\infty} = 0$ a.e. Then $v'_{\infty} dv_{\infty} \wedge du_{\infty} + v_{\infty} dv'_{\infty} \wedge du_{\infty} = 0$ a.e., showing that $[d(vv')] \smile [du] = 0$, i.e. $vv' \in S_p(u)$.

Why it fails. a.e. no. In distributional sense. Multiplying distributions is delicate.

- 4 同 6 4 日 6 4 日 6

Now we compute $H^{2,q}(H^2_{\mathbb{C}})$ for 2 < q = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View $H^2_{\mathbb{C}}$ as a product $\mathbb{H}^1 \times \mathbb{R}$. Prove a Künneth type theorem.

For $q \notin \{4/3, 2, 4\}$, differential forms α on $H^2_{\mathbb{C}}$ split into components α_+ and α_+ which are contracted (resp. expanded) by ϕ_t . Then

$$h_t: \alpha \mapsto \int_0^t \phi_s^* \iota_{\xi} \alpha_+ \, ds - \int_{-t}^0 \phi_s^* \iota_{\xi} \alpha_- \, ds$$

converges as $t \to +\infty$ to a bounded operator h on L^q . P = 1 - dh - hdretracts the L^q de Rham complex onto a complex \mathcal{B} of differential forms on \mathbb{H}^1 with missing components and weakly regular coefficients.

イロト イポト イヨト イヨト

Positive curvature pinching Negative curvature pinching L ^P -cohomology Speculation	Using the multiplicative structure The subalgebra phenomenon ? $L^{p} ext{-cohomology of } H^{2}_{\mathbb{C}}$
---	--

Step 2. If 2 < q < 4, this complex is nonzero in degrees 1 and 2. \mathcal{B}^1 consists of 1-forms which are multiples of the left-invariant contact form τ on \mathbb{H}^1 .

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a differential equation.

If $\alpha \in \mathcal{B}^2$ is a 2-form, then $\alpha \in d\mathcal{B}^1$ if and only if α satisfies the linear differential equation

$$\alpha = d(\frac{\tau \wedge \alpha}{\tau \wedge d\tau}\tau).$$

If $dv \wedge du$ is a solution, $d(v^2) \wedge du$ is not a solution, unless dv is proportional to du.

Failure of the subalgebra theorem for $H^2_{\mathbb{C}}$.

In coordinates (x, y, z) on \mathbb{H}^1 , one can take (locally) u = y and v = x. Then $dv \wedge du = -d\tau$ belongs to $d\mathcal{B}^1$, whereas $d(v^2) \wedge du$ does not. So for $4 , <math>\mathcal{S}_p(u)$ is not (locally) a subalgebra of $\mathcal{R}_p(H^2_{\mathbb{C}})$.

Other rank one symmetric spaces.

The comparison theorem should work for all of them: in the definition of S_{κ} , replace du by a cohomology class κ of degree 1, resp. 3 resp. 7. Steps 1 and 2 of the L^q computation in degree 2 resp. 4 resp. 8 are unchanged. It turns out that for all spaces but $H^2_{\mathbb{C}}$, the differential equation of Step 3 is a consequence of $d\alpha = 0$, so S_{κ} is an algebra in these cases.