Measures constrained by linear PDEs [after de Philippis and Rindler]

Pierre Pansu, Université Paris-Saclay

March 1st, 2021

The problem Ellipticity
The wave cone

A constant coefficient linear PDE on a vector-valued function $u: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ takes the form

$$
\mathcal{A}(u)=\sum_{\alpha} A_{\alpha} \partial^{\alpha} u=0
$$

where $A_{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$ are linear maps. Here $\partial^{\alpha} u=\partial_{1}^{\alpha_{1}} \ldots \partial_{k}^{\alpha_{k}} u$ denote partial derivatives.

A constant coefficient linear PDE on a vector-valued function $u: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ takes the form

$$
\mathcal{A}(u)=\sum_{\alpha} A_{\alpha} \partial^{\alpha} u=0
$$

where $A_{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$ are linear maps. Here $\partial^{\alpha} u=\partial_{1}^{\alpha_{1}} \ldots \partial_{k}^{\alpha_{k}} u$ denote partial derivatives.

Example

Assume $u \in C^{\infty}\left(\Omega,\left(\mathbb{R}^{d}\right)^{*}\right)$ is a differential 1-form on open set Ω. Its exterior differential $d u \in C^{\infty}\left(\Omega, \Lambda^{2}\left(\mathbb{R}^{d}\right)^{*}\right)$. Then $d u=\mathcal{A}(u)$ where \mathcal{A} has order 1. Putting all A_{α} together into a single linear map

$$
\begin{aligned}
A & \in \operatorname{Hom}\left(\mathbb{R}^{d}, \operatorname{Hom}\left(\left(\mathbb{R}^{d}\right)^{*}, \Lambda^{2}\left(\mathbb{R}^{d}\right)^{*}\right)\right) \\
& =\operatorname{Hom}\left(\left(\mathbb{R}^{d}\right)^{*} \otimes\left(\mathbb{R}^{d}\right)^{*}, \Lambda^{2}\left(\mathbb{R}^{d}\right)^{*}\right),
\end{aligned}
$$

A becomes skew-symmetrization of bilinear forms on \mathbb{R}^{d}.

A constant coefficient linear PDE on a vector-valued function $u: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ takes the form

$$
\mathcal{A}(u)=\sum_{\alpha} A_{\alpha} \partial^{\alpha} u=0,
$$

where $A_{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$ are linear maps. Here $\partial^{\alpha} u=\partial_{1}^{\alpha_{1}} \ldots \partial_{k}^{\alpha_{k}} u$ denote partial derivatives.

Example

Assume $u \in C^{\infty}\left(\Omega, \operatorname{Hom}\left(\mathbb{R}^{d}, \mathbb{R}^{\ell}\right)\right)$ is a \mathbb{R}^{ℓ}-valued differential 1-form. Its exterior differential $d u \in C^{\infty}\left(\Omega, \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{d}, \mathbb{R}^{\ell}\right)\right)$. Then $d u=\mathcal{A}(u)$ where \mathcal{A} has order 1 . Putting all A_{α} together into a single linear map

$$
\begin{aligned}
A & \in \operatorname{Hom}\left(\mathbb{R}^{d}, \operatorname{Hom}\left(\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}, \Lambda^{2}\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}\right)\right) \\
& =\operatorname{Hom}\left(\left(\mathbb{R}^{d}\right)^{*} \otimes\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}, \Lambda^{2}\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}\right)
\end{aligned}
$$

A becomes skew-symmetrization of bilinear maps $\mathbb{R}^{d} \rightarrow \mathbb{R}^{\ell}$.

A constant coefficient linear PDE on a vector-valued function $u: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ takes the form

$$
\mathcal{A}(u)=\sum_{\alpha} A_{\alpha} \partial^{\alpha} u=0,
$$

where $A_{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$ are linear maps. Here $\partial^{\alpha} u=\partial_{1}^{\alpha_{1}} \ldots \partial_{k}^{\alpha_{k}} u$ denote partial derivatives.

Example

Assume $u \in C^{\infty}\left(\Omega, \operatorname{Hom}\left(\mathbb{R}^{d}, \mathbb{R}^{\ell}\right)\right)$ is a \mathbb{R}^{ℓ}-valued differential 1-form. Its exterior differential $d u \in C^{\infty}\left(\Omega, \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{d}, \mathbb{R}^{\ell}\right)\right)$. Then $d u=\mathcal{A}(u)$ where \mathcal{A} has order 1 . Putting all A_{α} together into a single linear map

$$
\begin{aligned}
A & \in \operatorname{Hom}\left(\mathbb{R}^{d}, \operatorname{Hom}\left(\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}, \Lambda^{2}\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}\right)\right) \\
& =\operatorname{Hom}\left(\left(\mathbb{R}^{d}\right)^{*} \otimes\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}, \Lambda^{2}\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}\right)
\end{aligned}
$$

A becomes skew-symmetrization of bilinear maps $\mathbb{R}^{d} \rightarrow \mathbb{R}^{\ell}$.

Question. Assume a vector-valued measure μ satisfies $\mathcal{A}(\mu)=0$ in distributional sense. Ellipticity should imply restrictions on the singular part μ^{s} of μ. Which restrictions?

The problem Ellipticity
The wave cone

The principal symbol. In Fourier, if $\xi \in\left(\mathbb{R}^{d}\right)^{*}$,

$$
\mathcal{F}(\mathcal{A}(u))(\xi)=A(2 \pi i \xi)(\mathcal{F}(u)(\xi))
$$

where $A(\xi)=\sum_{\alpha} A_{\alpha} \xi^{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$. It is a sum of homogeneous terms, the term of highest degree $A^{k}(\xi)$ is the principal symbol of \mathcal{A} evaluated at ξ.

The principal symbol. In Fourier, if $\xi \in\left(\mathbb{R}^{d}\right)^{*}$,

$$
\mathcal{F}(\mathcal{A}(u))(\xi)=A(2 \pi i \xi)(\mathcal{F}(u)(\xi))
$$

where $A(\xi)=\sum_{\alpha} A_{\alpha} \xi^{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$. It is a sum of homogeneous terms, the term of highest degree $A^{k}(\xi)$ is the principal symbol of \mathcal{A} evaluated at ξ.

Example

For the exterior differential, for $\eta \otimes e \in\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}, A(\xi)(\eta \otimes e)=(\xi \wedge \eta) \otimes e$.

The principal symbol. In Fourier, if $\xi \in\left(\mathbb{R}^{d}\right)^{*}$,

$$
\mathcal{F}(\mathcal{A}(u))(\xi)=A(2 \pi i \xi)(\mathcal{F}(u)(\xi))
$$

where $A(\xi)=\sum_{\alpha} A_{\alpha} \xi^{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$. It is a sum of homogeneous terms, the term of highest degree $A^{k}(\xi)$ is the principal symbol of \mathcal{A} evaluated at ξ.

Example

For the exterior differential, for $\eta \otimes e \in\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}, A(\xi)(\eta \otimes e)=(\xi \wedge \eta) \otimes e$.

Example

For the scalar Laplacian, $A(\xi)=|\xi|^{2}$.

The principal symbol. In Fourier, if $\xi \in\left(\mathbb{R}^{d}\right)^{*}$,

$$
\mathcal{F}(\mathcal{A}(u))(\xi)=A(2 \pi i \xi)(\mathcal{F}(u)(\xi))
$$

where $A(\xi)=\sum_{\alpha} A_{\alpha} \xi^{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$. It is a sum of homogeneous terms, the term of highest degree $A^{k}(\xi)$ is the principal symbol of \mathcal{A} evaluated at ξ.

Example

For the exterior differential, for $\eta \otimes e \in\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}, A(\xi)(\eta \otimes e)=(\xi \wedge \eta) \otimes e$.

Example

For the scalar Laplacian, $A(\xi)=|\xi|^{2}$.
Assume \mathcal{A} is elliptic, i.e. $\mathcal{A}(\xi)$ is injective for all $\xi \neq 0$. Then $\mathcal{A}(u)=0 \Longrightarrow \operatorname{supp}(\mathcal{F}(u))=\{0\}$, so u is a polynomial.

The principal symbol. In Fourier, if $\xi \in\left(\mathbb{R}^{d}\right)^{*}$,

$$
\mathcal{F}(\mathcal{A}(u))(\xi)=A(2 \pi i \xi)(\mathcal{F}(u)(\xi))
$$

where $A(\xi)=\sum_{\alpha} A_{\alpha} \xi^{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{N}, \mathbb{R}^{n}\right)$. It is a sum of homogeneous terms, the term of highest degree $A^{k}(\xi)$ is the principal symbol of \mathcal{A} evaluated at ξ.

Example

For the exterior differential, for $\eta \otimes e \in\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}, A(\xi)(\eta \otimes e)=(\xi \wedge \eta) \otimes e$.

Example

For the scalar Laplacian, $A(\xi)=|\xi|^{2}$.
Assume \mathcal{A} is elliptic, i.e. $\mathcal{A}(\xi)$ is injective for all $\xi \neq 0$. Then $\mathcal{A}(u)=0 \Longrightarrow \operatorname{supp}(\mathcal{F}(u))=\{0\}$, so u is a polynomial.

Conversely, assume that \mathcal{A} is homogeneous. If there exists nonzero $\xi \in\left(\mathbb{R}^{d}\right)^{*}$ and $\lambda \in \mathbb{R}^{n}$ such that $\lambda \in \operatorname{ker}(A(\xi))$, then for every distribution $h: \mathbb{R} \rightarrow \mathbb{R}$, the plane wave $u=(h \circ \xi) \lambda$ solves $\mathcal{A}(u)=0$. Thus \mathcal{A} has nonsmooth solutions.

The problem

Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone)

The wave cone of an order k operator \mathcal{A} is $\wedge_{\mathcal{A}}:=\bigcup_{\xi \neq 0} \operatorname{ker} A^{k}(\xi) \subset \mathbb{R}^{N}$.

Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone)

The wave cone of an order k operator \mathcal{A} is $\Lambda_{\mathcal{A}}:=\bigcup_{\xi \neq 0} \operatorname{ker} A^{k}(\xi) \subset \mathbb{R}^{N}$.

Example

For the exterior differential d, $\Lambda_{\mathcal{A}}=\bigcup_{\xi \neq 0} \xi \otimes \mathbb{R}^{\ell} \subset\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}=\operatorname{Hom}\left(\mathbb{R}^{d}, \mathbb{R}^{\ell}\right)$ consists of all rank ≤ 1 linear maps $\mathbb{R}^{d} \rightarrow \mathbb{R}^{\ell}$.

Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone)

The wave cone of an order k operator \mathcal{A} is $\Lambda_{\mathcal{A}}:=\bigcup_{\xi \neq 0} \operatorname{ker} A^{k}(\xi) \subset \mathbb{R}^{N}$.

Example

For the exterior differential d, $\Lambda_{\mathcal{A}}=\bigcup_{\xi \neq 0} \xi \otimes \mathbb{R}^{\ell} \subset\left(\mathbb{R}^{d}\right)^{*} \otimes \mathbb{R}^{\ell}=\operatorname{Hom}\left(\mathbb{R}^{d}, \mathbb{R}^{\ell}\right)$ consists of all rank ≤ 1 linear maps $\mathbb{R}^{d} \rightarrow \mathbb{R}^{\ell}$.

Indeed, the kernel of $\xi \wedge \cdot: \Lambda^{1} \rightarrow \Lambda^{2}$ coincides with the image of $\xi \wedge \cdot: \Lambda^{0} \rightarrow \Lambda^{1}$. This reflects (at the symbol level) the (local) exactness of the de Rham complex.

Theorem (de Philippis-Rindler 2018)

Let μ be an \mathbb{R}^{N}-valued measure which solves $\mathcal{A}(\mu)=0$ on open set Ω. Then $\frac{d \mu}{d|\mu|}(x) \in \Lambda_{\mathcal{A}}$ for $|\mu|^{s}$-almost every point $x \in \Omega$.

Theorem (de Philippis-Rindler 2018)

Let μ be an \mathbb{R}^{N}-valued measure which solves $\mathcal{A}(\mu)=0$ on open set Ω. Then $\frac{d \mu}{d|\mu|}(x) \in \Lambda_{\mathcal{A}}$ for $|\mu|^{s}$-almost every point $x \in \Omega$.

Example

When \mathcal{A} is the exterior differential on 1-forms, $\operatorname{Hom}\left(\mathbb{R}^{d}, \mathbb{R}^{\ell}\right)$-valued measures solving $d \mu=0$ are differentials of \mathbb{R}^{ℓ}-valued $B V$ functions.

Theorem (de Philippis-Rindler 2018)

Let μ be an \mathbb{R}^{N}-valued measure which solves $\mathcal{A}(\mu)=0$ on open set Ω. Then $\frac{d \mu}{d|\mu|}(x) \in \Lambda_{\mathcal{A}}$ for $|\mu|^{s}$-almost every point $x \in \Omega$.

Example

When \mathcal{A} is the exterior differential on 1-forms, $\operatorname{Hom}\left(\mathbb{R}^{d}, \mathbb{R}^{\ell}\right)$-valued measures solving $d \mu=0$ are differentials of \mathbb{R}^{ℓ}-valued $B V$ functions. According to the Theorem, their singular parts are supported on points where $\frac{d \mu}{d|\mu|}$ is a rank 1 linear map $\mathbb{R}^{d} \rightarrow \mathbb{R}^{\ell}$.

This is Alberti's Rank One Theorem (1993), solving a conjecture of Ambrosio-De Giorgi (1988).

I stick to degree 1 operators. Let μ be an \mathbb{R}^{N}-valued measure solving $\mathcal{A}(\mu)=0$. Let $|\mu|$ denote its total variation. Consider the Radon-Nikodym decomposition

$$
\mu=\frac{d \mu}{d|\mu|} d|\mu| .
$$

Let $E=\left\{x \in \mathbb{R}^{d} ; \frac{d \mu}{d|\mu|}(x) \notin \Lambda_{\mathcal{A}}\right\}$. By contradiction, assume that $|\mu|^{s}(E)>0$.

I stick to degree 1 operators. Let μ be an \mathbb{R}^{N}-valued measure solving $\mathcal{A}(\mu)=0$. Let $|\mu|$ denote its total variation. Consider the Radon-Nikodym decomposition

$$
\mu=\frac{d \mu}{d|\mu|} d|\mu| .
$$

Let $E=\left\{x \in \mathbb{R}^{d} ; \frac{d \mu}{d|\mu|}(x) \notin \Lambda_{\mathcal{A}}\right\}$. By contradiction, assume that $|\mu|^{s}(E)>0$.
One can pick $x_{0} \in E$ and a subsequence r_{k} of radii which satisfy the following. Let μ_{k} denote the blowing up of μ at x_{0}, at scale r_{k}, normalized by $|\mu|\left(B\left(r_{k}\right)\right)$.
(1) $\left|\mu_{k}\right|$ converges vaguely to a measure ν.
(2) $\lambda_{0}=\frac{d \mu}{d|\mu|}(0) \notin \Lambda_{\mathcal{A}}$.
(3) μ_{k} converges vaguely to the measure $\nu \lambda_{0}$.
(- $\frac{|\mu|^{s}\left(B\left(r_{k}\right)\right)}{|\mu|\left(B\left(r_{k}\right)\right)}$ tends to 1 .

I stick to degree 1 operators. Let μ be an \mathbb{R}^{N}-valued measure solving $\mathcal{A}(\mu)=0$. Let $|\mu|$ denote its total variation. Consider the Radon-Nikodym decomposition

$$
\mu=\frac{d \mu}{d|\mu|} d|\mu| .
$$

Let $E=\left\{x \in \mathbb{R}^{d} ; \frac{d \mu}{d|\mu|}(x) \notin \Lambda_{\mathcal{A}}\right\}$. By contradiction, assume that $|\mu|^{s}(E)>0$.
One can pick $x_{0} \in E$ and a subsequence r_{k} of radii which satisfy the following. Let μ_{k} denote the blowing up of μ at x_{0}, at scale r_{k}, normalized by $|\mu|\left(B\left(r_{k}\right)\right)$.
(1) $\left|\mu_{k}\right|$ converges vaguely to a measure ν.
(2) $\lambda_{0}=\frac{d \mu}{d|\mu|}(0) \notin \Lambda_{\mathcal{A}}$.
(3) μ_{k} converges vaguely to the measure $\nu \lambda_{0}$.
(- $\frac{|\mu|^{s}\left(B\left(r_{k}\right)\right)}{|\mu|\left(B\left(r_{k}\right)\right)}$ tends to 1 .
One shows that $\mathcal{A}\left(\nu \lambda_{0}\right)=0$. Since $\lambda_{0} \notin \Lambda_{\mathcal{A}}$, this implies that $\operatorname{supp}(\mathcal{F}(\nu))=0$, hence that ν is absolutely continuous.

I stick to degree 1 operators. Let μ be an \mathbb{R}^{N}-valued measure solving $\mathcal{A}(\mu)=0$. Let $|\mu|$ denote its total variation. Consider the Radon-Nikodym decomposition

$$
\mu=\frac{d \mu}{d|\mu|} d|\mu| .
$$

Let $E=\left\{x \in \mathbb{R}^{d} ; \frac{d \mu}{d|\mu|}(x) \notin \Lambda_{\mathcal{A}}\right\}$. By contradiction, assume that $|\mu|^{s}(E)>0$.
One can pick $x_{0} \in E$ and a subsequence r_{k} of radii which satisfy the following. Let μ_{k} denote the blowing up of μ at x_{0}, at scale r_{k}, normalized by $|\mu|\left(B\left(r_{k}\right)\right)$.
(1) $\left|\mu_{k}\right|$ converges vaguely to a measure ν.
(2) $\lambda_{0}=\frac{d \mu}{d|\mu|}(0) \notin \Lambda_{\mathcal{A}}$.
(3) μ_{k} converges vaguely to the measure $\nu \lambda_{0}$.
(- $\frac{|\mu|^{s}\left(B\left(r_{k}\right)\right)}{|\mu|\left(B\left(r_{k}\right)\right)}$ tends to 1 .
One shows that $\mathcal{A}\left(\nu \lambda_{0}\right)=0$. Since $\lambda_{0} \notin \Lambda_{\mathcal{A}}$, this implies that $\operatorname{supp}(\mathcal{F}(\nu))=0$, hence that ν is absolutely continuous.

On the other hand, one shows that $\left|\mu_{k}\right|$ converges to ν in total variation. This is a contradiction, since $\| \mu_{k}|-\nu| \geq\left|\mu_{k}\right|^{s}\left(B\left(r_{k}\right)\right) /|\mu|\left(B\left(r_{k}\right)\right)$ which tends to 1 .

First step : absolute continuity of tangent measures

In distributional sense, $\mathcal{A}\left(\nu \lambda_{0}\right)=\lim \mathcal{A}\left(\mu_{k}\right)=0$.

First step : absolute continuity of tangent measures
In distributional sense, $\mathcal{A}\left(\nu \lambda_{0}\right)=\lim \mathcal{A}\left(\mu_{k}\right)=0$. Taking Fourier transforms,

$$
\forall \xi \in\left(\mathbb{R}^{d}\right)^{*}, \quad(\mathcal{F}(\nu)(\xi)) A(\xi) \lambda_{0}=0
$$

First step : absolute continuity of tangent measures
In distributional sense, $\mathcal{A}\left(\nu \lambda_{0}\right)=\lim \mathcal{A}\left(\mu_{k}\right)=0$. Taking Fourier transforms,

$$
\forall \xi \in\left(\mathbb{R}^{d}\right)^{*}, \quad(\mathcal{F}(\nu)(\xi)) A(\xi) \lambda_{0}=0
$$

Since $\lambda_{0} \notin \Lambda_{\mathcal{A}}, A(\xi) \lambda_{0} \neq 0$, hence $\mathcal{F}(\nu)(\xi)=0$.

First step : absolute continuity of tangent measures

In distributional sense, $\mathcal{A}\left(\nu \lambda_{0}\right)=\lim \mathcal{A}\left(\mu_{k}\right)=0$. Taking Fourier transforms,

$$
\forall \xi \in\left(\mathbb{R}^{d}\right)^{*}, \quad(\mathcal{F}(\nu)(\xi)) A(\xi) \lambda_{0}=0
$$

Since $\lambda_{0} \notin \Lambda_{\mathcal{A}}, A(\xi) \lambda_{0} \neq 0$, hence $\mathcal{F}(\nu)(\xi)=0$.
Since $\operatorname{supp}(\mathcal{F}(\nu))=\{0\}, \nu$ is a (polynomial) function times Lebesgue measure.

Second step : from vague convergence to convergence in total variation

Let $\nu_{k}=\left|\mu_{k}\right|^{s}$.
Recall that $\frac{|\mu|^{s}\left(B\left(r_{k}\right)\right)}{|\mu|\left(B\left(r_{k}\right)\right)}$ tends to 1 . One can furthermore assume that $\oint_{B\left(r_{k}\right)}\left|\frac{d \mu}{d|\mu|}-\lambda_{0}\right| d|\mu|^{s}$ tends to 0 . It follows that $\left|\nu_{k} \lambda_{0}-\mu_{k}\right|(B(1))$ tends to 0 .

Second step : from vague convergence to convergence in total variation

Let $\nu_{k}=\left|\mu_{k}\right|^{s}$.
Recall that $\frac{|\mu|^{s}\left(B\left(r_{k}\right)\right)}{|\mu|\left(B\left(r_{k}\right)\right)}$ tends to 1 . One can furthermore assume that $\oint_{B\left(r_{k}\right)}\left|\frac{d \mu}{d|\mu|}-\lambda_{0}\right| d|\mu|^{s}$ tends to 0 . It follows that $\left|\nu_{k} \lambda_{0}-\mu_{k}\right|(B(1))$ tends to 0 .

Pick a smooth cut-off function χ. Then $\left|\chi \nu_{k} \lambda_{0}-\chi \mu_{k}\right|\left(\mathbb{R}^{d}\right)$ tends to 0 .

Second step : from vague convergence to convergence in total variation
Let $\nu_{k}=\left|\mu_{k}\right|^{s}$.
Recall that $\frac{|\mu|^{s}\left(B\left(r_{k}\right)\right)}{|\mu|\left(B\left(r_{k}\right)\right)}$ tends to 1 . One can furthermore assume that $\oint_{B\left(r_{k}\right)}\left|\frac{d \mu}{d|\mu|}-\lambda_{0}\right| d|\mu|^{s}$ tends to 0 . It follows that $\left|\nu_{k} \lambda_{0}-\mu_{k}\right|(B(1))$ tends to 0 .

Pick a smooth cut-off function χ. Then $\left|\chi \nu_{k} \lambda_{0}-\chi \mu_{k}\right|\left(\mathbb{R}^{d}\right)$ tends to 0 . Since $\mathcal{A}\left(\mu_{k}\right)=0$,

$$
\mathcal{A}\left(\chi \nu_{k} \lambda_{0}\right)=\mathcal{A}\left(\chi \nu_{k} \lambda_{0}-\chi \mu_{k}\right)+\mathcal{A}(d \chi) \mu_{k}
$$

We shall see that ellipticity allows to invert \mathcal{A} with estimates. By density, one can replace measures with smooth functions and total variation with L^{1} norm. The goal is to show that $\chi \nu_{k}$ is precompact in L^{1}. The estimates will stem from HörmanderMikhlin's multiplier theorem.

Second step : from vague convergence to convergence in total variation
Let $\nu_{k}=\left|\mu_{k}\right|^{s}$.
Recall that $\frac{|\mu|^{s}\left(B\left(r_{k}\right)\right)}{|\mu|\left(B\left(r_{k}\right)\right)}$ tends to 1 . One can furthermore assume that $\oint_{B\left(r_{k}\right)}\left|\frac{d \mu}{d|\mu|}-\lambda_{0}\right| d|\mu|^{s}$ tends to 0 . It follows that $\left|\nu_{k} \lambda_{0}-\mu_{k}\right|(B(1))$ tends to 0 .

Pick a smooth cut-off function χ. Then $\left|\chi \nu_{k} \lambda_{0}-\chi \mu_{k}\right|\left(\mathbb{R}^{d}\right)$ tends to 0 . Since $\mathcal{A}\left(\mu_{k}\right)=0$,

$$
\mathcal{A}\left(\chi \nu_{k} \lambda_{0}\right)=\mathcal{A}\left(\chi \nu_{k} \lambda_{0}-\chi \mu_{k}\right)+A(d \chi) \mu_{k} .
$$

We shall see that ellipticity allows to invert \mathcal{A} with estimates. By density, one can replace measures with smooth functions and total variation with L^{1} norm. The goal is to show that $\chi \nu_{k}$ is precompact in L^{1}. The estimates will stem from HörmanderMikhlin's multiplier theorem.

Taking Fourier transforms,

$$
\forall \xi, \quad \mathcal{F}\left(\chi \nu_{k}\right) A(\xi) \lambda_{0}=A(\xi) \mathcal{F}\left(V_{k}\right)(\xi)+\mathcal{F}\left(R_{k}\right)(\xi),
$$

where $V_{k}=\chi \nu_{k} \lambda_{0}-\chi \mu_{k}$ tends to 0 in L^{1} and $R_{k}=A(d \chi) \mu_{k}$ is bounded in L^{1}.

Inner multiplying with $\overline{A(\xi) \lambda_{0}}$, one gets

$$
\left|A(\xi) \lambda_{0}\right|^{2} \mathcal{F}\left(\chi \nu_{k}\right)=A(\xi) \lambda_{0} \cdot A(\xi) \mathcal{F}\left(V_{k}\right)(\xi)+A(\xi) \lambda_{0} \cdot \mathcal{F}\left(R_{k}\right)(\xi)
$$

and then

$$
\left(1+\left|A(\xi) \lambda_{0}\right|^{2}\right) \mathcal{F}\left(\chi \nu_{k}\right)=A(\xi) \lambda_{0} \cdot A(\xi) \mathcal{F}\left(V_{k}\right)(\xi)+A(\xi) \lambda_{0} \cdot \mathcal{F}\left(R_{k}\right)(\xi)+\mathcal{F}\left(\chi \nu_{k}\right)
$$

So $\mathcal{F}\left(\chi \nu_{k}\right)=T_{0}\left(V_{k}\right)+T_{1}\left((I d-\Delta)^{-1 / 2} R_{k}\right)+T_{2}\left((I d-\Delta)^{-1} \mathcal{F}\left(\chi \nu_{k}\right)\right)$ is the sum of three terms, involving operators defined by Fourier multipliers

$$
\begin{aligned}
& m_{0}(\xi)=\left(1+\left|A(\xi) \lambda_{0}\right|^{2}\right)^{-1} \overline{A(\xi) \lambda_{0}} \cdot A(\xi) \\
& m_{1}(\xi)=\left(1+\left|A(\xi) \lambda_{0}\right|^{2}\right)^{-1}\left(1+4 \pi^{2}|\xi|^{2}\right)^{1 / 2} \overline{A(\xi) \lambda_{0}} \\
& m_{2}(\xi)=\left(1+\left|A(\xi) \lambda_{0}\right|^{2}\right)^{-1}\left(1+4 \pi^{2}|\xi|^{2}\right)
\end{aligned}
$$

$(I d-\Delta)^{-1 / 2}$ is bounded and compact from L^{1} to some $L^{q}, q>1 . T_{1}$ and T_{2} are bounded from L^{q} to L^{q}. Therefore $w_{k}:=T_{1}\left((I d-\Delta)^{-1 / 2} R_{k}\right)+T_{2}\left((I d-\Delta)^{-1} \mathcal{F}\left(\chi \nu_{k}\right)\right)$ is precompact in L^{1}.

Since $\lambda_{0} \notin \Lambda_{\mathcal{A}},\left|A(\xi) \lambda_{0}\right| /|\xi|$ is bounded away from 0 . This implies that T_{0} is bounded from L^{1} to the Lorentz space $L^{1, \infty}$ (Hörmander-Mikhlin). Hence $u_{k}:=T_{0}\left(V_{k}\right)$ tends to 0 in measure.

Since $u_{k}+w_{k}=\chi \nu_{k} \geq 0, u_{k}^{-}$is dominated by $\left|w_{k}\right|$. By Vitali's convergence theorem (strengthening of dominated convergence theorem where a.e. convergence is replaced with convergence in measure), u_{k}^{-}tends to 0 in L^{1}.

Since $V_{k} \rightarrow 0$ in distributional sense, so does $u_{k}=T_{0}\left(V_{k}\right)$. For every smooth cut-off function $\phi, 0 \leq \phi \leq 1$,

$$
\int \phi\left|u_{k}\right|=\int \phi u_{k}+2 \int \phi u_{k}^{-} \leq \int \phi u_{k}+2 \int u_{k}^{-}
$$

tends to 0 , so u_{k} tends to 0 in L^{1}.
Hence $\chi \nu_{k}=u_{k}+w_{k}$ is precompact in L^{1}. Its vague limit is $\chi \nu$, so it subconverges in L^{1} to $\chi \nu$. This shows that $\left|\mu_{k}\right|^{s}$ converges to ν in total variation.

This contradicts the fact that ν is absolutely continuous, and completes the proof of the theorem.

