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What is it ?

topological space → cohomology

manifold → de Rham cohomology

metric space → cohomology with decay condition

Riemannian manifold → de Rham cohomology with decay condition

Definition
Let M be a Riemannian manifold. Let p > 1. Lp-cohomology of M is the cohomology
of the complex of Lp-differential forms on M whose exterior differentials are Lp as well,

Hk,p = closed k-forms in Lp/d((k − 1)-forms in Lp),

Rk,p = closed k-forms in Lp/closure of d((k − 1)-forms in Lp),

T k,p = closure of d((k − 1)-forms in Lp)/d((k − 1)-forms in Lp).

Rk,p is called the reduced cohomology. T k,p is called the torsion.
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Example : the real hyperbolic plane H2
R

Here H0,p = 0 = H2,p for all p.

If p = 2, since the Laplacian on L2 functions is bounded below, T 1,2 = 0. Therefore

H1,2 = R1,2

= {L2 harmonic 1-forms}
= {harmonic functions h on H2

R with ∇h ∈ L2}/R .

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H1,2 = {harmonic functions h on D with ∇h ∈ L2}/R
= {Fourier series Σane

inθ with a0 = 0,Σ|n| |an|2 < +∞},

which is Sobolev space H1/2(R/2πZ) mod constants.

More generally, for p > 1, T 1,p = 0 and H1,p is equal to the Besov space

B
1/p
p,p (R/2πZ) mod constants.
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Example : the real line R

H0,p = 0.

R1,p = 0,
since every function in Lp(R) can be approximated in Lp with derivatives of compactly
supported functions. Therefore H1,p is only torsion.

T 1,p is non zero and thus infinite dimensional.
Indeed, the 1-form dt

t
(cut off near the origin) is in Lp for all p > 1 but it is not the

differential of a function in Lp .
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What are our favourite spaces ?

I In talks by J. Rohlfs, L. Saper, B. Speh, S. Zucker : manifolds with thin ends.
Lp-cohomology is related to the topology of a compactification.

I In this talk : manifolds with large ends, e.g. symmetric spaces themselves.
Lp-cohomology is related to analytic features of a compactification (compare A.
Koranyi’s lectures).



Functoriality

cohomology → continuous maps

Lp-cohomology → uniform maps.

Definition
A map f : X → Y between metric spaces is uniform if d(f (x), f (x ′)) is bounded from
above in terms of d(x , x ′) only.

Examples
The obvious map Z → R is uniform. Any homomorphism between groups (with left
invariant metrics) is uniform. The parametrization of a cusp by a punctured disk is not
uniform.

Proposition
Among contractible Riemannian manifolds admitting a cocompact isometric group
action, Lp-cohomology is natural under uniform maps.
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Lp-cohomology of discrete groups

Lp-cohomology can be discretized.

It makes sense for discrete groups, and cannot see
any difference between a cocompact lattice in a semi-simple Lie group G , the Lie
group G itself or the Riemannian symmetric space G/K .

In conclusion,

I Lp-cohomology is a tool to investigate discrete groups.

I It shares nearly all properties of usual cohomology.

I Nevertheless, it is not easy to calculate it.

I In the case of cocompact lattices in Lie groups, it can probably be computed by
analytic means.

In this talk, we explain 3 applications of Lp-cohomology to negatively curved
Riemannian manifolds and groups.

1. Hopf’s conjecture about Euler characteristic

2. Cannon conjecture on groups with boundary a 2-sphere

3. Curvature pinching
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Hopf conjecture

Remark

I Compact 2-dimensional negatively curved manifolds have negative Euler
characteristic.

I 2m-dimensional compact hyperbolic manifolds have Euler characteristic
proportional to (−1)m.

I This generalizes to all compact negatively curved locally symmetric spaces
(Gauss-Bonnet).

Conjecture
(H. Hopf). If M is 2m-dimensional compact negatively curved, then (−1)mχ(M) > 0.

Theorem
(M. Gromov, 1991). This is true provided M also admits a Kähler metric.
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Role of the Kähler condition

Definition
A Riemannian manifold M is Kähler if it admits a parallel complex structure.

Then M is a complex manifold. Every complex submanifold in complex projective
space admits a Kähler metric.

Proposition
(Part of hard Lefschetz theorem). Let M2m be a compact Kähler manifold with Kähler
form ω. Then wedging with ω maps harmonic forms to harmonic forms, and this
induces an injection in cohomology Hk (M,R) → Hk+2(M,R) for all k < m.

Corollary
Let M2m be a complete Kähler manifold with Kähler form ω. Then wedging with ω
maps L2-harmonic forms to L2-harmonic forms, and this induces an injection in
reduced L2-cohomology Rk,2(M) → Rk+2(M) for all k < m.



Role of the Kähler condition

Definition
A Riemannian manifold M is Kähler if it admits a parallel complex structure.

Then M is a complex manifold. Every complex submanifold in complex projective
space admits a Kähler metric.

Proposition
(Part of hard Lefschetz theorem). Let M2m be a compact Kähler manifold with Kähler
form ω. Then wedging with ω maps harmonic forms to harmonic forms, and this
induces an injection in cohomology Hk (M,R) → Hk+2(M,R) for all k < m.

Corollary
Let M2m be a complete Kähler manifold with Kähler form ω. Then wedging with ω
maps L2-harmonic forms to L2-harmonic forms, and this induces an injection in
reduced L2-cohomology Rk,2(M) → Rk+2(M) for all k < m.



Role of the Kähler condition

Definition
A Riemannian manifold M is Kähler if it admits a parallel complex structure.

Then M is a complex manifold. Every complex submanifold in complex projective
space admits a Kähler metric.

Proposition
(Part of hard Lefschetz theorem). Let M2m be a compact Kähler manifold with Kähler
form ω. Then wedging with ω maps harmonic forms to harmonic forms,

and this
induces an injection in cohomology Hk (M,R) → Hk+2(M,R) for all k < m.

Corollary
Let M2m be a complete Kähler manifold with Kähler form ω. Then wedging with ω
maps L2-harmonic forms to L2-harmonic forms, and this induces an injection in
reduced L2-cohomology Rk,2(M) → Rk+2(M) for all k < m.



Role of the Kähler condition

Definition
A Riemannian manifold M is Kähler if it admits a parallel complex structure.

Then M is a complex manifold. Every complex submanifold in complex projective
space admits a Kähler metric.

Proposition
(Part of hard Lefschetz theorem). Let M2m be a compact Kähler manifold with Kähler
form ω. Then wedging with ω maps harmonic forms to harmonic forms, and this
induces an injection in cohomology Hk (M,R) → Hk+2(M,R) for all k < m.

Corollary
Let M2m be a complete Kähler manifold with Kähler form ω. Then wedging with ω
maps L2-harmonic forms to L2-harmonic forms, and this induces an injection in
reduced L2-cohomology Rk,2(M) → Rk+2(M) for all k < m.



Role of the Kähler condition

Definition
A Riemannian manifold M is Kähler if it admits a parallel complex structure.

Then M is a complex manifold. Every complex submanifold in complex projective
space admits a Kähler metric.

Proposition
(Part of hard Lefschetz theorem). Let M2m be a compact Kähler manifold with Kähler
form ω. Then wedging with ω maps harmonic forms to harmonic forms, and this
induces an injection in cohomology Hk (M,R) → Hk+2(M,R) for all k < m.

Corollary
Let M2m be a complete Kähler manifold with Kähler form ω. Then wedging with ω
maps L2-harmonic forms to L2-harmonic forms, and this induces an injection in
reduced L2-cohomology Rk,2(M) → Rk+2(M) for all k < m.



Role of negative curvature

Proposition
(M. Gromov). Let M̃ be a complete simply connected negatively curved Riemannian
manifold. Let k ≥ 2.

I (Coning of cycles). Every k − 1-cycle z spans a k-chain c with
vol(c) ≤ const. vol(z).

I (Coning of forms). Every closed bounded differential k-form α on M̃ is the
differential of a bounded (k − 1)-form β with ‖ β ‖L∞ ≤ const. ‖ α ‖L∞ .

Corollary
Assume M̃2m covers both a compact Kähler manifold and a compact negatively curved
Riemannian manifold. Then Rk,2(M̃) = 0 for all k 6= m. Furthermore, T∗,2(M̃) = 0.

Proof. Lift Kähler form to universal cover M̃. Write ω = db with b bounded. Let
k < m. For α a closed k-form in L2,

ω ∧ α = d(b ∧ α) and b ∧ α ∈ L2,

thus ω ∧ α = 0 in Rk+2,2(M̃). If α is harmonic, conclude that α = 0 in Rk,2(M̃).
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Corollary
Assume M̃2m covers both a compact Kähler manifold and a compact negatively curved
Riemannian manifold. Then Rk,2(M̃) = 0 for all k 6= m. Furthermore, T∗,2(M̃) = 0.

Proof. Lift Kähler form to universal cover M̃. Write ω = db with b bounded. Let
k < m. For α a closed k-form in L2,

ω ∧ α = d(b ∧ α) and b ∧ α ∈ L2,

thus ω ∧ α = 0 in Rk+2,2(M̃). If α is harmonic, conclude that α = 0 in Rk,2(M̃).
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L2-Betti numbers

Let M̃ cover a compact manifold M. If nonzero, Rk,2(M̃) is infinite dimensional.

Nevertheless, M. Atiyah defined a von Neumann dimension

bk,2(M) = dimvNRk,2(M̃),

called the k-th L2-Betti number of M.

Examples
(W. Lück). If M admits a tower of finite degree dj normal coverings Mj such thatT

j π1(Mj ) = {1}, then

bk,2(M) = lim
j→∞

bk (Mj ,R)

dj
.

Proposition
Let M̃ cover a compact manifold M. Then

χ(M) =
X

k

(−1)kbk,2(M).
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Index theorem

Proposition
(Relative index theorem, M. Gromov-B. Lawson). Let M̃ be a simply connected
nonpositively curved Riemannian manifold. Then there exists k such that
Hk,2(M̃) 6= 0.

Proof of Gromov’s theorem. Assume M is compact and admits both a negatively
curved metric and a Kähler metric. Then all bk,2(M) vanish except bm,2(M), which is
nonzero, thus (−1)mχ(M) = bm,2(M) > 0.

In conclusion, we have used

I Lefschetz mechanism, L2-Betti numbers.

I Vanishing of L∞-cohomology.

I Cup-product Hk,2 ⊗ H2,∞ → Hk+2,∞.
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Outline

1. Hopf’s conjecture about Euler characteristic

2. Cannon conjecture on groups with boundary a 2-sphere

3. Curvature pinching



Cannon conjecture

Remark
In negatively curved manifolds, triangles are thin.

Definition
(M. Gromov 1986). Say a finitely generated group is hyperbolic if its triangles are
thin. A hyperbolic group has a functorial ideal boundary.

Examples

I A free group is hyperbolic, its ideal boundary is totally disconnected.

I The fundamental group of a compact negatively curved n-manifold is hyperbolic,
its ideal boundary is an n − 1-sphere.

Conjecture
(J. Cannon). Let Γ be a hyperbolic group whose ideal boundary is a 2-sphere. Then Γ
is virtually a cocompact lattice in PSL(2,C).
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Conformal dimension

Remark
The ideal boundary of a hyperbolic group carries a natural conformal structure, but no
canonical metric.

Definition
Define the conformal dimension of a hyperbolic group as the least Hausdorff
dimension of a metric in the natural conformal structure.

Strategy (B. Kleiner). Prove that this infimum is achieved. Then prove that dimension
minimizing metrics are Riemannian if boundary is 2-dimensional. Then apply a result
of D. Sullivan (1978): every uniformly quasiconformal group of the standard 2-sphere
is conjugate to a subgroup of PSL(2,C).

Theorem
(S. Keith-T. Laakso, M. Bonk-B. Kleiner 2005). Let Γ be a hyperbolic group whose
ideal boundary is a 2-sphere. If conformal dimension is achieved, then Γ is virtually a
cocompact lattice in PSL(2,C).
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Lp-dimension

Remark
For hyperbolic groups, H1,p is nonzero for p large, but zero for p small.

For instance,
H1,p(SO(n, 1)) = 0 ⇔ p ≤ n − 1.

Definition
Define the Lp-dimension of a group as the least p > 1 such that its H1,p is nonzero.

Theorem
(Same people + M. Bourdon-H. Pajot 2003). Let Γ be a hyperbolic group. Then
Lp-dimension is less than or equal to conformal dimension. If conformal dimension is
achieved, then Lp-dimension and conformal dimension coincide.

Examples
(M. Bourdon-H. Pajot). There exist hyperbolic groups for which conformal dimension
> 2 ≥ Lp-dimension. For such groups, conformal dimension cannot be achieved.

In conclusion, we have used

I Mayer-Vietoris and L2-Betti numbers.

I Expression of H1,p as a function space on the ideal boundary.
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Curvature pinching

Remark
Rank one symmetric spaces are hyperbolic spaces over the reals Hn

R, the complex

numbers Hm
C , the quaternions Hm

H , and the octonions H2
O.

Real hyperbolic space has sectional curvature −1. Other rank one symmetric spaces
are − 1

4
-pinched, i.e. their sectional curvature ranges between −1 and − 1

4
.

Definition
Define the optimal pinching δ(G) of a discrete (or Lie) group G as the least δ > −1
such that G is bi-uniformly equivalent to a δ-pinched Riemannian manifold.

Conjecture
The optimal pinching of SU(m, 1), Sp(m, 1) (m ≥ 2) and F−20

4 is − 1
4
.
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Lp-cohomology and pinching

Theorem
If Mn is simply connected and δ-pinched for some δ ∈ [−1, 0), then

p < 1 +
n − k

k − 1

√
−δ ⇒ T k,p(M) = 0.

This is sharp. For instance, consider the semidirect product G = R3 oα R where
α = diag(1, 1, 2).

I It admits a − 1
4
-pinched left-invariant Riemannian metric, therefore δ(G) ≤ − 1

4
.

I It has T 2,p(G) 6= 0 for 2 < p ≤ 4. This implies that δ(G) = − 1
4
.

Remark
Complex hyperbolic plane H2

C is isometric to G ′ = Heis3 oα R where α = diag(1, 1, 2)
and Heis denotes the Heisenberg group. Therefore it is very close to G.

Theorem
T 2,p(H2

C) = 0 for 2 < p < 4.
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Proofs of vanishing theorems

Proof of torsion comparison theorem
Use the gradient vectorfield ξ of a Busemann function and its flow φt , whose
derivative is controlled by sectional curvature. For α a closed k-form in Lp ,

φ∗t α = α+ d

„Z t

0
φ∗s ιξα ds

«
has a limit as t → +∞ under the assumptions of the theorem. This boundary value
map injects Hk,p into a function space of closed forms on the ideal boundary, showing
that Hk,p is Hausdorff.

Proof of torsion vanishing for H2
C

For p /∈ {4/3, 2, 4}, differential forms α on H2
C split into components α+ and α+

which are contracted (resp. expanded) by φt . Then

Bt : α 7→
Z t

0
φ∗s ιξα+ ds −

Z 0

−t
φ∗s ιξα− ds

converges as t → +∞ to a bounded operator B on Lp . P = 1− dB − Bd retracts the
Lp de Rham complex onto a complex of differential forms on Heis3 with missing
components and weakly regular coefficients. If 2 < p < 4, this complex is nonzero in
degrees 1 and 2, but it is so small that its cohomology can be shown to be Hausdorff.
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Non-vanishing of torsion

Use Poincaré duality. Let p′ = p/p − 1 denote the conjugate exponent. In order to
prove that a closed k-form α is nonzero in cohomology, it suffices to construct a
sequence ψj of (n− k)-forms such that ‖ dψj ‖Lp′ tends to zero but

R
α∧ψj does not

tend to zero.

In conclusion, we have used

I Poincaré duality.

I A deformation retraction of space onto a subspace, with controlled effect on the
Lp-norms of forms. For certain ranges of p, this provides a boundary value.

Conjecture

I For rank 1 symmetric spaces, T k,p = 0 except for at most 1 value of p in each
degree.

I For higher rank symmetric spaces, Hk,p = 0 for k < rank, T k,p = 0 for k = rank.

I For k = rank, Rk,p 6= 0 for p large, and Rk,p is a function space on the maximal
boundary.

I For each p > 1, there exists k such that Hk,p 6= 0.
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I For higher rank symmetric spaces, Hk,p = 0 for k < rank, T k,p = 0 for k = rank.

I For k = rank, Rk,p 6= 0 for p large, and Rk,p is a function space on the maximal
boundary.

I For each p > 1, there exists k such that Hk,p 6= 0.
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2

degree 0 : 

 
exponent  p = 1             4/3             2             4

degree 0 : 

degree 1 : 

degree 2 : 

degree 3 : 

degree 4 : 

non vanishing reduced cohomology
non vanishing torsion
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Lp-cohomology of G

1

degree 0 : 

 
exponent  p = 1             4/3             2             4

degree 0 : 

degree 1 : 

degree 2 : 

degree 3 : 

degree 4 : 

non vanishing reduced cohomology
non vanishing torsion
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