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Definition

Let M be a Riemannian manifold. Let 0 < δ ≤ 1. Say M is δ-pinched if sectional
curvature ranges between δ and 1. Define the optimal pinching δ(M) of M as the
largest δ ≤ 1 such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Example

Spheres and their quotients have δ(M) = 1.

Example

Projective spaces over the complexes, quaternions and octonions have δ(M) ≥ 1
4

.

Indeed, in their canonical (Fubini-Study) metric, lines are totally geodesic of curvature
1 and real projective subspaces are totally geodesic of curvature 1

4
. Other sectional

curvatures lie in between.
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Theorem (Berger, Klingenberg 1959)

Let M be a 1
4

-th pinched even dimensional simply connected Riemannian manifold.
Then

either M is homeomorphic to a sphere,

or M is isometric to a projective space.

This implies that the optimal pinching for projective spaces equals 1
4

.
Proof: cover M with two geodesic balls, use angle comparison theorems.

Recent improvement:

Theorem (Brendle, Schoen 2007)

Let M be a 1
4

-pinched Riemannian manifold. Then

either M is diffeomorphic to a quotient of the sphere,

or M is isometric to a projective space.

Proof : ”M × R has nonnegative isotropic curvature” is preserved by the Ricci flow.
And this follows from 1

4
-pinching.
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Compact case
Non compact case

Definition

Let M be a compact Riemannian manifold. Let −1 ≤ δ < 0. Say M is δ-pinched if
sectional curvature ranges between −1 and δ. Define the optimal pinching of M as
the least δ ≥ −1 such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.

Complex hyperbolic space Hm
C is a metric on the ball in Cm which is invariant under

all holomorphic automorphisms.
Spheres in Hm

C are homogeneous under conjugates of U(m). Horospheres are

homogeneous under Heisenberg group Heism−1.
There are quaternionic Hm

H and octonionic H2
O siblings.

All are − 1
4

-pinched.
Together with ordinary hyperbolic space Hn

R, these constitute the list of all negatively
curved symmetric spaces (i.e. geodesic inversion is an isometry), E. Cartan, 1925.
And also the list of all noncompact Riemannian manifolds with 2-point transitive
isometry groups, J. Tits, 1955.
All have compact quotients M which have δ(M) ≤ − 1

4
.
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Theorem (Many people)

Let N be a compact quotient of Hm
C , Hm

H (m ≥ 2) or H2
O. If a metric on N is

− 1
4

-pinched, then it lifts to a symmetric metric.

This is due to

M. Ville, 1984 for H2
C (pointwise estimate on the characteristic class χ− 3σ),

L. Hernández-Lamoneda, 1991, and independently S.T. Yau and F. Zheng, 1991
for Hm

C (harmonic maps),

N. Mok, Y.T. Siu and S.K. Yeung, 1993, and independently J. Jost and S.T. Yau,
1993 for other spaces (harmonic maps).

Harmonic map approach based on vanishing theorem: if M is compact Kähler (resp.
quaternionic, octonionic Kähler), N is − 1

4
-pinched,

f : M → N harmonic ⇒ f pluriharmonic.
(non linear Hodge theory).
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Definition

Let M be a complete simply connected Riemannian manifold. Let −1 ≤ δ < 0. Say M
is δ-pinched if sectional curvature ranges between −1 and δ. Define the optimal
pinching δ(M) of M as the least δ ≥ −1 such that M is quasi-isometric to a δ-pinched
complete simply connected Riemannian manifold.

Question

Is it true that the optimal pinching of Hm
C , Hm

H (m ≥ 2) and H2
O is − 1

4
?

Remark

Complex hyperbolic plane H2
C can be viewed as R4 with metric

dt2 + etdx2 + etdy2 + e2t(dz − xdy)2.

Theorem

Let M = R4 with metric dt2 + etdx2 + etdy2 + e2tdz2. Then δ(M) = − 1
4

.

M is isometric to a left-invariant metric on a Lie group of the form R n R3.
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Examples
Boundary values: 1-forms
Boundary values: higher degrees
Pinching for a homogeneous space

Definition

Let M be a Riemannian manifold. Let p > 1. Lp-cohomology of M is the cohomology
of the complex of Lp-differential forms on M whose exterior differentials are Lp as well,

Hk,p = closed k-forms in Lp/d((k − 1)-forms in Lp),

Rk,p = closed k-forms in Lp/closure of d((k − 1)-forms in Lp),

T k,p = closure of d((k − 1)-forms in Lp)/d((k − 1)-forms in Lp).

Rk,p is called the reduced cohomology. T k,p is called the torsion.

Remark

If M is compact, Lp-cohomology equals cohomology.

Remark

For (uniformly) contractible spaces, Lp-cohomology is quasi-isometry invariant. Wedge

product α, β 7→ α ∧ β induces cup-product [α] ^ [β] : Hk,p × Hk′,p → Hk+k′,p/2 in a
quasi-isometry invariant manner.
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Definition

Hk,p = closed k-forms in Lp/d((k − 1)−forms in Lp),
Rk,p = closed k-forms in Lp/ closure of d((k − 1)-forms in Lp),
T k,p = closure of d((k − 1)-forms in Lp)/d((k − 1)-forms in Lp).

Example

The real line R.

H0,p = 0.

R1,p = 0, since every function in Lp(R) can be approximated in Lp with derivatives of
compactly supported functions. Therefore H1,p is only torsion.

T 1,p is non zero and thus infinite dimensional. Indeed, the 1-form dt
t

(cut off near the
origin) is in Lp for all p > 1 but it is not the differential of a function in Lp .
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Definition

Hk,p = closed k-forms in Lp/d((k − 1)−forms in Lp),
Rk,p = closed k-forms in Lp/ closure of d((k − 1)-forms in Lp),
T k,p = closure of d((k − 1)-forms in Lp)/d((k − 1)-forms in Lp).

Example

The real hyperbolic plane H2
R.

Here H0,p = 0 = H2,p for all p.
If p = 2, since the Laplacian on L2 functions is bounded below, T 1,2 = 0. Therefore

H1,2 = R1,2

= {L2 harmonic 1-forms}
= {harmonic functions h on H2

R with ∇h ∈ L2}/R .

Using conformal invariance, switch from hyperbolic metric to Euclidean metric on the
disk D.

H1,2 = {harmonic functions h on D with ∇h ∈ L2}/R
= {Fourier series Σane

inθ with a0 = 0,Σ|n| |an|2 < +∞},

which is Sobolev space H1/2(R/2πZ) mod constants.

P. Pansu Negative curvature pinching



Positive curvature pinching
Negative curvature pinching

Lp -cohomology
Speculation

Examples
Boundary values: 1-forms
Boundary values: higher degrees
Pinching for a homogeneous space

Definition

Hk,p = closed k-forms in Lp/d((k − 1)−forms in Lp),
Rk,p = closed k-forms in Lp/ closure of d((k − 1)-forms in Lp),
T k,p = closure of d((k − 1)-forms in Lp)/d((k − 1)-forms in Lp).

Example

The real hyperbolic plane H2
R.

Here H0,p = 0 = H2,p for all p.

If p = 2, since the Laplacian on L2 functions is bounded below, T 1,2 = 0. Therefore

H1,2 = R1,2

= {L2 harmonic 1-forms}
= {harmonic functions h on H2

R with ∇h ∈ L2}/R .

Using conformal invariance, switch from hyperbolic metric to Euclidean metric on the
disk D.

H1,2 = {harmonic functions h on D with ∇h ∈ L2}/R
= {Fourier series Σane

inθ with a0 = 0,Σ|n| |an|2 < +∞},

which is Sobolev space H1/2(R/2πZ) mod constants.
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Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on
M whose differential belongs to Lp have boundary values u∞ on the visual boundary.
The cohomology class [du] ∈ H1,p(M) vanishes if and only if u∞ is constant.

Indeed, since volume in polar coordinates grows exponentially, and Lp(et dt) ⊂ L1(dt),
the radial derivative belongs to L1, so u∞(θ) = limt→∞ u(θ, t) exists a.e. If u∞ = 0,
Sobolev inequality ‖u‖Lp ≤ ‖du‖Lp applies, and [du] = 0.

This suggests

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra
Rp(M) as the space of L∞ functions u on M such that du ∈ Lp , modulo Lp ∩ L∞

functions.

Then Rp(M) identifies with an algebra of functions on the visual boundary of M. If
M is homogeneous, Rp(M) is a (possibly anisotropic) Besov space.
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Step 1. For q small, closed Lq 2-forms
admit boundary values.

Use the radial vectorfield ξ = ∂
∂r

in
polar coordinates and its flow φt , whose
derivative is controlled by sectional
curvature.

Use Poincaré’s homotopy formula :
For α a closed 2-form in Lq ,

φ∗t α = α+ d

(∫ t

0
φ∗s ιξα ds

)
has a limit as t → +∞ under some
curvature pinching assumption.

!

geodesics

spheres

Step 2. Boundary value determines cohomology class.

Theorem

If dim(M) = 4, M is δ-pinched and q < 1 + 2
√
−δ, then a boundary value operator is

defined, it injects H2,q into closed forms on the boundary. In particular, T 2,q = 0.

δ-pinched means sectional curvature ∈ [−1, δ].
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Use Poincaré’s homotopy formula :
For α a closed 2-form in Lq ,

φ∗t α = α+ d

(∫ t

0
φ∗s ιξα ds

)
has a limit as t → +∞ under some
curvature pinching assumption.

!

geodesics

spheres

Step 2. Boundary value determines cohomology class.

Theorem

If dim(M) = 4, M is δ-pinched and q < 1 + 2
√
−δ, then a boundary value operator is

defined, it injects H2,q into closed forms on the boundary. In particular, T 2,q = 0.

δ-pinched means sectional curvature ∈ [−1, δ].

P. Pansu Negative curvature pinching



Positive curvature pinching
Negative curvature pinching

Lp -cohomology
Speculation

Examples
Boundary values: 1-forms
Boundary values: higher degrees
Pinching for a homogeneous space

Step 1. For q small, closed Lq 2-forms
admit boundary values.
Use the radial vectorfield ξ = ∂

∂r
in

polar coordinates and its flow φt , whose
derivative is controlled by sectional
curvature.
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Back to the left-invariant metric on the Lie group R n R3 where R acts on R3 byet 0 0
0 et 0
0 0 e2t

 .

Theorem

Let M = R4 with metric dt2 + etdx2 + etdy2 + e2tdz2. Then δ(M) = − 1
4

.

Indeed, one constructs explicit nonzero classes in T 2,q(M) for 2 < q < 4.

Unfortunately, this does not work with H2
C.

Theorem

T 2,q(H2
C) = 0 for 2 < q < 4.

Recall that H2
C can be viewed as R4 with metric dt2 + etdx2 + etdy2 + e2t(dz − xdy)2.
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Here is a strategy for proving that the optimal pinching of H2
C is equal to − 1

4
.

Scheme of proof

Recall Royden algebras Rp(M), p > 1, are quasi-isometry invariants.

Given u ∈ Rp , define a vectorsubspace Sp(u) ⊂ Rp , in a quasi-isometry invariant
manner.

If M is δ-pinched and p < 2 + 4
√
−δ, then for every u, Sp(u) is a subalgebra of

Rp .

If M = H2
C, for all p ∈ (4, 8), there exists (locally) u ∈ Rp such that Sp(u) is not

a subalgebra of Rp .

Definition

Let M be a simply connected negatively curved manifold, let p > 4, let u ∈ Rp(M).
Define

Sp(u) = {v ∈ Rp(M) | [dv ] ^ [du] = 0 ∈ H2,p/2(M)}.
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Definition

Let M be a simply connected negatively curved manifold, let p > 4, let u ∈ Rp(M).
Define

Sp(u) = {v ∈ Rp(M) | [dv ] ^ [du] = 0 ∈ H2,p/2(M)}.

Conjecture

If M is 4-dimensional, δ-pinched and p < 2 + 4
√
−δ, then for every u, Sp(u) is a

subalgebra of Rp(M).

Naive attempt. Let v , v ′ ∈ Sp(u). Then [dv ] ^ [du] vanishes if and only if its
boundary value dv∞ ∧ du∞ = 0 a.e. Then v ′∞dv∞ ∧ du∞ + v∞dv ′∞ ∧ du∞ = 0 a.e.,
showing that [d(vv ′)] ^ [du] = 0, i.e. vv ′ ∈ Sp(u).

Why it fails. a.e. no. In distributional sense. Multiplying distributions is delicate.
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Now we compute H2,q(H2
C) for 2 < q = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View H2
C as a product

H1 × R. Prove a Künneth type theorem.

For q /∈ {4/3, 2, 4}, differential forms α
on H2

C split into components α+ and
α+ which are contracted (resp.
expanded) by φt . Then

ht : α 7→
∫ t

0
φ∗s ιξα+ ds−

∫ 0

−t
φ∗s ιξα− ds

converges as t → +∞ to a bounded
operator h on Lq . P = 1− dh − hd
retracts the Lq de Rham complex onto
a complex B of differential forms on H1

with missing components and weakly
regular coefficients.

!

horospheres

geodesics
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Step 2. If 2 < q < 4, this complex is nonzero in degrees 1 and 2.
B1 consists of 1-forms which are multiples of the left-invariant contact form τ on H1.

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a
differential equation.
If α ∈ B2 is a 2-form, then α ∈ dB1 if and only if α satisfies the linear differential
equation

α = d(
τ ∧ α
τ ∧ dτ

τ).

If dv ∧ du is a solution, d(v2) ∧ du is not a solution, unless dv is proportional to du.

Failure of the subalgebra theorem for H2
C.

In coordinates (x , y , z) on H1, one can take (locally) u = y and v = x . Then
dv ∧ du = −dτ belongs to dB1, whereas d(v2)∧ du does not. So for 4 < p = 2q < 8,
Sp(u) is not (locally) a subalgebra of Rp(H2

C).

Other rank one symmetric spaces.
The comparison theorem should work for all of them: in the definition of Sκ, replace
du by a cohomology class κ of degree 1, resp. 3 resp. 7. Steps 1 and 2 of the Lq

computation in degree 2 resp. 4 resp. 8 are unchanged. It turns out that for all spaces
but H2

C, the differential equation of Step 3 is a consequence of dα = 0, so Sκ is an
algebra in these cases.
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