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Abstract. We prove that the family of normal currents in the
sense of Rumin in a Carnot group is compact in the flat topology.
This result is obtained through a dual compactness argument for
Rumin forms, using the pseudo-differential calculus in groups de-
veloped by Folland, Christ-Geller-G lowacki-Polin and Rumin. As
an application, imitating de Pauw-Moonens-Pfeffer, we describe
the space of charges on a Carnot group.
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1. Introduction

In an effort to develop geometric measure theory in Carnot groups,
we study an adapted notion of currents, defined by duality with Rumin
differential forms. This notion is not new, it plays a crucial role in
recent work of D. Vittone on intrinsic Lipschitz graphs in Heisenberg
groups, [12]. Our remote goal is to find an appropriate notion and
establish properties of integral currents. We are still very far from
this goal, and begin modestly with normal currents: we prove that the
family of normal currents in the sense of Rumin, with support in a
fixed compact set in a Carnot group, is compact in the flat topology.

In the Euclidean setting, flat compactness of normal currents is usu-
ally stated as a by-product of the Deformation Theorem. This theorem
([5, Theorem 4.2.9]) is designed for proving the flat compactness of in-
tegral currents. It is not available in a general Carnot group. Instead,
we argue by duality. The dual compactness argument for Rumin forms
amounts to inverting Rumin’s differentials. We rely on M. Rumin’s
observation that the Rumin complex is maximally hypoelliptic, [10],
and on the pseudo-differential calculus in groups developed by Folland,
[7] and M. Christ, D. Geller, P. G lowacki and L. Polin, [3].

As an application of our compactness theorem, imitating T. de Pauw,
L. Moonens and W. Pfeffer, [4], we describe the space of charges on a
Carnot group. Charges are linear functionals on compactly supported
currents, see a precise definition and statement below.

1.1. Rumin forms. A Carnot group is a Lie group G equipped with a
1-parameter group (δt)t>0 of automorphisms, called dilations, with the
following property: the Lie algebra g is generated at level 1, i.e. by the
1-eigenspace of the infinitesimal generator (which is a derivation of g).
This produces a grading g =

⊕s
i=1 gi, hence a grading of the exterior

algebra Λ·g∗. One can therefore define weights of covectors, and by
extension, of differential forms on G. For instance, a left-invariant
form ω has weight w if and only if δ∗tω = twω.

Example 1. Differential forms on the 3-dimensional Heisen-
berg group. There, 0-forms have weight 0, 1-forms exist in weights
1 and 2, 1-forms of weight 2 being those which vanish along the left-
invariant contact structure. Similarly, 2-forms exist in weights 2 and
3, 2-forms of weight 2 being generated by the differential of the con-
tact form, 2-forms of weight 3 being those which vanish along the left-
invariant contact structure. 3-forms have weight 4.

Rumin’s theory aims at improving de Rham’s complex on a Carnot
group to make it compatible with dilations. Ideally, by reducing it
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to exactly one weight per degree, like in abelian groups. There is an
obstruction, the grading of the cohomology of left-invariant forms. Ru-
min constructs an optimal complex, homotopy equivalent to de Rham’s
complex, with a minimal number of weights in each degree (equal to
the number of weights in the cohomology). This complex can be viewed
as a subspace of differential forms, defined by the vanishing of certain
components, equipped with a modified differential dc. dc is a differen-
tial operator whose order varies with the degree and weight of forms.
It satisfies dc ◦ dc = 0. Rumin’s complex is homotopy equivalent to de
Rham’s complex, so it can be used to compute cohomology.

Example 2. Rumin forms on the 3-dimensional Heisenberg
group. Rumin’s construction selects 0-forms of weight 0, 1-forms of
weight 1, 2-forms of weight 3 and 3-forms of weight 4. Rumin’s differ-
ential dc has order 2 in degree 1 and 1 in other degrees. On 0-forms, dc
is the restriction of the usual differential to the left-invariant contact
structure.

Heisenberg groups are examples where the procedure is fully success-
ful, with one weight in each degree. Here is a less successful (but still
optimal) example.

Example 3. Rumin forms on the 4-dimensional Engel group.
Rumin’s construction selects 0-forms of weight 0, 1-forms of weight 1,
2-forms of weights 3 and 4, 3-forms of weight 6 and 4-forms of weight 7.
Rumin’s differential dc has two components of respective orders 2 and
3 in degrees 1 and again in degree 2. It has order 1 in other degrees.

Rumin’s construction is not fully invariant: a choice of left-invariant
Riemannian metric on the Carnot group, adapted to the eigenspaces
of the dilations, is needed. This choice also allows to normalize Haar
measure and to measure the pointwise norm of Rumin forms. Further-
more, it determines a left-invariant distance, the Carnot-Carathéodory
distance, which is homogeneous of degree 1 under dilations.

For a survey of the theory, see [11]. Slightly different approaches can
be found in the following recent sources: [8], [6].

1.2. Rumin currents. A Rumin current is a continuous functional on
the space of smooth compactly supported Rumin forms. The boundary
operator ∂c is defined by duality,

〈∂cT, ω〉 = 〈T, dcω〉.

The support of T is such that T vanishes on forms with support in the
complement. The mass of a current is defined by duality with the C0
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norm on smooth compactly supported Rumin forms,

M(T ) = sup{T (ω) ; ‖ω‖C0(G) ≤ 1}.
A Rumin current T is normal if T and ∂cT have finite mass: N(T ) =
M(T ) + M(∂cT ).

The flat mass of a Rumin current T is the infimum of M(R)+M(S)
over all expressions T = S + ∂cR.

1.3. Examples. Diffuse currents. A C1 Rumin form φ defines a
current P (φ) of complementary dimension by

〈P (φ), ω〉 =

∫
φ ∧ ω.

(Recall that Rumin forms are not stable by the exterior product in
general, but for forms of complementary degree it is well defined.) Then
M(P (φ)) = ‖φ‖1, ∂cP (φ) = ±P (dcφ). Such diffuse currents P (φ) are
dense in flat norm in the space of normal Rumin currents.

Currents of integration. In the 3-dimensional Heisenberg group
H1, a smooth 2-submanifold V with boundary defines a Rumin current
TV of mass equal to its Hausdorff 3-dimensional measure. The Rumin
boundary ∂cTV differs from ∂TV : if ω is a smooth compactly supported
1-form,

〈∂cTV , ω〉 = 〈∂TV , ω −
dω

dθ
θ〉,

where θ denotes the unit vertical left-invariant form. Therefore
M(∂cTV ) < ∞ if and only if ∂V is a horizontal curve. In this case,
∂cTV = ∂TV .

More generally, in a Carnot group, a compact smooth submanifold
with boundary whose boundary is horizontal defines a current TV which
is a normal Rumin current, and ∂cTV = ∂TV . (This is, by the way, a
reasonable candidate for an integral Rumin current.)

1.4. Results.

Theorem 1 (Compactness). The space of normal Rumin currents with
bounded normal mass and support in a fixed compact subset of G is
compact in flat topology.

As an application, following T. de Pauw, L. Moonens and W. Pfeffer,
we define Rumin charges on a Carnot group G as linear functionals on
the space of compactly supported normal Rumin currents, which are
continuous on each

S(K, ν) = {Rumin currents with support in K and normal mass ≤ ν},
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equipped with the flat mass, for all compact sets K ⊂ G and ν > 0.
The following is a direct generalization of [4] to Carnot groups, the

only new ingredient needed being Theorem 1.

Theorem 2 (Representation of Rumin charges). The space of Rumin
charges is C0 + dcC

0, i.e. if φ is a continuous Rumin form on G, both
φ and dcφ define Rumin charges. Conversely, every Rumin charge is
of the form φ + dcψ, where φ and ψ are continuous Rumin forms on
G.

2. Preliminaries

2.1. Functional analysis.

Proposition 4. Let X and Y be normed vectorspaces. Let P : X → Y
be a compact operator, i.e. bounded sets are mapped to precompact sets.
Then P ∗ : Y ∗ → X∗ is compact as well.

Proof Let B denote the unit ball in Y and B∗ the unit ball in Y ∗, i.e.
the set of linear functionals y∗ on Y such that supy∈B〈y∗, y〉 ≤ 1. Every
element of B∗ is a 1-Lipschitz function on Y which sends 0 to 0. Hence
B∗ can be viewed as a subset S of the set of 1-Lipschitz functions on
the completion of P (B) which send 0 to 0. Since P (B) is a precompact
metric space, its completion (which need not coincide with its closure

in Y ) P (B) is compact. According to the Arzelà-Ascoli Theorem, S is

precompact with respect to uniform convergence on P (B). Note that,
for y∗ ∈ Y ∗,

‖y∗‖C0(P (B)) = ‖y∗‖C0(P (B)) = sup
x∈B
〈y∗, P (x)〉 = sup

x∈B
〈P ∗(y∗), x〉

= ‖P ∗(y∗)‖X∗ .
Hence P ∗(B∗) is precompact in the norm of X∗.

2.2. Rumin forms and currents. The space of smooth Rumin forms
of degree m with compact support is denoted by Dm

c (G), endowing it
with the C∞ topology yields a Fréchet space. We will be using three
different semi-norms on this space: the C0 norm ω 7→ | · |, the flat norm

ω 7→ F(ω) := max{|ω|, |dcω|}
and the “normal norm”

N(ω) := inf{max{|φ|, |ψ|} ; ω = φ+ dcψ, φ ∈ Dm
c (G), ψ ∈ Dm−1

c (G)}.
The dual space of Dm

c (G) for the Fréchet topology is the space of
Rumin currents of dimension m, Dc,m(G). The boundary of a Rumin
current T of dimension m ≥ 1 is the Rumin current of dimension
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m− 1 defined by ∂cT (ω) = T (dcω). To a current T ∈ Dc,m(G), we can
associate three “norms” (which are not always finite),

(1) The mass

M(T ) := sup{T (ω), |ω| ≤ 1}.

(2) The normal mass

N(T ) := M(T ) + M(∂T ) = sup{T (ω),N(ω) ≤ 1}.

(3) The flat mass

F(T ) := sup{T (ω),F(ω) ≤ 1} = inf{M(R) + M(S), T = S + ∂cR}.

The identity in the third definition holds provided the flat mass of T is
finite. Let us prove the identities in the second and third definition. For
the normal mass, the direction ≥ is straightforward, for the opposite
direction we can suppose that M(T ) + M(∂cT ) < +∞. In particular
there are forms φ and ψ with |φ| = |ψ| = 1 such that T (φ) and ∂T (ψ)
are arbitrarily close to M(T ) and M(∂T ) respectively. It suffices to
then take ω := φ + dcψ. For the flat mass, inequality ≤ is clear.
To prove the opposite inequality, one needs to use the Hahn-Banach
Theorem as in [5, 4.1.12].

Finally, the support of a current T is the smallest closed subset K of
G such that T (ω) = 0 whenever ω is supported in a compact subset of
the complement of K. We denote by Nc,m(G) the subspace of normal
Rumin currents of dimension m with finite normal mass and compact
support and by Fc,m(G), the closure of Nc,m(G) with respect to the
flat mass.

2.3. Continuity of embeddings. Our aim is to prove that the space
of normal Rumin currents of dimension m supported in a compact set
K ⊂ G, Nc,m,K(G), embeds compactly in Fc,m,K(G) for the flat mass
topology. In order to do this, we first prove that the following chain of
maps

(1) Nc,m,K(G) ↪→ E∗2
Θ∗

↪→ E∗1 ↪→ Fc,m(G),

is continuous where E∗2 and E∗1 are dual spaces to two Banach spaces
of differential forms such that the map Θ : E1 ↪→ E2 is compact (this
last fact ’will be proved in the following section). By Proposition 4, the
dual arrow is compact and thus the composition of the three arrows in
(1) is compact as well. Let us now define these spaces.

Let B′ be an open ball in G containing a neighbourhood of K. Let
B be a larger concentric open ball. Let Em

c (B) denote the space of
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smooth Rumin forms on B which are bounded on B and whose Rumin
differential is bounded on B. On this space, let

FB = max(| · |C0(B), |dc · |C0(B)), FK = max(| · |C0(K), |dc · |C0(K)).

The space E1 is the completion of the quotient space(
Em
c (B),FB

)
/
{
ω ∈ Em

c (B),FK(ω) = 0
}
.

To define E2, consider the flat semi-norms on Em
c (B′) defined by

NB′(ω) = inf
{

max(|φ|C0(B′), |ψ|C0(B′)) ; φ ∈ Em
c (B′), ψ ∈ Dm−1

c,B′ ,

ω = φ+ dcψ
}
.

NK(ω) = inf
{

max(|φ|C0(K), |ψ|C0(K)) ; φ ∈ Em
c (B′), ψ ∈ Dm−1

c,B′ ,

ω = φ+ dcψ
}
.

The space E2 is then the completion of the quotient(
Em
c (B′),NB′

)
/{ω ∈ Em

c (B′) : NK(ω) = 0}.
Recall that the canonical norm on a quotient of a normed space by a
closed subspace is the infimum of the norms of its representatives.

The map Θ : E1 → E2 is induced by restricting forms defined on the
larger ball B to the smaller ball B′.

Proposition 5. The spaces E1 and E2 are Banach spaces. Further-
more, the arrows

Nc,m,K(G) ↪→ E∗2 and E∗1 ↪→ Fc,m(G)

are continuous.

Proof
Since FK ≤ FB and NK ≤ NB′ , the subspaces by which we quotient

are closed, so E1 and E2 are Banach spaces.

Let us check the continuity of the first arrow. The key point is
that if T is a normal current with support in K, then T and ∂cT are
representable by integration and carried by measures supported in K,
thus

T (φ) ≤M(T )|φ|C0(K), ∂cT (φ) ≤M(∂cT )|φ|C0(K)

for all smooth forms defined in a neighborhood of K. It first implies
that T vanishes on {ω ∈ Em

c (B′) ; NK(ω) = 0}, and so defines an
element of E∗2 . Second, that when ω = φ + dcψ with φ, ψ defined on
B′,

T (ω) ≤M(T )|φ|C0(K) + M(∂cT )|ψ|C0(K)

≤ N(T ) max(|φ|C0(B′), |ψ|C0(B′)),
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which leads to ‖T‖E∗2 ≤ N(T ).

Finally, let us check the continuity of the second arrow. Smooth
compactly supported Rumin forms restrict to elements of Em

c (B), ω 7→
ω|B. Obviously,

FB(ω|B) ≤ F(ω),

so elements of E∗1 define currents of flat norm less than their E∗1 -norm.

3. Compactness of forms

The aim of this section is to prove the following result.

Theorem 3. The map Θ : E1 ↪→ E2 induced by restricting forms
defined on B to B′ is compact.

This result will follow from the construction of a partial inverse to the
Rumin differential, together with some control on its norm. We need to
introduce some results of pseudo-differential calculus on Carnot groups,
adapted to the Rumin complex.

3.1. Global inversion of the Rumin complex. Following [3] we
define an operator on the space S0 of forms with coefficients in the
Schwartz class, all of whose polynomial moments vanish. This operator
will be extended to Sobolev spaces of forms later on. Following [7] and
[9], we also consider the square root |∇H | of the scalar subLaplacian ∆H

on functions on G. For each m ∈ R, the pseudo-differential operator
|∇H |m is homogeneous of order m. We fix once and for all a left-
invariant frame, and let |∇H |m act componentwise on Rumin forms.

Proposition 6 ([9, Proposition 5.2]). There exists an operator Kc on
the space of Rumin forms in S0 such that if ω is such a form,

ω = dcKcω +Kcdcω.

Furthermore, if ω is of degree k and pure weight N , then Kcω is a
form of degree k − 1 and decomposes into forms (Kcω)` of pure weight
N−` for ` in {1, . . . ,min(δ,N)}, where δ is the largest weight difference
between a form α and its Rumin differential dcα. The homogeneous
component (Kcω)` satisfies for every m ∈ R and p ∈ (1,+∞),

(2)
∥∥|∇H |m+`(Kcω)`

∥∥
p
.
∥∥|∇H |mω

∥∥
p
.

For positive m, the seminorms ‖ |∇|m · ‖p are comparable to the
horizontal Sobolev norms W 1,p

c , which is defined as follows. For a scalar
function u on an open set U ⊂ G, the W 1,p

c norm is

|u|W 1,p
c (U) = |u|Lp(U) + |dcu|Lp(U),



NORMAL CURRENTS AND CHARGES ON CARNOT GROUPS 9

and for a form, the W 1,p
c norm is the sum of the W 1,p

c norms of its
components in the chosen left-invariant frame.

The next statement is a particular case of [7, Theorem 4.10].

Proposition 7. Given p ∈ (1,∞), for all f ∈ S0,∥∥f∥∥
W 1,p
c

.
∥∥|∇H |f

∥∥
p

+
∥∥f∥∥

p
.

Furthermore, whenever p is larger than the homogeneous dimen-
sion Q of G (Q =

∑s
i=1 i dim(gi)), the Sobolev W 1,p

c norm controls
the Hölder semi-norm of order 1 − Q/p with respect to the Carnot-
Carathéodory metric. Indeed, following [7, Theorem 5.15], we have

Proposition 8. If f is a function or a Rumin form on G,

sup
x,y∈G

|f(y)− f(x)|
‖x−1y‖1−Q/p . ‖f‖W 1,p

c
.

Let 0 < α < 1. Let U be an open subset of G. In the sequel, the
space of continuous functions (or Rumin forms) on U whose Hölder
semi-norm

‖f‖Ċαc (U) := sup
x,y∈U

|f(y)− f(x)|
‖x−1y‖α

is finite will be denoted by Ċα
c (U). The Hölder norm is ‖f‖Cαc (U) =

‖f‖Ċαc (U) + ‖f‖C0(U).

For negative m, we shall need to control the norm of |∇H |mf with
respect to that of f . We have the following bound:

Proposition 9. Given ` ∈ (0, Q) and p, q > 1 such that p−1 = q−1 −
`/Q, for every f in Lq(G),

‖|∇H |−`f‖p . ‖f‖q.

Proof By Proposition 3.17 in [7], the operator |∇|−m has the following
kernel

Rm(x) := Cm

∫ ∞
0

t(m/2)−1h(x, t)dt,

where h(x, t) is the heat kernel associated to the subLaplacian in G.
This means we can write |∇|−mω = Rm ∗ ω, with ∗ standing for the
group convolution in G (and decomposing ω in the chosen left-invariant
basis). As m < Q, by Proposition 3.17 in [7], Rm is in C∞(G\{0}) and
is a kernel of type m. By Proposition 1.11 in [7], given p, q > 1 such
that p−1 = q−1 −m/Q, for f ∈ Lq(G),

‖Rm ∗ f‖p .q ‖f‖q.



10 ANTOINE JULIA AND PIERRE PANSU

Putting these estimates together, we get

Lemma 10. Let p > Q. Let δ be the largest weight increase by the
Rumin differential. Then δ ≤ Q − 1. Let q > 1 be defined by p−1 =
q−1 − (δ/Q). Then Kc extends to a bounded operator from Lp ∩ Lq(G)

to Ċ
1−(Q/p)
c (G) ∩ Lp(G).

Proof Combining Propositions 6 and 7 yields, for a homogeneous
differential form ω ∈ S0 of weight N and for every ` ∈ {1, . . . , δ}, the
homogeneous component of weight N − ` of Kcω satisfies

‖(Kcω)`‖W 1,p
c

.
∥∥(Kcω)`

∥∥
p
+
∥∥|∇|(Kcω)`

∥∥
p
.
∥∥|∇|−`ω∥∥

p
+
∥∥|∇|1−`ω∥∥

p
,

According to Proposition 9, the right hand side is bounded by ‖ω‖q` +
‖ω‖q`−1

, where p−1 = q−1
s − (s/Q) for s = 0, . . . , δ. The smallest

exponent that arises is qδ. By density of S0 in all Lq ([9, Proposition
7.1]), Kc extends to a bounded operator from Lp ∩ Lq(G) to W 1,p

c (G).

Proposition 8 allows to replace this Sobolev space with Ċ
1−(Q/p)
c (G) ∩

Lp(G).

3.2. Localization. We borrow the following trick from [1]. The left-
invariant operator Kc is given by convolution with a function kc which
is smooth away from the origin in G. Let χ be a smooth cut-off func-
tion, with support in a small ball (its diameter should be at most the
difference between the radii of B and B′) and which is equal to 1 in a
neighborhood of the origin. Let k = χkc and k′ = (1−χ) kc, so that k
has small support and k′ is smooth on G. Let P (resp. P ′) denote the
operator of convolution with k (resp. k′), so that Kc = P + P ′. Then

1 = dcP + Pdc + S,

where S = dcP
′ + P ′dc is smoothing. Let ρ denote the operator of

restriction from B to B′. We note that ρP is well defined from Em
c (B)

to Em−1
c (B′). As a consequence, ρS = ρ− dcρP − ρPdc is well defined

and smoothing from Em
c (B) to Em

c (B′).

Lemma 11. Fix p ∈ (1,∞). If ω ∈ Em
c (B), then

‖ρPω‖
C

1−(Q/p)
c (B′)

. ‖ω‖C0(B),

‖ρPdcω‖C1−(Q/p)
c (B′)

. ‖dcω‖C0(B),

‖ρSω‖
C

1−(Q/p)
c (B′)

. ‖ω‖C0(B) + ‖dcω‖C0(B)

In particular,

‖ρPω‖
C

1−(Q/p)
c (B′)

+ ‖ρ(Pdc + S)ω‖
C

1−(Q/p)
c (B′)

. FB(ω).
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Proof Let us view Lp(B) as a subspace of Lp(G) by extending Lp

forms on B by 0. Since it has a smooth kernel, ρP ′ is bounded from

Lp(B) to any Hölder space, for instance C
k,1−(Q/p)
c (B′) for k larger than

the order of dc plus one, whence the estimate

‖ρSω‖
C

1−(Q/p)
c (B′)∩Lp(B′)

. ‖ω‖Lp(B)+‖dcω‖Lp(B) . ‖ω‖C0(B)+‖dcω‖C0(B).

Also, according to Lemma 10, ρP = ρKc − ρP ′ is bounded from an

intersection of spaces Lq(B) ⊂ Lq(G) to Ċ
1−(Q/p)
c (B′) ∩ Lp(B′) =

C
1−(Q/p)
c (B′). This intersection contains C0(B).

3.3. Proof of Theorem 3.

Proof Consider a bounded sequence ej of classes in E1. We can
pick representatives ωj, and by approximation, we can choose smooth
Rumin forms ω′j defined on B, uniformly bounded in the flat norm FB,
and such that FB(ω′j − ωj) tends to 0.

According to Lemma 11, the restrictions to the smaller ball B′ can
be written

ρ(ω′j) = ρ(Pdc + S)(ω′j) + dcρP (ω′j),

where φj := (Pdc+S)(ω′j) and ψj := ρP (ω′j) are bounded in C
1−(Q/p)
c (B′).

By Arzelà-Ascoli, up to extracting a subsequence, one can assume that
φj and ψj converge in C0(B′). Therefore the subsequence ρ(ω′j) con-
verges in the NB′ norm. So does a subsequence of the original sequence
ωj, when restricted to B′. This shows that a subsequence of Θ(ej) con-
verges in Fc,m(G).

4. Charges

The space CH of Rumin charges is one of the many possible duals to
the locally convex topological space of Rumin currents with compact
support on G. But it turns out to have a simple description.

If φ, ψ are continuous Rumin forms on G, then φ + dcψ obviously
defines a charge. Conversely, we shall show that every Rumin charge
is of this form.

Since the discussion of Rumin charges in Carnot groups exactly par-
allels that of charges in Euclidean spaces, we merely survey [4], high-
lighting where Theorem 1 is needed.

4.1. Semireflexivity. Fix a compact set K ⊂ G, letMK (resp. NK)
be the space of currents of finite mass (resp. finite N mass) with
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support in K. ThenMK is the dual of the space of continuous Rumin
forms on K, MK = C0(K)′. It follows that NK is a dual as well,

NK =MK ∩ d−1
c (MK) = (C0(K) + dcC

0(K))′.

So we are aiming at a form of reflexivity of C0 +dcC
0, which fails! The

point is the change of topology on NK , passing from the N mass to the
flat mass. The keyword is semireflexivity, [2, Chapter IV.2].

Definition 12 (Bourbaki). A linear form on a topological vectorspace
is strongly continuous if it is bounded on bounded subsets.

A locally convex topological vectorspace X is semireflexive if every
strongly continuous linear form on its topological dual X ′ arises from
an element of X.

Let X be a locally convex space, let S be a dilation stable family of
convex subsets of X. There is a topology TS on X, inducing the initial
topology on each S ∈ S, such that a linear map X → Y is continuous
if and only if all its restrictions to elements of S are continuous, [4,
Proposition 4.3].

Proposition 13 ([4, Theorem 3.16]). Let X be a locally convex space,
let S be an exhausting family of compact convex subsets of X. Then
(X, TS) is semireflexive.

If N is the space of compactly supported normal Rumin currents,
endowed with the flat topology, and S = {SK,ν} (see the definition
in Section 1.4), then Rumin charges are exactly the continuous linear
functionals on (N , TS),

CH ' (N , TS)′.

Thanks to Theorem 1, Proposition 13 applies. By semireflexivity,
every strongly continuous linear functional on the space of charges CH
arises from a normal current with compact support,

(N , TS) ' CH∗.

4.2. Proof of the representation of charges. The second ingredi-
ent is the identification of bounded subsets of C0.

Proposition 14 ([4, Lemma 6.4]). If a subset S of N is uniformly
bounded as linear functionals on C0, then all elements of S have support
in the same compact set of G.

We want to show that Θ : C0⊕C0 → CH, (φ, ψ) 7→ φ+ dcψ is onto.
We proceed by showing that its adjoint Θ∗ : N = CH∗ → (C0 ⊕C0)∗,
given by

〈Θ∗(T ), (φ, ψ)〉 = 〈T, φ+ dcψ〉 = 〈T, φ〉+ 〈∂cT, ψ〉,
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is proper. If S ⊂ N and Θ∗(S) is bounded on all bounded subsets
of C0 ⊕ C0, then, for T ∈ S, N(T ) is bounded and supp(T ) is in a
common compact set. By Theorem 1, S is flat-compact.

By [4, Proposition 6.8], this implies that the range of Θ∗ is weak∗-
closed, and hence, by the closed range theorem, that the range of Θ is
closed. This range contains the dense subspace of smooth compactly
supported Rumin forms, so Θ is onto, i.e. every charge can be written
φ+ dcψ, for φ, ψ ∈ C0.
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