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Question

(Gromov 1993). Let M be an n-dimensional subRiemannian manifold. For which
α ∈ (0, 1) does there exist locally a homeomorphism Rn → M which is Cα-Hölder
continuous ?

Definition

Let α(M) = sup{α ∈ (0, 1) | ∃ locally a homeomorphism Rn → M}.

Example

If G is a r-step Carnot group, the exponential map g = Lie(G) → G is locally
C1/r -Hölder continuous. Thus α(M) ≥ 1/r .

Proposition

Let M have Hausdorff dimension Q. Then α(M) ≤ n
Q

.
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Gromov’s Hölder homeomorphism problem
Curvature pinching

Conformal dimension
Unsuccessful attempt

Isoperimetric inequality
Horizontal submanifolds

Proposition

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then α(M) ≤ n−1
Q−1

.

Proof. Use the isoperimetric inequality for piecewise smooth domains D ⊂ M,

vol(D)Q−1/Q ≤ const.HQ−1(∂D).

It follows that the boundary of any non smooth domain Ω has Hausdorff dimension at
least Q − 1. Indeed, cover ∂Ω with balls Bj and apply (*) to Ω ∪

S
Bj . This gives a

lower bound on HQ−1(∂(
S

Bj )) ≤
P
HQ−1(∂Bj ) ≤ const.

P
diameter(Bj )

Q−1.

P. Pansu Conformal Hölder exponents
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Gromov’s Hölder homeomorphism problem
Curvature pinching

Conformal dimension
Unsuccessful attempt

Isoperimetric inequality
Horizontal submanifolds

Proposition

Let M be equiregular, of dimension n and Hausdorff dimension Q. Then α(M) ≤ n−1
Q−1

.

Proof. Use the isoperimetric inequality for piecewise smooth domains D ⊂ M,

vol(D)Q−1/Q ≤ const.HQ−1(∂D).

It follows that the boundary of any non smooth domain Ω has Hausdorff dimension at
least Q − 1. Indeed, cover ∂Ω with balls Bj and apply (*) to Ω ∪

S
Bj . This gives a

lower bound on HQ−1(∂(
S

Bj )) ≤
P
HQ−1(∂Bj ) ≤ const.

P
diameter(Bj )

Q−1.

P. Pansu Conformal Hölder exponents
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Proposition

(Gromov 1993). Let Hm denote 2m + 1-dimensional Heisenberg group. Let V ⊂ Hm

be a subset of topological dimension m + 1. Then the Hausdorff dimension of V is at
least m + 2. It follows that α(Hm) ≤ m+1

m+2
.

Proof. According to topological dimension theory (Alexandrov), there exists an
m-dimensional polyhedron P and a continuous map f : P → Hm such that every map
sufficiently C0-close to f hits V .

Gromov approximates f with piecewise horizontal maps which sweep an open set U.
This gives rise to a local projection p : U → Rm+1 such that for every ball B, the tube
p−1(p(B)) has volume ≤ const. diameter(B)m+2.

Cover V with balls Bj . The corresponding tubes Tj = p−1(p(Bj )) cover U. Then the
volume of U is less than

P
diameter(Bj )

m+2, which shows that dimHau(V ) ≥ m + 2.

Theorem

(Gromov 1993). Let M be a generic subRiemannian manifold of dimension n,
Hausdorff dimension Q, with an h-dimensional distribution. Let k ≤ h be such that
h − k ≥ (n − h)k. Then α(M) ≤ n−k

Q−k
.
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Curvature pinching

Definition

Let M be a Riemannian manifold. Let −1 ≤ δ < 0. Say M is δ-pinched if sectional
curvature ranges between −1 and δ. Define the optimal pinching δ(M) of M as the
least δ ≥ −1 such that M is biLipschitz to a δ-pinched simply connected Riemannian
manifold.

Example

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals
Hn

R, the complex numbers Hm
C , the quaternions Hm

H , and the octonions H2
O.

Real hyperbolic space has sectional curvature −1. Other rank one symmetric spaces
are − 1

4
-pinched.

Question

What is the optimal pinching of Hm
C ?
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Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff
distance is finite. The visual boundary of a negatively curved manifold is the set of
asymptoticity classes of geodesic rays.

Facts.

The visual boundary, seen from a point o, is a sphere (use polar coordinates).

It carries a visual metric do .

Different visual metrics do and do′ are equivalent.

BiLipschitz maps between negatively curved Riemannian manifolds induce
quasisymmetric maps between ideal boundaries.

1
R visual sphere

o

d (a,b)=e!R
o

b
a

distorsion(f)=sup{R/r}

R

r

f
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Example

If M is a rank one symmetric space, the visual metrics on its ideal boundary are
equivalent to subRiemannian metrics.

Proposition

Let M be a simply connected δ-pinched Riemannian manifold. Equip the ideal
boundary X of M with a visual metric. The natural homeomorphism Sn−1 → X is Cα

with α =
√
−δ, and its inverse is Lipschitz.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with
exponents ranging from

√
−δ to 1 (Rauch comparison theorem, 1950’s).

Question

Let X be a nonRiemannian subRiemannian manifold. Let α > 1/2. Does there exist
quasisymmetricly equivalent metrics on X which locally admit Cα homeomorphisms
from Euclidean space ? With Lipschitz inverses ?
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Conformal dimension of hypersurfaces

Definition

Let X be a compact metric space. The conformal dimension of X is the infimum of
Hausdorff dimensions of metric spaces quasisymmetricly equivalent to X .

Proposition

Assume (X , d) has topological dimension n and conformal dimension Q > n. Pick a
quasisymmetricly equivalent metric d ′ on X. If α > n

Q
, there are no local Cα

homeomorphisms Rn → (X , d ′).

Proof. Indeed, Hausdorff dimension of d ′ is ≥ Q.

Example

Carnot groups have conformal dimension equal to their Hausdorff dimension.
Heisenberg group Hm has conformal dimension 2m + 2. Even up to a quasisymmetric
change of metric, no Cα homeomorphisms from R2m+1 if α > 2m+1

2m+2
.

Note: no restriction on inverse mapping.
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Gromov’s Hölder homeomorphism problem
Curvature pinching

Conformal dimension
Unsuccessful attempt

Conformal dimension of hypersurfaces

Definition

Let X be a compact metric space. The conformal dimension of X is the infimum of
Hausdorff dimensions of metric spaces quasisymmetricly equivalent to X .

Proposition

Assume (X , d) has topological dimension n and conformal dimension Q > n. Pick a
quasisymmetricly equivalent metric d ′ on X. If α > n

Q
, there are no local Cα

homeomorphisms Rn → (X , d ′).

Proof. Indeed, Hausdorff dimension of d ′ is ≥ Q.

Example

Carnot groups have conformal dimension equal to their Hausdorff dimension.
Heisenberg group Hm has conformal dimension 2m + 2. Even up to a quasisymmetric
change of metric, no Cα homeomorphisms from R2m+1 if α > 2m+1

2m+2
.

Note: no restriction on inverse mapping.

P. Pansu Conformal Hölder exponents
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Conformal dimension of hypersurfaces

Aim: For subRiemannian manifolds, improve n
Q

into n−1
Q−1

.

Strategy: Show that hypersurfaces must have Hausdorff dimension ≥ Q − 1 in
quasisymmetric metrics.

Remark

Vertical dilation invariant subgroups often have conformal dimension Q − 1.

Example

In H1, subgroup {y = 0} is a Rickman rug, i.e. a product (R, d)× (R, d1/2),
conformal dimension is 1 + 2 = 3.

Example

In Hm, m ≥ 2, subgroup {ym = 0} is a Carnot group isometric to Hm−1 × R.

This is not sufficient: a Hölder map might pull back all of these to fractal subsets of
Rn.
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Capacities
Conformal Hölder exponent
Advertisement

Leading intuition: Given a function u : X → R,
R
|∇u|Q is a conformal invariant. It

may be written Z
|∇u|Q =

Z
R

 Z
u−1(t)

|∇u|Q−1

!
dt.

Technique: Replace integrals with Hausdorff measures.

Notation

Given a set function φ, a subset Y ⊂ X, let

Φp;ε(Y ) = inf{
X

i

φ(Bi )
p ; Bi countable covering of Y by balls of diameters ≤ ε}.

Let

Φp(Y ) = lim
ε→0

Φp;ε(Y ).

Denote by

oscu(B) = max
B

u −min
B

u.
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Advertisement

Lemma

On a Carnot group, given two open sets A and B with disjoint closures,
capQ(A, B) := inf{OSCQ

u (X ) ; u continuous, u(A) = 0, u(B) = 1} > 0.

Observation: Let Bi be a countable covering of X .

X
i

oscu(Bi )
Q =

Z
R

0@ X
{t ; B∩u−1(t) 6=∅}

oscu(Bi )
Q−1

1A dt.

Lemma

Let A ⊂ X, let u : A → [0, 1] be continuous. Then

OSCQ
u (X ) ≥

Z
R

OSCQ−1
u (u−1(t)) dt.
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u (u−1(t)) dt.
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Advertisement

Given a homeomorphism f : Rn → X , let u = v ◦ f −1, v linear. Want to relate
OSCQ−1

u (u−1(t)) to Hα(Q−1)(v−1(t)).

This suggests

Definition

Let f : X → Y be a homeomorphism. The conformal Hölder exponent CH(f ) of f is
the supremum of α’s such that for all ` > 0, there exists L > 0 such that for all x, x ′,
x ′′ in X ,

d(f (x), f (x ′′)) ≤ ` d(f (x), f (x ′)) ⇒ d(x , x ′′) ≤ L d(x , x ′)α.

Say that f is a conformally Hölder homeomorphism if CH(f ) > 0. Let CH(X , Y )
denote the supremum of α’s such that there locally exist homeomorphisms X → Y
with conformal Hölder exponents ≥ α.

Example

If f : X → Y is Cα and f −1 is Cβ , then CH(f ) ≥ αβ.

Lemma

Let f : X → Y and g : Y → Z be homeomorphisms. Assume that g is
quasisymmetric. Then CH(g ◦ f ) = CH(f ).
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Say that f is a conformally Hölder homeomorphism if CH(f ) > 0. Let CH(X , Y )
denote the supremum of α’s such that there locally exist homeomorphisms X → Y
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Lemma

Let f : X → Y be a homeomorphism, v : X → R a Lipschitz function. Let
α < CH(f ). Then

OSCQ−1
u (u−1(t)) ≤ const.Hα(Q−1)(v−1(t)).

Compare to previous inequalities:

inf{OSCQ
u (X ) ; u continuous, u(A) = 0, u(B) = 1} > 0.

OSCQ
u (X ) ≥

Z
R

OSCQ−1
u (u−1(t)) dt.

P. Pansu Conformal Hölder exponents
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Conformal Hölder exponent
Advertisement

Lemma

Let f : X → Y be a homeomorphism, v : X → R a Lipschitz function. Let
α < CH(f ). Then

OSCQ−1
u (u−1(t)) ≤ const.Hα(Q−1)(v−1(t)).

Compare to previous inequalities:

inf{OSCQ
u (X ) ; u continuous, u(A) = 0, u(B) = 1} > 0.

OSCQ
u (X ) ≥

Z
R

OSCQ−1
u (u−1(t)) dt.

P. Pansu Conformal Hölder exponents
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Metric geometry, algorithms and groups

Paris, january 10th - april 8th, 2011

Institut Henri Poincaré

Organizers: Guy Kindler (Jerusalem), James Lee (U. Washington), Claire Mathieu
(Brown), Ryan O’Donnell (Carnegie Mellon), Pierre Pansu (Paris-Sud/ENS), Nicolas
Schabanel (LIAFA-CNRS), Lior Silberman (Vancouver)

Workshops: january 17-21, march 21-25

search the web: pansu metric
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