Negative curvature pinching

P. Pansu

November 7th, 2013

Definition

Let M be a Riemannian manifold. Let $0<\delta \leq 1$. Say M is δ-pinched if sectional curvature ranges between δ and 1 . Define the optimal pinching $\delta(M)$ of M as the largest $\delta \leq 1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Definition

Let M be a Riemannian manifold. Let $0<\delta \leq 1$. Say M is δ-pinched if sectional curvature ranges between δ and 1. Define the optimal pinching $\delta(M)$ of M as the largest $\delta \leq 1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Example

Spheres and their quotients have $\delta(M)=1$.

Definition

Let M be a Riemannian manifold. Let $0<\delta \leq 1$. Say M is δ-pinched if sectional curvature ranges between δ and 1. Define the optimal pinching $\delta(M)$ of M as the largest $\delta \leq 1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Example

Spheres and their quotients have $\delta(M)=1$.

Example

Projective spaces over the complexes, quaternions and octonions have $\delta(M) \geq \frac{1}{4}$.
Indeed, in their canonical (Fubini-Study) metric, lines are totally geodesic of curvature 1 and real projective subspaces are totally geodesic of curvature $\frac{1}{4}$. Other sectional curvatures lie in between.

Theorem (Berger, Klingenberg 1959)

Let M be a $\frac{1}{4}$-th pinched even dimensional simply connected Riemannian manifold. Then

- either M is homeomorphic to a sphere,
- or M is isometric to a projective space.

This implies that the optimal pinching for projective spaces equals $\frac{1}{4}$.
Proof: cover M with two geodesic balls, use angle comparison theorems.

Theorem (Berger, Klingenberg 1959)

Let M be a $\frac{1}{4}$-th pinched even dimensional simply connected Riemannian manifold. Then

- either M is homeomorphic to a sphere,
- or M is isometric to a projective space.

This implies that the optimal pinching for projective spaces equals $\frac{1}{4}$. Proof: cover M with two geodesic balls, use angle comparison theorems.

Recent improvement:

Theorem (Brendle, Schoen 2007)

Let M be a $\frac{1}{4}$-pinched Riemannian manifold. Then

- either M is diffeomorphic to a quotient of the sphere,
- or M is isometric to a projective space.

Proof: " $M \times \mathbb{R}$ has nonnegative isotropic curvature" is preserved by the Ricci flow. And this follows from $\frac{1}{4}$-pinching.

Definition

Let M be a compact Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching of M as the least $\delta \geq-1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Definition

Let M be a compact Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching of M as the least $\delta \geq-1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.
Complex hyperbolic space $H_{\mathbb{C}}^{m}$ is a metric on the ball in \mathbb{C}^{m} which is invariant under all holomorphic automorphisms.
Spheres in $H_{\mathbb{C}}^{m}$ are homogeneous under conjugates of $U(m)$. Horospheres are homogeneous under Heisenberg group Heis ${ }^{m-1}$.

Definition

Let M be a compact Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching of M as the least $\delta \geq-1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.
Complex hyperbolic space $H_{\mathbb{C}}^{m}$ is a metric on the ball in \mathbb{C}^{m} which is invariant under all holomorphic automorphisms.
Spheres in $H_{\mathbb{C}}^{m}$ are homogeneous under conjugates of $U(m)$. Horospheres are homogeneous under Heisenberg group Heis ${ }^{m-1}$.
There are quaternionic $H_{\mathbb{H}}^{m}$ and octonionic $H_{\mathbb{O}}^{2}$ siblings.

Definition

Let M be a compact Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching of M as the least $\delta \geq-1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.
Complex hyperbolic space $H_{\mathbb{C}}^{m}$ is a metric on the ball in \mathbb{C}^{m} which is invariant under all holomorphic automorphisms.
Spheres in $H_{\mathbb{C}}^{m}$ are homogeneous under conjugates of $U(m)$. Horospheres are homogeneous under Heisenberg group Heis ${ }^{m-1}$.
There are quaternionic $H_{\mathbb{H}}^{m}$ and octonionic $H_{\mathbb{O}}^{2}$ siblings.
All are $-\frac{1}{4}$-pinched.

Definition

Let M be a compact Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching of M as the least $\delta \geq-1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.
Complex hyperbolic space $H_{\mathbb{C}}^{m}$ is a metric on the ball in \mathbb{C}^{m} which is invariant under all holomorphic automorphisms.
Spheres in $H_{\mathbb{C}}^{m}$ are homogeneous under conjugates of $U(m)$. Horospheres are homogeneous under Heisenberg group Heis ${ }^{m-1}$.
There are quaternionic $H_{\mathbb{H}}^{m}$ and octonionic $H_{\mathbb{O}}^{2}$ siblings.
All are $-\frac{1}{4}$-pinched.
Together with ordinary hyperbolic space $H_{\mathbb{R}}^{n}$, these constitute the list of all negatively curved symmetric spaces (i.e. geodesic inversion is an isometry), E. Cartan, 1925.

Definition

Let M be a compact Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching of M as the least $\delta \geq-1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.
Complex hyperbolic space $H_{\mathbb{C}}^{m}$ is a metric on the ball in \mathbb{C}^{m} which is invariant under all holomorphic automorphisms.
Spheres in $H_{\mathbb{C}}^{m}$ are homogeneous under conjugates of $U(m)$. Horospheres are homogeneous under Heisenberg group Heis ${ }^{m-1}$.
There are quaternionic $H_{\mathbb{H}}^{m}$ and octonionic $H_{\mathbb{O}}^{2}$ siblings.
All are $-\frac{1}{4}$-pinched.
Together with ordinary hyperbolic space $H_{\mathbb{R}}^{n}$, these constitute the list of all negatively curved symmetric spaces (i.e. geodesic inversion is an isometry), E. Cartan, 1925. And also the list of all noncompact Riemannian manifolds with 2-point transitive isometry groups, J. Tits, 1955.

Definition

Let M be a compact Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching of M as the least $\delta \geq-1$ such that M is diffeomorphic to a δ-pinched Riemannian manifold.

Examples

Each projective space has a dual hyperbolic space.
Complex hyperbolic space $H_{\mathbb{C}}^{m}$ is a metric on the ball in \mathbb{C}^{m} which is invariant under all holomorphic automorphisms.
Spheres in $H_{\mathbb{C}}^{m}$ are homogeneous under conjugates of $U(m)$. Horospheres are homogeneous under Heisenberg group Heis ${ }^{m-1}$.
There are quaternionic $H_{\mathbb{H}}^{m}$ and octonionic $H_{\mathbb{O}}^{2}$ siblings.
All are $-\frac{1}{4}$-pinched.
Together with ordinary hyperbolic space $H_{\mathbb{R}}^{n}$, these constitute the list of all negatively curved symmetric spaces (i.e. geodesic inversion is an isometry), E. Cartan, 1925. And also the list of all noncompact Riemannian manifolds with 2-point transitive isometry groups, J. Tits, 1955.
All have compact quotients M which have $\delta(M) \leq-\frac{1}{4}$.

Theorem (Many people)

Let N be a compact quotient of $H_{\mathbb{C}}^{m}, H_{\mathbb{H}}^{m}(m \geq 2)$ or $H_{\mathbb{O}}^{2}$. If a metric on N is $-\frac{1}{4}$-pinched, then it lifts to a symmetric metric.

This is due to

- M. Ville, 1984 for $H_{\mathbb{C}}^{2}$ (pointwise estimate on the characteristic class $\chi-3 \sigma$),
- L. Hernández-Lamoneda, 1991, and independently S.T. Yau and F. Zheng, 1991 for $H_{\mathbb{C}}^{m}$ (harmonic maps),
- N. Mok, Y.T. Siu and S.K. Yeung, 1993, and independently J. Jost and S.T. Yau, 1993 for other spaces (harmonic maps).

Theorem (Many people)

Let N be a compact quotient of $H_{\mathbb{C}}^{m}, H_{\mathbb{H}}^{m}(m \geq 2)$ or $H_{\mathbb{O}}^{2}$. If a metric on N is $-\frac{1}{4}$-pinched, then it lifts to a symmetric metric.

This is due to

- M. Ville, 1984 for $H_{\mathbb{C}}^{2}$ (pointwise estimate on the characteristic class $\chi-3 \sigma$),
- L. Hernández-Lamoneda, 1991, and independently S.T. Yau and F. Zheng, 1991 for $H_{\mathbb{C}}^{m}$ (harmonic maps),
- N. Mok, Y.T. Siu and S.K. Yeung, 1993, and independently J. Jost and S.T. Yau, 1993 for other spaces (harmonic maps).

Harmonic map approach based on vanishing theorem: if M is compact Kähler (resp. quaternionic, octonionic Kähler), N is $-\frac{1}{4}$-pinched,

$$
f: M \rightarrow N \text { harmonic } \Rightarrow f \text { pluriharmonic. }
$$

(non linear Hodge theory).

Definition

Let M be a complete simply connected Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching $\delta(M)$ of M as the least $\delta \geq-1$ such that M is quasi-isometric to a δ-pinched complete simply connected Riemannian manifold.

Definition

Let M be a complete simply connected Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching $\delta(M)$ of M as the least $\delta \geq-1$ such that M is quasi-isometric to a δ-pinched complete simply connected Riemannian manifold.

Question

Is it true that the optimal pinching of $H_{\mathbb{C}}^{m}, H_{\mathbb{H}}^{m}(m \geq 2)$ and $H_{\mathbb{O}}^{2}$ is $-\frac{1}{4}$?

Definition

Let M be a complete simply connected Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching $\delta(M)$ of M as the least $\delta \geq-1$ such that M is quasi-isometric to a δ-pinched complete simply connected Riemannian manifold.

Question

Is it true that the optimal pinching of $H_{\mathbb{C}}^{m}, H_{\mathbb{H}}^{m}(m \geq 2)$ and $H_{\mathbb{O}}^{2}$ is $-\frac{1}{4}$?

Remark

Complex hyperbolic plane $H_{\mathbb{C}}^{2}$ can be viewed as \mathbb{R}^{4} with metric $d t^{2}+e^{t} d x^{2}+e^{t} d y^{2}+e^{2 t}(d z-x d y)^{2}$.

Definition

Let M be a complete simply connected Riemannian manifold. Let $-1 \leq \delta<0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching $\delta(M)$ of M as the least $\delta \geq-1$ such that M is quasi-isometric to a δ-pinched complete simply connected Riemannian manifold.

Question

Is it true that the optimal pinching of $H_{\mathbb{C}}^{m}, H_{\mathbb{H}}^{m}(m \geq 2)$ and $H_{\mathbb{O}}^{2}$ is $-\frac{1}{4}$?

Remark

Complex hyperbolic plane $H_{\mathbb{C}}^{2}$ can be viewed as \mathbb{R}^{4} with metric $d t^{2}+e^{t} d x^{2}+e^{t} d y^{2}+e^{2 t}(d z-x d y)^{2}$.

Theorem

Let $M=\mathbb{R}^{4}$ with metric $d t^{2}+e^{t} d x^{2}+e^{t} d y^{2}+e^{2 t} d z^{2}$. Then $\delta(M)=-\frac{1}{4}$.
M is isometric to a left-invariant metric on a Lie group of the form $\mathbb{R} \ltimes \mathbb{R}^{3}$.

Definition

Let M be a Riemannian manifold. Let $p>1$. L^{p}-cohomology of M is the cohomology of the complex of L^{p}-differential forms on M whose exterior differentials are L^{p} as well,

$$
H^{k, p}=\text { closed } k \text {-forms in } L^{p} / d\left((k-1) \text {-forms in } L^{p}\right) \text {, }
$$

Definition

Let M be a Riemannian manifold. Let $p>1$. L^{p}-cohomology of M is the cohomology of the complex of L^{p}-differential forms on M whose exterior differentials are L^{p} as well,

$$
\begin{aligned}
& H^{k, p}=\text { closed } k \text {-forms in } L^{p} / d\left((k-1) \text {-forms in } L^{p}\right), \\
& R^{k, p}=\text { closed } k \text {-forms in } L^{p} / \text { closure of } d\left((k-1) \text {-forms in } L^{p}\right), \\
& T^{k, p}=\text { closure of } d\left((k-1) \text {-forms in } L^{p}\right) / d\left((k-1) \text {-forms in } L^{p}\right) .
\end{aligned}
$$

$R^{k, p}$ is called the reduced cohomology. $T^{k, p}$ is called the torsion.

Definition

Let M be a Riemannian manifold. Let $p>1$. L^{p}-cohomology of M is the cohomology of the complex of L^{p}-differential forms on M whose exterior differentials are L^{p} as well,

$$
\begin{aligned}
H^{k, p} & =\text { closed } k \text {-forms in } L^{p} / d\left((k-1) \text {-forms in } L^{p}\right), \\
R^{k, p} & =\text { closed } k \text {-forms in } L^{p} / \text { closure of } d\left((k-1) \text {-forms in } L^{p}\right), \\
T^{k, p} & =\text { closure of } d\left((k-1) \text {-forms in } L^{p}\right) / d\left((k-1) \text {-forms in } L^{p}\right) .
\end{aligned}
$$

$R^{k, p}$ is called the reduced cohomology. $T^{k, p}$ is called the torsion.

Remark

If M is compact, L^{p}-cohomology equals cohomology.

Definition

Let M be a Riemannian manifold. Let $p>1$. L^{p}-cohomology of M is the cohomology of the complex of L^{p}-differential forms on M whose exterior differentials are L^{p} as well,

$$
\begin{aligned}
H^{k, p} & =\text { closed } k \text {-forms in } L^{p} / d\left((k-1) \text {-forms in } L^{p}\right), \\
R^{k, p} & =\text { closed } k \text {-forms in } L^{p} / \text { closure of } d\left((k-1) \text {-forms in } L^{p}\right), \\
T^{k, p} & =\text { closure of } d\left((k-1) \text {-forms in } L^{p}\right) / d\left((k-1) \text {-forms in } L^{p}\right) .
\end{aligned}
$$

$R^{k, p}$ is called the reduced cohomology. $T^{k, p}$ is called the torsion.

Remark

If M is compact, L^{p}-cohomology equals cohomology.

Remark

For (uniformly) contractible spaces, L^{p}-cohomology is quasi-isometry invariant. Wedge product $\alpha, \beta \mapsto \alpha \wedge \beta$ induces cup-product $[\alpha] \smile[\beta]: H^{k, p} \times H^{k^{\prime}, p} \rightarrow H^{k+k^{\prime}, p / 2}$ in a quasi-isometry invariant manner.

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real line \mathbb{R}.

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real line \mathbb{R}.

$$
H^{0, p}=0 .
$$

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real line \mathbb{R}.
$H^{0, p}=0$.
$R^{1, p}=0$, since every function in $L^{p}(\mathbb{R})$ can be approximated in L^{p} with derivatives of compactly supported functions. Therefore $H^{1, p}$ is only torsion.

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real line \mathbb{R}.
$H^{0, p}=0$.
$R^{1, p}=0$, since every function in $L^{p}(\mathbb{R})$ can be approximated in L^{p} with derivatives of compactly supported functions. Therefore $H^{1, p}$ is only torsion.
$T^{1, p}$ is non zero and thus infinite dimensional.

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real line \mathbb{R}.
$H^{0, p}=0$.
$R^{1, p}=0$, since every function in $L^{p}(\mathbb{R})$ can be approximated in L^{p} with derivatives of compactly supported functions. Therefore $H^{1, p}$ is only torsion.
$T^{1, p}$ is non zero and thus infinite dimensional. Indeed, the 1-form $\frac{d t}{t}$ (cut off near the origin) is in L^{p} for all $p>1$ but it is not the differential of a function in L^{p}.

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real hyperbolic plane $H_{\mathbb{R}}^{2}$.

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real hyperbolic plane $H_{\mathbb{R}}^{2}$.
Here $H^{0, p}=0=H^{2, p}$ for all p.

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real hyperbolic plane $H_{\mathbb{R}}^{2}$.
Here $H^{0, p}=0=H^{2, p}$ for all p.
If $p=2$, since the Laplacian on L^{2} functions is bounded below, $T^{1,2}=0$. Therefore

$$
H^{1,2}=R^{1,2}
$$

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real hyperbolic plane $H_{\mathbb{R}}^{2}$.
Here $H^{0, p}=0=H^{2, p}$ for all p.
If $p=2$, since the Laplacian on L^{2} functions is bounded below, $T^{1,2}=0$. Therefore

$$
\begin{aligned}
H^{1,2} & =R^{1,2} \\
& =\left\{L^{2} \text { harmonic 1-forms }\right\}
\end{aligned}
$$

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real hyperbolic plane $H_{\mathbb{R}}^{2}$.
Here $H^{0, p}=0=H^{2, p}$ for all p.
If $p=2$, since the Laplacian on L^{2} functions is bounded below, $T^{1,2}=0$. Therefore

$$
\begin{aligned}
H^{1,2} & =R^{1,2} \\
& =\left\{L^{2} \text { harmonic 1-forms }\right\} \\
& =\left\{\text { harmonic functions } h \text { on } H_{\mathbb{R}}^{2} \text { with } \nabla h \in L^{2}\right\} / \mathbb{R} .
\end{aligned}
$$

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real hyperbolic plane $H_{\mathbb{R}}^{2}$.
Here $H^{0, p}=0=H^{2, p}$ for all p.
If $p=2$, since the Laplacian on L^{2} functions is bounded below, $T^{1,2}=0$. Therefore

$$
\begin{aligned}
H^{1,2} & =R^{1,2} \\
& =\left\{L^{2} \text { harmonic 1-forms }\right\} \\
& =\left\{\text { harmonic functions } h \text { on } H_{\mathbb{R}}^{2} \text { with } \nabla h \in L^{2}\right\} / \mathbb{R} .
\end{aligned}
$$

Using conformal invariance, switch from hyperbolic metric to Euclidean metric on the disk D.

$$
H^{1,2}=\left\{\text { harmonic functions } h \text { on } D \text { with } \nabla h \in L^{2}\right\} / \mathbb{R}
$$

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$, $T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real hyperbolic plane $H_{\mathbb{R}}^{2}$.
Here $H^{0, p}=0=H^{2, p}$ for all p.
If $p=2$, since the Laplacian on L^{2} functions is bounded below, $T^{1,2}=0$. Therefore

$$
\begin{aligned}
H^{1,2} & =R^{1,2} \\
& =\left\{L^{2} \text { harmonic 1-forms }\right\} \\
& =\left\{\text { harmonic functions } h \text { on } H_{\mathbb{R}}^{2} \text { with } \nabla h \in L^{2}\right\} / \mathbb{R} .
\end{aligned}
$$

Using conformal invariance, switch from hyperbolic metric to Euclidean metric on the disk D.

$$
\begin{aligned}
H^{1,2} & =\left\{\text { harmonic functions } h \text { on } D \text { with } \nabla h \in L^{2}\right\} / \mathbb{R} \\
& =\left\{\text { Fourier series } \Sigma a_{n} e^{i n \theta} \text { with } a_{0}=0, \Sigma|n|\left|a_{n}\right|^{2}<+\infty\right\}
\end{aligned}
$$

Definition

$H^{k, p}=$ closed k-forms in $L^{p} / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$R^{k, p}=$ closed k-forms in $L^{p} /$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right)$,
$T^{k, p}=$ closure of $d\left((k-1)\right.$-forms in $\left.L^{p}\right) / d\left((k-1)\right.$-forms in $\left.L^{p}\right)$.

Example

The real hyperbolic plane $H_{\mathbb{R}}^{2}$.
Here $H^{0, p}=0=H^{2, p}$ for all p.
If $p=2$, since the Laplacian on L^{2} functions is bounded below, $T^{1,2}=0$. Therefore

$$
\begin{aligned}
H^{1,2} & =R^{1,2} \\
& =\left\{L^{2} \text { harmonic 1-forms }\right\} \\
& =\left\{\text { harmonic functions } h \text { on } H_{\mathbb{R}}^{2} \text { with } \nabla h \in L^{2}\right\} / \mathbb{R} .
\end{aligned}
$$

Using conformal invariance, switch from hyperbolic metric to Euclidean metric on the disk D.

$$
\begin{aligned}
H^{1,2} & =\left\{\text { harmonic functions } h \text { on } D \text { with } \nabla h \in L^{2}\right\} / \mathbb{R} \\
& =\left\{\text { Fourier series } \Sigma a_{n} e^{i n \theta} \text { with } a_{0}=0, \Sigma|n|\left|a_{n}\right|^{2}<+\infty\right\}
\end{aligned}
$$

which is Sobolev space $H^{1 / 2}(\mathbb{R} / 2 \pi \mathbb{Z})$ mod constants.

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^{p} have boundary values u_{∞} on the visual boundary. The cohomology class $[d u] \in H^{1, p}(M)$ vanishes if and only if u_{∞} is constant.

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^{p} have boundary values u_{∞} on the visual boundary. The cohomology class $[d u] \in H^{1, p}(M)$ vanishes if and only if u_{∞} is constant.

Indeed, since volume in polar coordinates grows exponentially, and $L^{p}\left(e^{t} d t\right) \subset L^{1}(d t)$, the radial derivative belongs to L^{1}, so $u_{\infty}(\theta)=\lim _{t \rightarrow \infty} u(\theta, t)$ exists a.e. If $u_{\infty}=0$, Sobolev inequality $\|u\|_{L^{p}} \leq\|d u\|_{L^{p}}$ applies, and $[d u]=0$.

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on M whose differential belongs to L^{p} have boundary values u_{∞} on the visual boundary. The cohomology class $[d u] \in H^{1, p}(M)$ vanishes if and only if u_{∞} is constant.

Indeed, since volume in polar coordinates grows exponentially, and $L^{p}\left(e^{t} d t\right) \subset L^{1}(d t)$, the radial derivative belongs to L^{1}, so $u_{\infty}(\theta)=\lim _{t \rightarrow \infty} u(\theta, t)$ exists a.e. If $u_{\infty}=0$, Sobolev inequality $\|u\|_{L^{p}} \leq\|d u\|_{L^{p}}$ applies, and $[d u]=0$.

This suggests

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra $\mathcal{R}_{p}(M)$ as the space of L^{∞} functions u on M such that $d u \in L^{p}$, modulo $L^{p} \cap L^{\infty}$ functions.

Then $\mathcal{R}_{p}(M)$ identifies with an algebra of functions on the visual boundary of M. If M is homogeneous, $\mathcal{R}_{p}(M)$ is a (possibly anisotropic) Besov space.

Step 1. For q small, closed $L^{q} 2$-forms admit boundary values.

Step 1. For q small, closed $L^{q} 2$-forms admit boundary values.
Use the radial vectorfield $\xi=\frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_{t}, whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^{q},
$\phi_{t}^{*} \alpha=\alpha+d\left(\int_{0}^{t} \phi_{s}^{*} \iota_{\xi} \alpha d s\right)$
has a limit as $t \rightarrow+\infty$ under some curvature pinching assumption.

Step 1. For q small, closed $L^{q} 2$-forms admit boundary values.
Use the radial vectorfield $\xi=\frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_{t}, whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula :
For α a closed 2-form in L^{q},
$\phi_{t}^{*} \alpha=\alpha+d\left(\int_{0}^{t} \phi_{s}^{*} \iota_{\xi} \alpha d s\right)$
has a limit as $t \rightarrow+\infty$ under some curvature pinching assumption.

Step 2. Boundary value determines cohomology class.

Step 1. For q small, closed $L^{q} 2$-forms admit boundary values.
Use the radial vectorfield $\xi=\frac{\partial}{\partial r}$ in polar coordinates and its flow ϕ_{t}, whose derivative is controlled by sectional curvature.

Use Poincaré's homotopy formula : For α a closed 2-form in L^{q},
$\phi_{t}^{*} \alpha=\alpha+d\left(\int_{0}^{t} \phi_{s}^{*} \iota_{\xi} \alpha d s\right)$
has a limit as $t \rightarrow+\infty$ under some curvature pinching assumption.

Step 2. Boundary value determines cohomology class.

Theorem

If $\operatorname{dim}(M)=4, M$ is δ-pinched and $q<1+2 \sqrt{-\delta}$, then a boundary value operator is defined, it injects $H^{2, q}$ into closed forms on the boundary. In particular, $T^{2, q}=0$.
δ-pinched means sectional curvature $\in[-1, \delta]$.

Back to the left-invariant metric on the Lie group $\mathbb{R} \ltimes \mathbb{R}^{3}$ where \mathbb{R} acts on \mathbb{R}^{3} by

$$
\left(\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right) .
$$

Theorem

Let $M=\mathbb{R}^{4}$ with metric $d t^{2}+e^{t} d x^{2}+e^{t} d y^{2}+e^{2 t} d z^{2}$. Then $\delta(M)=-\frac{1}{4}$.
Indeed, one constructs explicit nonzero classes in $T^{2, q}(M)$ for $2<q<4$.

Back to the left-invariant metric on the Lie group $\mathbb{R} \ltimes \mathbb{R}^{3}$ where \mathbb{R} acts on \mathbb{R}^{3} by

$$
\left(\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right)
$$

Theorem

Let $M=\mathbb{R}^{4}$ with metric $d t^{2}+e^{t} d x^{2}+e^{t} d y^{2}+e^{2 t} d z^{2}$. Then $\delta(M)=-\frac{1}{4}$.
Indeed, one constructs explicit nonzero classes in $T^{2, q}(M)$ for $2<q<4$.
Unfortunately, this does not work with $H_{\mathbb{C}}^{2}$.

Theorem

$T^{2, q}\left(H_{\mathbb{C}}^{2}\right)=0$ for $2<q<4$.
Recall that $H_{\mathbb{C}}^{2}$ can be viewed as \mathbb{R}^{4} with metric $d t^{2}+e^{t} d x^{2}+e^{t} d y^{2}+e^{2 t}(d z-x d y)^{2}$.

Using the multiplicative structure

The subalgebra phenomenon?
L^{P}-cohomology of $H_{\mathbb{C}}^{2}$

Here is a strategy for proving that the optimal pinching of $H_{\mathbb{C}}^{2}$ is equal to $-\frac{1}{4}$.

Here is a strategy for proving that the optimal pinching of $H_{\mathbb{C}}^{2}$ is equal to $-\frac{1}{4}$.

Scheme of proof

- Recall Royden algebras $\mathcal{R}_{p}(M), p>1$, are quasi-isometry invariants.
- Given $u \in \mathcal{R}_{p}$, define a vectorsubspace $\mathcal{S}_{p}(u) \subset \mathcal{R}_{p}$, in a quasi-isometry invariant manner.
- If M is δ-pinched and $p<2+4 \sqrt{-\delta}$, then for every $u, \mathcal{S}_{p}(u)$ is a subalgebra of \mathcal{R}_{p}.
- If $M=H_{\mathbb{C}}^{2}$, for all $p \in(4,8)$, there exists (locally) $u \in \mathcal{R}_{p}$ such that $\mathcal{S}_{p}(u)$ is not a subalgebra of \mathcal{R}_{p}.

Here is a strategy for proving that the optimal pinching of $H_{\mathbb{C}}^{2}$ is equal to $-\frac{1}{4}$.

Scheme of proof

- Recall Royden algebras $\mathcal{R}_{p}(M), p>1$, are quasi-isometry invariants.
- Given $u \in \mathcal{R}_{p}$, define a vectorsubspace $\mathcal{S}_{p}(u) \subset \mathcal{R}_{p}$, in a quasi-isometry invariant manner.
- If M is δ-pinched and $p<2+4 \sqrt{-\delta}$, then for every $u, \mathcal{S}_{p}(u)$ is a subalgebra of \mathcal{R}_{p}.
- If $M=H_{\mathbb{C}}^{2}$, for all $p \in(4,8)$, there exists (locally) $u \in \mathcal{R}_{p}$ such that $\mathcal{S}_{p}(u)$ is not a subalgebra of \mathcal{R}_{p}.

Definition

Let M be a simply connected negatively curved manifold, let $p>4$, let $u \in \mathcal{R}_{p}(M)$. Define

$$
\mathcal{S}_{p}(u)=\left\{v \in \mathcal{R}_{p}(M) \mid[d v] \smile[d u]=0 \in H^{2, p / 2}(M)\right\} .
$$

Here is a strategy for proving that the optimal pinching of $H_{\mathbb{C}}^{2}$ is equal to $-\frac{1}{4}$.

Scheme of proof

- Recall Royden algebras $\mathcal{R}_{p}(M), p>1$, are quasi-isometry invariants.
- Given $u \in \mathcal{R}_{p}$, define a vectorsubspace $\mathcal{S}_{p}(u) \subset \mathcal{R}_{p}$, in a quasi-isometry invariant manner.
- If M is δ-pinched and $p<2+4 \sqrt{-\delta}$, then for every $u, \mathcal{S}_{p}(u)$ is a subalgebra of \mathcal{R}_{p}.
- If $M=H_{\mathbb{C}}^{2}$, for all $p \in(4,8)$, there exists (locally) $u \in \mathcal{R}_{p}$ such that $\mathcal{S}_{p}(u)$ is not a subalgebra of \mathcal{R}_{p}.

Definition

Let M be a simply connected negatively curved manifold, let $p>4$, let $u \in \mathcal{R}_{p}(M)$. Define

$$
\mathcal{S}_{p}(u)=\left\{v \in \mathcal{R}_{p}(M) \mid[d v] \smile[d u]=0 \in H^{2, p / 2}(M)\right\} .
$$

Definition

Let M be a simply connected negatively curved manifold, let $p>4$, let $u \in \mathcal{R}_{p}(M)$. Define

$$
\mathcal{S}_{p}(u)=\left\{v \in \mathcal{R}_{p}(M) \mid[d v] \smile[d u]=0 \in H^{2, p / 2}(M)\right\} .
$$

Conjecture

If M is 4-dimensional, δ-pinched and $p<2+4 \sqrt{-\delta}$, then for every $u, \mathcal{S}_{p}(u)$ is a subalgebra of $\mathcal{R}_{p}(M)$.

Naive attempt. Let $v, v^{\prime} \in \mathcal{S}_{p}(u)$. Then [dv] $-[d u]$ vanishes if and only if its boundary value $d v_{\infty} \wedge d u_{\infty}=0$ a.e. Then $v_{\infty}^{\prime} d v_{\infty} \wedge d u_{\infty}+v_{\infty} d v_{\infty}^{\prime} \wedge d u_{\infty}=0$ a.e., showing that $\left[d\left(v v^{\prime}\right)\right] \smile[d u]=0$, i.e. $v v^{\prime} \in \mathcal{S}_{p}(u)$.

Definition

Let M be a simply connected negatively curved manifold, let $p>4$, let $u \in \mathcal{R}_{p}(M)$. Define

$$
\mathcal{S}_{p}(u)=\left\{v \in \mathcal{R}_{p}(M) \mid[d v] \smile[d u]=0 \in H^{2, p / 2}(M)\right\} .
$$

Conjecture

If M is 4-dimensional, δ-pinched and $p<2+4 \sqrt{-\delta}$, then for every $u, \mathcal{S}_{p}(u)$ is a subalgebra of $\mathcal{R}_{p}(M)$.

Naive attempt. Let $v, v^{\prime} \in \mathcal{S}_{p}(u)$. Then [dv] $-[d u]$ vanishes if and only if its boundary value $d v_{\infty} \wedge d u_{\infty}=0$ a.e. Then $v_{\infty}^{\prime} d v_{\infty} \wedge d u_{\infty}+v_{\infty} d v_{\infty}^{\prime} \wedge d u_{\infty}=0$ a.e., showing that $\left[d\left(v v^{\prime}\right)\right] \smile[d u]=0$, i.e. $v v^{\prime} \in \mathcal{S}_{p}(u)$.

Why it fails. a.e. no. In distributional sense. Multiplying distributions is delicate.

Now we compute $H^{2, q}\left(H_{\mathbb{C}}^{2}\right)$ for $2<q=p / 2<4$.
Step 1. Switch point of view. Use horospherical coordinates. View $H_{\mathbb{C}}^{2}$ as a product $\mathbb{H}^{1} \times \mathbb{R}$. Prove a Künneth type theorem.
For $q \notin\{4 / 3,2,4\}$, differential forms α on $H_{\mathbb{C}}^{2}$ split into components α_{+}and α_{+}which are contracted (resp. expanded) by ϕ_{t}. Then
$h_{t}: \alpha \mapsto \int_{0}^{t} \phi_{s}^{*} \iota \xi \alpha_{+} d s-\int_{-t}^{0} \phi_{s}^{*} \iota \xi \alpha_{-} d s$
converges as $t \rightarrow+\infty$ to a bounded operator h on L^{q}. $P=1-d h-h d$ retracts the L^{q} de Rham complex onto a complex \mathcal{B} of differential forms on \mathbb{H}^{1} with missing components and weakly regular coefficients.

Step 2. If $2<q<4$, this complex is nonzero in degrees 1 and 2. \mathcal{B}^{1} consists of 1 -forms which are multiples of the left-invariant contact form τ on \mathbb{H}^{1}.

Step 3. If $2<q<4$, vanishing of degree 2 cohomology classes is characterized by a differential equation.
If $\alpha \in \mathcal{B}^{2}$ is a 2 -form, then $\alpha \in d \mathcal{B}^{1}$ if and only if α satisfies the linear differential equation

$$
\alpha=d\left(\frac{\tau \wedge \alpha}{\tau \wedge d \tau} \tau\right)
$$

If $d v \wedge d u$ is a solution, $d\left(v^{2}\right) \wedge d u$ is not a solution, unless $d v$ is proportional to $d u$.
Failure of the subalgebra theorem for $H_{\mathbb{C}}^{2}$.
In coordinates (x, y, z) on \mathbb{H}^{1}, one can take (locally) $u=y$ and $v=x$. Then $d v \wedge d u=-d \tau$ belongs to $d \mathcal{B}^{1}$, whereas $d\left(v^{2}\right) \wedge d u$ does not. So for $4<p=2 q<8$, $\mathcal{S}_{p}(u)$ is not (locally) a subalgebra of $\mathcal{R}_{p}\left(H_{\mathbb{C}}^{2}\right)$.

Other rank one symmetric spaces.

The comparison theorem should work for all of them: in the definition of \mathcal{S}_{κ}, replace $d u$ by a cohomology class κ of degree 1 , resp. 3 resp. 7 . Steps 1 and 2 of the L^{q} computation in degree 2 resp. 4 resp. 8 are unchanged. It turns out that for all spaces but $H_{\mathbb{C}}^{2}$, the differential equation of Step 3 is a consequence of $d \alpha=0$, so \mathcal{S}_{κ} is an algebra in these cases.

