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Gromov’s Holder homeomorphism problem 5 mn 5
Isoperimetric inequality

Horizontal submanifolds

A Carnot group is a Lie group G admitting a one-parameter group 6; of
automorphisms, generated by a derivation whose bottom eigenspace generates the Lie
algebra. G carries left invariant subRiemannian (or Carnot-Caratheodory) metrics d
such that d o §; = td.

v

(Gromov 1993). Let G be an n-dimensional Carnot group. For which o € (0,1) does
there exist locally a homeomorphism R" — G which is C*-Hélder continuous ? I.e.
compute a(G) = sup{a € (0,1) |3 locally a homeomorphism R" — G}.

If G is a r-step Carnot group, the exponential map g = Lie(G) — G is locally
CY/r-Hélder continuous. Thus a(G) > 1/r.

Proposition

Let M have Hausdorff dimension Q. Then o(M) < 5.
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Gromov’s Holder homeomorphism problem n AR n
Isoperimetric inequality

Horizontal submanifolds

Proposition

Let G be a Carnot group of dimension n and Hausdorff dimension Q. Then
a(M) < &=

Proof. Use the isoperimetric inequality for piecewise smooth domains D C M,
vol(D)Q~Y/Q < const. HO1(8D).

It follows that the boundary of any non smooth domain Q has Hausdorff dimension at
least Q — 1. Indeed, cover 9Q with balls B; and apply (*) to QU J B;. This gives a
lower bound on HO~1(8(U B;)) < " HP~1(8B;) < const. 3" diameter(B;)?~1.
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Gromov’s Holder homeomorphism problem 5 mn 5
Isoperimetric inequality

Horizontal submanifolds

Proposition

(Gromov 1993). Let H™ denote 2m + 1-dimensional Heisenberg group. Let V C H™
be a subset of topological dimension m 4+ 1. Then the Hausdorff dimension of V is at

+1
least m + 2. It follows that o(H™) < 5.

Proof. According to topological dimension theory (Alexandrov), there exists an
m-dimensional polyhedron P and a continuous map f : P — H™ such that every map
sufficiently C%close to f hits V.

Gromov approximates f with piecewise horizontal maps which sweep an open set U.
This gives rise to a local projection p : U — R™*1! such that for every ball B, the tube
p~1(p(B)) has volume < const. diameter(B)™+2,

Cover V with balls B;. The corresponding tubes T; = p~1(p(B;)) cover U. Then the
volume of U is less than 3" diameter(B;)™+2, which shows that dimp, (V) > m + 2.

(Gromov 1993). Let M be a generic subRiemannian manifold of dimension n,
Hausdorff dimension @, with an h-dimensional distribution. Let k < h be such that
h—k > (n—h)k. Then o(M) < =K.
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Visual metril
Curvature pinching Curvature v Hélder homeomorphisms
Main the

Curvature pinching

Definition

Let M be a Riemannian manifold. Let —1 < 6 < 0. Say M is d-pinched if sectional
curvature ranges between —1 and §. Define the optimal pinching §(M) of M as the
least § > —1 such that M is quasiisometric to a d-pinched simply connected
Riemannian manifold.

Example

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals
H]ﬁ, the complex numbers Hg, the quaternions H?', and the octonions Hé.

Real hyperbolic space has sectional curvature —1. Other rank one symmetric spaces
are — %-pinched.

Is it true that the optimal pinching of HY, Hf (m > 2) and Hé is —% ?
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Visual me
Curvature pinching Curvature versus Holder homeomorphisms

Main theore

Facts. Let M be a simply connected pinched Riemannian manifold.
@ The ideal boundary, seen from a point o, is a sphere.
o It carries a visual metric d, (see picture for U. Hamenstadt's definition).
o Different visual metrics d, and d, are equivalent.

@ Quasiisometric maps between negatively curved Riemannian manifolds induce
quasisymmetric maps between ideal boundaries.

visual sphere
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Curvature pinching ature sus Holder homeomorphisms

Main theore

Negatively curved symmetric spaces admit simply transitive groups of isometries of the
form R X G where G is a Carnot group and R acts by dilations d¢.

horospheres

geodesics

t/2

The eigenvalues et/?, et of §; reflect extrema of sectional curvature.

If M is a rank one symmetric space, visual metrics on its ideal boundary are equivalent
to subRiemannian metrics. If M = HZ, OM = H™~1 U {oco}.
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Visual metrics
Curvature pinching Curvature versus Holder homeomorphisms
Main theorem

Proposition

Let M be a simply connected §-pinched Riemannian manifold. Then visual metrics on
the ideal boundary of M are C“-Hélder equivalent to the round metric, with

a=+/—4.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with
exponents ranging from /—¢ to 1 (Rauch comparison theorem, 1950’s).

Let G be a nonabelian Carnot group. Do there exist quasisymmetricly equivalent
distances on G which are locally C®-Hélder equivalent to Riemannian metrics, with

a>1/27

’ Holder quasisymmetric |

pinching
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Visual metrics
Curvature pinching Curvature versus Holder homeomorphisms

Main theorem

The optimal pinching of H2 is equal to —%.

Scheme of proof

o Define, in a quasiisometry-invariant manner, families R, p > 1, of algebras of
functions on 4-dimensional negatively curved manifolds M, and, given u € Ry, a
vectorsubspace Sp(u) C Rp.

o If M is §-pinched and p < 2+ 4/—9, then for every u, Sp(u) is a subalgebra of
Rp.

o If M = H2, for all p € (4,8), there exists (locally) u € R, such that Sp(u) is not
a subalgebra of R,.

Rp can be viewed as a quasisymmetrically invariant function space on the visual
boundary of M. However, S,(u) does not seem to be definable directly in terms of the
visual boundary only.
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Examples
Royden algebra
Subalgebra t

n
g
LP-cohomology Boundary for differential forms

LP-cohomology of HZ

LP-cohomology

Definition

Let M be a Riemannian manifold. Let p > 1. LP-cohomology of M is the cohomology
of the complex of LP-differential forms on M whose exterior differentials are LP as well,

HkP = closed k-forms in LP/d((k — 1)-forms in LP),
RNP = closed k-forms in LP/closure of d((k — 1)-forms in LP),
TP = closure of d((k — 1)-forms in LP)/d((k — 1)-forms in LP).

Rk:P s called the reduced cohomology. TXP s called the torsion.

The real line R.

HOP = 0.

RL:P =0, since every function in LP(R) can be approximated in LP with derivatives of
compactly supported functions. Therefore H1:P is only torsion.

TYP is non zero and thus infinite dimensional. Indeed, the 1-form % (cut off near the

origin) is in LP for all p > 1 but it is not the differential of a function in LP.
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Examples
|

LP-cohomology a or differential forms
LP-cohomology of HZ

Example : the real hyperbolic plane H%

Here H%P = 0 = H%P for all p.

If p = 2, since the Laplacian on L? functions is bounded below, T12 = 0. Therefore
H2 — Rl2

{L? harmonic 1-forms}

{harmonic functions h on H2 with Vh € L?}/R.

Using conformal invariance, switch from hyperbolic metric to euclidean metric on the
disk D.

H2 {harmonic functions h on D with Vh € L?}/R

{Fourier series Ya,e™® with ag = 0, X|n| |as|> < +o0},

which is Sobolev space H'/2(R/27Z) mod constants.

More generally, for p > 1, T1'P = 0 and HP is equal to the Besov space

B;{PP(R/%rZ) mod constants.
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Examples
Royden algebra
Subz at

LP-cohomology or differential forms
LP-cohomology of HZ

Proposition

Let M be a simply connected negatively curved Riemannian manifold. Functions u on
M whose differential belongs to LP have boundary values us, on the visual boundary.
The cohomology class [du] € HY'P(M) vanishes if and only if uso is constant.

Indeed, since volume in polar coordinates grows exponentially, and LP(et dt) C L1(dt),
the radial derivative belongs to L1, 50 uso(0) = lim—oo u(8, t) exists a.e. If uso =0,
Sobolev inequality ||ul|p < ||dul|.p applies, and [du] = 0.

This suggests

Definition

(Bourdon-Pajot 2004). For a negatively curved manifold M, define the Royden algebra
Rp(M) as the space of L>° functions u on M such that du € LP, modulo LP N L*°
functions.

Then R,(M) identifies with an algebra of functions on the visual boundary of M. If
M is a symmetric space, Rp(M) is a (possibly anisotropic) Besov space.
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Examples
Royden algebra
Subalgebra theorem

LP-cohomology Boundary values for differential forms

LP-cohomology of HZ

Remark

LP-cohomology is quasiisometry invariant. Wedge product o, B — « A 3 induces

’ ’ . . . .
cup-product [a] — [B] : H*P x HK P — HkTk 'P/2 in a quasiisometry invariant
manner.

Definition

| \

Let M be a simply connected negatively curved manifold, let p > 2, let u € Rp(M).
Define

Sp(u) = {v € Rp(M) | [dv] — [du] =0 € H*P/>(M)}.

A

Remark: As a function space on the visual boundary, R, is a quasisymmetric
invariant. Not so clear for Sp(u).

If dim(M) = 4, M is é-pinched and p < 2 + 4\/—4, then for all u € Rp(M), Sp(u) is
a subalgebra of R(M).
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Examples

eorem
LP-cohomology Boundary values for differential forms
LP-cohomology of H2

Step 1. For q = p/2 small, closed L9
2-forms admit boundary values.

Use the radial vectorfield £ = % in
polar coordinates and its flow ¢¢, whose
derivative is controlled by sectional

curvature.

Use Poincaré’'s homotopy formula :
For a a closed 2-form in L9,

t
pfa=a+d (/ ¢:L§ads)
0

has a limit as t — +o0o under the geodesics
assumptions of the theorem.

Step 2. Boundary value determines cohomology class.

Step 3. This implies Sp(u) is a subalgebra.

Let v, v/ € Sp(u). Then [dv] — [du] vanishes if and only if its boundary value

dVoo A duse = 0 a.e. Then v/ dvee A duss + Voo dv. A duss = 0 a.e., showing that
[d(w')] — [du] =0, i.e. W € Sp(u).
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Examples

n

LP-cohomology Boundary values for differential forms
LP-cohomology of H&

Now we compute H29(H2) for 2 < g = p/2 < 4.

Step 1. Switch point of view. Use horospherical coordinates. View H(% as a product
H! x R. Prove a Kiinneth type theorem.
For g ¢ {4/3,2,4}, differential forms o
on Hé split into components a4 and
o+ which are contracted (resp.
expanded) by ¢¢. Then

horospheres
;

t 0
ht ;o — / Pareay ds—/ st ds
0 —t

converges as t — +o00 to a bounded
operator hon L9. P=1— dh— hd
retracts the L9 de Rham complex onto
a complex B of differential forms on H!
with missing components and weakly  geqdesics
regular coefficients.
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Examples
Royden algel

LP-cohomology

LP-cohomology of H&

Step 2. If2 < q < 4, this complex is nonzero in degrees 1 and 2.
B! consists of 1-forms which are multiples of the left-invariant contact form 7 on HZ.

Step 3. If 2 < q < 4, vanishing of degree 2 cohomology classes is characterized by a
differential equation.

If a € B2 is a 2-form, then o € dB if and only if « satisfies the linear differential
equation

TAQ
r
TANdT

a=d( )-

If dv A du is a solution, d(v2) A du is not a solution, unless dv is proportional to du.

Failure of the subalgebra theorem for Hé.

In coordinates (x, y, z) on H!, one can take (locally) u =y and v = x. Then

dv A du = —dT belongs to dB!, whereas d(v2) A du does not. So for 4 < p =2qg < 8,
Sp(u) is not (locally) a subalgebra of Rp(H2).

Other rank one symmetric spaces.

The comparison theorem works for all of them: in the definition of Si, replace du by a
cohomology class k of degree 1, resp. 3 resp. 7. Steps 1 and 2 of the L9 computation
in degree 2 resp. 4 resp. 8 are unchanged. It turns out that for all spaces but H2, the
differential equation of Step 3 is a consequence of da = 0, so Sk is an algebra in
these cases.
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Examples
Royden algel

LP-cohomology
LP-cohomology of H&

Questions from the audience

o Peter Haissinski: doesn’t conformal dimension provide a lower bound on
pinching 7
Answer: It does. If M is n-dimensional and §-pinched, then conformal dimension
is < (n—1)/+/=3. This yields the bound §(H2) < —9/16. Also, this gives a
partial (non sharp) answer to the Hélder+quasisymmetric problem for Heisenberg
group: if there is a map R® — H! which is the composition of a C (local)
homeomorphism and a quasisymmetric (local) homeomorphism, then o > 3/4.

@ Mario Bonk: how do cup-products behave for Rickmann's rug and the
corresponding negatively curved Riemannian homogeneous space 7
Answer: Consider the 3-dimensional rug leading to the solvable group
S =R x R3 with R acting on R3 via the diagonal matrix diag(et/2, et/2, et). It is
—%—pinched. For 2 < g < 4, any closed form in B2 is exact in a neighborhood of
a point of the ideal boundary. So the local version of S, is an algebra. However,
H?9(S) has torsion, indicating that the condition for a closed form in 132 to be
globally exact is subtle, so the global version of S, is probably not an algebra.

Nevertheless, the fact that T2:9(S) # 0 alone suffices to prove that §(S) = —%.
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