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Pierre Pansu, Université Paris-Saclay Measures constrained by linear PDEs [after de Philippis and Rindler]



Linear PDEs
The result

Proof of Theorem

The problem
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The wave cone

A constant coefficient linear PDE on a vector-valued function u ∶ Ω ⊂ Rd → RN takes
the form

A(u) =∑
α

Aα∂
αu = 0,

where Aα ∈ Hom(RN ,Rn) are linear maps. Here ∂αu = ∂α1
1 ⋯∂αk

k
u denote partial

derivatives.

Example

Assume u ∈ C∞(Ω, (Rd)∗) is a differential 1-form on open set Ω. Its exterior
differential du ∈ C∞(Ω,Λ2(Rd)∗). Then du = A(u) where A has order 1. Putting all
Aα together into a single linear map

A ∈ Hom(Rd ,Hom((Rd)∗,Λ2(Rd)∗))
= Hom((Rd)∗ ⊗ (Rd)∗,Λ2(Rd)∗),

A becomes skew-symmetrization of bilinear forms on Rd .
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Example

Assume u ∈ C∞(Ω,Hom(Rd ,R`)) is a R`-valued differential 1-form. Its exterior
differential du ∈ C∞(Ω,Hom(Λ2Rd ,R`)). Then du = A(u) where A has order 1.
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A ∈ Hom(Rd ,Hom((Rd)∗ ⊗R`,Λ2(Rd)∗ ⊗R`))
= Hom((Rd)∗ ⊗ (Rd)∗ ⊗R`,Λ2(Rd)∗ ⊗R`),

A becomes skew-symmetrization of bilinear maps Rd → R`.

Question. Assume a vector-valued measure µ satisfies A(µ) = 0 in distributional sense.
Ellipticity should imply restrictions on the singular part µs of µ. Which restrictions ?
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The principal symbol. In Fourier, if ξ ∈ (Rd)∗,

F(A(u))(ξ) = A(2πiξ)(F(u)(ξ)),

where A(ξ) = ∑α Aαξα ∈ Hom(RN ,Rn). It is a sum of homogeneous terms, the term
of highest degree Ak(ξ) is the principal symbol of A evaluated at ξ.

Example

For the exterior differential, for η ⊗ e ∈ (Rd)∗ ⊗R`, A(ξ)(η ⊗ e) = (ξ ∧ η)⊗ e.

Example

For the scalar Laplacian, A(ξ) = ∣ξ∣2.

Assume A is elliptic, i.e. A(ξ) is injective for all ξ /= 0. Then
A(u) = 0 Ô⇒ supp(F(u)) = {0}, so u is a polynomial.

Conversely, assume that A is homogeneous. If there exists nonzero ξ ∈ (Rd)∗ and
λ ∈ Rn such that λ ∈ ker(A(ξ)), then for every distribution h ∶ R→ R, the plane wave
u = (h ○ ξ)λ solves A(u) = 0. Thus A has nonsmooth solutions.
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Nonelliptic behaviours are concentrated in the wave cone.

Definition (Wave cone)

The wave cone of an order k operator A is ΛA ∶= ⋃
ξ/=0

kerAk(ξ) ⊂ RN .

Example

For the exterior differential d , ΛA = ⋃
ξ/=0

ξ⊗R` ⊂ (Rd)∗ ⊗R` = Hom(Rd ,R`) consists of

all rank ≤ 1 linear maps Rd → R`.

Indeed, the kernel of ξ ∧ ⋅ ∶ Λ1 → Λ2 coincides with the image of ξ ∧ ⋅ ∶ Λ0 → Λ1. This
reflects (at the symbol level) the (local) exactness of the de Rham complex.
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Theorem (de Philippis-Rindler 2018)

Let µ be an RN -valued measure which solves A(µ) = 0 on open set Ω. Then
dµ
d ∣µ∣
(x) ∈ ΛA for ∣µ∣s -almost every point x ∈ Ω.

Example

When A is the exterior differential on 1-forms, Hom(Rd ,R`)-valued measures solving
dµ = 0 are differentials of R`-valued BV functions. According to the Theorem, their

singular parts are supported on points where dµ
d ∣µ∣

is a rank 1 linear map Rd → R`.

This is Alberti’s Rank One Theorem (1993), solving a conjecture of Ambrosio-De
Giorgi (1988).
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Strategy
Absolute continuity of tangent measures
Convergence in total variation

I stick to degree 1 operators. Let µ be an RN -valued measure solving A(µ) = 0. Let ∣µ∣
denote its total variation. Consider the Radon-Nikodym decomposition

µ = dµ

d ∣µ∣
d ∣µ∣.

Let E = {x ∈ Rd ; dµ
d ∣µ∣
(x) ∉ ΛA}. By contradiction, assume that ∣µ∣s(E) > 0.

One can pick x0 ∈ E and a subsequence rk of radii which satisfy the following. Let µk
denote the blowing up of µ at x0, at scale rk , normalized by ∣µ∣(B(rk)).

1 ∣µk ∣ converges vaguely to a measure ν.

2 λ0 = dµ
d ∣µ∣
(0) ∉ ΛA.

3 µk converges vaguely to the measure νλ0.

4
∣µ∣s(B(rk))
∣µ∣(B(rk))

tends to 1.

One shows that A(νλ0) = 0. Since λ0 ∉ ΛA, this implies that supp(F(ν)) = 0, hence
that ν is absolutely continuous.

On the other hand, one shows that ∣µk ∣ converges to ν in total variation. This is a
contradiction, since ∣∣µk ∣ − ν∣ ≥ ∣µk ∣s(B(rk))/∣µ∣(B(rk)) which tends to 1.
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First step : absolute continuity of tangent measures

In distributional sense, A(νλ0) = limA(µk) = 0.

Taking Fourier transforms,

∀ξ ∈ (Rd)∗, (F(ν)(ξ))A(ξ)λ0 = 0.

Since λ0 ∉ ΛA, A(ξ)λ0 /= 0, hence F(ν)(ξ) = 0.

Since supp(F(ν)) = {0}, ν is a (polynomial) function times Lebesgue measure.
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Second step : from vague convergence to convergence in total variation

Let νk = ∣µk ∣s .

Recall that
∣µ∣s(B(rk))
∣µ∣(B(rk))

tends to 1. One can furthermore assume that

∮B(rk) ∣
dµ
d ∣µ∣

− λ0∣d ∣µ∣s tends to 0. It follows that ∣νkλ0 − µk ∣(B(1)) tends to 0.

Pick a smooth cut-off function χ. Then ∣χνkλ0 − χµk ∣(Rd) tends to 0.
Since A(µk) = 0,

A(χνkλ0) = A(χνkλ0 − χµk) +A(dχ)µk .
We shall see that ellipticity allows to invert A with estimates. By density, one can
replace measures with smooth functions and total variation with L1 norm. The goal is
to show that χνk is precompact in L1. The estimates will stem from Hörmander-
Mikhlin’s multiplier theorem.

Taking Fourier transforms,

∀ξ, F(χνk)A(ξ)λ0 = A(ξ)F(Vk)(ξ) +F(Rk)(ξ),

where Vk = χνkλ0 − χµk tends to 0 in L1 and Rk = A(dχ)µk is bounded in L1.
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Let νk = ∣µk ∣s .

Recall that
∣µ∣s(B(rk))
∣µ∣(B(rk))

tends to 1. One can furthermore assume that

∮B(rk) ∣
dµ
d ∣µ∣

− λ0∣d ∣µ∣s tends to 0. It follows that ∣νkλ0 − µk ∣(B(1)) tends to 0.

Pick a smooth cut-off function χ. Then ∣χνkλ0 − χµk ∣(Rd) tends to 0.
Since A(µk) = 0,

A(χνkλ0) = A(χνkλ0 − χµk) +A(dχ)µk .
We shall see that ellipticity allows to invert A with estimates. By density, one can
replace measures with smooth functions and total variation with L1 norm. The goal is
to show that χνk is precompact in L1. The estimates will stem from Hörmander-
Mikhlin’s multiplier theorem.

Taking Fourier transforms,

∀ξ, F(χνk)A(ξ)λ0 = A(ξ)F(Vk)(ξ) +F(Rk)(ξ),

where Vk = χνkλ0 − χµk tends to 0 in L1 and Rk = A(dχ)µk is bounded in L1.
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Pierre Pansu, Université Paris-Saclay Measures constrained by linear PDEs [after de Philippis and Rindler]



Linear PDEs
The result

Proof of Theorem

Strategy
Absolute continuity of tangent measures
Convergence in total variation

Inner multiplying with A(ξ)λ0, one gets

∣A(ξ)λ0∣2F(χνk) = A(ξ)λ0 ⋅A(ξ)F(Vk)(ξ) +A(ξ)λ0 ⋅F(Rk)(ξ),

and then

(1 + ∣A(ξ)λ0∣2)F(χνk) = A(ξ)λ0 ⋅A(ξ)F(Vk)(ξ) +A(ξ)λ0 ⋅F(Rk)(ξ) +F(χνk).

So F(χνk) = T0(Vk) +T1((Id −∆)−1/2Rk) +T2((Id −∆)−1F(χνk)) is the sum of
three terms, involving operators defined by Fourier multipliers

m0(ξ) = (1 + ∣A(ξ)λ0∣2)−1A(ξ)λ0 ⋅A(ξ),

m1(ξ) = (1 + ∣A(ξ)λ0∣2)−1(1 + 4π2∣ξ∣2)1/2A(ξ)λ0,

m2(ξ) = (1 + ∣A(ξ)λ0∣2)−1(1 + 4π2∣ξ∣2).

(Id −∆)−1/2 is bounded and compact from L1 to some Lq , q > 1. T1 and T2 are
bounded from Lq to Lq . Therefore wk ∶= T1((Id −∆)−1/2Rk) +T2((Id −∆)−1F(χνk))
is precompact in L1.
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Since λ0 ∉ ΛA, ∣A(ξ)λ0∣/∣ξ∣ is bounded away from 0. This implies that T0 is bounded
from L1 to the Lorentz space L1,∞ (Hörmander-Mikhlin). Hence uk ∶= T0(Vk) tends
to 0 in measure.

Since uk +wk = χνk ≥ 0, u−k is dominated by ∣wk ∣. By Vitali’s convergence theorem
(strengthening of dominated convergence theorem where a.e. convergence is replaced
with convergence in measure), u−k tends to 0 in L1.

Since Vk → 0 in distributional sense, so does uk = T0(Vk). For every smooth cut-off
function φ, 0 ≤ φ ≤ 1,

∫ φ∣uk ∣ = ∫ φuk + 2∫ φu−k ≤ ∫ φuk + 2∫ u−k

tends to 0, so uk tends to 0 in L1.

Hence χνk = uk +wk is precompact in L1. Its vague limit is χν, so it subconverges in
L1 to χν. This shows that ∣µk ∣s converges to ν in total variation.

This contradicts the fact that ν is absolutely continuous, and completes the proof of
the theorem.
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