Linear PDEs The result Proof of Theorem

Measures constrained by linear PDEs [after de Philippis and Rindler]

Pierre Pansu, Université Paris-Saclay

March 1st, 2021

Pierre Pansu, Université Paris-Saclay Measures constrained by linear PDEs [after de Philippis and Rindler]

Linear PDEs The result Proof of Theorem The wave cone

A constant coefficient linear PDE on a vector-valued function $u:\Omega\subset\mathbb{R}^d\to\mathbb{R}^N$ takes the form

$$\mathcal{A}(u)=\sum_{\alpha}A_{\alpha}\partial^{\alpha}u=0,$$

where $A_{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$ are linear maps. Here $\partial^{\alpha} u = \partial_1^{\alpha_1} \cdots \partial_k^{\alpha_k} u$ denote partial derivatives.

4 E b

3

3 N

< 🗇 🕨

A constant coefficient linear PDE on a vector-valued function $u:\Omega\subset\mathbb{R}^d\to\mathbb{R}^N$ takes the form

$$\mathcal{A}(u)=\sum_{\alpha}A_{\alpha}\partial^{\alpha}u=0,$$

where $A_{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$ are linear maps. Here $\partial^{\alpha} u = \partial_1^{\alpha_1} \cdots \partial_k^{\alpha_k} u$ denote partial derivatives.

Example

Assume $u \in C^{\infty}(\Omega, (\mathbb{R}^d)^*)$ is a differential 1-form on open set Ω . Its exterior differential $du \in C^{\infty}(\Omega, \Lambda^2(\mathbb{R}^d)^*)$. Then $du = \mathcal{A}(u)$ where \mathcal{A} has order 1. Putting all A_{α} together into a single linear map

$$A \in Hom(\mathbb{R}^{d}, Hom((\mathbb{R}^{d})^{*}, \Lambda^{2}(\mathbb{R}^{d})^{*}))$$

= Hom((\mathbb{R}^{d})^{*} \oto (\mathbb{R}^{d})^{*}, \Lambda^{2}(\mathbb{R}^{d})^{*}),

A becomes skew-symmetrization of bilinear forms on \mathbb{R}^d .

A constant coefficient linear PDE on a vector-valued function $u:\Omega\subset\mathbb{R}^d\to\mathbb{R}^N$ takes the form

$$\mathcal{A}(u)=\sum_{\alpha}A_{\alpha}\partial^{\alpha}u=0,$$

where $A_{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$ are linear maps. Here $\partial^{\alpha} u = \partial_1^{\alpha_1} \cdots \partial_k^{\alpha_k} u$ denote partial derivatives.

Example

Assume $u \in C^{\infty}(\Omega, Hom(\mathbb{R}^d, \mathbb{R}^\ell))$ is a \mathbb{R}^ℓ -valued differential 1-form. Its exterior differential $du \in C^{\infty}(\Omega, Hom(\Lambda^2 \mathbb{R}^d, \mathbb{R}^\ell))$. Then $du = \mathcal{A}(u)$ where \mathcal{A} has order 1. Putting all A_{α} together into a single linear map

$$\begin{aligned} & A \in Hom(\mathbb{R}^d, Hom((\mathbb{R}^d)^* \otimes \mathbb{R}^\ell, \Lambda^2(\mathbb{R}^d)^* \otimes \mathbb{R}^\ell)) \\ & = Hom((\mathbb{R}^d)^* \otimes (\mathbb{R}^d)^* \otimes \mathbb{R}^\ell, \Lambda^2(\mathbb{R}^d)^* \otimes \mathbb{R}^\ell), \end{aligned}$$

A becomes skew-symmetrization of bilinear maps $\mathbb{R}^d \to \mathbb{R}^{\ell}$.

- A 🗐 🕨

A constant coefficient linear PDE on a vector-valued function $u:\Omega\subset\mathbb{R}^d\to\mathbb{R}^N$ takes the form

$$\mathcal{A}(u)=\sum_{\alpha}A_{\alpha}\partial^{\alpha}u=0,$$

where $A_{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$ are linear maps. Here $\partial^{\alpha} u = \partial_1^{\alpha_1} \cdots \partial_k^{\alpha_k} u$ denote partial derivatives.

Example

Assume $u \in C^{\infty}(\Omega, Hom(\mathbb{R}^d, \mathbb{R}^\ell))$ is a \mathbb{R}^ℓ -valued differential 1-form. Its exterior differential $du \in C^{\infty}(\Omega, Hom(\Lambda^2 \mathbb{R}^d, \mathbb{R}^\ell))$. Then $du = \mathcal{A}(u)$ where \mathcal{A} has order 1. Putting all A_{α} together into a single linear map

$$\begin{aligned} & A \in Hom(\mathbb{R}^d, Hom((\mathbb{R}^d)^* \otimes \mathbb{R}^\ell, \Lambda^2(\mathbb{R}^d)^* \otimes \mathbb{R}^\ell)) \\ & = Hom((\mathbb{R}^d)^* \otimes (\mathbb{R}^d)^* \otimes \mathbb{R}^\ell, \Lambda^2(\mathbb{R}^d)^* \otimes \mathbb{R}^\ell), \end{aligned}$$

A becomes skew-symmetrization of bilinear maps $\mathbb{R}^d \to \mathbb{R}^\ell$.

Question. Assume a vector-valued measure μ satisfies $\mathcal{A}(\mu) = 0$ in distributional sense. Ellipticity should imply restrictions on the singular part μ^s of μ . Which restrictions?

- A 🖻 🕨

Linear PDEs The result Proof of Theorem The wave cone

The principal symbol. In Fourier, if $\xi \in (\mathbb{R}^d)^*$,

$$\mathcal{F}(\mathcal{A}(u))(\xi) = \mathcal{A}(2\pi i\xi)(\mathcal{F}(u)(\xi)),$$

where $A(\xi) = \sum_{\alpha} A_{\alpha} \xi^{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$. It is a sum of homogeneous terms, the term of highest degree $A^k(\xi)$ is the *principal symbol* of \mathcal{A} evaluated at ξ .

< 🗇 🕨

The principal symbol. In Fourier, if $\xi \in (\mathbb{R}^d)^*$,

$$\mathcal{F}(\mathcal{A}(u))(\xi) = \mathcal{A}(2\pi i\xi)(\mathcal{F}(u)(\xi)),$$

where $A(\xi) = \sum_{\alpha} A_{\alpha} \xi^{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$. It is a sum of homogeneous terms, the term of highest degree $A^k(\xi)$ is the *principal symbol* of \mathcal{A} evaluated at ξ .

Example

For the exterior differential, for $\eta \otimes e \in (\mathbb{R}^d)^* \otimes \mathbb{R}^\ell$, $A(\xi)(\eta \otimes e) = (\xi \wedge \eta) \otimes e$.

4 E b

The principal symbol. In Fourier, if $\xi \in (\mathbb{R}^d)^*$,

 $\mathcal{F}(\mathcal{A}(u))(\xi) = \mathcal{A}(2\pi i\xi)(\mathcal{F}(u)(\xi)),$

where $A(\xi) = \sum_{\alpha} A_{\alpha} \xi^{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$. It is a sum of homogeneous terms, the term of highest degree $A^k(\xi)$ is the *principal symbol* of \mathcal{A} evaluated at ξ .

Example

For the exterior differential, for $\eta \otimes e \in (\mathbb{R}^d)^* \otimes \mathbb{R}^\ell$, $A(\xi)(\eta \otimes e) = (\xi \wedge \eta) \otimes e$.

Example

For the scalar Laplacian, $A(\xi) = |\xi|^2$.

- A 🗐 🕨

The principal symbol. In Fourier, if $\xi \in (\mathbb{R}^d)^*$,

 $\mathcal{F}(\mathcal{A}(u))(\xi) = \mathcal{A}(2\pi i\xi)(\mathcal{F}(u)(\xi)),$

where $A(\xi) = \sum_{\alpha} A_{\alpha} \xi^{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$. It is a sum of homogeneous terms, the term of highest degree $A^k(\xi)$ is the *principal symbol* of \mathcal{A} evaluated at ξ .

Example

For the exterior differential, for $\eta \otimes e \in (\mathbb{R}^d)^* \otimes \mathbb{R}^\ell$, $A(\xi)(\eta \otimes e) = (\xi \wedge \eta) \otimes e$.

Example

For the scalar Laplacian, $A(\xi) = |\xi|^2$.

Assume \mathcal{A} is *elliptic*, i.e. $\mathcal{A}(\xi)$ is injective for all $\xi \neq 0$. Then $\mathcal{A}(u) = 0 \implies \operatorname{supp}(\mathcal{F}(u)) = \{0\}$, so u is a polynomial.

The principal symbol. In Fourier, if $\xi \in (\mathbb{R}^d)^*$,

 $\mathcal{F}(\mathcal{A}(u))(\xi) = \mathcal{A}(2\pi i\xi)(\mathcal{F}(u)(\xi)),$

where $A(\xi) = \sum_{\alpha} A_{\alpha} \xi^{\alpha} \in Hom(\mathbb{R}^N, \mathbb{R}^n)$. It is a sum of homogeneous terms, the term of highest degree $A^k(\xi)$ is the *principal symbol* of \mathcal{A} evaluated at ξ .

Example

For the exterior differential, for $\eta \otimes e \in (\mathbb{R}^d)^* \otimes \mathbb{R}^\ell$, $A(\xi)(\eta \otimes e) = (\xi \wedge \eta) \otimes e$.

Example

For the scalar Laplacian, $A(\xi) = |\xi|^2$.

Assume \mathcal{A} is *elliptic*, i.e. $\mathcal{A}(\xi)$ is injective for all $\xi \neq 0$. Then $\mathcal{A}(u) = 0 \implies \operatorname{supp}(\mathcal{F}(u)) = \{0\}$, so u is a polynomial.

Conversely, assume that \mathcal{A} is homogeneous. If there exists nonzero $\xi \in (\mathbb{R}^d)^*$ and $\lambda \in \mathbb{R}^n$ such that $\lambda \in \ker(\mathcal{A}(\xi))$, then for every distribution $h : \mathbb{R} \to \mathbb{R}$, the plane wave $u = (h \circ \xi)\lambda$ solves $\mathcal{A}(u) = 0$. Thus \mathcal{A} has nonsmooth solutions.

- A 🖻 🕨

Nonelliptic behaviours are concentrated in the wave cone.

< 🗇 🕨

-

Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone) The wave cone of an order k operator \mathcal{A} is $\Lambda_{\mathcal{A}} := \bigcup_{\xi \neq 0} \ker \mathcal{A}^k(\xi) \subset \mathbb{R}^N$.

Example

For the exterior differential d, $\Lambda_{\mathcal{A}} = \bigcup_{\xi \neq 0} \xi \otimes \mathbb{R}^{\ell} \subset (\mathbb{R}^{d})^{*} \otimes \mathbb{R}^{\ell} = Hom(\mathbb{R}^{d}, \mathbb{R}^{\ell})$ consists of all rank ≤ 1 linear maps $\mathbb{R}^{d} \to \mathbb{R}^{\ell}$.

Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone) The wave cone of an order k operator \mathcal{A} is $\Lambda_{\mathcal{A}} \coloneqq \bigcup_{\xi \neq 0} \ker A^{k}(\xi) \subset \mathbb{R}^{N}$.

Example

For the exterior differential d, $\Lambda_{\mathcal{A}} = \bigcup_{\xi \neq 0} \xi \otimes \mathbb{R}^{\ell} \subset (\mathbb{R}^{d})^{*} \otimes \mathbb{R}^{\ell} = Hom(\mathbb{R}^{d}, \mathbb{R}^{\ell})$ consists of all rank ≤ 1 linear maps $\mathbb{R}^{d} \to \mathbb{R}^{\ell}$.

Indeed, the kernel of $\xi \wedge : \Lambda^1 \to \Lambda^2$ coincides with the image of $\xi \wedge : :\Lambda^0 \to \Lambda^1$. This reflects (at the symbol level) the (local) exactness of the de Rham complex.

Theorem (de Philippis-Rindler 2018)

Let μ be an \mathbb{R}^{N} -valued measure which solves $\mathcal{A}(\mu) = 0$ on open set Ω . Then $\frac{d\mu}{d|\mu|}(x) \in \Lambda_{\mathcal{A}}$ for $|\mu|^{s}$ -almost every point $x \in \Omega$.

Theorem (de Philippis-Rindler 2018)

Let μ be an \mathbb{R}^{N} -valued measure which solves $\mathcal{A}(\mu) = 0$ on open set Ω . Then $\frac{d\mu}{d|\mu|}(x) \in \Lambda_{\mathcal{A}}$ for $|\mu|^{s}$ -almost every point $x \in \Omega$.

Example

When \mathcal{A} is the exterior differential on 1-forms, $Hom(\mathbb{R}^d, \mathbb{R}^\ell)$ -valued measures solving $d\mu = 0$ are differentials of \mathbb{R}^ℓ -valued BV functions.

Theorem (de Philippis-Rindler 2018)

Let μ be an \mathbb{R}^{N} -valued measure which solves $\mathcal{A}(\mu) = 0$ on open set Ω . Then $\frac{d\mu}{d|\mu|}(x) \in \Lambda_{\mathcal{A}}$ for $|\mu|^{s}$ -almost every point $x \in \Omega$.

Example

When \mathcal{A} is the exterior differential on 1-forms, $Hom(\mathbb{R}^d, \mathbb{R}^\ell)$ -valued measures solving $d\mu = 0$ are differentials of \mathbb{R}^ℓ -valued BV functions. According to the Theorem, their singular parts are supported on points where $\frac{d\mu}{d|\mu|}$ is a rank 1 linear map $\mathbb{R}^d \to \mathbb{R}^\ell$.

This is Alberti's Rank One Theorem (1993), solving a conjecture of Ambrosio-De Giorgi (1988).

I stick to degree 1 operators. Let μ be an \mathbb{R}^N -valued measure solving $\mathcal{A}(\mu) = 0$. Let $|\mu|$ denote its total variation. Consider the Radon-Nikodym decomposition

$$\mu = \frac{d\mu}{d|\mu|} d|\mu|.$$

Let $E = \{x \in \mathbb{R}^d ; \frac{d\mu}{d|\mu|}(x) \notin \Lambda_A\}$. By contradiction, assume that $|\mu|^s(E) > 0$.

I stick to degree 1 operators. Let μ be an \mathbb{R}^N -valued measure solving $\mathcal{A}(\mu) = 0$. Let $|\mu|$ denote its total variation. Consider the Radon-Nikodym decomposition

$$\mu = \frac{d\mu}{d|\mu|} d|\mu|$$

Let $E = \{x \in \mathbb{R}^d ; \frac{d\mu}{d|\mu|}(x) \notin \Lambda_A\}$. By contradiction, assume that $|\mu|^s(E) > 0$.

One can pick $x_0 \in E$ and a subsequence r_k of radii which satisfy the following. Let μ_k denote the blowing up of μ at x_0 , at scale r_k , normalized by $|\mu|(B(r_k))$.

() $|\mu_k|$ converges vaguely to a measure ν .

$$\mathbf{2} \ \lambda_0 = \frac{d\mu}{d|\mu|}(\mathbf{0}) \notin \Lambda_{\mathcal{A}}.$$

() μ_k converges vaguely to the measure $\nu \lambda_0$.

$$\frac{|\mu|^s(B(r_k))}{|\mu|(B(r_k))} \text{ tends to } 1.$$

I stick to degree 1 operators. Let μ be an \mathbb{R}^N -valued measure solving $\mathcal{A}(\mu) = 0$. Let $|\mu|$ denote its total variation. Consider the Radon-Nikodym decomposition

$$\mu = \frac{d\mu}{d|\mu|} d|\mu|.$$

Let $E = \{x \in \mathbb{R}^d ; \frac{d\mu}{d|\mu|}(x) \notin \Lambda_A\}$. By contradiction, assume that $|\mu|^s(E) > 0$.

One can pick $x_0 \in E$ and a subsequence r_k of radii which satisfy the following. Let μ_k denote the blowing up of μ at x_0 , at scale r_k , normalized by $|\mu|(B(r_k))$.

() $|\mu_k|$ converges vaguely to a measure ν .

$$a \lambda_0 = \frac{d\mu}{d|\mu|}(0) \notin \Lambda_{\mathcal{A}}.$$

() μ_k converges vaguely to the measure $\nu \lambda_0$.

$$\frac{|\mu|^s(B(r_k))}{|\mu|(B(r_k))} \text{ tends to } 1.$$

One shows that $\mathcal{A}(\nu\lambda_0) = 0$. Since $\lambda_0 \notin \Lambda_A$, this implies that $\operatorname{supp}(\mathcal{F}(\nu)) = 0$, hence that ν is absolutely continuous.

I stick to degree 1 operators. Let μ be an \mathbb{R}^N -valued measure solving $\mathcal{A}(\mu) = 0$. Let $|\mu|$ denote its total variation. Consider the Radon-Nikodym decomposition

$$\mu = \frac{d\mu}{d|\mu|} d|\mu|.$$

Let $E = \{x \in \mathbb{R}^d ; \frac{d\mu}{d|\mu|}(x) \notin \Lambda_A\}$. By contradiction, assume that $|\mu|^s(E) > 0$.

One can pick $x_0 \in E$ and a subsequence r_k of radii which satisfy the following. Let μ_k denote the blowing up of μ at x_0 , at scale r_k , normalized by $|\mu|(B(r_k))$.

() $|\mu_k|$ converges vaguely to a measure ν .

$$a \lambda_0 = \frac{d\mu}{d|\mu|}(0) \notin \Lambda_{\mathcal{A}}.$$

() μ_k converges vaguely to the measure $\nu \lambda_0$.

$$\frac{|\mu|^s(B(r_k))}{|\mu|(B(r_k))} \text{ tends to } 1.$$

One shows that $\mathcal{A}(\nu\lambda_0) = 0$. Since $\lambda_0 \notin \Lambda_A$, this implies that $\operatorname{supp}(\mathcal{F}(\nu)) = 0$, hence that ν is absolutely continuous.

On the other hand, one shows that $|\mu_k|$ converges to ν in total variation. This is a contradiction, since $||\mu_k| - \nu| \ge |\mu_k|^s (B(r_k))/|\mu|(B(r_k))$ which tends to 1.

In distributional sense, $\mathcal{A}(\nu\lambda_0) = \lim \mathcal{A}(\mu_k) = 0$.

4 3 3

In distributional sense, $\mathcal{A}(\nu\lambda_0) = \lim \mathcal{A}(\mu_k) = 0$. Taking Fourier transforms,

$$\forall \xi \in (\mathbb{R}^d)^*, \quad (\mathcal{F}(\nu)(\xi))A(\xi)\lambda_0 = 0.$$

Image: A matrix

-

In distributional sense, $\mathcal{A}(\nu\lambda_0) = \lim \mathcal{A}(\mu_k) = 0$. Taking Fourier transforms,

$$\forall \xi \in (\mathbb{R}^d)^*, \quad (\mathcal{F}(\nu)(\xi))A(\xi)\lambda_0 = 0.$$

Since $\lambda_0 \notin \Lambda_A$, $A(\xi)\lambda_0 \neq 0$, hence $\mathcal{F}(\nu)(\xi) = 0$.

Image: A matrix

In distributional sense, $\mathcal{A}(\nu\lambda_0) = \lim \mathcal{A}(\mu_k) = 0$. Taking Fourier transforms,

$$\forall \xi \in (\mathbb{R}^d)^*, \quad (\mathcal{F}(\nu)(\xi))A(\xi)\lambda_0 = 0.$$

Since $\lambda_0 \notin \Lambda_A$, $A(\xi)\lambda_0 \neq 0$, hence $\mathcal{F}(\nu)(\xi) = 0$.

Since $supp(\mathcal{F}(\nu)) = \{0\}$, ν is a (polynomial) function times Lebesgue measure.

< 🗇 🕨

 Linear PDEs
 Strategy

 The result
 Absolute continuity of tangent measures

 Proof of Theorem
 Convergence in total variation

Second step : from vague convergence to convergence in total variation

Let $\nu_k = |\mu_k|^s$. Recall that $\frac{|\mu|^s(B(r_k))}{|\mu|(B(r_k))}$ tends to 1. One can furthermore assume that $\oint_{B(r_k)} |\frac{d\mu}{d|\mu|} - \lambda_0 |d|\mu|^s$ tends to 0. It follows that $|\nu_k \lambda_0 - \mu_k|(B(1))$ tends to 0.

글 > - - 글 >

Second step : from vague convergence to convergence in total variation

Let $\nu_k = |\mu_k|^s$. Recall that $\frac{|\mu|^s(B(r_k))}{|\mu|(B(r_k))}$ tends to 1. One can furthermore assume that $\oint_{B(r_k)} |\frac{d\mu}{d|\mu|} - \lambda_0|d|\mu|^s$ tends to 0. It follows that $|\nu_k \lambda_0 - \mu_k|(B(1))$ tends to 0. Pick a smooth cut-off function χ . Then $|\chi \nu_k \lambda_0 - \chi \mu_k|(\mathbb{R}^d)$ tends to 0.

Second step : from vague convergence to convergence in total variation

Let $\nu_k = |\mu_k|^s$. Recall that $\frac{|\mu|^s(B(r_k))}{|\mu|(B(r_k))}$ tends to 1. One can furthermore assume that $\oint_{B(r_k)} |\frac{d\mu}{d|\mu|} - \lambda_0| d|\mu|^s$ tends to 0. It follows that $|\nu_k \lambda_0 - \mu_k|(B(1))$ tends to 0. Pick a smooth cut-off function χ . Then $|\chi \nu_k \lambda_0 - \chi \mu_k|(\mathbb{R}^d)$ tends to 0. Since $\mathcal{A}(\mu_k) = 0$, $\mathcal{A}(\chi \nu_k \lambda_0) = \mathcal{A}(\chi \nu_k \lambda_0 - \chi \mu_k) + \mathcal{A}(d\chi) \mu_k$.

We shall see that ellipticity allows to invert A with estimates. By density, one can replace measures with smooth functions and total variation with L^1 norm. The goal is to show that $\chi \nu_k$ is precompact in L^1 . The estimates will stem from Hörmander-Mikhlin's multiplier theorem.

Second step : from vague convergence to convergence in total variation

Let $\nu_k = |\mu_k|^s$. Recall that $\frac{|\mu|^s(\mathcal{B}(r_k))}{|\mu|(\mathcal{B}(r_k))}$ tends to 1. One can furthermore assume that $\oint_{\mathcal{B}(r_k)} \left| \frac{d\mu}{d|\mu|} - \lambda_0 \right| d|\mu|^s$ tends to 0. It follows that $|\nu_k \lambda_0 - \mu_k|(\mathcal{B}(1))$ tends to 0. Pick a smooth cut-off function χ . Then $|\chi \nu_k \lambda_0 - \chi \mu_k|(\mathbb{R}^d)$ tends to 0. Since $\mathcal{A}(\mu_k) = 0$, $\mathcal{A}(\chi \nu_k \lambda_0) = \mathcal{A}(\chi \nu_k \lambda_0 - \chi \mu_k) + \mathcal{A}(d\chi) \mu_k$.

We shall see that ellipticity allows to invert A with estimates. By density, one can replace measures with smooth functions and total variation with L^1 norm. The goal is to show that $\chi \nu_k$ is precompact in L^1 . The estimates will stem from Hörmander-Mikhlin's multiplier theorem.

Taking Fourier transforms,

$$\forall \xi, \quad \mathcal{F}(\chi \nu_k) A(\xi) \lambda_0 = A(\xi) \mathcal{F}(V_k)(\xi) + \mathcal{F}(R_k)(\xi),$$

where $V_k = \chi \nu_k \lambda_0 - \chi \mu_k$ tends to 0 in L^1 and $R_k = A(d\chi) \mu_k$ is bounded in L^1 .

- - E - b

Inner multiplying with $\overline{A(\xi)\lambda_0}$, one gets

$$|A(\xi)\lambda_0|^2 \mathcal{F}(\chi\nu_k) = A(\xi)\lambda_0 \cdot A(\xi)\mathcal{F}(V_k)(\xi) + A(\xi)\lambda_0 \cdot \mathcal{F}(R_k)(\xi),$$

and then

$$(1+|A(\xi)\lambda_0|^2)\mathcal{F}(\chi\nu_k)=A(\xi)\lambda_0\cdot A(\xi)\mathcal{F}(V_k)(\xi)+A(\xi)\lambda_0\cdot \mathcal{F}(R_k)(\xi)+\mathcal{F}(\chi\nu_k).$$

So $\mathcal{F}(\chi\nu_k) = T_0(V_k) + T_1((Id - \Delta)^{-1/2}R_k) + T_2((Id - \Delta)^{-1}\mathcal{F}(\chi\nu_k))$ is the sum of three terms, involving operators defined by Fourier multipliers

$$\begin{split} m_0(\xi) &= (1 + |A(\xi)\lambda_0|^2)^{-1}\overline{A(\xi)\lambda_0} \cdot A(\xi), \\ m_1(\xi) &= (1 + |A(\xi)\lambda_0|^2)^{-1}(1 + 4\pi^2|\xi|^2)^{1/2}\overline{A(\xi)\lambda_0}, \\ m_2(\xi) &= (1 + |A(\xi)\lambda_0|^2)^{-1}(1 + 4\pi^2|\xi|^2). \end{split}$$

 $(Id - \Delta)^{-1/2}$ is bounded and compact from L^1 to some L^q , q > 1. T_1 and T_2 are bounded from L^q to L^q . Therefore $w_k := T_1((Id - \Delta)^{-1/2}R_k) + T_2((Id - \Delta)^{-1}\mathcal{F}(\chi\nu_k))$ is precompact in L^1 .

- A 🗐 🕨

Since $\lambda_0 \notin \Lambda_A$, $|A(\xi)\lambda_0|/|\xi|$ is bounded away from 0. This implies that T_0 is bounded from L^1 to the Lorentz space $L^{1,\infty}$ (Hörmander-Mikhlin). Hence $u_k \coloneqq T_0(V_k)$ tends to 0 in measure.

Since $u_k + w_k = \chi \nu_k \ge 0$, u_k^- is dominated by $|w_k|$. By Vitali's convergence theorem (strengthening of dominated convergence theorem where a.e. convergence is replaced with convergence in measure), u_k^- tends to 0 in L^1 .

Since $V_k \rightarrow 0$ in distributional sense, so does $u_k = T_0(V_k)$. For every smooth cut-off function ϕ , $0 \le \phi \le 1$,

$$\int \phi |u_k| = \int \phi u_k + 2 \int \phi u_k^- \leq \int \phi u_k + 2 \int u_k^-$$

tends to 0, so u_k tends to 0 in L^1 .

Hence $\chi \nu_k = u_k + w_k$ is precompact in L^1 . Its vague limit is $\chi \nu$, so it subconverges in L^1 to $\chi \nu$. This shows that $|\mu_k|^s$ converges to ν in total variation.

This contradicts the fact that ν is absolutely continuous, and completes the proof of the theorem.