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Definition
Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HP = closed k-forms in LP/d((k — 1)-forms in LP),
RKP = closed k-forms in LP/closure of d((k — 1)-forms in LP),
TKkP = closure of d((k — 1)-forms in LP)/d((k — 1)-forms in LP).

RkP s called the reduced cohomology. T*P is called the torsion.
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Example : the real hyperbolic plane Hﬁ

Here HOP = 0 = H?P for all p.
If p =2, since the Laplacian on L? functions is bounded below, T12 = 0. Therefore

H12 — Rl2
= {L? harmonic 1-forms}
= harmonic functions h on H2 with Vh € [?}/R.
R

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

HY2 = {harmonic functions h on D with Vh € L?}/R
{Fourier series Ya,e™ with ag = 0, ¥|n| |as|> < +o0},

which is Sobolev space H'/2(R/27Z) mod constants.

More generally, for p > 1, T} = 0 and H'? is equal to the Besov space
B;’/pp(]R/ZwZ) mod constants.
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Example : the real line R

HOP = 0.

RLpP = ,
since every function in LP(R) can be approximated in LP with derivatives of compactly
supported functions. Therefore H1:P is only torsion.

TP is non zero and thus infinite dimensional.
Indeed, the 1-form % (cut off near the origin) is in LP for all p > 1 but it is not the
differential of a function in LP.



What are our favourite spaces ?

> In talks by J. Rohlfs, L. Saper, B. Speh, S. Zucker : manifolds with thin ends.
LP-cohomology is related to the topology of a compactification.

> In this talk : manifolds with large ends, e.g. symmetric spaces themselves.
LP-cohomology is related to analytic features of a compactification (compare A.
Koranyi's lectures).
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LP-cohomology —  uniform maps.

Definition
A map f : X — Y between metric spaces is uniform if d(f(x), f(x")) is bounded from
above in terms of d(x,x") only.

Examples

The obvious map Z — R is uniform. Any homomorphism between groups (with left
invariant metrics) is uniform. The parametrization of a cusp by a punctured disk is not
uniform.

Proposition
Among contractible Riemannian manifolds admitting a cocompact isometric group
action, LP-cohomology is natural under uniform maps.
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In conclusion,
> LP-cohomology is a tool to investigate discrete groups.
> It shares nearly all properties of usual cohomology.
> Nevertheless, it is not easy to calculate it.

> In the case of cocompact lattices in Lie groups, it can probably be computed by
analytic means.

In this talk, we explain 3 applications of LP-cohomology to negatively curved
Riemannian manifolds and groups.

1. Hopf's conjecture about Euler characteristic
2. Cannon conjecture on groups with boundary a 2-sphere
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Hopf conjecture

Remark
» Compact 2-dimensional negatively curved manifolds have negative Euler
characteristic.
> 2m-dimensional compact hyperbolic manifolds have Euler characteristic
proportional to (—1)™.
> This generalizes to all compact negatively curved locally symmetric spaces
(Gauss-Bonnet).

Conjecture
(H. Hopf). If M is 2m-dimensional compact negatively curved, then (—1)™x(M) > 0.

Theorem
(M. Gromov, 1991). This is true provided M also admits a Kahler metric.
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Definition

A Riemannian manifold M is Kahler if it admits a parallel complex structure.
Then M is a complex manifold. Every complex submanifold in complex projective
space admits a Kahler metric.

Proposition

(Part of hard Lefschetz theorem). Let M?™ be a compact Kihler manifold with Kahler
form w. Then wedging with w maps harmonic forms to harmonic forms, and this
induces an injection in cohomology H¥(M,R) — H**2(M,R) for all k < m.

Corollary

Let M2™ be a complete Kihler manifold with Kahler form w. Then wedging with w
maps L2-harmonic forms to L2-harmonic forms, and this induces an injection in
reduced L?-cohomology R*?(M) — R¥*2(M) for all k < m.
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Proposition

(M. Gromov). Let M be a complete simply connected negatively curved Riemannian
manifold. Let k > 2.

> (Coning of cycles). Every k — 1-cycle z spans a k-chain c with
vol(c) < const. vol(z).

» (Coning of forms). Every closed bounded differential k-form o on M is the
differential of a bounded (k — 1)-form 3 with || 3 ||;c0c < const. || & ||;oo-

Corollary

Assume M2™ covers both a compact Kahler manifold and a compact negatively curved
Riemannian manifold. Then R¥2(M) = 0 for all k # m. Furthermore, T*2(M) = 0.

Proof. Lift Kihler form to universal cover M. Write w = db with b bounded. Let
k < m. For o a closed k-form in L2,

wAa=dbAa) and bAae€ l?

thus w A a = 0 in RKt22({1). If « is harmonic, conclude that a = 0 in RK2(M).
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Let M cover a compact manifold M. If nonzero, Rk’2(I\N/I) is infinite dimensional.
Nevertheless, M. Atiyah defined a von Neumann dimension

b2 (M) = dim,yR*2(M),
called the k-th L2-Betti number of M.

Examples
(W. Liick). If M admits a tower of finite degree d; normal coverings M; such that

N; m(M;) = {1}, then
b*(M;,R)

bR 2(M) = i
(M) = lim 4

J—0oo

Proposition
Let M cover a compact manifold M. Then

X(M) =3 (=1)*b*(M).
k
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Index theorem

Proposition
(Relative index theorem, M. Gromov-B. Lawson). Let M be a simply connected

nonpositively curved Riemannian manifold. Then there exists k such that
Hk2(M) # 0.

Proof of Gromov's theorem. Assume M is compact and admits both a negatively
curved metric and a Kahler metric. Then all b¥2(M) vanish except b™2(M), which is
nonzero, thus (—1)"x(M) = b™2(M) > 0.

In conclusion, we have used
» Lefschetz mechanism, L2-Betti numbers.
> Vanishing of L°°-cohomology.
» Cup-product H¥2 @ H2o° — Hk+2,00
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Cannon conjecture

Remark
In negatively curved manifolds, triangles are thin.

Definition
(M. Gromov 1986). Say a finitely generated group is hyperbolic if its triangles are
thin. A hyperbolic group has a functorial ideal boundary.

Examples

> A free group is hyperbolic, its ideal boundary is totally disconnected.

» The fundamental group of a compact negatively curved n-manifold is hyperbolic,
its ideal boundary is an n — 1-sphere.

Conjecture
(J. Cannon). Let T be a hyperbolic group whose ideal boundary is a 2-sphere. Then I’
is virtually a cocompact lattice in PSL(2,C).
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Conformal dimension

Remark
The ideal boundary of a hyperbolic group carries a natural conformal structure, but no
canonical metric.

Definition
Define the conformal dimension of a hyperbolic group as the least Hausdorff
dimension of a metric in the natural conformal structure.

Strategy (B. Kleiner). Prove that this infimum is achieved. Then prove that dimension
minimizing metrics are Riemannian if boundary is 2-dimensional. Then apply a result

of D. Sullivan (1978): every uniformly quasiconformal group of the standard 2-sphere
is conjugate to a subgroup of PSL(2,C).

Theorem

(S. Keith-T. Laakso, M. Bonk-B. Kleiner 2005). Let I' be a hyperbolic group whose
ideal boundary is a 2-sphere. If conformal dimension is achieved, then I is virtually a
cocompact lattice in PSL(2,C).
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LP-dimension

Remark
For hyperbolic groups, H"P is nonzero for p large, but zero for p small. For instance,
HYP(S0(n,1)) =0 p<n-—1.

Definition
Define the LP-dimension of a group as the least p > 1 such that its HY'P is nonzero.

Theorem

(Same people + M. Bourdon-H. Pajot 2003). Let T be a hyperbolic group. Then
LP-dimension is less than or equal to conformal dimension. If conformal dimension is
achieved, then LP-dimension and conformal dimension coincide.

Examples

(M. Bourdon-H. Pajot). There exist hyperbolic groups for which conformal dimension
> 2 > LP-dimension. For such groups, conformal dimension cannot be achieved.

In conclusion, we have used
> Mayer-Vietoris and L2-Betti numbers.

» Expression of H1'P as a function space on the ideal boundary.
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Remark

Rank one symmetric spaces are hyperbolic spaces over the reals H}, the complex
numbers H{', the quaternions Hff, and the octonions Hé.

Real hyperbolic space has sectional curvature —1. Other rank one symmetric spaces
are —%—pinched, i.e. their sectional curvature ranges between —1 and —%.

Definition
Define the optimal pinching §(G) of a discrete (or Lie) group G as the least § > —1
such that G is bi-uniformly equivalent to a §-pinched Riemannian manifold.

Conjecture

The optimal pinching of SU(m, 1), Sp(m,1) (m >2) and F; *° is — 1.
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Theorem
If M™ is simply connected and §-pinched for some § € [—1,0), then

)
p<1+ h\/—é =  TkP(M) =0.

This is sharp. For instance, consider the semidirect product G = R3 x4 R where
a = diag(1,1,2).
> It admits a f%-pinched left-invariant Riemannian metric, therefore §(G) < f%.

> It has T2P(G) # 0 for 2 < p < 4. This implies that §(G) = —%.
Remark

Complex hyperbolic plane H2 is isometric to G' = Heis® x R where o = diag(1,1,2)
and Heis denotes the Heisenberg group. Therefore it is very close to G.

Theorem
T2P(H2) =0 for2 < p < 4.
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Proof of torsion comparison theorem
Use the gradient vectorfield £ of a Busemann function and its flow ¢:, whose
derivative is controlled by sectional curvature. For « a closed k-form in LP,

t
prfa=a+d (/ ¢:L§ads)
0

has a limit as t — 400 under the assumptions of the theorem. This boundary value
map injects H%P into a function space of closed forms on the ideal boundary, showing
that HP is Hausdorff.



Proofs of vanishing theorems

Proof of torsion comparison theorem
Use the gradient vectorfield £ of a Busemann function and its flow ¢:, whose
derivative is controlled by sectional curvature. For « a closed k-form in LP,

t
prfa=a+d (/ ¢:L§Otd5)
0

has a limit as t — 400 under the assumptions of the theorem. This boundary value
map injects H%P into a function space of closed forms on the ideal boundary, showing
that HP is Hausdorff.

Proof of torsion vanishing for Hé
For p ¢ {4/3,2,4}, differential forms o on H2 split into components a4 and a4
which are contracted (resp. expanded) by ¢:. Then

t 0
B: :a+— / ¢steay ds — st ds
0 —t

converges as t — +o0o to a bounded operator B on LP. P =1 — dB — Bd retracts the
LP de Rham complex onto a complex of differential forms on Heis3 with missing
components and weakly regular coefficients. If 2 < p < 4, this complex is nonzero in
degrees 1 and 2, but it is so small that its cohomology can be shown to be Hausdorff.



Non-vanishing of torsion

Use Poincaré duality. Let p’ = p/p — 1 denote the conjugate exponent. In order to
prove that a closed k-form « is nonzero in cohomology, it suffices to construct a
sequence 1); of (n — k)-forms such that || di; ||,,» tends to zero but [ a A 4; does not

tend to zero.
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> Poincaré duality.
> A deformation retraction of space onto a subspace, with controlled effect on the
LP-norms of forms. For certain ranges of p, this provides a boundary value.



Non-vanishing of torsion

Use Poincaré duality. Let p’ = p/p — 1 denote the conjugate exponent. In order to
prove that a closed k-form « is nonzero in cohomology, it suffices to construct a
sequence 1); of (n — k)-forms such that || di; ||,,» tends to zero but [ a A 4; does not

tend to zero.

In conclusion, we have used
» Poincaré duality.

> A deformation retraction of space onto a subspace, with controlled effect on the
LP-norms of forms. For certain ranges of p, this provides a boundary value.

Conjecture

> For rank 1 symmetric spaces, T*P = 0 except for at most 1 value of p in each
degree.

> For higher rank symmetric spaces, H*:P = 0 for k < rank, T*P =0 for k = rank.

> For k = rank, R¥:P # 0 for p large, and R*P is a function space on the maximal
boundary.

> For each p > 1, there exists k such that Hk.P # 0.



LP-cohomology of H('%

LP cohomol ogy of I-é

exponent p=1 4/3 2 4
degree0:

degree l: | | | | —
degree2: +
degree3:

degree4:

m— 0N Vanishing reduced cohomology
non vanishing torsion




LP-cohomology of G

LP cohomology of (R4,gl)

exponent p=1 4/3 2 4
degree0:
degreel: | | | | e—
degree2: 2 2

2
degree 3: — E)
degree4:

m— 0N Vanishing reduced cohomology
non vanishing torsion
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