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Linear PDEs The problem
Ellipticity

The wave cone

A constant coefficient linear PDE on a vector-valued function u: Q c RY - RV takes
the form

A(u) =Y Aq0%u =0,

where A, € Hom(RY,R") are linear maps. Here 8%u = 8f‘1~~-8z‘“u denote partial
derivatives.
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Linear PDEs The problem
Ellipticity

The wave cone

A constant coefficient linear PDE on a vector-valued function u: Q c RY - RV takes
the form

A(u) =Y Aq0%u =0,

where A, € Hom(RY,R") are linear maps. Here 8%u = 8f‘1~~-8z“‘u denote partial
derivatives.

Assume u e C=(Q, (RY)*) is a differential 1-form on open set Q. Its exterior
differential du e C*=(Q,A>(R?)*). Then du = A(u) where A has order 1. Putting all
Aq together into a single linear map

A € Hom(R?, Hom((R?)*, A2(RY)*))
= Hom((R?)* ® (RY)*, A*(RY)*),

A becomes skew-symmetrization of bilinear forms on RY.
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Linear PDEs The problem
Ellipticity
The wave cone

A constant coefficient linear PDE on a vector-valued function u: Q c RY — RV takes
the form
A(u) => Aad%u =0,
«@

where A, € Hom(RV,R") are linear maps. Here 8%u = 8?1---8?‘% denote partial
derivatives.

Example

Assume u € C®(Q, Hom(RY,R?)) is a R'-valued differential 1-form. Its exterior
differential du e C*°(Q, Hom(A’R?,R?)). Then du = A(u) where A has order 1.
Putting all A, together into a single linear map

A € Hom(R?, Hom((R9)* @ R, A2(RY)* ® R?))
= Hom((R%)* ® (RY)* @ R*, A2(RY)* ® RY),

A becomes skew-symmetrization of bilinear maps RY — RY.

Question. Assume a vector-valued measure p satisfies A(p) = 0 in distributional sense.
Ellipticity should imply restrictions on the singular part p° of p. Which restrictions ?
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Linear PDEs The problem

Ellipticity
The wave cone

The principal symbol. In Fourier, if £ € (RY)*,
F(A(u))(€) = AQ2mig)(F(u)(€)),

where A(€) = ¥, Aal® € Hom(RN,R"). It is a sum of homogeneous terms, the term
of highest degree AK(¢) is the principal symbol of A evaluated at ¢.
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Ellipticity

The wave cone

The principal symbol. In Fourier, if £ € (RY)*,
F(A(u))(€) = AQ2mig)(F(u)(€)),

where A(€) = ¥, Aal® € Hom(RN,R"). It is a sum of homogeneous terms, the term
of highest degree AK(¢) is the principal symbol of A evaluated at ¢.

For the exterior differential, forn® e € (RY)* @ R, A(6)(n®e) = (EAn) ®e.
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Linear PDEs The problem
Ellipticity

The wave cone

The principal symbol. In Fourier, if £ € (RY)*,
F(A(u))(€) = AQ2mig)(F(u)(€)),

where A(€) = ¥, Aal® € Hom(RN,R"). It is a sum of homogeneous terms, the term
of highest degree AK(¢) is the principal symbol of A evaluated at ¢.

For the exterior differential, forn® e € (RY)* @ R, A(6)(n®e) = (EAn) ®e.

For the scalar Laplacian, A(€) = |€[?.

Assume A is elliptic, i.e. A(§) is injective for all £ # 0. Then
A(u) =0 = supp(F(u)) = {0}, so u is a polynomial.

Pierre Pansu, Université Paris-Saclay Measures constrained by linear PDEs [after de Philippis and Rindler]



Linear PDEs The problem
Ellipticity

The wave cone

The principal symbol. In Fourier, if £ € (RY)*,
F(A(u))(€) = AQ2mig)(F(u)(€)),

where A(€) = ¥, Aal® € Hom(RN,R"). It is a sum of homogeneous terms, the term
of highest degree AK(¢) is the principal symbol of A evaluated at ¢.

For the exterior differential, forn® e € (RY)* @ R, A(6)(n®e) = (EAn) ®e.

For the scalar Laplacian, A(€) = |€[?.

Assume A is elliptic, i.e. A(§) is injective for all £ # 0. Then
A(u) =0 = supp(F(u)) = {0}, so u is a polynomial.

Conversely, assume that A is homogeneous. If there exists nonzero ¢ € (RY)* and
X € R” such that X € ker(A(&)), then for every distribution h: R — R, the plane wave
u=(ho&)X solves A(u) =0. Thus A has nonsmooth solutions.
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Linear PDEs The problem
Ellipticity

The wave cone

Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone)

The wave cone of an order k operator A is A4 = | ker A (&) c RN
£#0
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Ellipticity
The wave cone

Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone)

The wave cone of an order k operator A is A4 = | ker A (&) c RN

§40
v
For the exterior differential d, A = | & @R’ c (RY)* @ R® = Hom(RY,R*) consists of
£#0

all rank < 1 linear maps RY — RY.

N
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Linear PDEs The problem
Ellipticity
The wave cone

Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone)

The wave cone of an order k operator A is A4 = | ker A (&) c RN
£#0

| N

Example

For the exterior differential d, A = | & @R’ c (RY)* @ R® = Hom(RY,R*) consists of
£#0

all rank < 1 linear maps RY — RY.

Indeed, the kernel of & A-: Al - A? coincides with the image of £ A-: A® - Al. This
reflects (at the symbol level) the (local) exactness of the de Rham complex.
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The result

Theorem (de Philippis-Rindler 2018)

Let u be an RN-valued measure which solves A(u) = 0 on open set Q. Then
%(X) € A4 for |u|°-almost every point x € Q.
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The result

Theorem (de Philippis-Rindler 2018)

Let u be an RN-valued measure which solves A(u) = 0 on open set Q. Then
%(X) € A4 for |u|°-almost every point x € Q.

| A\

Example

When A is the exterior differential on 1-forms, Hom(Rd,RZ)—va/ued measures solving
dup =0 are differentials of R¢-valued BV functions.
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The result

Theorem (de Philippis-Rindler 2018)

Let u be an RN-valued measure which solves A(u) = 0 on open set Q. Then
%(X) € A4 for |u|°-almost every point x € Q.

Example

| A\

When A is the exterior differential on 1-forms, Hom(Rd,RZ)—va/ued measures solving

dup =0 are differentials of R¢-valued BV functions. According to the Theorem, their

singular parts are supported on points where % is a rank 1 linear map R — RY.

This is Alberti’s Rank One Theorem (1993), solving a conjecture of Ambrosio-De
Giorgi (1988).
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

| stick to degree 1 operators. Let u be an RV-valued measure solving A(u) = 0. Let |y
denote its total variation. Consider the Radon-Nikodym decomposition

dp

—d|pl.

l‘/ =
d|ul

Let E={xeR?; %(X) ¢ A 4 }. By contradiction, assume that |u[*(E) > 0.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

| stick to degree 1 operators. Let u be an RV-valued measure solving A(u) = 0. Let |y
denote its total variation. Consider the Radon-Nikodym decomposition

dp
—Zd|pl.

l‘/ =
d|ul

Let E={xeR?; %(X) ¢ A 4 }. By contradiction, assume that |u[*(E) > 0.
One can pick xp € E and a subsequence ry of radii which satisfy the following. Let px
denote the blowing up of p at xp, at scale ry, normalized by |u|(B(rk)).

O |uk| converges vaguely to a measure v.

o )\o:%(O)%/\A.

© i converges vaguely to the measure v)\g.

(4] m% tends to 1.
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Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

| stick to degree 1 operators. Let u be an RV-valued measure solving A(u) = 0. Let |y
denote its total variation. Consider the Radon-Nikodym decomposition

dp
—Zd|pl.

l‘/ =
d|ul

Let E={xeR?; %(X) ¢ A 4 }. By contradiction, assume that |u[*(E) > 0.
One can pick xp € E and a subsequence ry of radii which satisfy the following. Let px
denote the blowing up of p at xp, at scale ry, normalized by |u|(B(rk)).

O |uk| converges vaguely to a measure v.

o )\o:%(O)%/\A.

© i converges vaguely to the measure v)\g.

(4] m% tends to 1.

One shows that A(v\g) = 0. Since Ag ¢ A 4, this implies that supp(F(v)) =0, hence
that v is absolutely continuous.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

| stick to degree 1 operators. Let u be an RV-valued measure solving A(u) = 0. Let |y
denote its total variation. Consider the Radon-Nikodym decomposition

dp

—d|pl.

l‘/ =
d|ul

Let E={xeR?; %(X) ¢ A 4 }. By contradiction, assume that |u[*(E) > 0.
One can pick xp € E and a subsequence ry of radii which satisfy the following. Let px
denote the blowing up of p at xp, at scale ry, normalized by |u|(B(rk)).
O |uk| converges vaguely to a measure v.
_ dp
Q M= Em (0)¢A4.
© i converges vaguely to the measure v)\g.

(4] m% tends to 1.

One shows that A(v\g) = 0. Since Ag ¢ A 4, this implies that supp(F(v)) =0, hence
that v is absolutely continuous.

On the other hand, one shows that || converges to v in total variation. This is a
contradiction, since ||uk| — v| > |uk|® (B(rk)) /|| (B(rg)) which tends to 1.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

First step : absolute continuity of tangent measures

In distributional sense, A(vXg) = lim A(uy) = 0.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

First step : absolute continuity of tangent measures

In distributional sense, A(vXg) = lim A(uy) = 0. Taking Fourier transforms,

vEe (RY)*, (F(V)(€)A(£)Xo =0.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

First step : absolute continuity of tangent measures

In distributional sense, A(vXg) = lim A(uy) = 0. Taking Fourier transforms,

vEe (R, (F(1)(€))A©)N0 =0,
Since Ao ¢ A4, A(E)Xo # 0, hence F(v)(&) =0.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

First step : absolute continuity of tangent measures

In distributional sense, A(vXg) = lim A(uy) = 0. Taking Fourier transforms,

vEe (R, (F(1)(€))A©)N0 =0,
Since Ao ¢ A4, A(E)Xo # 0, hence F(v)(&) =0.

Since supp(F(v)) = {0}, v is a (polynomial) function times Lebesgue measure.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

Second step : from vague convergence to convergence in total variation

Let vy = [uxl®.

Recall that I (B(r)) tends to 1. One can furthermore assume that
[1(B(rk))

d
953(,“ lTZI — Xo| d|u|° tends to 0. It follows that |vx Ao — pk|(B(1)) tends to 0.
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Proof of Theorem Convergence in total variation

Second step : from vague convergence to convergence in total variation

Let vy = [uxl®.

Recall that I (B(r)) tends to 1. One can furthermore assume that
[1(B(rk))

d
953(,“ lTZI — Xo| d|u|° tends to 0. It follows that |vx Ao — pk|(B(1)) tends to 0.

Pick a smooth cut-off function x. Then |xvx o — xiuk|(R?) tends to 0.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

Second step : from vague convergence to convergence in total variation

Let vy = [uxl®.

Recall that I (B(r)) tends to 1. One can furthermore assume that
[1(B(rk))

d
953(,“ lTZI — Xo| d|u|° tends to 0. It follows that |vx Ao — pk|(B(1)) tends to 0.

Pick a smooth cut-off function x. Then |xvx o — xiuk|(R?) tends to 0.
Since A(uk) =0,
A(xvicdo) = Alxvido = xpi) + A(dX) bk

We shall see that ellipticity allows to invert A with estimates. By density, one can
replace measures with smooth functions and total variation with L norm. The goal is
to show that xvj is precompact in L1. The estimates will stem from Hérmander-
Mikhlin’s multiplier theorem.
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ent measures

Proof of Theorem Convergence in total va n

Second step : from vague convergence to convergence in total variation

Let vy = [uxl®.

Recall that I (B(r)) tends to 1. One can furthermore assume that
[1(B(rk))

d
953(,“ lTZI — Xo| d|u|° tends to 0. It follows that |vx Ao — pk|(B(1)) tends to 0.

Pick a smooth cut-off function x. Then |xvx o — xiuk|(R?) tends to 0.
Since A(uk) =0,

A(xvido) = Alxvido — xiw) + A(dx) pk-
We shall see that ellipticity allows to invert A with estimates. By density, one can
replace measures with smooth functions and total variation with L norm. The goal is
to show that xvj is precompact in L1. The estimates will stem from Hérmander-
Mikhlin’s multiplier theorem.

Taking Fourier transforms,

Ve, Flxwi)Al§) o = A F (Vi) (&) + F(R)(E),

where V) = xvi Ao — xpuk tends to 0 in L' and Ry = A(dx)u is bounded in L.
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Strategy
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

Inner multiplying with A(£) Ao, one gets
JA)MPF (xvi) = A(€) Ao - AE)F (Vi) (€) + A(E)do - F(Ri) (€),
and then
(L+1AE)M)F (i) = A(€) Ao - AE)F (Vi) (€) + A€o - F(Ri) (€) + F (xvi).-

So F(xwk) = To(Vi) + Ti((Id = A)Y2R) + To((Id = A) L F(xvi)) is the sum of
three terms, involving operators defined by Fourier multipliers

mo(€) = (1+|A(§)M*) " A(E) 0 - A(6),

mi() = (L+ A1+ 4n%I¢[*) /2 A(E) ho,

ma(€) = (1+[A©)Xol*) (1 + 4x7(¢%).
(ld — A)™1/2 is bounded and compact from L! to some L9, g>1. Ty and T, are

bounded from L9 to L9. Therefore wy := T1((Id - A)"Y2R) + Ta((ld - A) "1 F(xvi))
is precompact in [1.
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Strat

@ y
Absolute continuity of tangent measures

Proof of Theorem Convergence in total variation

Since Ao ¢ Aa, |A(E)Xol/[¢] is bounded away from 0. This implies that Tg is bounded
from L! to the Lorentz space L}* (Hdrmander-Mikhlin). Hence wuj := To( V) tends
to 0 in measure.

Since uy + wy = xvk 2 0, uy is dominated by |wy|. By Vitali's convergence theorem
(strengthening of dominated convergence theorem where a.e. convergence is replaced
with convergence in measure), u, tends to 0 in Lt

Since Vi — 0 in distributional sense, so does uy = To( V). For every smooth cut-off
function ¢, 0< ¢ < 1,

f¢|uk|:f¢uk+2f¢u;£/¢uk+2[u;

tends to 0, so uk tends to 0 in L

Hence xvy = uy + wy is precompact in L. Its vague limit is xv, so it subconverges in
L to xv. This shows that |ux|° converges to v in total variation.

This contradicts the fact that v is absolutely continuous, and completes the proof of
the theorem.
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