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Abstract. This paper deals with the representations of the fundamental
groups of compact surfaces with boundary into classical simple Lie groups
of Hermitian type. We relate work on the signature of the associated local
systems, due to Meyer and Atiyah, to Burger-Iozzi-Wienhard’s Toledo in-
variant. To measure the difference, we extend Atiyah-Patodi-Singer’s rho
invariant, initially defined on U(p), to discontinuous class functions, first
on U(p, q), and then on other classical groups via embeddings into U(p, q).
As an application, we obtain a Milnor-Wood type inequality which slightly
differs from, and sometimes improves upon Burger-Iozzi-Wienhard’s version.
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Introduction

0.1. Motivation. This paper grew out of an attempt to compare two ap-
proaches to flat unitary bundles over compact oriented surfaces with nonempty
boundary. Here, Hermitian forms will be mostly indefinite.

The first approach appears in the theses of G. Lusztig [38] and W. Meyer
[39, 40]. On the 1-cohomology of a flat Hermitian bundle (E ,Ω) over a surface Σ,
there is a natural Hermitian form, the intersection form. Its signature sign(E ,Ω)

can be expressed as the index of a first order differential operator, whence,
thanks to the index theorem, an expression for sign(E ,Ω) as a characteristic
number of (E ,Ω), twice the first Chern number of a specific complex line bundle
L,

sign(E ,Ω) =

∫
Σ

2c1(L).

M. Atiyah [2] extends the discussion to compact surfaces with nonempty
boundary. c1(L2) must be thought of as a relative Chern class for a line bundle
together with a trivialization σ along the boundary depending on the boundary
holonomy. He expresses σ as a discontinuous section of a central extension of
the unitary group U(p, q), arising from a 2-cocycle on U(p, q), the signature
cocycle. M. Atiyah computes the map σ on semi-simple elements of U(p, q), he
highlights but leaves open the calculation on general holonomies.
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The second approach, which goes back to W. Goldman’s thesis [24], interprets
integrals like

∫
Σ c1(L) as follows. There is a universal homogeneous complex line

bundle L on the symmetric space of the indefinite unitary group U(p, q), the
bounded complex domain DI

p,q. A flat Hermitian bundle over Σ gives rise to
a homomorphism φ : π1(Σ) → U(p, q). There exist equivariant maps from the
universal cover Σ̃ to DI

p,q and since any two are homotopic, the first Chern
class of the pulled-back bundle is thus uniquely defined. The resulting Chern
number is known as a Toledo invariant. When Σ is closed, it takes only finitely
many values, controlled by theMilnor-Wood inequality [43, 54]. Thus the Toledo
invariant is the pull-back of a certain cohomology class κ of U(p, q) viewed as a
discrete group.

The extension to surfaces with nonempty boundary is due to M. Burger,
A. Iozzi and A. Wienhard [13]. They observe that the cohomology class κ is
bounded, and that the bounded cohomology of a surface with boundary ignores
the boundary, since the fundamental groups of its components are amenable.
Thus they define the Toledo invariant T(Σ, φ) of a homomorphism φ : π1(Σ)→
U(p, q) by means of bounded cohomology classes. They express it in terms of
rotation numbers, i.e. real valued continuous functions on the universal cover
of U(p, q). Unlike his sibling for closed surfaces, this relative Toledo invariant
takes all values in an interval, defined again by an avatar of the Milnor-Wood
inequality, see inequality (0.1) below.

On a compact oriented surface with nonempty boundary, one expects that the
sum sign(E ,Ω)+2T(Σ, φ) depends on boundary holonomy. From Atiyah-Patodi-
Singer’s theory [3], one expects some eta invariant to show up. However, there
should be a second correction term, due to the fact that the bounded cohomology
Toledo class, by construction, lives in the relative cohomology H2(Σ, ∂Σ).

0.2. Main result. In the present paper, inspired by V. Koziarz and J. Maubon
[35, 36],1 we introduce the rho invariant of the boundary, a real number ρφ at-
tached to a representation φ : π1(∂Σ)→ U(p, q), which completes the expression
of signature. The notation rho is borrowed from [4], where the same invariant
is introduced in the positive definite case. Then we show that the rho invariant
of the boundary is a sum of contributions of its connected components.

Theorem 0.1. Let Σ be a compact oriented surface with nonempty boundary.
Let E be a complex vector space equipped with a (possibly indefinite) Hermitian
form Ω. Let φ : π1(Σ) → U(E,Ω), the unitary group of the Hermitian space
(E,Ω), be a homomorphism, and E be the corresponding flat vectorbundle over

1Circa 2008, both groups of authors Koziarz-Maubon and Burger-Iozzi-Wienhard convinced
themselves that their respective avatars of Toledo invariant coincide in rank one (p = 1), but
neither group cared to publish details.
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Σ. Then

sign(E ,Ω) = −2T(Σ, φ) + ρφ(∂Σ).

Furthermore,
ρφ(∂Σ) =

∑
boundary components c

ρ(φ(c)),

where ρ : U(E,Ω)→ R is a discontinuous real-valued class function.

The rho invariant, as a function on U(p, q), is the sum of two terms which
depend on an equivariant map J : R = (̃R/Z)→ DI

p,q,

ρ(L) = ι(L,J) + η(L,J),

where ι is the integral along J of an L-invariant primitive of the Kähler form
of DI

p,q, and η is the eta invariant of an elliptic operator whose index gives the
signature. ι depends continuously on L ∈ U(p, q) but η does not, it jumps when
1 arises as an eigenvalue of L.

The rho invariant ρ : U(E,Ω)→ R can be computed as follows.

Theorem 0.2. Let E be a complex vector space equipped with a (possibly indef-
inite) Hermitian form Ω. Let L ∈ U(E,Ω).

(1) (E,Ω, L) canonically splits into three summands,

(E,Ω, L) = (Ehu,Ωhu, Lhu)⊕ (Eeu,Ωeu, Leu)⊕ (Eu,Ωu, Lu),

where the hyperbolic-unipotent summand Lhu has nonunit eigenvalues,
the elliptic-unipotent summand Leu has unit eigenvalues different from 1,
and the unipotent summand has only 1 as an eigenvalue. Furthermore,

ρ(L) = ρ(Lhu) + ρ(Leu) + ρ(Lu).

(2) If L is hyperbolic-unipotent, ρ(L) = 0.
(3) If L is elliptic-unipotent, ρ(L) depends only on the semi-simple part S

of L. S can be uniquely written S = exp(2πiB) where spectrum(B) ⊂
(0, 1). Then

ρ(L) = sign(Ω)− 2 TraceΩ(B).

(Here TraceΩ(B) =
∑

j Ω(Bej , ej) for an Ω-orthonormal basis {ej} of
eigenvectors of B).

(4) If L is unipotent, E admits an orthogonal decomposition into L-invariant
subspaces Ej which are single Jordan blocks,

(E,Ω, L) =
⊕
j

(Ej ,Ωj , Lj), ρ(L) =
∑
j

ρ(Lj).

For a Jordan block L of dimension n, ρ(L) = 0 if n is odd. If n is
even, write L = exp(2πB) where B is nilpotent. Then ρ(L) is minus
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the signature of the Hermitian form on the 1-dimensional space E/BE
induced by

(u, v) 7→ Ω((iB)n−1u, v).

As a corollary, we are able to complete Atiyah’s determination of the signature
cocycle and the section σ alluded to above. It is built from the rho invariant and
Burger-Iozzi-Wienhard’s rotation numbers. The rotation number associated to
twice the Kähler form of an element L ∈ U(p, q) is an element of R/Z that
depends only on the semi-simple elliptic component of L. When L = (L+, L−)

belongs to the subgroup U(p)×U(q),

e2πiRot(L) =

(
det(L+)

det(L−)

)2

.

The map Rot : U(p, q)→ R/Z is continuous. Let p2 : U(p, q)2 → U(p, q) be the
central extension of U(p, q) defined by the signature cocycle. Then Rot lifts to a
continuous map Rot2 : U(p, q)2 → R that restricts to the identity on the kernel
of p2.

Theorem 0.3. The image of Atiyah’s section σ : U(p, q)→ U(p, q)2 is the zero
level set of the function Rot2 + ρ ◦ p2. The coboundary of this function (viewed
as a 0-cochain) is the pull-back by p2 of Meyer and Atiyah’s signature cocycle.

A concrete expression for σ is given in Theorem 5.9.

Theorem 0.3 thus provides a link between three indirectly defined objects on
unitary groups:

• Meyer and Atiyah’s integer valued signature cocycle,
• Burger-Iozzi-Wienhard’s R/Z-valued rotation numbers,
• our real valued rho invariant.

0.3. Milnor-Wood-type inequalities. The method applies simultaneously to
the groups G = SO∗(2n), Sp(2n,R) and SO0(n, 2), since they embed in unitary
groups. We refer to sections 7, 8 and 9 for the definitions of the corresponding
intersection forms and bounded cohomology Toledo invariants. We define the
rho invariant by composition G→ U(p, q)→ R.

Along the way, we obtain Milnor-Wood-type inequalities. According to [13],
for a simple Lie group G with Hermitian symmetric space X, the Milnor-Wood
inequality reads

|T(Σ, φ)| ≤ rank(X)|χ(Σ)|.(0.1)

Here, we replace the Toledo invariant with signature. The inequality follows
when we estimate the absolute value of the signature | sign(E ,Ω)| by the dimen-
sion of the vector space on which the intersection form is defined, i.e. the image
of H1(Σ, ∂Σ; E) in H1(Σ; E),

Im(H1(Σ, ∂Σ; E)→ H1(Σ; E)),
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which is generically equal to dim(E)|χ(Σ)| (a deformation argument allows to
reduce to this generic case).

Theorem 0.4. For any representation φ : π1(Σ) → G, one can define the
signature sign(E ,Ω) of the associated flat vector bundles. Then,

(i) For G = U(p, q),

sign(E ,Ω) = −2 T(Σ, φ) + ρφ(∂Σ), | sign(E ,Ω)| ≤ (p+ q)|χ(Σ)|.

(ii) For G = SO∗(2n),

sign(E ,Ω) = −4 T(Σ, φ) + ρφ(∂Σ), | sign(E ,Ω)| ≤ 2n|χ(Σ)|.

(iii) For G = Sp(2n,R),

sign(E ,Ω) = 2 T(Σ, φ) + ρφ(∂Σ), | sign(E ,Ω)| ≤ 2n|χ(Σ)|.

(iv) For G = SO0(n, 2),

sign(E ,Ω) = 0.

Note that (i) is not sharp if p 6= q. In other cases, when T and ρ have opposite
signs, our inequalities may sharpen Burger-Iozzi-Wienhard’s inequality (0.1).
For instance, one can always modify a homomorphism φ : π1(Σ) → Sp(2,R),
replacing its elliptic boundary rho invariants with their fractional parts, except
for possibly one of them, without changing the Toledo invariant. This yields

Proposition 0.5. For every homomorphism φ : π1(Σ)→ Sp(2,R),

T(Σ, φ) ≤ |χ(Σ)|+ 1−
∑

c ;φ(c) elliptic

{
ρ(φ(c))

2

}
.

where {•} := • − b•c denotes the fractional part of •.

Examples showing that Theorem 0.4 and Proposition 0.5 are sharp will be
given in Section 8.2.

0.4. Final remarks. For compact target groups such as U(n), our Milnor-
Wood-type inequality is nontrivial, but follows from the solution of the multi-
plicative Horn problem, see the Appendix, Subsection 10.2.

In the case of SO0(n, 2), the statement (iv) of Theorem 0.4 is disappointing.
We expect the Toledo invariant to be related to a topological invariant, that
would play the role played by the signature for the other families of simple
groups of Hermitian type.

The method of parabolic Higgs bundles provides an alternative approach
to flat bundles over surfaces with boundary, which possibly encompasses our
results, see [8, 20, 49].
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0.5. Organization of the paper. In Section 1, we introduce the first order
differential operator on a flat Hermitian vector bundle over the circle which
is related to the signature operator on a surface. In Section 2, we define the
signature for flat Hermitian vector bundles, and we relate it to the index of a
differential operator and express it using Atiyah-Patodi-Singer’s index theorem.
In Section 3, the first Chern class relevant to signature is related to the bounded
cohomology Toledo invariant, culminating with the proof of the first part of
Theorem 0.1. The rho invariant is defined and computed in Section 4, where the
proofs of Theorems 0.1 and 0.2 are completed. It is exploited in Section 5, where
the connection with rotation numbers is made and the proof of Theorem 0.3 is
given. In Section 6, a Milnor-Wood type inequality for signature is proven for
unitary groups. Variants for the other families of simple Lie groups of Hermitian
type are discussed in Sections 7–9, leading to the proof of Theorem 0.4. In
Section 8.2, we prove Proposition 0.5.

In the Appendix, we provide a direct calculation of the eta invariant and the
rho invariant for the group U(1, 1). This allows to double-check the calculations
of Section 4. We check that our Milnor-Wood type inequality for the simple Lie
group U(n) follows from results on the multiplicative Horn problem. For the
reader’s convenience, we include the details of a classical theorem: the classi-
fication of unipotents in unitary groups. Finally, we give a geometric proof of
the true Milnor-Wood inequality (for the Toledo invariant) for general Hermit-
ian symmetric spaces: it follows from Domic-Toledo’s evaluation of the Gromov
norm of the Kähler form.

1. Flat Hermitian vector bundles and eta invariants over a
circle

In this section, we shall consider the flat Hermitian vector bundle Eφ as-
sociated with a representation φ of the fundamental group of a circle S1 into
the group U(p, q). We shall define a first order elliptic self-adjoint differential
operator AJ, and recall the definition of eta invariant η(AJ) for the operator.

Let E = Cp+q be a complex vector space of dimension p+ q. Let

Ω = |dz1|2 + · · ·+ |dzp|2 − |dzp+1|2 − · · · − |dzp+q|2(1.1)

be a non-degenerate Hermitian form with the signature (p, q). Denote by
U(E,Ω) the space of all linear transformations on E preserving the Hermit-
ian form Ω, it is called the U(p, q)-group. For any representation

φ : π1(S1)→ U(E,Ω)

from the fundamental group of circle S1 into the U(p, q)-group U(E,Ω). Denote
L := φ(γ0), where γ0 denotes the generator of π1(S1), which is given by γ0(x) =

eix, 0 ≤ x ≤ 2π. The representation φ gives rise to a flat vector bundle

Eφ := R×φ E = (R× E)/ ∼
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over S1, where (x1, e1) ∼ (x2, e2) if x2 = x1 + 2πk, k ∈ Z and e2 = L−k(e1).
Each global section of Eφ is equivalent to a smooth map s : R → E satisfying
the φ-equivariant condition s(x+ 2π) = L−1s(x).

Let J (E,Ω)(⊂ U(E,Ω)) be the space of all linear transformations in U(E,Ω)

such that J2 = − Id and iΩ(·, J ·) is positive definite. Denote by J (Eφ,Ω) =

C∞(S1,R ×φ J (E,Ω)) the space of all φ-equivariant sections with values in
J (E,Ω). For any L ∈ U(E,Ω) which can be written as L = ±eiθ exp(2πB),
where 0 ≤ θ < 2π and B ∈ u(E,Ω), i.e. B∗Ω + ΩB = 0, we can find a canonical
element J ∈ J (Eφ,Ω) for any given J ∈ J (E,Ω). In fact, for any J ∈ J (E,Ω),
we define

J(x) = exp(−xB)J exp(xB) ∈ J (E,Ω),

which satisfies J(x+ 2π) = L−1J(x)L and thus J ∈ J (Eφ,Ω). But in general,
L cannot be written as L = ±eiθ exp(2πB) except for the group U(1, 1), hence
one needs to choose another J on Eφ.

There exists a canonical flat connection d on Eφ, which is induced from the
trivial vector bundle R × E → R. The holonomy representation of the flat
connection d is just the representation φ. Denote by A0(S1, Eφ) the space of all
smooth sections of Eφ, which can be identified with the space A0(R, E)L of all
φ-equivariant smooth maps s : R → E. There is a standard L2-metric on the
space A0(S1, Eφ) ∼= A0(R, E)L with respect to the inner product iΩ(·,J·) and
the metric dx⊗ dx on S1, i.e.

∫
S1 iΩ(·,J·)dx.

Consider the following C-linear first order differential operator

AJ := J
d

dx
,(1.2)

which acts on the space A0(R, E)L ∼= A0(S1, Eφ).

Proposition 1.1. AJ is a C-linear formally self-adjoint elliptic first order dif-
ferential operator in the space A0(S1, Eφ).

Proof. It is obvious that AJ is C-linear, first order and elliptic, so we just need
to prove AJ is formally self-adjoint. For any s1, s2 ∈ A0(S1, Eφ), one has

〈AJs1, s2〉 − 〈s1, AJs2〉

=

∫
S1

(
Ω

(
d

dx
s1, s2

)
+ Ω

(
s1,

d

dx
s2

))
dx

=

∫
S1

d (Ω(s1, s2)) = 0,

which completes the proof. �

Remark 1.2. The operator AJ has a natural extension in the Hilbert space
L2(S1, Eφ), we also denote it by AJ, see e.g. [34, Definition 7.1 in Appendix].
From Proposition 1.1, AJ is formally self-adjoint and elliptic, so AJ is self-adjoint
in the Hilbert space L2(S1, Eφ), see e.g. [34, Theorem 7.2 in Appendix].
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For every elliptic self-adjoint differential operator A, which acts on a Hermit-
ian vector bundle over a closed manifold, the operator A has a discrete spectrum
with real eigenvalues. Let λj run over the eigenvalues of A, then the eta function
of A is defined as

ηA(s) =
∑
λj 6=0

sgnλj
|λj |s

,

where s ∈ C. The eta function admits a meromorphic continuation to the whole
complex plane and is holomorphic at s = 0. The special value ηA(0) is then
called the eta invariant of the operator A, and we denote the eta invariant by

η(A) = ηA(0).(1.3)

One can refer to [3, 47] for the definition of eta invariant.
The complex vector bundle Eφ = Σ̃×φE is a Hermitian vector bundle over S1

with the Hermitian metric iΩ(·,J·), and the operator AJ is an elliptic operator
which is formally self-adjoint with respect to the inner product

∫
S1 iΩ(·,J·)dx,

then AJ has discrete spectrum consisting of real eigenvalues λ of finite multi-
plicity, and the eta invariant η(AJ) of AJ is defined by (1.3).

Example 1.3. Given a representation φ : π1(S1)→ U(1, 1), consider the oper-
ator

AJ = J
d

dx
,

where J := exp(−xB)J exp(xB), and L = ±eiθ exp(2πB) ∈ U(1, 1) denotes
the representation of the generator of π1(S1), then the eta invariant η(AJ) is
calculated in Appendix 10.1, see (10.7).

2. The signature of a flat Hermitian vector bundle

In this section, we will define the signature of a flat U(p, q)-Hermitian vector
bundle, and express it as the difference of the L2-indices of two operators d+ and
d− on a completion Σ̂ of Σ with cylindrical ends, see Subsection 2.2. Atiyah-
Patodi-Singer’s formula for the L2-index involves two boundary terms, the eta
invariant and half the dimension of the kernel of the operator induced on the
boundary, see paragraph 2.3.1. We shall show that the dimensions of the relevant
kernels for d+ and d− are equal (paragraph 2.3.3), therefore such terms do not
appear in the formula for signature in Theorem 2.13.

Let Σ be a connected oriented surface with smooth boundary ∂Σ, each com-
ponent of ∂Σ is homeomorphic to S1, ι : ∂Σ→ Σ denotes the natural inclusion.
Let (E,Ω) be a Hermitian vector space, where E = Cp+q is a complex vector
space of dimension p + q, and Ω is a non-degenerate Hermitian form (possibly
indefinite) with signature (p, q), p ≥ 0, q ≥ 0. Let φ : π1(Σ) → U(E,Ω) be a
representation from the fundamental group π1(Σ) of Σ into the U(p, q)-group
U(E,Ω). The representation φ gives rise to a flat vector bundle

E = Σ̃×φ E
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over Σ. Any element of A∗(Σ, E) can be viewed as a φ-equivariant element
in A∗(Σ̃,R) ⊗ E, where φ-equivariant means (γ−1)∗ω ⊗ φ(γ)v = ω ⊗ v for
ω ∈ A∗(Σ̃,R) and v ∈ E. There exists a canonical flat connection d on the flat
bundle E , which is defined by d(ω⊗v) := dω⊗v. One can also refer to [7, Section
1.1] for the representations, flat bundles and the canonical flat connection.

2.1. Definition of signature. Let H∗(Σ, E) (resp. H∗(Σ, ∂Σ, E)) denote the
(resp. relative) twisted singular cohomology, one can refer to [19, Chapter 5] for
its definitions. Set

Ĥ1(Σ; E) := Im(H1(Σ, ∂Σ; E)→ H1(Σ; E)).

There exists a natural quadratic form

Q : Ĥ1(Σ; E)× Ĥ1(Σ; E)→ C

Q([a], [b]) =

∫
Σ

Ω([a] ∪ [b]).

By the same argument as in [3, Page 65], the form Q is non-degenerate due
to Poincaré duality. Moreover, Q is a skew-Hermitian form, i.e. Q([a], [b]) =

−Q([b], [a]), then iQ is a Hermitian form. If Ĥ1(Σ, E) = H+ ⊕H− such that
iQ is positive definite on H+ and negative definite on H−, the signature of the
flat Hermitian vector bundle (E ,Ω) is defined as the signature of the Hermitian
form iQ. Then

sign(E ,Ω) := sign(iQ) = dimH+ − dimH−.

2.2. Relation to indices of operators. Suppose that on the collar neighbor-
hood I × ∂Σ ⊂ Σ of ∂Σ, I = [0, 1], the Riemannian metric of Σ is equal to the
product metric gΣ = du2 + g∂Σ. Let

Σ̂ = Σ ∪ ((−∞, 0]× ∂Σ)

be the complete manifold obtained from Σ by gluing the negative half-cylinder
(−∞, 0]× ∂Σ to the boundary of Σ.

−∞ 0 I

∂Σ

1

Σ

Σ̂

For any a, b ∈ ∧∗T ∗Σ, the Hodge ∗ operator is defined as

a ∧ ∗b = gΣ(a, b) Volg(2.1)

where the volume element Volg :=
√

det(gij)dx
1 ∧ dx2. One can check that

∗2a = (−1)|a|a. Denote by J (E ,Ω) the space of all smooth sections J of End(E)
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preserving Ω, such that iΩ(·,J·) is a positive definite Hermitian form and J2 =

− Id. For any J ∈ J (E ,Ω), there exists a natural inner products in A∗(Σ, E) by

(α⊗ e1, β ⊗ e2)x := gΣ(α, β) · iΩ(e1,Je2), α, β ∈ ∧∗T ∗Σ|x, e1, e2 ∈ Ex
and

〈·, ·〉 =

∫
Σ

(·, ·) Volg .

Denote by d∗ the formally adjoint operator of d with respect to 〈·, ·〉. Then

(2.2) d∗ = J ∗ d ∗ J.

Moreover, one has ∗J = J∗ and (∗J)2 = Id on the space ∧1T ∗Σ⊗E , that is, ∗J
is an involution on the space ∧1T ∗Σ⊗ E . Let

π± :=
1± ∗J

2
: ∧1T ∗Σ⊗ E → ∧±

denote the natural projections onto the ±1-eigenspaces ∧± of ∗J, and set

d± = π± ◦ d.

From Corollary 2.4, the operators d+, d− have the form

d+ = σ+(
∂

∂u
+A+

J ), d− = σ−(
∂

∂u
+A−J ),

where both σ+ : E → ∧+ and σ− : E → ∧− are bundle isomorphisms, and A+
J ,

A−J are the first order elliptic formally self-adjoint operators on the boundary
∂Σ.

For any a ∈ ∧+ and b ∈ ∧−, one has

Ω(a ∧ ∗Jb) = −Ω(a ∧ b) = −Ω(J ∗ a ∧ b) = Ω(∗a ∧ Jb) = −Ω(a ∧ ∗Jb),

from which it follows that Ω(a ∧ ∗Jb) = 0. Thus the Hermitian inner product
of a and b satisfies

(a, b)Volg = igΣ(Ω(a,Jb))Volg = iΩ(a ∧ ∗Jb) = 0,

that is, the two subspaces ∧+ and ∧− are orthogonal to each other. Hence
(d±)∗ = d∗ on ∧±. Note that [3, Proposition 4.9] works as well for the cohomol-
ogy with local coefficients, that is

Ĥ∗(Σ, E) ∼= H∗(Σ̂, E) := {φ ∈ L2(Σ̂, E) : (d+ d∗)φ = 0}.(2.3)

By identification with the above two groups, iQ is also a Hermitian quadratic
form on H1(Σ̂, E). We can extend the bundle E and the connection d to Σ̂, we
still denote it by E and d.

Proposition 2.1. The splitting

H1(Σ̂, E) = Ker(d+)∗ ∩ L2(Σ̂,∧+)⊕Ker(d−)∗ ∩ L2(Σ̂,∧−)

is such that iQ is positive definite on Ker(d+)∗∩L2(Σ̂,∧+) and negative definite
on Ker(d−)∗ ∩ L2(Σ̂,∧−), the decomposition is orthogonal with respect to iQ.
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Proof. Firstly, we show that Ker(d±)∗∩L2(Σ̂,∧±) ⊂ H1(Σ̂, E). If a ∈ Ker(d±)∗∩
L2(Σ̂,∧±), then d∗a = 0 and a ∈ L2(Σ̂,∧±). From [3, Proposition 3.11], the L2

sections in Ker(d±)∗ ∩ L2(Σ̂,∧±) are exponentially decaying as t→ −∞, so

d∗a = ∗Jd ∗ Ja = ± ∗ Jda.

Thus, d∗a = 0 implies that da = 0, which means that a is harmonic. Hence
Ker(d±)∗ ∩ L2(Σ̂,∧±) ⊂ H1(Σ̂, E). On the other hand, for any nonzero a ∈
Ker(d+)∗ ∩ L2(Σ̂,∧+) and b ∈ Ker(d−)∗ ∩ L2(Σ̂,∧−), one has

Q(a, b) =

∫
Σ̂

Ω(a ∧ b) = −
∫

Σ̂
Ω(a ∧ ∗Jb) = 0

since ∧+ and ∧− are orthogonal to each other, and

iQ(a, a) = i

∫
Σ̂

Ω(a ∧ a) = i

∫
Σ̂

Ω(a ∧ ∗Ja) > 0,

iQ(b, b) = i

∫
Σ̂

Ω(b ∧ b) = −i
∫

Σ̂
Ω(b ∧ ∗Jb) < 0.

The proof is complete. �

The L2-index of d± is well-defined and is given by

L2 Index(d±) := dim Ker(d±) ∩ L2(Σ̂, E)− dim Ker(d±)∗ ∩ L2(Σ̂,∧±).

Note that

Ker(d±) ∩ L2(Σ̂, E) = H0(Σ̂, E).(2.4)

In fact, if d−a = 0, then da = d+a, and so da = ∗Jda, which follows that
(d+)∗d+a = d∗da = 0. From [3, Proposition 3.15], the L2-solutions of d+ and
(d+)∗d+ are coincide, so da = d+a = 0. Therefore,

L2 Index(d±) = dimH0(Σ̂, E)− dim Ker(d±)∗ ∩ L2(Σ̂,∧±).

By (2.5), one can define the operators d±P by the restriction of d±. From [3,
Proposition 3.11], Ker d±P is isomorphic to the space of L2-solutions of d±ϕ =

0 on Σ̂ and Ker(d±P )∗ is isomorphic to the space of extended L2-solutions of
(d±)∗ϕ = 0 on Σ̂, where extended solution means that on (−∞, 0]× ∂Σ, ϕ can
be written as ϕ = φ+ ψ with φ ∈ Kerσ±A±J (σ±)−1 and ψ ∈ L2. The section φ
is called the limiting value of the extended solution ϕ.

We denote by h∞(∧±) the dimension of the subspace of Ker(A±J ) consisting of
limiting values of extended L2-sections a of ∧± satisfying (d±)∗a = 0. Therefore,

Proposition 2.2. The signature of (E ,Ω) is given by

sign(E ,Ω) = L2 Index(d−)− L2 Index(d+)

= Index(d−P )− Index(d+
P ) + h∞(∧−)− h∞(∧+).
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Proof. By the definition of signature, Proposition 2.1 and [3, Corollary 3.14],
one has

sign(E ,Ω) = dim Ker(d+)∗ ∩ L2(Σ̂,∧+)− dim Ker(d−)∗ ∩ L2(Σ̂,∧−)

= L2 Index(d−)− L2 Index(d+)

= Index(d−P )− Index(d+
P ) + h∞(∧−)− h∞(∧+).

The proof is complete. �

2.3. A formula for signature. In this subsection, by using Atiyah-Patodi-
Singer’s index theorem, we will give a formula for the signature of flat Hermitian
bundles.

2.3.1. The Atiyah-Patodi-Singer index theorem. Let Σ be a connected oriented
surface with smooth boundary ∂Σ. Let gΣ be a Riemannian metric on Σ such
that gΣ = du2 + g∂Σ on the collar neighborhood ∂Σ × I ⊂ Σ of ∂Σ, I = [0, 1].
The bundles E and ∧± are Hermitian vector bundles, and

d± : A0(Σ, E)→ A0(Σ,∧±)

are two first order elliptic differential operators. On ∂Σ×I, the volume element
is given by

Volg =
dx ∧ du
|dx|

.

From the definition of ∗ (2.1), one has

∗(dx⊗ e) = |dx|du⊗ e, ∗(du⊗ e) = − 1

|dx|
dx⊗ e

for any e ∈ E . Thus

∗
(
dx

|dx|
+ idu

)
= −i

(
dx

|dx|
+ idu

)
, ∗

(
dx

|dx|
− idu

)
= i

(
dx

|dx|
− idu

)
.

Let E = E+ ⊕ E− be the decomposition of E into ±i-eigenspaces of J. Then

∧+ = C
{
dx

|dx|
− idu

}
⊗ E− ⊕ C

{
dx

|dx|
+ idu

}
⊗ E+

and

∧− = C
{
dx

|dx|
− idu

}
⊗ E+ ⊕ C

{
dx

|dx|
+ idu

}
⊗ E−.

Note that
dim E+ = p, dim E− = q.

Thus ∧± ∼= E and the isomorphisms are given by

σ+ : E → ∧+, σ+(e) = − i
2

(
dx

|dx|
+ idu

)
⊗ e+ +

i

2

(
dx

|dx|
− idu

)
⊗ e−

and

σ− : E → ∧−, σ−(e) =
i

2

(
dx

|dx|
− idu

)
⊗ e+ − i

2

(
dx

|dx|
+ idu

)
⊗ e−.



14 INKANG KIM, PIERRE PANSU AND XUEYUAN WAN

The maps π± : ∧1T ∗Σ⊗ E → ∧± can be expressed as

π+

(
dx

|dx|
⊗ e
)

=
1

2

(
dx

|dx|
+ idu

)
⊗e++

1

2

(
dx

|dx|
− idu

)
⊗e− = σ+(i(e+−e−)),

π−
(
dx

|dx|
⊗ e
)

=
1

2

(
dx

|dx|
− idu

)
⊗e++

1

2

(
dx

|dx|
+ idu

)
⊗e− = σ−(−i(e+−e−)),

π+(du⊗ e) = − i
2

(
dx

|dx|
+ idu

)
⊗ e+ +

i

2

(
dx

|dx|
− idu

)
⊗ e− = σ+(e),

π−(du⊗ e) =
i

2

(
dx

|dx|
− idu

)
⊗ e+ − i

2

(
dx

|dx|
+ idu

)
⊗ e− = σ−(e).

Proposition 2.3. For any C ∈ A0(∂Σ× I,End(E)), one has

π±(d+ Cdx) = σ±
(
∂

∂u
± |dx|J

(
∂

∂x
+ C

))
.

Proof. For any local smooth section e of E , one has

σ±
(
∂

∂u
± |dx|J

(
∂

∂x
+ C

))
e

= σ±

(
∂e

∂u
± i|dx|

((
∂e

∂x

)+

−
(
∂e

∂x

)−)
± i|dx|

(
(Ce)+ − (Ce)−

))

= π±
(
∂e

∂u
du+ dx⊗ ∂e

∂x
+ dx⊗ Ce

)
= π±(d+ Cdx)e,

which completes the proof. �

As a corollary, we get

Corollary 2.4. d± = σ±( ∂
∂u +A±J ), where A±J = ±|dx|J ∂

∂x .

When restricted on ∂Σ, the metric is g∂Σ = g(x)dx ⊗ dx, and |dx| = 1√
g(x)

.

By taking an another parameter x′ =
∫ x

0

√
g(`)d`, then dx′ =

√
g(x)dx, and so

the metric g∂Σ = dx′ ⊗ dx′, the operator AJ is

AJ = J|dx| d
dx

= J
d

dx′
.

which is exactly the operator defined by (1.2).
Let P± denote the orthogonal projections of L2(∂Σ, E) onto the subspace

spanned by all eigenfunctions of A±J with eigenvalues λ > 0. Then P± are
pseudo-differential operators. Let A0(Σ, E ;P±) be the subspaces of A0(Σ, E)

consisting of all sections ϕ which satisfying the boundary conditions

P±(ϕ|∂Σ) = 0.

Denote by

d±P : A0(Σ, E ;P±)→ A0(Σ,∧±)(2.5)
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the restriction of d±. By Atiyah-Patodi-Singer’s index theorem [3, Theorem
3.10], d+

P , d
−
P are Fredholm operators and

Index(d±P ) =

∫
Σ
α±(z)dµg −

η(A±J ) + dim KerA±J
2

,(2.6)

where dµg denotes the volume form of the Riemannian metric g on Σ, and α±(z)

is the constant term in the asymptotic expansion (as t→ 0) of∑
e−tµ

′
±

∣∣∣φ′µ±(x)
∣∣∣2 −∑ e−tµ

′′
±

∣∣∣φ′′µ±(x)
∣∣∣2 ,

where µ′±, φ′µ± denote the eigenvalues and eigenfunctions of (d±)∗d± on the
double Σ ∪∂Σ Σ of Σ, and µ′′±, φ′′µ± are the corresponding objects for d±(d±)∗.

Since η(A±J ) = η(±AJ) = ±η(AJ) and

KerA±J = Ker |dx|J ∂

∂x
= Ker |dx| ∂

∂x
= Ker d|A0(∂Σ,E) = H0(∂Σ, E),(2.7)

so we obtain

Index(d−P )− Index(d+
P ) =

∫
Σ
α−(z)dµg −

∫
Σ
α+(z)dµg + η(AJ).

By Proposition 2.2, the signature of the flat Hermitian vector bundle (E ,Ω) is

sign(E ,Ω) =

∫
Σ
α−(z)dµg −

∫
Σ
α+(z)dµg

+ h∞(∧−)− h∞(∧+) + η(AJ).

(2.8)

2.3.2. The Atiyah-Singer integrands. In this subsection, we will deal with the
Atiyah-Singer integrands

∫
Σ α−(z)dµg and

∫
Σ α+(z)dµg.

Let

gΣ = g(x, y)(dx2 + dy2) =
g(z)

2
(dz ⊗ dz̄ + dz̄ ⊗ dz)

be a Riemannian metric on the surface Σ, and is a product metric on the collar
neighborhood ∂Σ×I of ∂Σ, where z = x+iy denotes the holomorphic coordinate
of Σ, and one has ∗dz = −idz and ∗dz̄ = idz̄.

Following [3], we will consider the double Σ ∪∂Σ Σ of Σ, which is a closed
surface.

0

∂Σ

11

ΣΣ

Σ ∪∂Σ Σ
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The vector bundle E and the operators d+, d− can be extended canonically on
the double Σ ∪∂Σ Σ. Let F = F+ ⊕F− be a Z2-graded vector bundle over the
double Σ ∪∂Σ Σ, where

F+ := E , F− := ∧−.
Let D : Γ(Σ ∪∂Σ Σ,F)→ Γ(Σ ∪∂Σ Σ,F) be an operator defined as follows:

D =

(
0 D− = (d−)∗

D+ = d− 0

)
: Γ(Σ ∪∂Σ Σ,F±)→ Γ(Σ ∪∂Σ Σ,F∓).(2.9)

Proposition 2.5. D is a self-adjoint Dirac operator.

Proof. Since D− = (D+)∗, so D is self-adjoint. On the other hand, one has

D2 =

(
(d−)∗d− 0

0 d−(d−)∗

)
so D2 is a generalized Laplacian. In fact, for any local section s = fe of E ,
where e is a local parallel section, i.e. de = 0. Then

(d−)∗d−s = (d−)∗
1− ∗J

2
(∂f + ∂̄f)e

=
1

2
(d−)∗

(
(∂f + ∂̄f)e− (−i∂f + i∂̄f)Je

)
,

since (d−)∗ = −2g(z)−1(∂zi ∂
∂z̄

+∂z̄i ∂
∂z

)+zeroth terms, so the second order terms

of (d−)∗d−s is −2g(z)−1 ∂2f
∂z∂z̄ e. Similar for the local sections of ∧−. Thus D is

a Dirac operator. �

By the definition of α±(z), one has∫
Σ
α−(z)dµg = lim

t→0

∫
Σ

(
tr
(
e−t(d

−)∗d−(z, z)
)
− tr

(
e−td

−(d−)∗(z, z)
))

= lim
t→0

∫
Σ

Str〈z|e−tD2 |z〉dµg,

where dµg = i
2g(z)dz ∧ dz̄ and Str denotes the supertrace, see e.g. [6, Section

1.5] for its definition.
For any J ∈ J (E ,Ω), denote by E = E+⊕E− the decomposition corresponding

to the ±i-eigenspaces of J.

Definition 2.6. A connection ∇ on E is called a peripheral connection if it
satisfies the following conditions on a collar neighborhood of ∂Σ:

(i) ∇ = d+ C(x)dx for some C = C(x) ∈ A0(∂Σ,End(E));
(ii) [∇,J] = 0;
(iii) ∇ preserves the Hermitian form Ω.

Remark 2.7. Like in the proof of Proposition 1.1, the condition (iii) is equiv-
alent to C(x) ∈ u(p, q), i.e., C(x)

>
Ω + ΩC(x) = 0, which implies that the

operator |dx|J( ∂
∂x + C(x)) is a C-linear formally self-adjoint elliptic first order

differential operator in the space A0(∂Σ, E).
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Remark 2.8. Note that E+ is a Hermitian vector bundle with a Hermitian
metric 2iΩ(·,J·) = 2Ω(·, ·). Let ∇+ be a Hermitian connection on E+ which
depends only on x on a collar neighborhood of ∂Σ. This can be done since we
can take J = J(x) near ∂Σ. Similarly, there exists such a Hermitian connection
∇− on the Hermitian vector bundle (E−,−Ω). Hence ∇ = ∇+ ⊕ ∇− defines
a connection on E = E+ ⊕ E−. One can check easily that ∇ is a peripheral
connection on E .

Let ∇ be any peripheral connection on E , when restricted to a small collar
neighborhood of ∂Σ, we assume it has the form ∇ = d + C(x)dx. Without
loss of generality, we assume that it satisfies the above conditions (i)− (iii) on
∂Σ× [0, 1). Denote ∇E+

:= ∇|E+ , ∇E− := ∇|E− , and set

∇E := ∇E+ ⊕∇E− .

Then ∇E is a connection on E , and ∇E = ∇ on ∂Σ× [0, 1).
Now we consider the operator

DF = π−∇E + (π−∇E)∗

on the superbundle F = E ⊕ ∧−. One can check that DF is also a self-adjoint
Dirac operator. Moreover, by Proposition 2.3, one has

π−∇E = π−∇ = σ−
(
∂

∂u
− J|dx|

(
∂

∂x
+ C(x)

))
on ∂Σ × [0, 1), and the operator −J|dx|( ∂

∂x + C(x)) is a formally self-adjoint
elliptic first order differential operator.

Lemma 2.9. It holds

lim
t→0

∫
Σ

Str〈z|e−tD2 |z〉dµg = lim
t→0

∫
Σ

Str〈z|e−t(DF )2 |z〉dµg.

Proof. Denote ∇s = (1− s)d+ s∇E , s ∈ [0, 1]. Then

π−∇s = (1− s)π−d+ sπ−∇E = σ−
(
∂

∂u
− J|dx| ∂

∂x
− sJ|dx|C(x)

)
.

The first order operator −J|dx| ∂∂x − sJ|dx|C(x) is formally self-adjoint and
elliptic. The adjoint operator of π−∇s is given by (π−∇s)∗ = (1 − s)(π−d)∗ +

s(π−∇E)∗, so
Ds = (1− s)D + sDF .

From [6, Corollary 2.50], one has

lim
t→0

∂

∂s

∫
Σ

Str〈z|e−tD2
s |z〉dµg = lim

t→0
−t
∫

Σ
Str

〈
z|∂D

2
s

∂s
e−tD

2
s |z
〉
dµg = 0.

Hence
lim
t→0

∫
Σ

Str〈z|e−tD2 |z〉dµg = lim
t→0

∫
Σ

Str〈z|e−t(DF )2 |z〉dµg.

�
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Now we will calculate the term limt→0

∫
Σ Str〈z|e−t(DF )2 |z〉dµg. Firstly, we

need find the Clifford connection ∇F on F such that DF = c◦∇F . The adjoint
operator (∇E)∗ is given by

(∇E)∗ = −2g(z)−1i ∂
∂z
∇E∂

∂z̄

− 2g(z)−1i ∂
∂z̄
∇E∂

∂z

.

The Dirac operator DF induces a Clifford action of T ∗Σ on F by

[DF , f ] = c(df)

for any smooth function f . Note that ∧− = ∧1,0T ∗Σ⊗ E− ⊕ ∧0,1T ∗Σ⊗ E+, so

c(df) = −2g(z)−1∂f

∂z̄
i ∂
∂z
− 2g(z)−1∂f

∂z
i ∂
∂z̄

when acting on ∧−, and

c(df) = ∂f ⊗ p− + ∂̄f ⊗ p+

when acting on E = E+ ⊕ E−. Since

F = E ⊕ ∧− = E ⊕ ∧1,0T ∗Σ⊗ E− ⊕ ∧0,1T ∗Σ⊗ E+,

there exists a natural connection on F induced from the connections on E and
T ∗Σ, we denote this connection by ∇F .

Lemma 2.10. ∇F is a Clifford connection and

DF = c(dz)∇F∂
∂z

+ c(dz̄)∇F∂
∂z̄

.

Proof. ∇F is a Clifford connection if [∇FX , a] = ∇Xa for any local section a of
Clifford bundle C(Σ∪∂Σ Σ). Let σ = c(•) · 1 : C(Σ∪∂Σ Σ)→ ∧∗T ∗Σ denote the
symbol map, which identifies C(Σ ∪∂Σ Σ) with ∧∗T ∗Σ. By a direct checking,
one has

[∇F∂
∂z

, c(dz)] = −∂z log g(z)c(dz) = ∇ ∂
∂z
c(dz), [∇F∂

∂z

, c(dz̄)] = 0 = ∇ ∂
∂z
c(dz̄),

and so

[∇F∂
∂z

, c(dz)c(dz̄)] = [∇F∂
∂z

, c(dz)]c(dz̄) = ∇ ∂
∂z
c(dz)c(dz̄) = ∇ ∂

∂z
(c(dz)c(dz̄)).

For any smooth function f , one has

[∇FX , c(f)] = ∇Xc(f).

Thus ∇F is a Clifford connection. If s ∈ Γ(Σ ∪∂Σ Σ, E), then

c(dz)∇F∂
∂z

s+ c(dz̄)∇F∂
∂z̄

s = dz ⊗∇F∂
∂z

s− + dz̄ ⊗∇F∂
∂z̄

s+

= π−∇Fs = DFs.
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If dz ⊗ s− ∈ ∧−, then

c(dz)∇F∂
∂z

(dz ⊗ s−) + c(dz̄)∇F∂
∂z̄

(dz ⊗ s−)

= −2g(z)−1i ∂
∂z
∇F∂

∂z̄

dz ⊗ s−

= −2g(z)−1∇F∂
∂z̄

s− = (∇F )∗(dz ⊗ s−) = DF (dz ⊗ s−).

Similarly, for dz̄ ⊗ s+ ∈ ∧−, one has

(c(dz)∇F∂
∂z

+ c(dz̄)∇F∂
∂z̄

)(dz̄ ⊗ s+) = DF (dz̄ ⊗ s+).

The proof is complete. �

The Clifford module F has the following decomposition

F = F+ ⊕F− = E+ ⊕ E− ⊕ E+ ⊗ ∧0,1T ∗Σ⊕ E− ⊗ ∧1,0T ∗Σ,

where F+ = E+ ⊕ E− and F− = E+ ⊗ ∧0,1T ∗Σ⊕ E− ⊗ ∧1,0T ∗Σ. Denote

S = S+ ⊕ S− = C⊕ ∧0,1T ∗Σ = ∧0,∗T ∗Σ.

Then the complex module F is isomorphic to

F ∼=W ⊗ S

where W = E+ ⊕ E− ⊗ (∧0,1T ∗Σ)∗ ∼= E+ ⊕ E− ⊗ ∧1,0T ∗Σ. Let Γ be the chi-
rality operator, which is an element in C(Σ) ⊗ C ∼= End(S), and is + Id when
acting on S+ = C, is − Id when acting on S− = ∧0,1T ∗Σ. Thus it induces an
endomorphism of F ∼= W ⊗ S by the action IdW ⊗Γ, we also denote it by Γ.
Thus

Γ = IdE+ ⊕− IdE− ⊕− IdE+⊗∧0,1T ∗Σ⊕ IdE−⊗∧1,0T ∗Σ .

The Clifford connection ∇F is given by

∇F = ∇E+ ⊕∇E− ⊕ (∇E+ ⊗ Id∧0,1T ∗Σ + IdE+ ⊗∇∧0,1T ∗Σ)

⊕ (∇E− ⊗ Id∧1,0T ∗Σ + IdE− ⊗∇∧
0,1T ∗Σ),

and the curvature is

(∇F )2 = RE
+ ⊕RE− ⊕ (RE

+ ⊗ Id∧0,1T ∗Σ +RT
1,0Σ · IdE+⊗∧1,0T ∗Σ)

⊕ (RE
− ⊗ Id∧1,0T ∗Σ−RT

1,0Σ · IdE−⊗∧1,0T ∗Σ),

where RT 1,0Σ is a two-form on Σ, and i
2πR

T 1,0Σ denotes the first Chern form of
T 1,0Σ. Denote by RF the action of the Riemannian curvature R of Σ on the
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bundle F , which is given by

RF :=
1

4

(
R
∂

∂z
,
∂

∂z̄

)
c(dz)c(dz̄) +

1

4

(
R
∂

∂z̄
,
∂

∂z

)
c(dz̄)c(dz)

=
g(z)

8
RT

1,0Σ(c(dz)c(dz̄)− c(dz̄)c(dz))

=
1

4
RT

1,0Σ(− IdE+ ⊕ IdE− ⊕ IdE+⊗∧0,1T ∗Σ⊕− IdE−⊗∧1,0T ∗Σ).

From [6, Proposition 3.43], the curvature FF/S is given by

FF/S = (∇F )2 −RF

= (RE
+

+
1

4
RT

1,0Σ IdE+)⊕ (RE
− − 1

4
RT

1,0Σ IdE−)

⊕ (RE
+ ⊗ Id∧0,1T ∗Σ +

3

4
IdE+⊗∧0,1T ∗ΣR

T 1,0Σ)

⊕ (RE
− ⊗ Id∧1,0T ∗Σ−

3

4
IdE−⊗∧1,0T ∗ΣR

T 1,0Σ).

Thus ΓFF/S is

ΓFF/S = (RE
+

+
1

4
RT

1,0Σ IdE+)⊕ (−RE− +
1

4
RT

1,0Σ IdE−)

⊕ (−RE+ ⊗ Id∧0,1T ∗Σ−
3

4
IdE+⊗∧0,1T ∗ΣR

T 1,0Σ)

⊕ (RE
− ⊗ Id∧1,0T ∗Σ−

3

4
IdE−⊗∧1,0T ∗ΣR

T 1,0Σ).

Hence the supertrace StrF/S(FF/S) is

StrF/S(FF/S) =
1

2
StrF (ΓFF/S) =

1

2
TrF+(ΓFF/S)− 1

2
TrF−(ΓFF/S)

=
1

2

(
Tr(RE

+
) +

1

4
pRT

1,0Σ

)
+

1

2

(
−Tr(RE

−
) +

1

4
qRT

1,0Σ

)
− 1

2

(
−Tr(RE

+
)− 3

4
pRT

1,0Σ

)
− 1

2

(
Tr(RE

−
)− 3

4
qRT

1,0Σ

)
= Tr(RE

+
)− Tr(RE

−
) +

p+ q

2
RT

1,0Σ.

By the local index theorem, see e.g. [42, Theorem 8.34], one has

lim
t→0

Str〈z|e−t(DF )2 |z〉dµg

=

[
(2πi)−1 det

(
R/2

sinh(R/2)

)
StrF/S(exp(−FF/S))

](1,1)

=
i

2π
StrF/S(FF/S),
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since Â(Σ) = det
(

R/2
sinh(R/2)

)
∈ A4∗(Σ,R). Thus,

∫
Σ
α−(z)dµg =

i

2π

∫
Σ

(Tr(RE
+

)− Tr(RE
−

) +
p+ q

2
RT

1,0Σ)

=

∫
Σ

(
c1(E+,∇E+

)− c1(E−,∇E−) +
p+ q

2
c1(T 1,0Σ,∇T 1,0Σ)

)
.

(2.10)

Similarly, one has

∫
Σ
α+(z)dµg =

∫
Σ

(
−c1(E+,∇E+

) + c1(E−,∇E−) +
p+ q

2
c1(T 1,0Σ,∇T 1,0Σ)

)
.

(2.11)

Therefore,∫
Σ
α−(z)dµg −

∫
Σ
α+(z)dµg = 2

∫
Σ

(
c1(E+,∇E+

)− c1(E−,∇E−)
)
.(2.12)

Note that on ∂Σ× [0, 1], ∇E+
= ∇|E+ is a flat connection, which follows that

c1(E+,∇E+
) = 0 on ∂Σ× [0, 1). Denote by

[c1(E+,∇E+
)]c ∈ H2

dR,comp(Σo,R)(2.13)

the de Rham cohomology class of c1(E+,∇E+
) with compact support, see e.g.

[10, Chapter 1] for the definition of de Rham cohomology with compact support,
where Σo := Σ\∂Σ. On the other hand, since∫

Σ
c1(T 1,0Σ,∇T 1,0Σ) = χ(Σ) = 2− 2g − n,

where n denotes the number of components in ∂Σ, so

Proposition 2.11. For any peripheral connection ∇ on E, one has∫
Σ
α±(z)dµg = ∓

∫
Σ

(
c1(E+,∇|E+)− c1(E−,∇|E−)

)
+

dimE

2
χ(Σ).

Substituting (2.12) into (2.8), one gets

sign(E ,Ω) = 2

∫
Σ

(
c1(E+,∇E+

)− c1(E−,∇E−)
)

+ h∞(∧−)− h∞(∧+) + η(AJ).

(2.14)

2.3.3. Limiting values of extended L2-sections. In this subsection, we will cal-
culate the terms h∞(∧+), h∞(∧−), and show that h∞(∧−) = h∞(∧+).

By Atiyah-Patodi-Singer’s index theorem [3, Theorem 3.10], one has

Index(d−P ) =

∫
Σ
α−(z)dz − dim H0(∂Σ, E)− η(AJ)

2
.(2.15)

On the other hand, we have

Index(d−P ) + h∞(∧−) = L2 Index(d−).(2.16)
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Following [3, (3.20)–(3.25)], we consider the operator (d−)∗, then

(d−)∗ = −(σ−)−1

(
∂

∂u
+ σ−AJ(σ−)−1

)
.

Since η(σ−AJ(σ−)−1) = η(AJ), so

Index(d−)∗P + h∞(E) = L2 Index(d−)∗ = −L2 Index(d−),

Index(d−)∗P = −
∫

Σ
α−(z)dz − dim H0(∂Σ, E) + η(AJ)

2
.

Combining with the above equalities, we have

(2.17) h∞(E) + h∞(∧−) = dim H0(∂Σ, E).

Denote by K− the set of all extended L2-solutions of (d−)∗φ = 0 in ∧−, that
is, for any φ ∈ K−, one has d∗φ = 0 and φ is with valued in ∧−, and in the
cylinder ∂Σ× (−∞, u0] for some large negative u0, we can write

φ = ψ + θ

where ψ = ψ0 + ψ1du ∈ Ker(σ−AJ(σ−)−1) and θ ∈ Ker(d−)∗ ∩ L2(Σ̂,∧−) is
a L2-section in ∧− (hence decaying exponentially). From Proposition 2.1, one
has dθ = 0. For any J ∈ J (E ,Ω) and extend it to the vector bundle E over Σ̂

such that J = J(x) on ∂Σ× (−∞, u0]. By the definition of σ−, then [d, σ−] = 0.
Since ψ ∈ Ker(σ−AJ(σ−)−1) and by (2.7) so (σ−)−1ψ ∈ Ker(AJ) = Ker d.
Hence dψ = dσ−(σ−)−1ψ = σ−d((σ−)−1ψ) = 0, which follows all elements of
K− are harmonic. Denote by δ− : K− → H1(Σ, E) the natural map, then

∗J(ψ0 + ψ1du) = −(ψ0 + ψ1du), ∗J(θ) = −θ.

If moreover, ψ0 = 0, then ∗J(ψ1du) = −ψ1du. However, since ∗du = − dx
|dx| , so

we conclude that ψ1 = 0, and so φ = θ ∈ Ker(d−)∗ ∩ L2(Σ̂,∧−), then

Ker(ι∗δ−) = Ker(d−)∗ ∩ L2(Σ̂,∧−),

where ι∗ : H1(Σ, E)→ H1(∂Σ, E) is the induced map on cohomology by restric-
tion. By the definition of limiting values of extended L2-sections [3], h∞(∧−)

is the dimension of subspace of all ψ, so h∞(∧−) = dim(K−/Ker(d−)∗ ∩
L2(Σ̂,∧−)), and we have

h∞(∧−) = dim(K−/Ker(ι∗δ−)) = dim Im(ι∗δ−) ≤ dim Im(ι∗).

Lemma 2.12. We have

dim Im(ι∗) = dim H0(∂Σ, E)− dim H0(Σ, E).

Proof. From the following exact sequence

· · · → H1(Σ, E)
ι∗−→ H1(∂Σ, E)

α∗→ H2(Σ, ∂Σ, E)
β∗→ H2(Σ, E)→ 0,

one has

H1(∂Σ, E)/ Im ι∗ ' dim H1(∂Σ, E)/Kerα∗ ' Imα∗ ' Kerβ∗,
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and

H2(Σ, ∂Σ, E)/Kerβ∗ ' Imβ∗ ' H2(Σ, E).

Hence

dim Im(ι∗) = dim H1(∂Σ, E)− (dim H2(Σ, ∂Σ, E)− dim H2(Σ, E))

= dim H0(∂Σ, E)− (dim H0(Σ, E)− dim H2(Σ, E))

= dim H0(∂Σ, E)− dim H0(Σ, E),

where the second equality uses Poincaré duality, and the last equality follows
from the fact that dim H2(Σ, E) = 0. �

Hence

h∞(∧−) ≤ dim Im(ι∗) = dim H0(∂Σ, E)− dim H0(Σ, E).(2.18)

On the other hand, we can also consider the term h∞(E). Denote by K−0 the
set of all extended L2 solutions of d−φ = 0 in E , so that for any φ ∈ K−0 , one
has dφ = 0. In the cylinder ∂Σ × (−∞, u0], we can write φ = ψ + θ where
ψ ∈ Ker(AJ) is a harmonic section on ∂Σ and θ is a L2 harmonic section. From
(2.4) and (2.7), one has dψ = dθ = 0. Hence dφ = 0 for any φ ∈ K−0 . Denote
by δ−0 : K−0 → H0(Σ, E) the natural map, then

Ker(ι∗0δ
−
0 ) = Ker(d) ∩ L2(Σ̂, E),

where ι∗0 is defined by

· · · → 0
β∗→ H0(Σ, E)

ι∗0−→ H0(∂Σ, E)→ · · ·

Since h∞ is the dimension of the space of all ψ, so h∞(E) = dim(K−0 /Ker(d) ∩
L2(Σ̂, E)), and we have

h∞(E) = dim(K−0 /Ker(ι∗0δ
−
0 )) = dim Im(ι∗0δ

−
0 )

≤ dim Im(ι∗0) = dim H0(Σ, E).
(2.19)

From (2.17), (2.18) and (2.19), we obtain

h∞(∧−) = dim H0(∂Σ, E)− dim H0(Σ, E)

Similarly, one has

(2.20) h∞(∧+) = dim H0(∂Σ, E)− dim H0(Σ, E) = h∞(∧−).

Substituting (2.20) into (2.14), we obtain a formula for signature:

Theorem 2.13. The signature is given by

(2.21) sign(E ,Ω) = 2

∫
Σ

(
c1(E+,∇|E+)− c1(E−,∇|E−)

)
+ η(AJ).
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Remark 2.14. The above theorem was proven by Atiyah [2, (3.1)] under the
assumption that the representation on each component of the boundary is el-
liptic. He then proceeded to prove the existence and uniqueness of a section
of a covering space of the unitary group that specifies a trivialization of a suit-
able line bundle whose relative first Chern number is equal to the signature, [2,
Theorem 2.13]. However, this existential statement does not easily provide a
formula for the value of this discontinuous section on arbitrary elements. This
will be done in Section 5.

3. Toledo invariants

In this section, we recall the definition of the Toledo invariant for surfaces
with boundary, which is given by Burger, Iozzi and Wienhard [13, Section 1.1].
We show that the Toledo invariant can be expressed as the integration of first
Chern forms with compact support over the surface.

3.1. Definition of Toledo invariant. Let Σ be a connected oriented surface
with boundary ∂Σ, and φ : π1(Σ)→ G be a surface group representation into a
Lie group G which is of Hermitian type. Burger, Iozzi and Wienhard [13, Section
1.1] introduced the definition of Toledo invariant T(Σ, φ), which generalizes the
Toledo invariant for closed surfaces.

A Lie group G is of Hermitian type if it is connected, semisimple with finite
center and no compact factors, and if the associated symmetric space is Her-
mitian. Let G be a group of Hermitian type so that in particular the associated
symmetric space X is Hermitian of noncompact type, then X carries a unique
Hermitian (normalized) metric of minimal holomorphic sectional curvature −1.
The associated Kähler form ωX is in Ω2(X)G the space of G-invariant 2-forms on
X. A Lie groupG is of type (RH) if it is connected reductive with compact center
and the quotient G/Gc by the largest connected compact normal subgroup Gc is
of Hermitian type. By the van Est isomorphism [53], Ω2(X)G ∼= H2

c(G,R), where
H•c(G,R) denotes the continuous cohomology of the group G with R-trivial co-
efficients, there exists a unique class κG ∈ H2

c(G,R) corresponding to the Kähler
form ωX, and thus gives rise to a bounded Kähler class κbG ∈ H2

c,b(G,R) by the
isomorphism [14], H2

c(G,R) ∼= H2
c,b(G,R), where H•c,b(G,R) denotes the bounded

continuous cohomology. In fact, κbG ∈ H2
c,b(G,R) is defined by a bounded cocycle

(3.1) c(g0, g1, g2) =
1

2π

∫
4(g0x,g1x,g2x)

ωX,

where 4(g0x, g1x, g2x) is a geodesic triangle with ordered vertices g0x, g1x, g2x

for some base point x ∈ X.
By Gromov isomorphism [25], one has

φ∗b(κ
b
G) ∈ H2

b(π1(Σ),R) ∼= H2
b(Σ,R).
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The canonical map j∂Σ : H2
b(Σ, ∂Σ,R) → H2

b(Σ,R) from singular bounded co-
homology relative to ∂Σ to singular bounded cohomology is an isomorphism.
Then the Toledo invariant is defined as

T(Σ, φ) = 〈j−1
∂Σφ

∗
b(κ

b
G), [Σ, ∂Σ]〉,

where j−1
∂Σφ

∗
b(κ

b
G) is considered as an ordinary relative cohomology class and

[Σ, ∂Σ] ∈ H2(Σ, ∂Σ,Z) ∼= Z denotes the relative fundamental class.

3.2. Invariant Kähler potentials. In this subsection, we introduce a family
of differential 1-forms αW on the symmetric space DI

p,q, parametrized by points
W on the closure DI

p,q. The form αW is a primitive of the Kähler form and is
invariant under the stabilizer ofW in U(p, q). The key feature is that αW defines
a bounded 1-cochain. Therefore it can be used to modify the pull-back of the
Kähler form by an equivariant map in order to make it compactly supported,
without changing its bounded cohomology class.

In order to find formula (3.5) for αW , we start from the classical formula for
the Kähler potential invariant under the stabilizer of a point J of the symmetric
space. Then we let J tend to infinity and observe that, up to an additive
constant, it converges as J converges to a boundary point W .

Every L ∈ U(p, q) acts on the bounded symmetric domain of type I

DI
p,q = {W ∈M(p, q,C), Iq −W ∗W > 0}

holomorphically, and the action extends continuously to DI
p,q. By Brouwer’s

fixed point theorem, there exists a fixed point in DI
p,q. Let

ωDI
p,q

= −2i∂∂̄ log det(I −W ∗W ).(3.2)

denote the invariant Kähler metric (Bergman metric) on DI
p,q with minimal

holomorphic sectional curvature −1, see e.g. [37, 44].
For any point W0 ∈ DI

p,q, denote by

KW0 := {L ∈ U(p, q) : L(W0) = W0}

the isotropy group of W0. For any L ∈ U(p, q), we write

L :=

(
a b

c d

)
∈ U(p, q),

i.e. L∗
(
Ip 0

0 −Iq

)
L =

(
Ip 0

0 −Iq

)
, from which it follows that

L−1 =

(
Ip 0

0 −Iq

)
L∗
(
Ip 0

0 −Iq

)
=

(
a∗ −c∗
−b∗ d∗

)
.(3.3)

It acts on W ∈ DI
p,q by

L(W ) = (aW + b)(cW + d)−1.
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One can refer to [44, Page 65-68, Section (2.2)] for the bounded symmetric
domain DI

p,q. If moreover, L(W0) = W0, then L−1(W0) = W0, and so

a∗W0 − c∗ = W0(−b∗W0 + d∗).

The complex conjugate transpose gives

W ∗0 a− c = −(W ∗0 b− d)W ∗0 .(3.4)

Now we define a smooth function ψW0 = ψW0(W ) on DI
p,q by

(3.5) ψW0 := − log
(
|det(W ∗0W − Iq)|−2 det(Iq −W ∗W )

)
,

which is a smooth real function on DI
p,q. Moreover, it satisfies

i∂∂̄ψW0 =
1

2
ωDI

p,q
,

i.e. ψW0 is a Kähler potential of the Kähler form of 1
2ωDI

p,q
. On the other hand,

since
|det(W ∗0L(W )− Iq)|−2 det(Iq − L(W )∗L(W ))

=
(
| det(W ∗0 (aW + b)− (cW + d))|−2|det(cW + d)|2

)
·
(
det(cW + d)|−2 det(Iq −W ∗W )

)
= | det((W ∗0 a− c)W +W ∗0 b− d)|−2 det(Iq −W ∗W )

= | det(−(W ∗0 b− d)W ∗0W +W ∗0 b− d)|−2 det(Iq −W ∗W )

= | det(d−W ∗0 b)|−2|det(W ∗0W − Iq)|−2 det(Iq −W ∗W ),

where the third equality follows from (3.4), the first equality follows from the
fact det(Iq − L(W )∗L(W )) = |det(cW + d)|−2 det(Iq −W ∗W ). In fact,

det(Iq − L(W )∗L(W ))

= det(Iq − (W ∗c∗ + d∗)−1(W ∗a∗ + b∗)(aW + b)(cW + d)−1)

= det((W ∗c∗ + d∗)−1) det((cW + d)−1) det((W ∗c∗ + d∗)(cW + d)− (W ∗a∗ + b∗)(aW + b))

= |det(cW + d)|−2 det(W ∗(c∗c− a∗a)W +W ∗(c∗d− a∗b) + (d∗c− b∗a)W + d∗d− b∗b)

= |det(cW + d)|−2 det(Iq −W ∗W ),

where the last equality follows from (3.3). Hence

(L∗ψW0)(W ) = ψW0(L(W ))

= − log
(
| det(W ∗0L(W )− Iq)|−2 det(Iq − L(W )∗L(W ))

)
= − log | det(d−W ∗0 b)|−2 − log | det(W ∗0W − Iq)|−2 det(Iq −W ∗W )

= log | det(d−W ∗0 b)|2 + ψW0(W ),

which means that ψW0 is a L-invariant (up to a constant) function. In one word,
we have

Proposition 3.1. For any W0 ∈ DI
p,q, there exists a KW0-invariant (up to a

constant) Kähler potential ψW0 for 1
2ωDI

p,q
.
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Remark 3.2. In fact, for any classical Hermitian symmetric space X, and for
any W ∈ X, there exists a (StabW = KW )-invariant (up to a constant) Kähler
potential ψW (Prop. 3.1 and corresponding paragraphs in the other cases) with
the following property: for α = dcψW ,

∫
γ α = 0 for any geodesic γ passing

through W .

Proposition 3.3. For α = dcψW , where dc := −i(∂ − ∂̄), then
∫
γ α = 0 for

any geodesic γ passing through W and ||α||∞ ≤ rank(X)π.

Proof. For any W ∈ X, let ψW be any KW -invariant (up to a constant) Kähler
potential. Let γ(t) be a geodesic with γ(0) = Q ∈ X and γ(∞) = W . Then γ
is contained in a maximal flat F which is a totally real subspace. The following
argument is basically due to Domic-Toledo [21]. The difficult case is when W is
an ideal point. If W is regular, KW is MAN where N is a minimal parabolic
group. If J denotes a complex structure, then Jγ′(t) is tangent to the orbit
Nγ(t) since Jγ′(t) is orthogonal to the geodesic and Nγ(t) contains all the
directions orthogonal to F . If W is singular, KW is M ′A′N ′ where N ′ contains
N [23]. Hence Jγ′(t) is tangent to the orbit N ′γ(t). Then

dcψW (γ′(t)) = dψW (Jγ′(t)) = 0

since ψW is KW -invariant. This shows that α = dcψW is zero along γ.
Hence, for any Q,R ∈ X with geodesic γ(Q,R) connecting them,∫

γ(Q,R)
α =

∫
γ(Q,R)

dcψW =

∫
4(W,Q,R)

ddcψW =

∫
4(W,Q,R)

ω.

By [21, Theorem 1], one has∣∣∣∣∣
∫
γ(Q,R)

α

∣∣∣∣∣ =

∣∣∣∣∣
∫
4(W,Q,R)

ω

∣∣∣∣∣ ≤ sup
4

∣∣∣∣∫
4
ω

∣∣∣∣ ≤ rank(X)π.

This shows that ||α||∞ ≤ rank(X)π, where the `∞-norm ‖ • ‖∞ is defined by
(3.8). �

3.3. Relation to the pullback forms with compact support. Firstly, we
will recall some definitions on the cohomology group of a topological space with
a group action, we refer to [31] and the references therein. LetX be a topological
space and G be a group acting continuously on X. For any k > 0, one can define
the space

F kalt(X,R) = {f : Xk+1 → R|f is alternating}.

Let F kalt(X,R)G denote the subspace of G-invariant functions, where the action
of G on F kalt(X,R) is given by

(g · f)(x0, . . . , xk) = f(g−1x0, . . . , g
−1xk),
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for any f ∈ F kalt(X,R) and g ∈ G. The natural coboundary operator δk :

F kalt(X,R)→ F k+1
alt (X,R) is given by

(δkf)(x0, . . . , xk+1) =
k+1∑
i=0

(−1)if(x0, · · · , x̂i, . . . , xk+1),

which also gives a coboundary operator on the complex F ∗alt(X,R)G. The co-
homology H∗(X;G,R) is defined as the cohomology of this complex. Define
F ∗alt,b(X,R) as the subspace of F ∗alt(X,R) consisting of bounded alternating func-
tions. The coboundary operator restricts to the complex F ∗alt,b(X,R)G and so
it defines a cohomology, denoted by H∗b(X;G,R), see [22] and also [31, Section
3]. In particular, for a manifold X, H∗b(X̃;π1(X),R) ∼= H∗b(π1(X),R).

Similarly, if G is a semisimple Lie group and X is the associated symmetric
space, one can also define the complex for the continuous (resp. bounded) and al-
ternating functions, we denote this complex by C∗c (X,R)alt (resp. C∗c,b(X,R)alt).
Then the continuous cohomology H∗c(G,R) (resp. H∗c,b(G,R)) can be isomorphi-
cally computed by the cohomology of G-invariant complex C∗c (X,R)Galt (resp.
C∗c,b(X,R)Galt), see [26, Chapitre III] and [45, Corollary 7.4.10].

If X is a countable CW-complex, then one can define the cohomology groups
H∗b(X,R) and H∗b(X,A,R) associated with the complex C∗b (X,R) of bounded
real-valued cochains on X and the subcomplex C∗b (X,A,R) of the bounded
cochains that vanish on simplices with image contained in A, repsectively. Let
Ckb (X̃,R)alt denote the complex of bounded, alternating real-valued Borel func-
tions on X̃k+1, then the cohomology of the π1(X)-invariant complex C∗b (X̃,R)

π1(X)
alt

is isomorphic to H∗b(X,R), see [29] and also [31, Section 2].
Let Σ be a connected oriented surface with boundary ∂Σ, Σo := Σ\∂Σ.

Consider a representation φ : π1(Σ) → G where G = U(p, q). Denote by X :=

G/K the associated symmetric space, which can identified with the bounded
symmetric domain DI

p,q of type I, we denote ω = ωDI
p,q

for simplicity. The Kähler
form ω gives the cohomology classes κG ∈ H2

c(G,R) and κbG ∈ H2
c,b(G,R) which

both correspond to the cochain cω defined by (3.1).
The natural inclusion C∗c,b(X,R)alt ⊂ F ∗alt,b(X,R) induces a homomorphism

iG : H∗c,b(G,R) → H∗b(X;G,R). Then we have the following commutative dia-
gram:

H2
b(X;G,R)

f∗b−−−−→ H2
b(Σ̃;π1(Σ),R) ∼= H2

b(Σ,R)xiG xiΣ
H2
c,b(G,R)

φ∗b−−−−→ H2
b(π1(Σ),R)

see [31, Page 58], where f∗b is induced from any φ-equivariant map f : Σ̃ →
X, iΣ is the Gromov isomorphism. Then the cochain representing the class
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iΣφ
∗
b(κ

b
G) = f∗b iG(κbG) is given by

(3.6)
1

2π

∫
Str(f)(σ)

ω,

where σ ∈ C2(Σ̃,R) is any two dimensional singular simplex on Σ̃, Str(f)(σ) :=

∆(fv1, fv2, fv3) denotes the geodesic 2-simplex, and v1, v2, v3 are the vertices
of σ. Denote

[f∗ω]b := 2πiΣφ
∗
b(κ

b
G) = 2πf∗b iG(κbG).

We assume that ∂Σ = ∪ni=1ci, where each ci is a connected component of
the boundary ∂Σ. For any representation φ : π1(Σ) → U(p, q), we denote by
Li := φ(ci) ∈ U(p, q) the representation of boundary component ci, and

(3.7) αi := dcψi,

where dc := −i(∂ − ∂̄), ddc = 2i∂∂̄, and ψi is given by (3.5). By Proposition
3.1, each αi is Li-invariant. Let χi = χi(u) : Σ → [0, 1] be any smooth cut-
off function on Σ, which is equal to 1 near ci and vanishes outsides a small
neighborhood of ci. For example, one can take χi(u) satisfying

χi(u) =

{
1, u ∈ ci × [0, 1/2];

0, u ∈ Σ\(ci × [0, 3/4]).

For any φ-equivariant map f : Σ̃→ DI
p,q, the differential form

f∗ω −
n∑
i=1

d(χif
∗αi)

descends to a well-defined form on Σ, and has compact support in Σo. Hence it
defines a class [

f∗ω −
n∑
i=1

d(χif
∗αi)

]
c

∈ H2
dR,comp(Σo,R)

in the de Rham cohomology group with compact support.
On the other hand, for any φ-equivariant map f : Σ̃ → DI

p,q, and for each i,
let fi : Σ̃ → DI

p,q ∪{Wi} be a φ(ci)-equivariant smooth map such that fi = f

in a small neighborhood Ĩ1/2 of c̃i and is constant Wi outside Ĩ3/4, where Ia :=

ci × [0, a) and Wi is a fixed point of Li, where •̃ = π−1(•) denotes the lifting of
•, π : Σ̃→ Σ is the covering map. In fact, ifWi is a fixed point of φ(ci), thenWi

gives a constant section of the associated bundle Ĩ1 ×φ(ci) (DI
p,q ∪{Wi}) → I1.

The φ-equivariant map f also gives a section f |I1 : I1 → Ĩ1×φ(ci) DI
p,q ⊂ Ĩ1×φ(ci)

(DI
p,q ∪{Wi}) by restriction. Hence we can construct a smooth section fi : I1 →

Ĩ1 ×φ(ci) (DI
p,q ∪{Wi}) such that fi = f near ci, and fi ≡ Wi outside a small

collar neighborhood of ci, which also can be viewed as a φ(ci)-equivariant map
fi : Ĩ1 → DI

p,q ∪{Wi}. Moreover, the equivariant map fi can be chosen such that
the norm of the differential (fi)∗ is exponentially decaying near the boundary
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∂(f−1
i (Wi)) of f−1

i (Wi). Hence (f∗i αi)(p), p ∈ Ĩ1\f−1
i (Wi) converges to zero as

p goes to ∂f−1
i (Wi), which can be extended to a φ-equivariant one-form on Σ̃

by zero extension, we denote this one-form also by f∗i αi for convenience.

Remark 3.4. Here is how fi is constructed. Let W0 be a fixed point of Li =

φ(ci). If W0 ∈ X, then Li is elliptic, and one can construct fi as a constant
map. Hence suppose that W0 is an ideal point.

Consider a Busemann function B = BW0 based atW0 with the corresponding
geodesic flow Φt pointing toward W0, i.e.,

d(Φt)

dt
= ∇B,

and |∇B| = 1.
We give coordinates on Ĩ1 as (s, t) where s is the parametrization of c̃i and t

is a parameter for It.

fi(s, t) =


Φ t− 1

2
3
4−t

◦ f(s, t) t ∈ [1
2 ,

3
4)

f(s, t) t ∈ [0, 1
2 ]

W0 t ∈ [3
4 , 1].

Then at t = 1/2, fi = f and as t → 3
4 , limt→ 3

4
fi(s, t) = Φ∞ ◦ f(s, 3

4) = W0.
Geometrically, fi maps a segment s× [0, 3

4 ] to an infinite arc from f(s, 0) to W0.
Since we can take any φ-eqivariant map, by perturbing f a little bit near

ci, we may assume that Ĩ1 is mapped into the orbit NW0f(c̃i) where NW0 is
the horospherical subgroup fixing W0. Then (f∗i αi)(v) = αi((Φu)∗(f∗(v))) on
t ∈ [1

2 ,
3
4), and since the flow lines of Φu are geodesics converging to W0, by

(10.21), (Φu)∗(f∗(v)) tends to zero exponentially fast as t→ 3
4 . This shows that

f∗i αi is supported on a small neighborhood of c̃i and zero elsewhere.

Note that the form f∗ω−
∑n

i=1 d(f∗i αi) is a φ-equivariant differential form on
Σ̃ and vanishes near ∂̃Σ, so it descends to a differential form on Σ with compact
support. Moreover,

∑n
i=1(f∗i αi−χif∗αi) also descends to a one-form on Σ with

compact support, hence[
f∗ω −

n∑
i=1

d(f∗i αi)

]
c

=

[
f∗ω −

n∑
i=1

d(χif
∗αi)

]
c

∈ H2
dR,comp(Σo,R).

The differential form f∗ω −
∑n

i=1 d(f∗i αi) defines a cochain as follows:(
f∗ω −

n∑
i=1

d(f∗i αi)

)
(σ2) :=

∫
Str(f)(σ2)

ω −
n∑
i=1

∫
Str(fi)(σ2)

dαi

=

∫
Str(f)(σ2)

ω −
n∑
i=1

∫
Str(fi)(σ2)

ω,
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for any singular 2-simplex σ2 ∈ C2(Σ̃,R). The `∞-norm for a cochain is defined
by

‖ • ‖∞ := sup
σ∈C∗(Σ̃,R)

| • (σ)|.(3.8)

Then the `∞-norm of the cochain defined by f∗ω −
∑n

i=1 d(f∗i αi) is given by∥∥∥∥∥f∗ω −
n∑
i=1

d(f∗i αi)

∥∥∥∥∥
∞

= sup
σ2∈C2(Σ̃,R)

∣∣∣∣∣
(
f∗ω −

n∑
i=1

d(f∗i αi)

)
(σ2)

∣∣∣∣∣
≤ sup

σ2∈C2(Σ̃,R)

∥∥∥∥∥
∫

Str(f)(σ2)
ω

∥∥∥∥∥+

n∑
i=1

sup
σ2∈C2(Σ̃,R)

∥∥∥∥∥
∫

Str(fi)(σ2)
ω

∥∥∥∥∥
≤ (n+ 1)‖ω‖∞ ≤ (n+ 1) min{p, q}π,

where the last inequality follows from [21, Theorem 1]. So the cochain is
bounded and defines a bounded class[

f∗ω −
n∑
i=1

d(f∗i αi)

]
b

∈ H2
b(Σ,R).

Note that
∑n

i=1 f
∗
i αi also defines a cochain by(

n∑
i=1

f∗i αi

)
(σ1) =

n∑
i=1

∫
Str(fi)(σ1)

αi,

for any singular 1-simplex σ1 ∈ C1(Σ̃,R). This cochain is also bounded, i.e.
‖
∑n

i=1 f
∗
i αi‖∞ < +∞. In fact,∣∣∣∣∣

n∑
i=1

∫
Str(fi)(σ1)

αi

∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣∣
∫

Str(fi)(σ1)
αi

∣∣∣∣∣ ≤
n∑
i=1

‖αi‖∞ ≤ n ·min{p, q}π

where the last inequality follows from Proposition 3.3. Thus

[f∗ω]b =

[
f∗ω − d

(
n∑
i=1

f∗i αi

)]
b

=

[
f∗ω −

n∑
i=1

d(f∗i αi)

]
b

∈ H2
b(Σ,R).

There exist the following several natural maps

H2(Σ,R)
j−1
∂Σ−→ H2

b(Σ, ∂Σ,R)
c−→ H2(Σ, ∂Σ,R)

j−1
o−→ H2

comp(Σo,R)
D−→ H2

dR,comp(Σo,R)

where j∂Σ is the natural isomorphism induced from the inclusion C2
b (Σ, ∂Σ,R)→

C2
b (Σ,R), see [13, §2.2, (2.e)], c is the canonical map induced from the inclu-

sion C2
b (Σ, ∂Σ,R) ⊂ C2(Σ, ∂Σ,R), jo is the natural map from the singular

cohomology with compact support to the relative singular cohomology, which
is an isomorphism. Recall that the singular cohomology with compact support
is the complex C∗comp(Σ,R) of all cochains have compact support, a cochain
u ∈ C∗(Σo,R) has compact support if and only if there exists a compact set
K ⊂ Σo such that u ∈ C∗(Σo,Σo − K,R), see [41, Chapter IX,§3]. The map
D is the de Rham map between the singular cohomology with compact support
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and de Rham cohomology with compact support, which is also an isomorphism,
see e.g. [41, Appendix, Page 261]. Under these canonical maps we have

Dj−1
o cj−1

∂Σ([f∗ω]b) = Dj−1
o cj−1

∂Σ

([
f∗ω −

n∑
i=1

d(f∗i αi)

]
b

)

=

[
f∗ω −

n∑
i=1

d(f∗i αi)

]
c

=

[
f∗ω −

n∑
i=1

d(χif
∗αi)

]
c

∈ H2
dR,comp(Σo,R).

Hence the Toledo invariant can be given by

T(Σ, φ) = 〈j−1
∂ΣiΣφ

∗
b(κ

b
G), [Σ, ∂Σ]〉

= 〈cj−1
∂ΣiΣφ

∗
b(κ

b
G), [Σ, ∂Σ]〉

=
1

2π

∫
Σ

(
f∗ω −

n∑
i=1

d(χif
∗αi)

)
.

(3.9)

By the same proof as in [35, Proposition-definition 4.1], the de Rham cohomol-
ogy class [f∗ω −

∑n
i=1 d(χif

∗αi)]c with compact support depends only on the
conjugate class of the representation φ (independent of f), and following [35],
we set

(3.10) [φ∗ω]c :=

[
f∗ω −

n∑
i=1

d(χif
∗αi)

]
c

∈ H2
dR,comp(Σo,R).

Hence

(3.11) T(Σ, φ) =
1

2π

∫
Σ

(
f∗ω −

n∑
i=1

d(χif
∗αi)

)
=

1

2π

∫
Σ

[
φ∗ωDI

p,q

]
c
.

Remark 3.5. When ∂Σ 6= ∅ and G = PU(1,m), Koziarz and Maubon [35,
Proposition-Definition 4.1] introduced the invariant 1

2π

∫
Σ [φ∗ω]c by using the

de Rham cohomology with compact support. In fact, the invariant can be
shown to be equal to the Toledo invariant defined by Burger-Iozzi-Wienhard,
see [13, Remark 6].

3.4. Relation to the first Chern class. Consider the bounded symmetric
domain of type I

DI
p,q = {W ∈M(p, q,C), Iq −W ∗W > 0}.

One can check that W ∗ ∈ DI
q,p. Denote by E = Cp+q and let Ω be a Hermitian

form on E with matrix given by

Ip,q :=

(
Ip 0

0 −Iq

)
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i.e. for any two column vectors X,Y ∈ E, Ω(X,Y ) = X>Ip,qY . We consider
the trivial Hermitian vector bundle

(F,Ω) := DI
p,q ×(E,Ω)→ DI

p,q .

Recall that J (F,Ω) is the space of all smooth sections J of End(F ) which satisfy
the following conditions:

(i) J2 = − Id;
(ii) Ω(J·,J·) = Ω(·, ·);
(iii) iΩ(·,J·) is positive definite.

For the trivial Hermitian vector bundle (F,Ω), there exists the following canon-
ical linear transformation

JI(W ) := i

(
(Ip −WW ∗)−1(Ip +WW ∗) −2(Ip −WW ∗)−1W

2(Iq −W ∗W )−1W ∗ −(Iq −W ∗W )−1(Iq +W ∗W )

)
.

Proposition 3.6. JI ∈ J (F,Ω).

Proof. By using W (Iq −W ∗W )−1 = (Ip −WW ∗)−1W , one can check that(
−(Ip −WW ∗)−1(Ip +WW ∗) 2(Ip −WW ∗)−1W

−2(Iq −W ∗W )−1W ∗ (Iq −W ∗W )−1(Iq +W ∗W )

)2

=

(
Ip 0

0 Iq

)
.

Hence J2
I = − Id. By a direct checking, one has

J∗I Ip,q + Ip,qJI = 0,

which is equivalent to J>F Ip,qJI = Ip,q. On the other hand, one has

−iIp,qJI =

(
(Ip −WW ∗)−1(Ip +WW ∗) −2(Ip −WW ∗)−1W

−2(Iq −W ∗W )−1W ∗ (Iq −W ∗W )−1(Iq +W ∗W )

)
=

(
Ip 0

−2W ∗(Ip +WW ∗)−1 Iq

)
·(

(Ip −WW ∗)−1(Ip +WW ∗) 0

0 (Iq −W ∗W )(Iq +W ∗W )−1

)
·(

Ip −2(Ip +WW ∗)−1W

0 Iq

)
,

which follows that −iIp,qJI > 0. By conjugation, one has iIp,qJI > 0. Hence
iΩ(·,JI·) is positive definite. So JI ∈ J (F,Ω). �

Remark 3.7. The almost complex structure JI is a smooth map JI : DI
p,q →

J (E,Ω), which is also an isomorphism between DI
p,q and J (E,Ω). For any

Z ∈ U(p, q) and J ∈ J (E,Ω), then ZJZ−1 ∈ J (E,Ω). By the bijection JI, it
induces an action on DI

p,q by

Z(W ) := J−1
I (ZJI(W )Z−1) = (Z1W + Z2)(Z3W + Z4)−1,



34 INKANG KIM, PIERRE PANSU AND XUEYUAN WAN

where Z =

(
Z1 Z2

Z3 Z4

)
∈ U(p, q). The isomorphism U(p, q)/(U(p) × U(q)) ∼=

J (E,Ω) is given by Z · (U(p)×U(q)) 7→ ZJ0Z
−1, where J0 = iIp,q and U(p)×

U(q) ∼= {Z ∈ U(p, q) : ZJ0Z
−1 = J0}.

Denote

V :=

(
Ip −W
W ∗ −Iq

)
.

Then JI can be decomposed as the following form

JI = V

(
iIp 0

0 −iIq

)
V −1.

Remark 3.8. Let a, b be two Hermitian matrices satisfying

a2 = (Ip −WW ∗)−1, b2 = (Iq −W ∗W )−1.

Then the following matrix

Ṽ := V

(
a 0

0 b

)
=

(
a −Wb

W ∗a −b

)
is in U(p, q) with Ṽ (0) = W . Moreover JI = V (iIp,q)V

−1 = Ṽ (iIp,q)Ṽ
−1.

Now we can define a connection on F by

∇F = V

(
d+ (Ip −WW ∗)−1∂̄(Ip −WW ∗) 0

0 d+ (Ip −WW ∗)−1∂(Ip −WW ∗)

)
V −1.

Then [∇F ,JI] = 0. By a direct calculation, one has ∇F = d + C where C is
given by

C = V

(
0 (Ip −WW ∗)−1dW

(Iq −W ∗W )−1dW ∗ 0

)
V −1.

Then C∗Ω + ΩC = 0, which follows that ∇F preserves the Hermitian form Ω.
Let F = F+ ⊕ F− be the decomposition of F corresponding to the ±i-

eigenspaces of JI. Denote by {e1, · · · , ep+q} the standard basis of E, and set

(f1, · · · , fp+q) := (e1, · · · , ep+q)V.

Then {f1, · · · , fp} forms a basis of F+, while {fp+1, · · · , fp+q} is a basis of
F−. Denote ∇F+

:= ∇F |F+ and ∇F− := ∇F |F− . Since [∇F ,JI] = 0, so
∇F = ∇F+ ⊕∇F− . The first Chern forms of F+ and F− can be given by

c1(F+,∇F+
) =

i

2π
∂∂̄ log det(Ip −WW ∗) = −1

2
· 1

2π
ωDIp,q

and

c1(F−,∇F−) =
i

2π
∂̄∂ log det(Ip −WW ∗) =

1

2
· 1

2π
ωDIp,q

.
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For any representation φ : π1(Σ)→ U(E,Ω), and any J ∈ J (E ,Ω), it gives a
φ-equivariant map from Σ̃ into J (E,Ω), which is also denoted by J. Using the
following identification

JI : DI
p,q

∼=−→ J (E,Ω),

see Remark 3.7, J ∈ J (E ,Ω) defines a φ-equivariant map by

J̃ : Σ̃→ DI
p,q, z 7→W = J̃(z) = J−1

I (J(z))

which is also equivalent to a smooth section of the associated bundle Σ̃×φDI
p,q →

Σ, we denote it also by J̃. Consider the following vector bundle

Fφ := Σ̃×φ F = Σ̃×φ (DI
p,q × E)

over Σ̃ ×φ DI
p,q. By pullback, J̃∗Fφ is a vector bundle over Σ. The almost

complex structure JI gives rise to a canonical almost complex structure on Fφ
by

JFφ([z,W, e]) := [z,W,JI(W )e]

for any [z,W, e] ∈ Σ̃ ×φ (DI
p,q × E). Then (J̃∗Fφ,Ω) is a Hermitian vector

bundle over Σ, which equipped with a pullback almost complex structure J̃∗JFφ .
Moreover, one has the following isomorphism

τ : J̃∗Fφ → E , τ : (z0, [z,W, e]) 7→ [z, e],(3.12)

where J̃(z0) = [z,W ] ∈ Σ̃×φ DI
p,q. The isomorphism commutes with the almost

complex structures, i.e. τ ◦ (J̃∗JFφ) = J ◦ τ .
With respect to the almost complex structure JFφ , the complex vector bundle

Fφ has the following decomposition

Fφ = F+
φ ⊕ F

−
φ = (Σ̃×φ F+)⊕ (Σ̃×φ F−),

which corresponds to the +i,−i-eigensapces of JFφ respectively, where the
action φ on F± is defined by φ(γ)(W, f) := (φ(γ)W,φ(γ)f), which is well-
defined since JI(φ(γ)W ) = φ(γ)JI(W )φ(γ)−1 for any γ ∈ π1(Σ). The connec-
tion ∇F induces a natural connection ∇Fφ on Fφ, in terms of the local frame
{[z,W, fj ], i = 1, · · · , p+ q}, the connection ∇Fφ is given by

∇Fφ =

(
d+ (Ip −WW ∗)−1∂̄(Ip −WW ∗) 0

0 d+ (Ip −WW ∗)−1∂(Ip −WW ∗)

)
.

Similarly, [∇Fφ ,JFφ ] = 0 and ∇Fφ preserves the Hermitian form Ω. The first
Chern form of (F+

φ ,∇
Fφ |F+

φ
) is

c1(F+
φ ,∇

Fφ |F+
φ

) =
i

2π
∂∂̄ log det(Ip −WW ∗) = −1

2
· 1

2π
ωDIp,q

.

Since the two-form ωDIp,q
is invariant under the U(p, q)-group, so it defines a

well-defined two-form on Σ̃ ×φ DI
p,q, we denote it also by ωDIp,q

. Hence J̃∗ωDIp,q
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is a two-form on Σ̃. On the other hand, J̃∗ωDIp,q
is a φ-equivariant two-form on

Σ̃, and also descends to a two-form on Σ. Moreover

J̃∗c1(F+
φ ,∇

Fφ |F+
φ

) =
i

2π
TrF+

φ
((J̃∗∇Fφ)2) = − 1

4π
J̃∗ωDIp,q

.(3.13)

When restricted to a small collar neighborhood of ∂Σ, E ∼= p∗(E|∂Σ) near the
boundary, where p : ∂Σ × [0, 1] → ∂Σ denotes the natural projection. For any
J ∈ J (E|∂Σ,Ω), then p∗J ∈ J (E|∂Σ×[0,1],Ω). Denote

Jo(E ,Ω) = {J ∈ J (E ,Ω)|J = p∗J on a small collar neighborhood

of ∂Σ, where J ∈ J (E|∂Σ,Ω)}.
(3.14)

For any J ∈ Jo(E ,Ω), one has J = J(x) depends only on x near ∂Σ.

Proposition 3.9. For any J ∈ Jo(E ,Ω), the pullback connection J̃∗∇Fφ is a
peripheral connection on J̃∗Fφ.

Proof. The pullback almost complex structure J depends only on x, so J̃∗∇Fφ
has the form d+C(x)dx. Since ∇Fφ is a complex linear connection on (Fφ,JFφ),
so

[J̃∗∇Fφ , J̃∗JFφ ] = J̃∗[∇Fφ ,JFφ ] = 0.

By the definition of ∇F , it preserves the Hermitian form Ω, so the induced
connection ∇Fφ also preserves the Hermitian form Ω on Fφ, hence the pullback
connection J̃∗∇Fφ preserves Ω. Thus the connection J̃∗∇Fφ is a peripheral
connection on J̃∗Fφ. �

Proposition 3.10. For any J ∈ Jo(E ,Ω), then τ J̃∗∇Fφτ−1 is a peripheral
connection on E and∫

Σ
c1(E+, τ J̃∗∇Fφτ−1|E+) = − 1

4π

∫
Σ
J̃∗ωDI

p,q
.

Proof. Since J̃∗∇Fφ is a peripheral connection and by (3.12), so τ J̃∗∇Fφτ−1 is
a peripheral connection on E . On the other hand, one has∫

Σ
c1(E+, τ J̃∗∇Fφτ−1|E+) =

∫
Σ
c1(J̃∗F+

φ , J̃
∗∇Fφ |

J̃∗F+
φ

) = − 1

4π

∫
Σ
J̃∗ωDI

p,q
,

which completes the proof. �

Similarly, we have∫
Σ
c1(E−, τ J̃∗∇Fφτ−1|E−) =

1

4π

∫
Σ
J̃∗ωDI

p,q
.
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By (3.11), for any J ∈ Jo(E ,Ω), the Toledo invariant can be given by

T(Σ, φ) =
1

2π

∫
Σ

(
J̃∗ωDI

p,q
−

n∑
i=1

d(χiJ̃
∗αi)

)

=

∫
Σ

(
c1(E−, τ J̃∗∇Fφτ−1|E−)− c1(E+, τ J̃∗∇Fφτ−1|E+)

)
− 1

2π

n∑
i=1

∫
Σ
d(χiJ̃

∗αi).

(3.15)

From (2.21), one has

sign(E ,Ω) = −2T(Σ, φ)− 1

π

n∑
i=1

∫
Σ
d(χiJ̃

∗αi) + η(AJ)

= −2T(Σ, φ)− 1

π

n∑
i=1

∫
ci

J̃∗αi + η(AJ).

(3.16)

Inspired by the above formula, we define

Definition 3.11 (Rho invariant of the boundary). For any representation φ :

π1(Σ)→ U(E,Ω), the rho invariant of the boundary is defined by

(3.17) ρφ(∂Σ) = − 1

π

n∑
i=1

∫
ci

J̃∗αi + η(AJ)

for any J ∈ Jo(E ,Ω). The rho invariant ρφ(∂Σ) is independent of J ∈ Jo(E ,Ω)

by (3.16).

Remark 3.12. From the formula (3.16) for signature, the rho invariant ρφ(∂Σ)

is independent of the choice of equivariant map J ∈ Jo(E ,Ω), and just depends
on the representation of the boundary ∂Σ.

The rho invariant was originally introduced by Atiyah, Patodi and Singer
[4, Theorem 2.4] for positive definite Hermitian forms. In particular, if the
representation of boundary can be extended to a unitary representation of the
whole manifold, then the signature of the representation can be expressed in
terms of the signature of the trivial representation and the rho invariant. For
the case of surfaces, the rho invariant defined in (3.17) is a natural generalization
to the group U(p, q). One can also refer to [9, 33, 50] etc. for the development
of rho invariant.

Therefore the proof of the first part of Theorem 0.1 is completed.

4. The rho invariant

In the previous section, we have encountered a global invariant of a surface,
christened “rho invariant of the boundary” in Definition 3.11. In this section,
we express it as a sum of contributions of individual boundary components. We
define the rho invariant of a triple (L,J,W ) of an element of L ∈ U(E,Ω), an
equivariant splitting J of the corresponding flat bundle over the circle and a
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fixed point W of L on the closure of the symmetric space of U(E,Ω). It is the
sum of an integral term ι(L,J,W ) and an eta invariant term η(L,J,W ). Then
we check that

• ρ(L,J,W ) depends only on L (whereas both ι and η depend nontrivially
on J),
• ρ is continuous away from unitary matrices admitting 1 as an eigenvalue,
• ρ is a class function (i.e. it depends only on the conjugacy class of its
argument),

Then we proceed to the proof of Theorem 0.2.
We first prove a structure theorem for unitary endomorphisms: they split

as the orthogonal direct sum of three types, hyperbolic-unipotents, elliptic-
unipotents, and unipotents.

• The rho invariant of a hyperbolic-unipotent endomorphism vanishes for
symmetry reasons.
• The rho invariant of a semi-simple elliptic endomorphism can be directly
computed from definitions. Indeed, by a suitable choice of J, the bound-
ary operator AJ becomes a constant coefficient linear ODE, its spectrum
can be explicitly computed from the spectrum of L.
• The case of elliptic-unipotent endomorphisms follows by a continuity
argument.

The unipotent case is handled indirectly, by examining the dependence on θ ∈ R
of ρ(eiθL). Indeed, for eiθ 6= 1, eiθL is an elliptic-unipotent whose semi-simple
part eiθId is easy to treat. Thus ρ(L) appears as the discontinuity at 0 of the
signature of a finite dimensional Hermitian form H(θ) depending on θ.

This discontinuity can be evaluated when 1 is a simple eigenvalue of L. In-
deed, in this case, the Implicit Function Theorem applies, and the unique small
eigenvalue of H(θ) is a smooth function of θ whose asymptotic behavior at θ = 0

can be analyzed: it crosses 0 only if dimension is odd. So ρ can be computed
for certain normal forms.

Fortunately, every unipotent unitary endomorphism splits orthogonally as a
direct sum of unipotents with 1 as a simple eigenvalue, in the normal form
previously alluded to. This completes the proof of Theorem 0.2.

4.1. Basic properties of the rho invariant.

4.1.1. Definition.

Definition 4.1. For L ∈ U(E,Ω), defining a bundle E over S1, and J ∈ J (E ,Ω),
pick a fixed point W of L in the closure DI

p,q of the symmetric domain DI
p,q and

the associated L-invariant primitive αW . Set

(4.1) ρ(L,J,W ) = ι(L,J,W ) + η(L,J,W ) := − 1

π

∫
S1

J̃∗αW + η(AJ).
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With this notation, the previously defined “rho invariant of the boundary” is
given by

ρφ(∂Σ) =
∑

boundary component c

ρ(φ(c)).

Therefore Theorem 0.1 states that, given a compact oriented surface with nonempty
boundary Σ and a homomorphism φ : π1(Σ) → U(E,Ω), with corresponding
flat vector bundle E over Σ,

sign(E ,Ω) = −2T(Σ, φ) +
∑

boundary component c

ρ(φ(c)).

4.1.2. The rho invariant depends only on holonomy.

Lemma 4.2. On K = S1 × [0, 1], for any L ∈ U(E,Ω), sign(K, E ,Ω) +

2T(K,φ) = 0.

Proof. We use a J ∈ J (K, E ,Ω) which is constant in the [0, 1] direction. Theo-
rem 0.1 gives sign(K, E ,Ω)+2T(K,φ) = ρ(J|S1×{1}, L)−ρ(J|S1×{0}, L) = 0. �

Lemma 4.3. On S1, for any L ∈ U(E,Ω) and W , ρ(J, L,W ) does not depend
on J or W .

Proof. Given J0,J1 ∈ J (S1, E ,Ω), and L-invariantW0,W1 ∈ DI
p,q, extend J0,J1

into J ∈ J (K, E ,Ω). Theorem 0.1 gives

ρ(J1, L,W1)− ρ(J0, L,W0) = sign(K, E ,Ω) + 2T(K,φ) = 0,

according to the previous Lemma. �

Corollary 4.4. ρ is a conjugacy-invariant function on U(E,Ω).

4.1.3. Continuity of the rho-invariant. The eta invariant is continuous unless
AJ has a kernel, i.e. 1 ∈ sp(L). View ρ = ρ(L,W ) as a function on F × DI

p,q,
where F = {L ∈ U(E,Ω) ; 1 /∈ sp(L)}. Since αW depends continuously on W ,
it is continuous. So is its restriction to the subset of pairs (L,W ) such that
L(W ) = W . Since there it depends only on L, ρ(L) depends continuously on L
provided 1 /∈ sp(L).

4.2. Splitting into types.

Definition 4.5. Let (E,Ω) be a complex vector space with non-degenerate
Hermitian form Ω. Say that L ∈ U(E,Ω) is hyperbolic-unipotent if all its eigen-
values λ satisfy |λ| 6= 1. Say that L is elliptic-unipotent if all its eigenvalues λ
satisfy |λ| = 1 and λ 6= 1. If L has a single eigenvalue 1, L is unipotent.

Proposition 4.6. Let (E,Ω) be a complex vector space with non-degenerate
Hermitian form Ω and let L ∈ U(E,Ω). There exists a unique Ω-orthogonal
decomposition

(E,Ω, L) = (Ehu,Ωhu, Lhu)⊕ (Eeu,Ωeu, Leu)⊕ (Eu,Ωu, Lu)
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such that Lhu is hyperbolic-unipotent, Leu is elliptic-unipotent and Lu is unipo-
tent.
Futhermore

ρ(L) = ρ(Lhu) + ρ(Leu) + ρ(Lu).

Proof. The complex vector space E splits into characteristic subspaces of L,
E =

⊕
λEλ, Eλ = ker(L− λIm)N for N ≥ dim(E) = m.

If λ, µ are eigenvalues and λµ̄ 6= 1, then Eλ and Eµ are Ω-orthogonal. Indeed,
given v ∈ Eλ, the normalized powers λ−kLk(v) =: Pv(k) depend polynomially
on k. Therefore, if w ∈ Eµ,

(λµ̄)−kΩ(Lk(v), Lk(w)) = Ω(Pv(k), Pw(k)) := Q(k)

is a scalar polynomial in k. Since Ω is L-invariant, the function k 7→ (λµ̄)kQ(k)

is constant. If λµ̄ 6= 1, this can happen only if Q vanishes identically. In
particular, Q(0) = Ω(v, w) = 0.

Therefore the subspaces Ẽλ := Eλ + E1/λ̄ are mutually orthogonal when
distinct.

Let

Ehu =
⊕

λ ; |λ|6=1

Ẽλ, Eeu =
⊕

λ ; |λ|=1, λ 6=1

Ẽλ, Eu = E1.

These spaces are L-invariant and pairwise Ω-orthogonal. In particular, the
restriction of Ω to each summand is non-degenerate. Therefore the rho invariants
of summands are well defined. Additivity follows from the definition, since J

and W can be chosen to split accordingly.
�

4.2.1. The hyperbolic-unipotent case.

Lemma 4.7. Let L be a hyperbolic-unipotent element of U(E,Ω). Then L

commutes with an involution I such that I∗Ω = −Ω and I fixes a point in the
symmetric space of U(E,Ω). Furthermore, ρ(L) = 0.

Proof. Let ∆ ⊂ spectrum(L) be a subset that contains exactly one element of
each pair of eigenvalues {λ, 1/λ̄} of L. Set

F+ =
⊕
λ∈∆

Eλ, F− =
⊕
λ6∈∆

Eλ.

Then F+ and F− are totally isotropic, and E = F+ ⊕ F−. Define I ∈ End(E)

by I = ±1 on F±. Then I2 = 1 and I∗Ω = −Ω.
Since

Ω(v,−IJIv) = I∗Ω(Iv,−JIv) = −Ω(Iv,−JIv) = Ω(Iv, JIv),

the formula J 7→ −IJI defines an action on the space J (E,Ω). This action is
isometric. Indeed, I defines an automorphism of the group G = U(E,Ω), hence
an isometry of G equipped with the pseudo-Riemannian structure defined by the
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Killing form. Also, I maps maximal compact subgroups to maximal compact
subgroups, thus it preserves the fibration G → J (E,Ω). Since the metric on
the base is induced by the fibration, I preserves it.

Since J (E,Ω) is a symmetric space of noncompact type, and I2 = 1, the fixed
point set Fix(I) of I is a nonempty subsymmetric space, which is L-invariant.
One can choose the equivariant map J to lie in Fix(I) and the fixed point W to
lie in the closure of Fix(I).

Since I commutes with L, it defines an automorphism, and still denoted by
I, of the flat bundle E → S1. Since IJI = −J, this automorphism induces
an orthogonal transformation on the space of sections of E . One can transport
the differential operator AJ with I, and get an orthogonally equivalent operator
I∗AJ. Since IJ = −JI, I∗AJ = −AJ. Therefore the set of eigenvalues (with
multiplicities) AJ is symmetric, its eta function η(s) vanishes identically, and
η(AJ) = 0.

The isometry I of J (E,Ω) is anti-holomorphic. Therefore, it changes the
sign of the Kähler form, I∗ω = −ω. Since I fixes W , it changes the sign of αW ,
I∗αW = −αW . Hence

ι(L,J,W ) = ι(ILI, IJI, IWI) = ι(L,−J,W ) = −ι(L,J,W ),

showing that ι(L,J,W ) = 0. So ρ(L) = ι(L,J,W ) + η(AJ) = 0. �

4.2.2. The 1-dimensional elliptic case. Let E = C and Ω be a non-degenerate
Hermitian form on E, i.e. Ω(z, w) = Ω Re(zw̄) where Ω is a nonzero real number.
Fix θ ∈ (0, 2π) and let L ∈ U(1) denote multiplication with eiθ. Let E denote
the corresponding flat complex line bundle over S1. Its sections correspond to
functions s : R → C such that s(x+ 2π) = e−iθs(x). The space J (E,Ω) has a
single element, J(z) = iz if Ω > 0 or J(z) = −iz if Ω < 0. Since J commutes
with L, one can take a constant equivariant map J(x) = J . The operator AJ

is J d
dx . A real number λ is an eigenvalue of AJ if the differential equation

J ds
dx = λs(x) has a nonzero solution s such that s(2π) = e−iθs(0). The solutions

are the elements of −Ji( θ
2π + Z).

The following classical Lemma

Lemma 4.8 ([3, Lemma 2.10]).

lim
s→0

[(
θ

2π

)−s
+
∞∑
k=1

(
1

|k + θ
2π |s
− 1

|k − θ
2π |s

)]
= 1− θ

π
,

yields

η(AJ) = −Ji(1− θ

π
) = sgn(Ω)(1− θ

π
).(4.2)

4.2.3. The elliptic case.
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Lemma 4.9. If L ∈ U(E,Ω) is elliptic-unipotent, its semi-simple part S fixes a
point in the symmetric space of U(E,Ω). Furthermore, there is a unique AdS-
invariant element B ∈ u(E,Ω) such that exp(2πiB) = S and B has all its
eigenvalues in (0, 2π). Let {ej} be an Ω-orthonormal basis of eigenvectors of B.
Then

ρ(S) = sign(Ω)− 2
∑
j

Ω(Bej , ej).

Proof. Let L = SU be the Jordan decomposition of L. Since the eigenvalues of
L are unit complex numbers and S is semi-simple, the subgroup generated by
S is relatively compact. Therefore, it fixes a point J in the symmetric space
J (E,Ω).

One can use the constant map J = J andW = J . For this choice, ι(L,J,W ) =

0. Since the stabilizer of J is a conjugate of U(p)× U(q), one can assume that
S = S+ ⊕ S− ∈ U(p) × U(q) and use the expression (4.2), found in Subsection
10.1,

η(S,J,W ) = η(S+,J,W ) + η(S−,J,W ),

where, if the eigenvalues of S± are written eiθ±,j with θ±,j ∈ (0, 2π),

η(S+,J,W ) =
∑
j

(
1− θ+,j

π

)
, η(S−,J,W ) = −

∑
j

(
1− θ−,j

π

)
.

Let {e±,j} be an orthonormal basis of eigenvectors, i.e. Ω(e±,j , e±,j) = ±1

and Se±,j = exp(iθ±,j)e±,j . Define B ∈ End(E) by Be±,j =
θ±,j
2π e±,j . Then

exp(2πiB) = S and

η(S,J,W ) = p− q − 2
∑
j

±θ±,j
2π

= p− q − 2
∑
±,j

Ω(Be±,j , e±,j).

�

4.2.4. The elliptic-unipotent case. By definition, an elliptic-unipotent element
L of U(p, q) does not have 1 as an eigenvalue. Write L = SU where S is semi-
simple elliptic and U is unipotent and commutes with S. Then S belong to
the closure of the conjugacy class of L (one can apply [30, Proposition 8.3] to
the homomorphism from Z generated by L), on which ρ is continuous, hence
constant. It follows that ρ(L) = ρ(S).

4.3. The unipotent case. Let L ∈ U(p, q) be unipotent. The idea is to study
ρ along the curve θ 7→ eiθL, for θ close to 0. When θ 6= 0, eiθL is elliptic-
unipotent. Formula 4.9 gives

ρ(eiθL) =

{
(p− q)

(
1− θ

π

)
if θ > 0,

(p− q)
(
1− θ+2π

π

)
otherwise.

(4.3)
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Note that all eiθL define the same automorphism of the domain, hence the same
1-form αW serves for all of them, so the term − 1

π

∫
S1 J̃

∗αW does not depend
on θ. There remains to study the eta invariant term. We show that it can be
expressed in terms of a finite dimensional Hermitian form.

4.3.1. Reduction to a finite dimensional spectral problem. Given ε > 0, for a
self-adjoint first order differential operator A on S1, denote by

ηεA(s) =
∑

λ∈sp(A), |λ|>ε

sign(λ)

λs
.

Then for every A0, provided ±ε are away from the spectrum of A0, one can pick
a neighborhood of A0 on which ηε is a continuous function of s and A. On this
neighborhood,

η(A) = ηεA(0) +
∑

λ∈sp(A), 0<|λ|<ε

sign(λ),

where A 7→ ηεA is a continuous function of A and the sum has finitely many
terms. Therefore the discontinuity of the eta invariant at A0 has to do with the
signs of the finitely many eigenvalues below level ε.

4.3.2. Algebraic expression of the spectrum. Since the unipotent radical of SU(p, q)

is a simply connected nilpotent Lie group, there is a unique nilpotent element
B ∈ su(p, q) such that exp(2πB) = L. Pick a J0 ∈ J (E,Ω), and set

J(x) = exp(−xB)J0 exp(xB).

Then the spectrum of AJ,eiθL = J d
dx near zero is the set of real numbers σ near

zero such that −σJ0 + B + i θ2π Id has a nontrivial kernel, with a multiplicity
equal to the dimension of this kernel.

Alternatively, it is the spectrum near zero of the self-adjoint operator −(B+

iθ Id)J0. We conclude that for ε > 0 avoiding the spectrum of BJ0, the function

θ 7→η(AJ,eiθL)−
∑

σ∈sp(−(B+iθ Id)J0), 0<|σ|<ε

sign(σ)

= η(AJ,eiθL) +
∑

σ∈sp((B+iθ Id)J0), 0<|σ|<ε

sign(σ)

is continuous in a sufficiently small neighborhood of 0. Since the finite sum∑
σ∈sp((B+iθ Id)J0), |σ|>ε

sign(σ)

is constant in a sufficiently small neighborhood of 0, and ρ = η+constant for
our elliptic-unipotent family, we can rephrase the conclusion as follows.

Proposition 4.10. The function

θ 7→ ρ(eiθL) +
∑

σ∈sp((B+iθ Id)J0), |σ|>0

sign(σ)
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is continuous at 0.

4.3.3. Expression in terms of a Hermitian form. By assumption on J0, the Her-
mitian form (u, v) 7→ H(u, v) = iΩ(u, J0v) is positive definite. Therefore, the
difference of the number of positive and negative eigenvalues of (B+ iθ Id)J0 is
equal to the signature of the Hermitian form (u, v) 7→ Ω(i(B + iθ Id)J0u, J0v).
This suggests to define the following Hermitian form, which has the same sig-
nature (up to sign).

Definition 4.11. Given a nilpotent element B ∈ su(E,Ω), define the (possibly
indefinite) Hermitian form HB+iθ by

HB+iθ(u, v) = Ω(i(B + iθ Id)u, v).

Proposition 4.12. Let L = exp(2πB) be a unipotent element of U(E,Ω). Con-
sider the function

θ 7→ σ(θ) := sign(HB+iθ).

Here, the signature is the number of plus signs minus the number of minus signs
among eigenvalues, irrelevant of the dimension of the kernel. Then

ρ(L) = −σ(0) + σ(0+) + sign(Ω) = −σ(0) + σ(0−)− sign(Ω).

Note that the function σ is a conjugacy invariant of B.

4.3.4. Proof of Proposition 4.12. Proposition 4.10 gives that

θ 7→ ρ(eiθL) + σ(θ)

is continuous at 0. Therefore, using Formulae 4.3,

ρ(L) + σ(0) = ρ(ei0
+
L) + σ(0+)

= p− q + σ(0+).

Similarly,

ρ(L) + σ(0) = ρ(ei0
−
L) + σ(0−)

= −(p− q) + σ(0−).

4.3.5. Examples.

(1) If L is the identity, then B = 0, Hiθ = iΩ(iθ·, ·) = −θΩ, hence σ(θ) =

− sgn(θ) sign(Ω). Here, the sign function sgn takes values −1, 0 and 1.
Therefore σ(0) = 0, σ(0+) = − sign(Ω), σ(0−) = sign(Ω), hence

ρ(Id) = sign(Ω)− sign(Ω) = 0.

(2) Let L be unipotent in U(1, 1). On E = C2, choose Ω =

(
1 0

0 −1

)
. Then

B = U−1

(
0 µ

0 0

)
U = 1

2

(
iµ iµ

−iµ −iµ

)
∈ su(E,Ω), where U is defined
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in (10.1). The matrix of HB+iθ is −1
2

(
µ+ θ µ

µ µ− θ

)
. Its characteristic

polynomial is X2 + µX − 1
4θ

2 = 0, which has roots

X = −µ
2
± 1

2

√
µ2 + θ2,

hence
– if θ 6= 0, two eigenvalues of opposite signs, σ(θ) = 0 ;
– if θ = 0, eigenvalues 0 and −µ, σ(0) = − sgn(µ).

Proposition 4.12 gives ρ(exp(2πB)) = sgn(µ), which is consistent with
Table (10.7).

Remark 4.13. We shall see in Lemma 5.5 that modulo Z, the rho invariant
coincides with minus twice Burger-Iozzi-Wienhard’s rotation number.

4.3.6. The rho invariant of nilpotents whose kernel is 1-dimensional. The ma-
trix of HB+iθ is i(B + iθ Id)>Ω. Its determinant is equal to det(Ω)(−θ)n, n =

dim(E). When θ = 0, its kernel coincides with B’s kernel. If dim Ker(B) = 1,
when θ = 0, the derivative at 0 of the characteristic polynomial

P (x, θ) := det(xI − i(B + iθ Id)>Ω)

does not vanish. Therefore, according to the Implicit Function Theorem, the
unique eigenvalue λ(θ) which is close to 0 varies smoothly with θ in a neighbor-
hood of θ = 0. Writing

P (x, θ) =
n∑
k=0

ak(θ)x
k,

we know that a0(θ) = det(Ω)θn and a1(0) 6= 0. Assuming that λ(θ) = cθk+o(θk)

for some 0 < k < n and c 6= 0, we see that

0 = P (λ(θ), θ) = a1(0)cθk + o(θk),

contradiction. Hence the Taylor expansion of λ(θ) starts with λ(θ) = cθn+o(θn),
and

0 = P (λ(θ), θ) = det(Ω)θn + a1(0)cθn + o(θn).

Therefore c = −det(Ω)
a1(0) and λ(θ) = cf(θ)n for some smooth function f such that

f(0) = 0 and f ′(0) = 1.

4.3.7. Discussion. If n is even and c > 0, λ(θ) does not change sign near 0,
it merely disappears from the count when θ = 0, therefore σ(0+) = σ(0−) =

σ(0) + 1. Therefore Proposition 4.12 implies that sign(Ω) = 0 and

ρ(exp(2πB)) = 1.

If n is even and c < 0, σ(0+) = σ(0−) = σ(0)− 1. In this case, sign(Ω) = 0 and

ρ(exp(2πB)) = −1.
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If n is odd and c > 0, λ(θ) changes sign near 0, σ(0+)−σ(0) = σ(0)−σ(0−) =

1. Therefore sign(Ω) = −1 and

ρ(exp(2πB)) = 0.

If n is odd and c < 0, σ(0+)−σ(0) = σ(0)−σ(0−) = −1. Therefore sign(Ω) = 1

and
ρ(exp(2πB)) = 0.

There remains to compute the sign of c = c(E,Ω, B).

4.3.8. Examples of nilpotent elements of su(p, q). LetB ∈ su(E,Ω) be nilpotent.
Let (ej)1≤j≤n be a Jordan basis for B, i.e. for all j, Bej = ej−1 or 0. Let

Z = {j ∈ {1, . . . , n} ; Bej = 0}.

In this basis, the matrix of Ω has entries (ωk,`), and

∀k /∈ Z, ∀` /∈ Z, ωk,`−1 = −ωk−1,`,

∀k ∈ Z, ∀` /∈ Z, ωk,`−1 = 0,

∀k /∈ Z, ∀` ∈ Z, ωk−1,` = 0.

For instance, if B has only one Jordan block, i.e. Z = {1}, then the matrix Ω

is anti-lower-triangular, and along each nonzero antidiagonal, the same number
arises with alternating signs. The simplest examples are the anti-diagonal ma-
trix with entries alternatively equal to i and −i (if n is even) or with entries
alternatively equal to 1 and −1 with 1 (resp. −1) on the diagonal (if n is odd).
Its signature is 0 (if n is even) or 1 (resp. −1) (if n is odd). We shall see in the
next paragraph that every indecomposable nilpotent element of some su(p, q) is
conjugate under SU(p, q) to one of these types.

Let us compute the relevant derivative a1(0) for those examples.

Lemma 4.14. Let D be an n×n matrix whose entries aj,k vanish except those
along the second antidiagonal, i.e. when j+k = n+ 2. Let P (x) = det(xI −D)

denote the characteristic polynomial of D. Then

∂P

∂x
(0) = (−1)n−1+bn−1

2
c
n∏
j=2

dj,n+2−j .

Proof. In general,
∂P

∂x
(0) = Trace(adj(−D)),

where the entries of the adjugate adj(M) of a matrix M are signed cofactors.
Here, we need to compute only diagonal cofactors adj(M)j,j = det(Mj), which
all come with a plus sign. Each (n− 1)× (n− 1)-matrix Mj is anti-triangular.
All but the first one M1 have at least one zero entry on their diagonal, so
only det(M1) can be nonzero. Its diagonal entries are all entries of the nonzero
antidiagonal, whence the announced formula, up to a sign. When allmj,n+2−j =

1, M1 is the matrix of the permutation that exchanges j and n− 1− j. It has
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bn−1
2 c 2-cycles, plus a 1-cycle if n is even, therefore its signature is (−1)b(n−1)/2c.

When we substitute M with −D, an extra factor (−1)n−1 shows up. �

When Ω has only one nonzero antidiagonal,

ωj,n+1−j = (−1)j+1ε,

where ε ∈ {1, i,−1,−i}, the Hermitian matrix D = iB>Ω has only one nonzero
antidiagonal, the second one, with nonzero entries dj,n+2−j = (−1)jiε. Therefore

a1(0) =
∂P

∂x
(0) = (−1)n−1+bn−1

2
c(−1)b

n−1
2
c(iε)n−1 = (−iε)n−1.

Also,

det(Ω) = εn,

and ε = ω1,n = Ω(Bn−1en, en), so

c = −det(Ω)
∂P
∂x (0)

= − (−ε)n

(iε)n−1
= −(in−1ε) = −(in−1Ω(Bn−1en, en))

= −Ω((iB)n−1en, en).

(4.4)

4.3.9. Nilpotent conjugacy classes in su(p, q). The following result is borrowed
from N. Burgoyne and R. Cushman’s work [15].

Proposition 4.15. Consider complex vector spaces E equipped with non-degenerate
Hermitian forms Ω and nilpotent skew-hermitian endomorphisms N .

(1) Any such triple (E,Ω, N) is a direct sum of indecomposables.
(2) A triple is indecomposable if and only if (E,N) is a single Jordan block.

Then Ē = E/NE is 1-dimensional. If n = dim(E), the Hermitian form

(u, v) 7→ τn−1(u, v) = Ω((iN)n−1u, v)

induces a non-degenerate Hermitian form τ̄ on Ē.
(3) Two indecomposable triples are isomorphic if and only if they have the

same dimension n and the quotients (Ē, τ̄) have equal signatures.

For the reader’s convenience, a detailed proof of Proposition 4.15 is provided
in the Appendix, Subsection 10.3.

4.3.10. Rho invariants of nilpotent elements of su(p, q).

Definition 4.16. Let B ∈ su(E,Ω) be a single Jordan block of even dimension
n. Its sign sgn(E,Ω, B) ∈ {−1, 1} is the signature of the non-degenerate Her-
mitian form induced by τn−1 : (u, v) 7→ Ω((iB)n−1u, v) on the 1-dimensional
space E/BE.

Piecing together the above results and computations, we get
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Theorem 4.17. Let B ∈ su(E,Ω) be nilpotent. Then E admits an orthogonal
decomposition into B-invariant subspaces Ej which are single Jordan blocks,

(E,Ω, B) =
⊕
j

(Ej ,Ωj , Bj).

Furthermore,

ρ(exp(2πB)) =
∑

dim(Ej) even

− sgn(Ej ,Ωj , Nj).

In particular, if the signature of Ω is (p, q), |ρ(exp(2πB))| ≤ min{p, q}.

Proof. Split (E,Ω, B) into indecomposable blocks (Ej ,Ωj , Bj), according to
Proposition 4.15. Then ρ(exp(2πB)) =

∑
j ρ(Ej ,Ωj , exp(2πBj)). Each (Ej ,Ωj , Bj)

is isomorphic to one of the examples of paragraph 4.3.8. Its rho invariant is equal
to −1, 0 or 1 according to the discussion of paragraph 4.3.7.

• If nj = dim(Ej) is odd, ρ(Ej ,Ωj , exp(2πBj)) = 0.
• If nj is even, then ρ(Ej ,Ωj , Bj) is the sign of the parameter c(Ej ,Ωj , Bj)

introduced in paragraph 4.3.6. This parameter is given in Equation 4.4:
c = −τnj−1(e, e) for some nonzero vector e, hence the sign of c is opposite
to the sign defined in 4.16.

Finally, the bound on the rho invariant follows from that fact that the pieces
which contribute to ρ have vanishing signature. �

Remark 4.18. We note that for L ∈ U(p, q), ρ(L) is an integer if and only if
the semi-simple part of the elliptic-unipotent summand admits a conjugate in a
subgroup SU(p′)× SU(q′) ⊂ U(p, q).

5. Atiyah’s signature cocycle and section σ

In this section, we relate Meyer and Atiyah’s cocycle with rotation numbers
and rho invariants, and we compute Atiyah’s section σ for the group U(p, q).

5.0.1. The signature cocycle. Let Σ3 be the three-hole sphere. Let us fix an
orientation of Σ3, a base-point ∗ ∈ Σ3 and loops c1, c2, c3 based at ∗ which
represent the oriented boundary components in such a way that c1c2c3 is null
homotopic. Given A and B ∈ U(E,Ω), let φ : π1(Σ3, ∗) → U(E,Ω) be a
representation with φ(c1) = A−1, φ(c2) = B−1 and φ(c3) = (A−1B−1)−1 =

BA.2 Atiyah’s signature cocycle is the symmetric function sign : U(E,Ω) ×
U(E,Ω) → Z defined as follows: the integer sign(A,B) is the signature of the
flat unitary bundle (E ,Ω) on Σ3 associated with φ.

2Atiyah’s convention for turning a representation into a flat bundle differs from ours. This
is why we specify A−1, B−1 instead of A and B in the representation.
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5.0.2. Cocycles and central extensions. Atiyah’s section σ arises from the follow-
ing general fact relating sections of central extensions, 2-cocycles and 1-cochains.

Lemma 5.1. Let Z be an abelian group, let 0→ Z
j→ H

p→ G→ 1 be a central
extension of groups.

(1) If σ : G → H is an arbitrary section of p, the function c : G × G → Z

defined by

c(g, g′) = j−1(σ(g)σ(g′)σ(gg′)−1)

is a 2-cocycle, and any other choice of section leads to a cohomologous
2-cocycle. Hence the cohomology class [c] ∈ H2(G,Z) that classifies the
extension is well defined. Conversely, every 2-cocycle in the classifying
class is obtained from some section σ : G→ H.

(2) If c : G × G → Z is a 2-cocycle classifying the extension, then the 2-
cocycle p∗c is exact. If in addition Hom(H,Z) = 0, there is a unique
1-cochain b : H → Z such that db = −p∗c. Furthermore, c is obtained
from the section σ uniquely determined by the condition b ◦ σ = 0.

(3) If Z = Z, if no nonzero multiple of c is a coboundary and Hom(G,Z) =

0, then Hom(H,Z) = 0.

Proof. 1. The given section defines a bijection of H with Z × G. In these
coordinates, the multiplication reads

(z, g)(z′, g′) = (z + z′ + c(g, g′), gg′).

The associativity of this law is equivalent to the cocycle equation. An other
section σ′ can be written σ′ = (j ◦ f)σ where f : G → Z is arbitrary. Its
2-cocycle is

c′(g, g′) = j−1((j ◦ f)(g)σ(g)(j ◦ f)(g′)σ(g′)(j ◦ f)(gg′)σ(gg′)−1)

= j−1((j ◦ f)(g)(j ◦ f)(g′)(j ◦ f)(gg′)−1)j−1(σ(g)σ(g′)σ(gg′)−1)

= f(g) + f(g′)− f(gg′) + c(g, g′) = df(g, g′) + c(g, g′).

Conversely, every 2-cocycle in the classifying class is of the form c + df , hence
arises from the section (j ◦ f)σ.

2. By assumption, H is the set Z × G equipped with the multiplication
(z, g)(z′, g′) = (z + z′ + c(g, g′), gg′). Define b : H → Z by b(z, g) = z. Then

db((z, g), (z′, g′)) = b(z, g) + b(z′, g′)− b((z, g)(z′, g′))

= z + z′ − z − z′ − c(g, g′) = −c(g, g′).
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The section σ defined by b ◦ σ = 0 is σ(g) = (0, g) in our notation. The map j
is j(z) = (z, e). The corresponding 2-cocycle is

j−1(σ(g)σ(g′)σ(gg′)−1) = j−1((0, g)(0, g′)(0, gg′)−1)

= j−1((c(g, g′), gg′)(−c(gg′, g′−1g−1), g′−1g−1))

= j−1((c(g, g′)− c(gg′, g′−1g−1) + c(gg′, g′−1g−1), e))

= c(g, g′).

If b′ is an other 1-cochain on H such that db′ = −c, then d(b′ − b) = 0,
b′ − b : H → Z is a homomorphism. If Hom(H,Z) = 0, b′ = b, whence the
uniqueness of b.

3. Up to adding a coboundary, one can assume that c(e, e) = 0, and hence
that c(e, g) = 0 for all g ∈ G. Let ψ : H → Z be a homomorphism. Then
ψ ◦ j : Z→ Z is a homomorphism, so there exists n ∈ Z such that ψ ◦ j = n Id.
For all z ∈ Z and g ∈ G,

ψ(z, g) = ψ(z + c(e, g), g) = ψ((z, e)(0, g)) = ψ(j(z)(0, g) = ψ ◦ j(z) + ψ(0, g).

For g, g′ ∈ G,

ψ(c(g, g′), gg′) = ψ((0, g)(0, g′)) = ψ(0, g) + ψ(0, g′).

Let f(g) = ψ(0, g). Then

df(g, g′) = ψ(0, g) + ψ(0, g′)− ψ(0, gg′)

= ψ(c(g, g′), gg′)− ψ(0, gg′)

= ψ ◦ j(c(g, g′)) = n c(g, g′).

By assumption, n c(g, g′) is not a coboundary unless n = 0. Thus n = 0, ψ
descends to a homomorphism G→ Z, which vanishes by assumption, so ψ = 0.
We conclude that Hom(H,Z) = 0.

�

The item (3) of Lemma 5.1 applies to our situation, since H2(U(p, q),Z) is a
free abelian group, and the signature cocycle represents a nonzero cohomology
class, see paragraph 5.0.8 below. Furthermore, Hom(U(p, q),Z) = 0.

Definition 5.2 (Atiyah). The signature cocycle sign defined in paragraph 5.0.1
determines a central extension

0→ Z j2−→ U(p, q)2
p2−→ U(p, q)→ 1.

There is a unique section σ : U(p, q)→ U(p, q)2 such that for all L,L′ ∈ U(p, q),

sign(L,L′) = j−1
2 (σ(L)σ(L′)σ(LL′)−1).

We shall call it Atiyah’s section σ.

According to Lemma 5.1,
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(1) The pulled-back cocycle p∗2sign on U(p, q)2 is a coboundary. There is a
unique 1-cochain b2 on U(p, q)2 such that

p∗2sign = −db2.

(2) Atiyah’s section σ is uniquely determined by the requirement b2 ◦σ = 0.
(3) On fibers of p2, b2 restricts to isomorphisms to Z,

∀n ∈ Z, ∀g ∈ U(p, q)2, b2(j2(n)g) = n+ b2(g).

The goal of the next paragraphs is to determine b2. This will be achieved in
paragraph 5.0.8.

5.0.3. Rotation numbers. The general notion, for locally compact groups G,
is due to [13]. Given a bounded Borel cohomology class κ ∈ Ĥ2

cb(G,Z), the
corresponding rotation number is a continuous map Rotκ : G → R/Z defined
as follows. For g ∈ G, let B denote the closed subgroup generated by g. Since
H2
cb(B,R) = 0, the long exact sequence arising from the exponential short exact

sequence 0 → Z → R → R/Z → 0 gives Ĥ2
cb(B,Z) ' Homc(B,R/Z), whence a

homomorphism fB,κ : B → R/Z, and a number

Rotκ(g) = fB,κ(g).

5.0.4. Integrality. Let (E,Ω) be a complex vector space equipped with a nonde-
generate indefinite Hermitian form Ω. We are interested in the rotation number
associated with a suitable multiple of the bounded Borel cohomology class κ of
the Kähler form ω of the Hermitian symmetric space of U(E,Ω). From general
principles, it follows that some multiple of κ is integral (see [13, bottom of page
526 and Proposition 7.7]). Theorem 0.1 suggests that 2κ is integral. Indeed, it
indicates that the 2-cocycle sign + dρ is a representative of −2κ. So does sign,
which is integer-valued. This indeed the case.

Lemma 5.3. Let the symmetric space X of G = U(E,Ω) be equipped with the
invariant metric whose minimal holomorphic sectional curvature is equal to −1.
Then twice the Kähler bounded cohomology class is integral, i.e.

2κ ∈ Ĥ2
cb(U(E,Ω),Z).

Proof. Let (E1,Ω1) and (E2,Ω2) be nondegenerate Hermitian spaces, and let
(E,Ω) = (E1,Ω1) ⊕ (E2,Ω2). The corresponding embedding X1 × X2 → X

between symmetric spaces is isometric, totally geodesic and holomorphic, as is
visible on Equation 3.2. Hence the normalized Kähler form of X restricts to the
normalized Kähler forms on the factors.

Fix an origin o ∈ X. For L,L′ ∈ U(E,Ω), let ∆o(L,L
′) denote the geo-

desic simplex with vertices o, Lo, LL′o. Recall (Equation 3.1) that the Kähler
bounded cohomology class is represented by the following bounded real valued



52 INKANG KIM, PIERRE PANSU AND XUEYUAN WAN

cocycle,

κo(L,L
′) =

1

2π

∫
∆o(L,L′)

ω.

If o is chosen in X1 and L1, L
′
1 ∈ U(E1,Ω1), ∆o(L1, L

′
1) serves as a geodesic

simplex for both X1 and X, so the restriction of the Kähler bounded cohomology
class κ of U(E,Ω) to U(E1,Ω1) is the Kähler bounded cohomology class of
U(E1,Ω1).

This reduces the integrality question to the case when sign(Ω) = 0, so X is
of tube type. In this case, Clerc ([16]) shows that twice the Kähler bounded
cohomology class is integral. Indeed, the 2-cocycle 2κo converges, as o tends
Γ-radially to a point of the Shilov boundary, to the integer-valued generalized
Maslov 2-cocycle. Since, as o varies in X, all these cocycles are cohomologous,
so is the limiting cocycle.

�

Definition 5.4. For L ∈ U(E,Ω), we denote the rotation number associ-
ated to twice the bounded cohomology class of the normalized Kähler form
by Rot(E,Ω, L), or simply by Rot(L) when the context is clear.

5.0.5. Properties. We shall use the following properties of rotation numbers:
(1) If B < U(p, q) is a closed amenable subgroup, the restriction of Rot to

B is a group homomorphism.
(2) If (E,Ω, L) = (E1,Ω1, L1)⊕ (E2,Ω2, L2) and Ω1,Ω2 are indefinite Her-

mitian forms,

Rot(E,Ω, L) = Rot(E1,Ω1, L1) + Rot(E2,Ω2, L2).

(3) For every L ∈ U(E,Ω), Rot(E,−Ω, L) = −Rot(E,Ω, L).
(4) Rot is a conjugacy invariant: Rot(CLC−1) = Rot(L).
(5) If L = LeLkLu is the generalized Jordan decomposition of L, then ([13,

Theorem 11])

Rot(L) = Rot(Le).(5.1)

Proof. Only item (2) needs some explanation. Let L,L′ ∈ U(E,Ω) preserve
the splitting E = E1 ⊕ E2. As was observed in the proof of Lemma 5.3, the
product of symmetric spaces X1×X2 embeds in X and the ambient Kähler form
ω restricts to pr∗1ω1 + pr∗2ω2. The geodesic simplex ∆(L,L′) ⊂ X1×X2 projects
onto both factors to the geodesic simplices ∆(L1, L

′
1) ⊂ X1 and ∆(L2, L

′
2) ⊂ X2.

If follows that

κ(L,L′) =

∫
∆(L,L′)

pr∗1ω1 +

∫
∆(L,L′)

pr∗2ω2

=

∫
∆(L1,L′1)

ω1 +

∫
∆(L2,L′2)

ω2

= κ1(L1, L
′
1) + κ2(L2, L

′
2).
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Let B denote the closed subgroup generated by L = L1 ⊕ L2, and Bi the
corresponding subgroup for Li. Then B ⊂ B1 × B2. The long exact sequence
yields a homomorphism

fB1×B2,κ1+κ2 = fB1,κ1 ◦ pr1 + fB2,κ2 ◦ pr2 : B1 ×B2 → R/Z,

whose restriction to B is equal to fB,κ. Therefore

Rot(L) = fB,κ(L) = fB1,κ1(L1) + fB2,κ2(L2) = Rot(L1) + Rot(L2).

�

5.0.6. Rotation numbers and Toledo invariants. Let Σ be a compact oriented
surface with boundary, let ∗ ∈ Σ be a basepoint. Let a1, b1, . . . , ag, bg, c1, . . . , cn
be loops based at ∗ such that cj represent the oriented boundary components,
in such a way that the fundamental group of Σ be presented by

〈a1, b1, . . . , ag, bg, c1, . . . , cn | (
∏

[ai, bi])(
∏

cj) = 1〉.

Since π1(Σ, ∗) is free, every representation φ : π1(Σ, ∗) → U(E,Ω) admits a
lift φ̃ : π1(Σ, ∗) → Ũ(E,Ω) to the universal covering group of U(E,Ω). The
continuous function Rot : U(E,Ω) → R/Z admits a unique continuous lift
R̃ot : Ũ(E,Ω)→ R mapping the neutral element to 0.

According to [13, Theorem 12], the Toledo invariant of φ is given by

2T(Σ, φ) = −
n∑
j=1

R̃ot(φ̃(cj)).(5.2)

(remember that Rot is associated to twice the Kähler bounded cohomology
class). Let (E ,Ω) denote the flat unitary bundle over Σ associated to φ. In
combination with Theorem 0.1, Equation 5.2 gives

sign(E ,Ω) =

n∑
j=1

b̃(φ̃(cj)),(5.3)

where b̃ : Ũ(E,Ω)→ R is the function defined by

b̃ := R̃ot + ρ ◦ p̃,

and p̃ : Ũ(E,Ω)→ U(E,Ω) is the covering map.
Equation (5.3) yields

sign(A,B) = −b̃(Ã)− b̃(B̃) + b̃(ÃB̃).(5.4)

In other words, if b̃ is viewed as an 1-cochain on Ũ(E,Ω),

p∗sign = −db̃.(5.5)
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5.0.7. Computing rotation numbers.

Lemma 5.5. The function b : U(E,Ω)→ R/Z defined by b := Rot+ρ vanishes.
It follows that b̃ : Ũ(E,Ω)→ R is integer-valued.

Proof. The first step is to show that if sign(Ω) = 0, then Rot vanishes on the
center of U(E,Ω). Let C ∈ EndC(E) be a C-linear map such that C∗Ω = −Ω.
Let L ∈ U(E,Ω). Then CLC−1 ∈ U(E,−Ω) and

Rot(E,L,Ω) = Rot(E,CLC−1,−Ω) = −Rot(E,CLC−1,Ω).

If L = u IdE for some unit complex number u, CLC−1 = L, hence Rot(E,L,Ω) =

−Rot(E,L,Ω) mod Z. Thus Rot(E,L,Ω) = 0 or 1
2 mod Z. Since Rot is con-

tinuous and Rot(IdE) = 0, Rot(u IdE) = 0 mod Z for all unit complex numbers
u.

Given L ∈ U(E,Ω), write

L = ū U1

for some U1 ∈ SU(E,Ω) and u ∈ C, |u| = 1. Since SU(E,Ω) is the commutator
subgroup of U(E,Ω), there exist A and B ∈ U(E,Ω) such that

U1 = [B,A] = BAB−1A−1.

Hence

[A,B]L(u IdE) = IdE .

Let Σ1 be the two-hole torus. Let a and b be a meridian and a parallel loop
on the torus, let c1 and c2 be loops representing the oriented boundary com-
ponents, in such a way that the fundamental group of Σ1 be presented by
〈a, b, c1, c2 | [a, b]c1c2 = 1〉. Consider the representation φ : π1(Σ1) → U(E,Ω)

with
φ(a) = A, φ(b) = B, φ(c1) = L, φ(c2) = u IdE .

Let (E ,Ω) denote the associated flat unitary vector bundle over Σ1. Let φ̃ be a
lift of φ to Ũ(E,Ω), let L̃ = φ̃(L) and ũ IdE = φ̃(u IdE). Equation 5.3 gives

sign(E ,Ω) = b̃(L̃) + b̃(ũ IdE),

hence

b(L) + b(u IdE) = 0 mod Z.

If L ∈ SU(E,Ω), we can take u = 1, and b(L) = 0 mod Z. For a general
L ∈ U(E,Ω), we let E′ = E ⊕ C2, Ω′ = Ω ⊕ Ω′′, where Ω′′ is indefinite, of
signature (1, 1), and L′ = L⊕u IdC2 , where the unit complex number u is chosen
so that L′ ∈ SU(E′,Ω′). Since both ρ and Rot are additive under orthogonal
direct sums, and both vanish mod Z on (C2, u IdC2 ,Ω′′),

ρ(L′) = ρ(L), Rot(L′) = Rot(L) + Rot(u IdC2) = Rot(L) mod Z.
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Hence

b(L) = Rot(L) + ρ(L) = Rot(L′) + ρ(L′) = 0 mod Z,

which completes the proof.
�

Lemma 5.6. If L = L+ ⊕ L− ∈ U(p)×U(q) < U(p, q),

e2πiRot(L) =

(
det(L+)

det(L−)

)2

.

With Equation 5.1, in principle this determines Rot on all of U(p, q).

Proof. By conjugacy-invariance, it suffices to compute Rot on the maximal torus
T = U(1)× · · · × U(1). If L = (e2πix1 , . . . , e2πixp+q), Lemma 4.9 gives

ρ(L) =

p∑
j=1

(1− 2{xj})−
q∑
j=1

(1− 2{xp+j}) mod Z,

thus

e2πiρ(L) = exp(2πi(−2

p∑
j=1

xj + 2

q∑
j=1

xp+j))

=

(
det(L−)

det(L+)

)2

.

Lemma 5.5 shows that

e2πiRot(L) = e−2πiρ(L) =

(
det(L+)

det(L−)

)2

.

�

5.0.8. The 1-cochain on the central extension U(p, q)2.

Proposition 5.7. The primitive b2 : U(p, q)2 → Z of the pulled-back signature
cocycle,

p∗2sign = −db2,
is given by

b2 = Rot2 + ρ ◦ p2,(5.6)

where Rot2 : U(p, q)2 → R is a continuous function, and Rot2 is the continuous
lift of the rotation number Rot that satisfies Rot2 ◦ j2(z) = z for z ∈ Z.

Proof. Atiyah has determined the cohomology class of sign in

H2(U(p, q),Z) ' Hom(π1(U(p, q)),Z) ' Hom(π1(U(p)×U(q)),Z) ' Z⊕ Z.

This class has coordinates (2,−2). Therefore, if λ : Z2 → Z denotes the homo-
morphism given by

λ(m,n) = 2m− 2n,
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the group U(p, q)2 can be obtained as an associated bundle

U(p, q)2 := Ũ(p, q)×λ Z = Ũ(p, q)× Z/π1(U(p, q)),

where π1(U(p, q)) acts diagonally, on U(p, q) by deck transformations, and on Z
by translations via λ.

The standard generator of π1(U(p)) is represented by the arc t 7→ exp(2πit/p)Ip
followed by an arc joining exp(2πi/p)Ip to Ip in SU(p). The determinant
det : U(p) → U(1) maps this homotopy class to the identity homotopy class
of U(1). Therefore the expression found in Lemma 5.6 for the rotation number
Rot indicates that

(Rot)] : π1(U(p, q))→ π1(R/Z) = Z

is given by λ. It follows that there exists a continuous function Rot2 : U(p, q)2 →
R such that Rot2 ◦ j2(z) = z for z ∈ Z and

Rot ◦ p2 = Rot2 mod Z.

The restriction to Ũ(p, q) × {0} of the pull-back of Rot2 to Ũ(p, q) × Z is
R̃ot. This pull-back satisfies R̃ot ◦ j̃(z) = z for z ∈ Z. Then the identity
p̃∗sign = −d(R̃ot + ρ ◦ p̃) on Ũ(p, q) (Equation 5.5) implies that

p∗2sign = −d(Rot2 + ρ ◦ p2)

on U(p, q)2. Thus, by uniqueness,

b2 = Rot2 + ρ ◦ p2.

�

5.0.9. Concrete realization of the universal covering of U(p, q). According to
[48, Theorem 3.4], every L ∈ U(p, q) has the following unique decomposition

L =

(
U1 0

0 U2

)
S(W ),

where U1 ∈ U(p), U2 ∈ U(q) and

S(W ) =

(
(1−WW ∗)−1/2 (1−WW ∗)−1/2W

W ∗ (1−WW ∗)−1/2 (1−W ∗W )−1/2

)
for W ∈ DI

p,q. Hence U(p, q) is homeomorphic to U(p) × U(q) × DI
p,q. The

universal covering Ũ(p, q) of U(p, q) can be given by

Ũ(p, q) = R× R× SU(p)× SU(q)×DI
p,q

with the projection

P : Ũ(p, q) = R× R× SU(p)× SU(q)×DI
p,q → U(p, q)

P(x, y, U1, U2,W ) =

(
e2πixU1 0

0 e2πiyU2

)
S(W ),
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where U1 ∈ SU(p) and U2 ∈ SU(q).

Remark 5.8. Every element L ∈ U(p, q) can be written

L =

(
e2πixU1 0

0 e2πiyU2

)
S(W ),

with U1 ∈ SU(p) and U2 ∈ SU(q). Then any lift of L has the form

(x+
k1

p
, y +

k2

q
, e
−2πi

k1
p U1, e

−2πi
k2
q U2,W ) ∈ Ũ(p, q)

for some k1, k2 ∈ Z.

5.0.10. Concrete realization of the central extension U(p, q)2. Let λ : Z2 → Z
be the homomorphism given by λ(m,n) = 2m− 2n. Recall that

U(p, q)2 := Ũ(p, q)×λ Z = Ũ(p, q)× Z/ ∼ .

We can give a concrete expression for the equivalence relation,

(x+
m

p
, y +

n

q
, e
−2πim

p U1, e
−2πin

q U2,W, k) ∼ (x, y, U1, U2,W, 2m− 2n+ k).

The group U(p, q)2 is a central extension of U(p, q) by Z, with exact sequence

Z j2−→ U(p, q)2
p2−→ U(p, q),

given by

p2([x, y, U1, U2,W, k]) = P(x, y, U1, U2,W ) =

(
e2πixU1 0

0 e2πiyU2

)
S(W ).

The isomorphism j2 : Z→ Ker(p2) is given by

j2(k) = [0, 0, Ip, Iq, 0, k] .

5.0.11. Atiyah’s section σ. Remember that Atiyah’s section σ is the unique
section σ : U(p, q)→ U(p, q)2 such that for all A,B ∈ U(p, q),

j2(sign(A,B)) = σ(A)σ(B)σ(AB)−1.(5.7)

Theorem 5.9. In the notation of Proposition 5.7, Atiyah’s section σ : U(p, q)→
U(p, q)2 is uniquely determined by the equation b2 ◦ σ = 0. In the notation of
paragraph 5.0.9, Atiyah’s section is given by the following formula.

σ(A) = [Ã,−R̃ot(Ã)− ρ(A)],(5.8)

where Ã is an arbitrary lift of A in Ũ(p, q).

The first claim is a restatement of Lemma 5.1.
Equation (5.8) is unambiguous. Indeed, as in paragraph 5.0.9, we can assume

that

A =

(
e2πixU1 0

0 e2πiyU2

)
S(W ),
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and a lift Ã of A is given by

Ã = (x+
k1

p
, y +

k2

q
, e
−2πi

k1
p U1, e

−2πi
k2
p U2,W ) ∈ Ũ(p, q)

for some k1, k2 ∈ Z. Then

[x+
k1

p
, y +

k2

q
, e
−2πi

k1
p U1, e

−2πi
k2
q U2,W,−R̃ot(Ã)− ρ(A)]

= [x+
k1

p
, y +

k2

q
, e
−2πi

k1
p U1, e

−2πi
k2
q U2,W,−2(px+ k1 − qy − k2)− ρ(A)]

= [x, y, U1, U2,W,−2(px− qy)− ρ(A)],

which is independent of k1, k2.
On the other hand, given A,B ∈ U(p, q), one can pick lifts Ã and B̃ in Ũ(p, q).

The product ÃB = ÃB̃ can be used as a lift of AB. Then

σ(A)σ(B)σ(AB)−1 = [ÃB̃(ÃB)−1, sign(A,B)]

= [e, sign(A,B)] = j2(sign(A,B)),

which means that the section defined by (5.8) is exactly Atiyah’s section σ.

6. Milnor-Wood type inequality

In this section, we will prove a Milnor-Wood type inequality, in the form of an
estimate on the signature of a flat unitary bundle. We first express the dimen-
sion of the vector space Im(H1(Σ, ∂Σ, E) → H1(Σ, E)) on which the Hermitian
form iQ is defined in terms of the Euler characteristic and the dimension of the
space of flat sections. Then we prove that this space vanishes for a dense set
of representations. This provides the link between signature and Euler char-
acteristic. In view of the Milnor-Wood inequality for closed surfaces, the right
hand side (p + q)|χ(Σ)| does not seem to be sharp. However, by considering
positive definite Hermitian forms (q = 0), we shall see that our Milnor-Wood
type estimate on signature cannot be improved to min{p, q}|χ(Σ)| in general.

6.1. Milnor-Wood type inequality. Let φ : π1(Σ)→ U(E,Ω) be a represen-
tation into the U(p, q)-group U(E,Ω), where E = Cp+q, we have

sign(E ,Ω) = −2 T(Σ, φ)− 1

π

n∑
i=1

∫
ci

J̃∗αi + η(AJ) = −2 T(Σ, φ) + ρφ(∂Σ).

Lemma 6.1. The indices of d−P and d+
P can be given by

Index(d∓P ) = ±1

2
sign(E ,Ω) +

dimE

2
χ(Σ)− dim H0(∂Σ, E)

2
.
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Proof. For the index of d−P , by (2.6), one has

Index(d−P ) =

∫
Σ
α−(z)dµg −

η(A−J ) + dim KerA−J
2

=

∫
Σ
α−(z)dµg +

η(AJ)

2
− dim H0(∂Σ, E)

2

=
dimE

2
χ(Σ) +

∫
Σ

(
c1(E+,∇|E+)− c1(E−,∇|E−)

)
+
η(AJ)

2
− dim H0(∂Σ, E)

2

=
dimE

2
χ(Σ) +

1

2
sign(E ,Ω)− dim H0(∂Σ, E)

2
,

where the second equality by η(A−J ) = −η(AJ) and (2.7), the third equality by
Proposition 2.11, and the last equality by Theorem 2.13. Similarly, we can also
obtain

Index(d+
P ) =

dimE

2
χ(Σ)− 1

2
sign(E ,Ω)− dim H0(∂Σ, E)

2
.

�

From the above lemma and using L2 Index(d±) = Index(d±P ) + h∞(∧±), one
has

±1

2
sign(E ,Ω) = −dimE

2
χ(Σ) +

dim H0(∂Σ, E)

2
+ Index(d∓P )

= −dimE

2
χ(Σ) +

dim H0(∂Σ, E)

2
− h∞(∧∓) + L2 Index(d∓).

Here the L2-index is given by

L2 Index(d±) = dim Ker(d±) ∩ L2(Σ̂, E)− dim Ker(d±)∗ ∩ L2(Σ̂,∧±)

= dimH0(Σ̂, E)− dim Ker(d±)∗ ∩ L2(Σ̂,∧±)

= dim Im(H0(Σ, ∂Σ, E)→ H0(Σ, E))− dim Ker(d±)∗ ∩ L2(Σ̂,∧±),

where the second equality follows from (2.4) and the last equality follows from
[3, Proposition 4.9]. Since H0(Σ, ∂Σ, E) = {0}, so

L2 Index(d±) = −dim Ker(d±)∗ ∩ L2(Σ̂,∧±).

On the other hand, by (2.20), one has

dim H0(∂Σ, E)− h∞(∧±) = dim H0(Σ, E).

Hence

(6.1) ± 1

2
sign(E ,Ω) = −dimE

2
χ(Σ)− dim H0(∂Σ, E)

2

+ dim H0(Σ, E)− dim Ker(d∓)∗ ∩ L2(Σ̂,∧±).
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Remark 6.2. From the above equality (6.1), one gets immediately

(6.2) dim Im(H1(Σ, ∂Σ, E)→ H1(Σ, E))

= −dimE · χ(Σ)− dim H0(∂Σ, E) + 2 dim H0(Σ, E).

In fact, by Proposition 2.2, one has

sign(E ,Ω) = dim Ker(d+)∗ ∩ L2(Σ̂,∧+)− dim Ker(d−)∗ ∩ L2(Σ̂,∧−).

On the other hand, by Proposition 2.1 and [3, Proposition 4.9], one has

dim Im(H1(Σ, ∂Σ, E)→ H1(Σ, E))

= dim Ker(d−)∗ ∩ L2(Σ̂,∧−) + dim Ker(d+)∗ ∩ L2(Σ̂,∧+).

Hence we obtain (6.2) by combining with (6.1).

Remark 6.3. If ∂Σ = ∅, then −1
2 sign(E ,Ω) = T(Σ, φ) and we have

±T(Σ, φ) = −dimE

2
· χ(Σ) + Index(d±)

= −dimE

2
· χ(Σ) + dim H0(Σ, E)− dim Ker(d±)∗.

The second equality follows from the observation: if d−a = 0, then da = d+a,
and so da = ∗Jda, which follows that (d+)∗d+a = d∗da = 0. A similar argument
holds for d+.

Lemma 6.4. If Σ is a surface with genus g ≥ 1, then the set of all representa-
tions φ such that {v ∈ E : φ(ai)v = v = φ(bi)v, 1 ≤ i ≤ g} = {0} is dense in
Hom(π1(Σ),U(E,Ω)), where ai, bi ∈ π1(Σ), 1 ≤ i ≤ g denote the generators in
the interior of Σ.

Proof. Suppose that the boundary of Σ is the union ∂Σ =
⊔q
j=1 cj of oriented

circles, the fundamental group of Σ is

π1(Σ) =

〈
a1, b1, . . . , ag, bg, c1, . . . , cq :

g∏
i=1

[ai, bi]

q∏
j=1

cj = e

〉
.

Then Hom(π1(Σ),U(E,Ω)) is the space of all homomorphisms with the relation
g∏
i=1

[φ(ai), φ(bi)]

q∏
j=1

φ(cj) = φ(e) = Id .(6.3)

If 1 is an eigenvalue of φ(a1) ∈ U(E,Ω) and φ(b1) ∈ U(E,Ω), then by a small
perturbation, we can find two families of elements Aε, Bε ∈ U(E,Ω) such that
1 is not the an eigenvalue for ε > 0 and

lim
ε→0

Aε = φ(a1), lim
ε→0

Bε = φ(b1), [Aε, Bε] = [φ(a1), φ(b1)],

for ε > 0 small enough. In fact, the linear transformations σ ∈ U(E,Ω) and
τ ∈ U(E,Ω) with 1 as an eigenvalue is equivalent to det(σ − Id) = 0 and
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det(τ − Id) = 0, which defines a variety H1 in U(E,Ω)× U(E,Ω), and [σ, τ ] =

[φ(a1), φ(b1)] defines a variety H2 in U(E,Ω)×U(E,Ω), in fact it is given by the
set of solutions of these polynomial equations στ − [φ(a1), φ(b1)]τσ = 0. From
the definitions of H1 and H2, one sees easily that H2 is not contained in H1, i.e.
H2 * H1, so H1 ∩H2 $ H2, which means the subvariety H1 ∩H2 is a proper
subvariety of H2. Thus we can find such Aε, Bε in H2\(H1 ∩H2).

Now we can take φε by

φε(a1) = Aε, φε(b1) = Bε, φε = φ, on other generators.

Then φε ∈ Hom(π1(Σ),U(E,Ω)) and has no global fixed point, and limε→0 φε =

φ. Especially, {φε} is equal to φ on the boundary, i.e. φε(ci) = φ(ci) for any
ε > 0. �

For any s ∈ H0(Σ, E), it can be viewed as a φ-equivariant map s = si(x)ei ∈
E, and 0 = ds = dsi(x)ei, so si(x) = si is constant, and s = siei is a constant
vector. The φ-equivariant condition is si(γx)ei = φ(γ)−1si(x)ei, which follows
that s = φ(γ)−1s. Thus we obtain

H0(Σ, E) ∼= {s ∈ E : s = φ(γ)s, ∀γ ∈ π1(Σ)}.

Theorem 6.5. The signature satisfies the following Milnor-Wood type inequal-
ity:

| sign(E ,Ω)| ≤ dimE · |χ(Σ)| = (p+ q)|χ(Σ)|.

Proof. For n ≥ 2, since

(6.4) dim H0(∂Σ, E) ≥ n dim H0(Σ, E) ≥ 2 dim H0(Σ, E),

so by (6.1), ± sign(E ,Ω) ≤ dimE|χ(Σ)|.
For n ≤ 1, by Lemma 6.4, if the genus g ≥ 1, for any representation φ, there

exists a family of representations φε with φε(π1(∂Σ)) = φ(π1(∂Σ)), such that
each φε has no global fixed point, and limε→0 φε = φ. Then dim H0(Σ, Eε) = 0 for
any ε > 0. Since the representations φε are fixed on the boundary, the eta invari-
ant and

∫
ci
J∗αi are fixed, hence the rho invariant is fixed, ρφε(∂Σ) = ρφ(∂Σ).

By [13, Corollary 8.11], the Toledo invariant is also fixed, i.e. T(Σ, φε) =

T(Σ, φ). Hence the signature associated with φε is independent of ε, and equals
sign(E ,Ω). Thus

±1

2
sign(E ,Ω) = ∓T(Σ, φε)±

ρφε(∂Σ)

2

= −dimE

2
χ(Σ)− dim H0(∂Σ, E)

2
− dimC Ker(d∓)∗ ∩ L2(Σ̂,∧∓)

≤ −dimE

2
χ(Σ),

(6.5)

from which it follows that | sign(E ,Ω)| ≤ dimE · |χ(Σ)|. If g = 0 and n ≤ 1,
then π1(Σ) is trivial, and so sign(E ,Ω) = 0.
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Hence, we obtain

(6.6) | sign(E ,Ω)| ≤ dimE ·max{−χ(Σ), 0} ≤ dimE · |χ(Σ)|.

The proof is complete. �

Without loss of generality, we assume p ≤ q. For any representation φ :

π1(Σ)→ U(p, p)×U(q − p), then

E = E1 ⊕ E2 = (Σ̃×φ1 E1)⊕ (Σ̃×φ2 E2),

where E = E1 ⊕ E2 = C2p ⊕ Cq−p, and φ1 : π1(Σ) → U(p, p) is defined as the
projection of the image of φ on U(p, p), while φ2 : π1(Σ) → U(q − p) is the
projection of the image of φ on U(q − p). Hence

Ĥ1(Σ, E) = Ĥ1(Σ, E1)⊕ Ĥ1(Σ, E2),

the flat vector bundles E1 and E2 are orthogonal to each other with respect to
Ω. From the definition of signature, see Section 2.1, one has

sign(E ,Ω) = sign(E1,Ω|E1) + sign(E2,Ω|E2).

Now we consider the case that Σ is closed. In this case, sign(E2,Ω|E2) = 0

since the Toledo invariant T(Σ, φ2) vanishes for any unitary representation. By
Theorem 6.5, one has

|T(Σ, φ)| = 1

2
| sign(E ,Ω)| = 1

2
| sign(E1,Ω|E1)|

≤ 1

2
(p+ p)|χ(Σ)| = p|χ(Σ)| = min{p, q}|χ(Σ)|.

On the other hand, by [11, Theorem 6.7], the images of all maximal represen-
tations of Toledo invariant are in U(p, p)×U(q − p) ⊂ U(p, q). Hence, by using
Atiyah-Patodi-Singer index theorem, we obtain the following Milnor-Wood in-
eqaulity

|T(Σ, φ)| ≤ min{p, q}|χ(Σ)|,

which was originally proved by A. Domic and D. Toledo [21].

Remark 6.6. For the case ∂Σ 6= ∅ and G is a group of Hermitian type, it was
proved by Burger, Iozzi and Wienhard [13, Theorem 1 (1)] that

|T(Σ, φ)| ≤ rank(G/K)|χ(Σ)|.

The above inequality was also generalized to the higher dimensional case by
using the isometric isomorphism of j∂Σ, see [12, Theorem 1, Corollary 2] or [32,
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Theorem 1.2]. More precisely,

|T(Σ, φ)| = |〈j−1
∂ΣiΣφ

∗
b(κ

b
G), [Σ, ∂Σ]〉|

≤ ‖j−1
∂ΣiΣφ

∗
b(κ

b
G)‖ · ‖[Σ, ∂Σ]‖1

= ‖φ∗b(κbG)‖ · ‖[Σ, ∂Σ]‖1
≤ ‖κbG‖ · ‖[Σ, ∂Σ]‖1
= rank(G/K) · |χ(Σ)|,

where the third equality holds since j∂Σ is an isometric isomorphism and the
Gromov isomorphism iΣ is also isometric, the fourth inequality by the fact that
the pullback is norm decreasing, and the last equality since ‖κbG‖ = rank(G/K)

2

and ‖[Σ, ∂Σ]‖1 = 2|χ(Σ)|.

6.2. Surface group representations in U(p) × U(q). We consider a repre-
sentation φ : π1(Σ)→ U(p)× U(q) ⊂ U(p, q). In this case, φ(γ) ∈ U(p)× U(q)

has the form (
a 0

0 d

)
,

where a ∈ U(p) and d ∈ U(q), γ ∈ π1(Σ). The flat bundle (E ,Ω) is a Hermitian
(indefinite) vector bundle, where Ω is a Hermitian form and Ω is given by the
matrix Ip,q with respect to the standard basis of E. Denote J := iIp,q, then
iΩ(·,J·) is positive definite. Since [J, φ(γ)] = 0 for any γ ∈ π1(Σ) and J is
constant, so J ∈ Jo(E ,Ω). Note that [d,J] = 0, so d is a peripheral connection
on E . Therefore

sign(E ,Ω) = 2

∫
Σ

(
c1(E+, d|E+)− c1(E−, d|E−)

)
+ η(AJ) = η(AJ),

since d|E± is flat. The Toledo invariant and rho invariant are given by

T(Σ, φ) = 0, ρφ(∂Σ) = η(AJ).

For the boundary component ci, we assume that

φ(ci) =

(
U 0

0 V

)(
diag(eiθi,1 , · · · , eiθi,p) 0

0 diag(eiθi,p+1 , · · · , eiθi,p+q)

)(
U−1 0

0 V −1

)
,

where U ∈ U(p) and V ∈ U(q), θi,l ∈ [0, 2π), 1 ≤ l ≤ p + q, 1 ≤ i ≤ n. From
Section 10.1, the set of all eigenvalues (with multiplicities) of AJ = J d

dx is given
by{
θi,1
2π

+ ki,1, · · · ,
θi,p
2π

+ ki,p,−
θi,p+1

2π
+ ki,p+1, · · · ,−

θi,p+q
2π

+ ki,p+q, 1 ≤ i ≤ n, ki,l ∈ Z
}
.

From the definition of eta invariant, then

sign(E ,Ω) = η(AJ) =
n∑
i=1

 ∑
j∈{θi,j 6=0}

(
1− θi,j

π

)
−

∑
l∈{θi,l 6=0}

(
1−

θi,l
π

) .

(6.7)
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From the above formula, one can obtain a bound for signature

| sign(E ,Ω)| ≤
n∑
i=1

∑
j∈{θi,j 6=0}

∣∣∣∣1− θi,j
π

∣∣∣∣+

n∑
i=1

∑
l∈{θi,l 6=0}

∣∣∣∣1− θi,l
π

∣∣∣∣
< np+ nq = n(p+ q).

For the case of g ≥ 1, then

| sign(E ,Ω)| < n(p+ q) ≤ |2g − 2 + n|(p+ q) = (p+ q)|χ(Σ)|.

For the case of g = 0, in this case, one has

| sign(E ,Ω)| ≤

∣∣∣∣∣∣
n∑
i=1

∑
j∈{θi,j 6=0}

(
1− θi,j

π

)∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑
i=1

∑
l∈{θi,l 6=0}

(
1−

θi,l
π

)∣∣∣∣∣∣ .
where the first term in the right hand side of the above inequality is exactly the
absolute value of the signature of a flat U(p)-Hermitian vector bundle. Hence,
by Theorem 6.5, we can conclude the following inequality∣∣∣∣∣∣

n∑
i=1

∑
j∈{θi,j 6=0}

(
1− θi,j

π

)∣∣∣∣∣∣ ≤ (p+ 0)|χ(Σ)| = p|2g − 2 + n| = p(n− 2).(6.8)

Similarly, one has ∣∣∣∣∣∣
n∑
i=1

∑
l∈{θi,l 6=0}

(
1−

θi,l
π

)∣∣∣∣∣∣ ≤ q(n− 2).

For a surface with genus zero, then it is a 2-sphere with n discs deleted, we
denote it by Σn. We can cut it off into (n−2) union of Σ3, and the signature of
the surface is exactly the sum of the signature of these Σ3. Hence, the inequality
(6.8) follows from the case n = 3, i.e.∣∣∣∣∣∣

3∑
i=1

∑
j∈{θi,j 6=0}

(
1− θi,j

π

)∣∣∣∣∣∣ ≤ p,(6.9)

which can be proved directly by using the results from the multiplicative Horn
problem, see Subsection 10.2.

In particular, if we take q = 0, then

sign(E ,Ω) =

n∑
i=1

 ∑
j∈{θi,j 6=0}

(
1− θi,j

π

) ,

which does not vanish in general. Since the Toledo invariant is bounded by
min{p, q}|χ(Σ)|, one might think that | sign(E ,Ω)| is also bounded from above
by 2 min{p, q}|χ(Σ)|. From the above discussion, we find that the signature can
not be bounded by the constant 2 min{p, q}|χ(Σ)| in general.
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7. Surface group representations in SO∗(2n)

In this section, we will consider the surface group representations in SO∗(2n),
one can refer to [44, Page 71-74, Section (2.4)] for the bounded symmetric
domain of type II. Recall that

SO∗(2n) :=
{
M ∈ SL(2n,C) : M>M = I2n, M

∗JnM = Jn

}
,

where I2n is the identity matrix and Jn :=

(
0 In
−In 0

)
, see [28, Page 445]. Each

element in the group SO∗(2n) leaves invariant the skew Hermitian form

−z1z̄n+1 + zn+1z̄1 − z2z̄n+2 + zn+2z̄2 − · · · − znz̄2n + z2nz̄n.

This group SO∗(2n) is isomorphic to the the following group

Go :=
{

M ∈ SL(2n,C) : M∗In,nM = In,n, M
>SnM = Sn

}
= O(n,C) ∩ SU(n, n),

where O(n,C) is the complex orthogonal group with respect to Sn =

(
0 In
In 0

)
,

and In,n =

(
In 0

0 −In

)
. The isomorphism Go ∼= SO∗(2n) is given by M 7→

UMU−1, where U = 1√
2

(
In iIn
iIn In

)
. The group Go has the following form

Go =

{
M =

(
A B

−B A

)
: M ∈ SU(n, n)

}
.

The isotropy group K ∈ Go at the origin o (i.e. the n× n zero matrix) is given
by

K =

{
M =

(
U 0

0 U

)
: M ∈ SU(n, n)

}
∼= U(n).

The bounded symmetric domain of type II is defined as

DII
n := {W ∈ DI

n,n : W> = −W}.

The group Go acts transitively on DII
n with the isotropy group K at the origin

0, hence

DII
n
∼= Go/K,

see e.g. [44, Page 74].
Let Σ be a surface with boundary, and consider surface group representations

into the group SO∗(2n). By the isomorphism Go ∼= SO∗(2n), we will identify
the groups Go and SO∗(2n). Hence, we just need to consider the surface group
representations in the group Go.

Since Go ⊂ SU(n, n) ⊂ U(n, n), so we can define the signature as in Section
2.1. For any representation φ : π1(Σ) → Go, denote E = Σ̃ ×φ E, where
E = C2n, and let Ω be the Hermitian form given by (1.1), in terms of matrices,
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Ω is represented by the matrix In,n. Denote by sign(E ,Ω) the signature of the
flat Hermitian vector bundle (E ,Ω). From Theorem 2.13, the signature can be
given by

sign(E ,Ω) = 2

∫
Σ

(
c1(E+,∇E+

)− c1(E−,∇E−)
)

+ η(AJ),

for any J ∈ J (E ,Ω). Let

JII(E,Ω) := {J ∈ J (E,Ω) : J>SnJ = Sn} = J (E,Ω) ∩Go.

The group Go acts on JII(E,Ω) by ZJZ−1, the action is transitive and the
isotropy group at iIn,n is exactly K. Hence

JII(E,Ω) ∼= Go/K ∼= DII
n .

In fact, this isomorphism can be given by JII = JI|DII
n

: DII
n → JII(E,Ω), i.e.

JII(W ) := i

(
(In +WW )−1(In −WW ) −2(In +WW )−1W

−2(In +WW )−1W −(In +WW )−1(In −WW )

)
for any W ∈ DII

n . Denote JII(E ,Ω) := C∞(Σ, Σ̃×φ JII(E,Ω)), and set

JII,o(E ,Ω) = {J ∈ JII(E ,Ω)|J = p∗J on a small collar neighborhood

of ∂Σ, where J ∈ JII(E|∂Σ,Ω)},

where p : ∂Σ × [0, 1] → ∂Σ denotes the natural projection. Let ωDII
n

be the
invariant Kähler metric on DII

n with the minimal holomorphic sectional curvature
is −1, then

ωDII
n

=
1

2
ωDI

n,n
|DII
n

= −i∂∂̄ log det(In +WW ),

see e.g. [37, Lemma 5.5]. Similar to Section 3 and (3.15), we obtain

2T(Σ, φ) =
1

2π

∫
Σ

(
J̃∗(ωDI

n,n
|DII
n

)−
q∑
i=1

d(χiJ̃
∗αi)

)

=

∫
Σ

(
c1(E−, τ J̃∗∇Fφτ−1|E−)− c1(E+, τ J̃∗∇Fφτ−1|E+)

)
− 1

2π

q∑
i=1

∫
Σ
d(χiJ̃

∗αi).

for any J ∈ JII,o(E ,Ω), where q denotes the number of connect components of
∂Σ, J̃ : Σ̃ → JII(E,Ω) ∼= DII

n is the φ-equivariant map given by J, αi = dcψi
and

ψi = − log
(
|det(WiW + In)|−2 det(In +WW )

)
,

whereWi ∈ DII
n is a fixed point of φ(ci), which is an invariant (up to a constant)

Kähler potential under the isotropy group KWi of Wi. Hence,

sign(E ,Ω) = −4 T(Σ, φ) + ρφ(∂Σ),
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where the rho invariant is given by

ρφ(∂Σ) = − 1

π

q∑
i=1

∫
Σ
d(χiJ̃

∗αi) + η(AJ).

By Theorem 6.5, one has

| sign(E ,Ω)| ≤ 2n|χ(Σ)| = dimE|χ(Σ)|.

In particular, if the surface Σ is closed, then

|T(Σ, φ)| = 1

4
| sign(E ,Ω)| ≤ n

2
|χ(Σ)|.

In particular, if n is even, then |T(Σ, φ)| ≤ n
2 |χ(Σ)| =

[
n
2

]
|χ(Σ)|, which is

exactly the Milnor-Wood inequality proved by A. Domic and D. Toledo [21].

8. Surface group representations in Sp(2n,R)

In this section, we can deal with the case of Sp(2n,R) by using the results
from U(p, q)-case and discuss some Milnor-Wood inequalities for Sp(2,R).

8.1. Signature and Toledo invariant. Recall that

Sp(2n,R) = {M ∈ GL(2n,R) : M>JnM = Jn} = Sp(2n,C) ∩GL(2n,R),

where Jn =

(
0 In
−In 0

)
, which is isomorphic to the following group

Go = Sp(2n,C) ∩ SU(n, n) =

{
M =

(
A B

B A

)
: M ∈ SU(n, n)

}
.

This isomorphism is given by

Φ : Go → Sp(2n,R), N 7→ UNU−1,

where U =

(
−iIn iIn
In In

)
. One can also refer to [44, Page 68-71, Section 2.3]

on the isomorphism between Go and Sp(2n,R), and some basic facts on the
bounded symmetric domain of type III. The isotropy subgroup of Go at the
origin o (i.e. the n× n zero matrix) is

K =

{
X =

(
U 0

0 U

)
: U ∈ U(n)

}
∼= U(n).

The group Go acts on the bounded symmetric domain DIII
n of type III transi-

tively, where

DIII
n := {W ∈ DI

n,n : W> = W}.

Hence

DIII
n
∼= Go/K ∼= Sp(2n,R)/U(n).
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Denote by Ω0 the real symplectic form on R2n with the matrix form is Jn.
For any φ0 : π1(Σ) → Sp(2n,R) ⊂ Sp(2n,C), it induces a representation φ :

π1(Σ)→ Go, i.e.
φ(·) = U−1φ0(·)U.

Denote E0 = Σ̃×φ0 R2n, E = Σ̃×φE, E = C2n and (E0)C = E0⊗C = Σ̃×φ0 C2n.
The relation between φ0 and φ gives an isomorphism between the bundles E and
(E0)C, i.e.

(E0)C ∼= E , a 7→ U−1a.

For any [a], [b] ∈ Ĥ1(Σ, (E0)C), one has

Ω0([a], [b]) = (U>Ω0U)([U−1a], [U−1b])

= (UΩ0U)([U−1a], [U−1b]).

Since the matrix form of UΩ0U is UJnU = −iIn,n, which represents the Her-
mitian form −iΩ exactly. Hence

Ω0([a], [b]) = −iΩ([U−1a], [U−1b]).(8.1)

The signature sign(E0,Ω0) of the flat symplectic vector bundle (E0,Ω0) is defined
as the symmetric quadratic form QR(·, ·) =

∫
Σ Ω0(· ∪ ·) on the space Ĥ1(Σ, E0).

Moreover, it also can be given by

sign(E0,Ω0) = sign((E0)C,Ω0)

since Ĥ1(Σ, (E0)C) = Ĥ1(Σ, E0) ⊗ C. Here the signature sign((E0)C,Ω0) is de-
fined as the signature of Hermitian form QC(·, ·) =

∫
Σ Ω0(· ∪ ·) on the space

Ĥ1(Σ, (E0)C). From (8.1), one has

QC([a], [b]) = −i
∫

Σ
Ω([U−1a], [U−1b]).

Recall that the signature sign(E ,Ω) of flat Hermitian vector bundle (E ,Ω) is
defined as the signature of the Hermitian form i

∫
Σ Ω(·, ·), which follows that

sign(E0,Ω0) = − sign(E ,Ω).(8.2)

For any representation φ0 : π1(Σ) → Sp(2n,R), and denote φ = U−1φ0U . By
Theorem 2.13, one has

sign(E ,Ω) = 2

∫
Σ

(
c1(E+,∇E+

)− c1(E−,∇E−)
)

+ η(AJ),

for any J ∈ J (E ,Ω). Let

JIII(E,Ω) := {J ∈ J (E,Ω) : J>JnJ = Jn} = J (E,Ω) ∩Go.

The group Go acts on JIII(E,Ω) by ZJZ−1, the action is transitive and the
isotropy group at iIn,n is exactly K. Hence

JIII(E,Ω) ∼= Go/K ∼= DIII
n .
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In fact, this isomorphism can be given by JIII := JI|DIII
n

: DIII
n → JIII(E,Ω),

that is

JIII(W ) = i

(
(In −WW )−1(In +WW ) −2(In −WW )−1W

2(In −WW )−1W −(In −WW )−1(In +WW )

)
.

(8.3)

for any W ∈ DIII
n .

Remark 8.1. The isomorphism JIII induces an isomorphism

JIII,0 := −UJIIIU
−1 : DIII

n → J (R2n,Ω0),

one can check that it is a bijection, where J (R2n,Ω0) denotes the subset of
Sp(2n,R) such that J2 = −I2n and Ω0(·, J ·) > 0. For any Z ∈ Sp(2n,R), then
ZJIII,0Z

−1 ∈ J (R2n,Ω), and the induced action on DIII
n is given by

(8.4) Z(W ) = (Z1W + Z2)(Z2W + Z1)−1 ∈ DIII
n ,

where Z1 and Z2 is defined by Z = U

(
Z1 Z2

Z2 Z1

)
U−1. The isomorphism

Sp(2n,R)/U(n) ∼= J (R2n,Ω) is given by Z · U(n) 7→ ZJZ−1, where J =(
0 −In
In 0

)
and U(n) ∼= {Z ∈ Sp(2n,R) : ZJZ−1 = J}.

Denote JIII(E ,Ω) := C∞(Σ, Σ̃×φ JIII(E,Ω)), and set

JIII,o(E ,Ω) = {J ∈ JIII(E ,Ω)|J = p∗J on a small collar neighborhood

of ∂Σ, where J ∈ JIII(E|∂Σ,Ω)},

where p : ∂Σ× [0, 1]→ ∂Σ denotes the natural projection. Let ωDIII
n

be the in-
variant Kähler metric on DIII

n with the minimal holomorphic sectional curvature
is −1, then

ωDIII
n

= ωDI
n,n
|DIII
n

= −2i∂∂̄ log det(In −WW ),

see e.g. [37, Lemma 5.4]. Similar to Section 3 and (3.15), we obtain

T(Σ, φ) =
1

2π

∫
Σ

(
J̃∗(ωDI

n,n
|DIII
n

)−
q∑
i=1

d(χiJ̃
∗αi)

)

=

∫
Σ

(
c1(E−, τ J̃∗∇Fφτ−1|E−)− c1(E+, τ J̃∗∇Fφτ−1|E+)

)
− 1

2π

q∑
i=1

∫
Σ
d(χiJ̃

∗αi).

for any J ∈ JIII,o(E ,Ω), where q denotes the number of connected components
of ∂Σ, J̃ : Σ̃ → JIII(E,Ω) ∼= DIII

n is a φ-equivariant map given by J, αi = dcψi
and

ψi = − log
(
| det(WiW − In)|−2 det(In −WW )

)
,
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whereWi ∈ DIII
n is a fixed point of φ(ci), which is an invariant (up to a constant)

Kähler potential under the isotropy group KWi of Wi.

Remark 8.2. Denote by

Hn = {Z ∈ Cn×n|Z = Z>, ImZ > 0}

the Siegel upper half plane, and

Ψ : DIII
n → Hn, Z = Φ(W ) = i(In −W )(In +W )−1

the identification between DIII
n and Hn. The induced action of L ∈ Sp(2n,R)

on Hn is the generalized Möbius transformation. Moreover,

det ImZ = |det(In +W )|−2 det(In −WW ).

Suppose

L = U

(
a b

b̄ ā

)
U−1 =

(
L1 L2

L3 L4

)
∈ Sp(2n,R),

where L3 = i
2(a−ā)+ i

2(b̄−b). ThenW0 = −In is a fixed point of L is equivalent
to b− b = a− a, and so L3 = 0. Hence L(−In) = −In if and only if L has the
following matrix form

L =

(
L1 L2

0 L4

)
∈ Sp(2n,R).

Thus the Kähler potential can be given by

(8.5) ψ = − log det ImZ.

Hence,

sign(E0,Ω0) = − sign(E ,Ω) = 2 T(Σ, φ)− ρφ(∂Σ),(8.6)

where the rho invariant is given by

ρφ(∂Σ) = − 1

π

q∑
i=1

∫
Σ
d(χiJ̃

∗αi) + η(AJ).

Note that T(Σ, φ) = T(Σ, φ0) due to the isomorphism Go ∼= Sp(2n,R) and
φ = U−1φ0U . Denote

ρφ0(∂Σ) :=
1

π

q∑
i=1

∫
Σ
d(χiJ̃0

∗
αi) + η(AJ0)(8.7)

for any J0 ∈ Jo(E0,Ω0), where Jo(E0,Ω0) is defined as

Jo(E0,Ω0) = {J ∈ J (E0,Ω0)|J = p∗J on a small collar neighborhood

of ∂Σ, where J ∈ J (E0|∂Σ,Ω0)},
(8.8)
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and J (E0,Ω0) := C∞(Σ, Σ̃ ×φ0 J (R2n,Ω0)). From the definition of JIII,0, see
Remark 8.1, one has

JIII,0(W ) = −UJI(W )U−1,

where JI(W ) is given by (8.3). For any J ∈ JIII,o(E ,Ω), denote

J0 = U(−J)U−1,

one can check that J0 ∈ Jo(E0,Ω0). For any tangent vector X ∈ T Σ̃, one has

(J̃∗α)(X) = α(J̃∗X) = α((J−1
I ◦ J)∗X)

= α(((J−1
I ◦ (−U−1J0U))∗X)

= α((J−1
III,0 ◦ J0)∗X)

= α((J̃0)∗X) = (J̃∗0α)(X),

(8.9)

which follows that J̃∗α = J̃∗0α. For the eta invariants, one has

η(AJ) = −η(AJ0).(8.10)

Thus,

ρφ(∂Σ) = −ρφ0(∂Σ),(8.11)

which implies that

sign(E0,Ω0) = 2 T(Σ, φ0) + ρφ0(∂Σ).

By Theorem 6.5, one has

| sign(E0,Ω0)| = | sign(E ,Ω)| ≤ 2n|χ(Σ)| = dimE|χ(Σ)|.

In particular, if the surface Σ is closed, then

|T(Σ, φ0)| = 1

2
| sign(E0,Ω0)| ≤ n|χ(Σ)|,

which is exactly the Milnor-Wood inequality for the real symplectic group proved
by Turaev [52].

Remark 8.3. Following [4], if we consider the unitary representation, i.e.

φ : π1(Σ)→ U(n) = {A+ iB ∈ U(n)} ∼=
{
Z =

(
A B

−B A

)
∈ Sp(2n,R)

}
.

Then [Z, J ] = 0 where J =

(
0 −In
In 0

)
is the standard complex structure.

Hence J ∈ Jo(E0,Ω0), and so

T(Σ, φ) =
1

2π

∫
Σ
J̃∗ωDIII

n
− 1

2π

q∑
i=1

∫
ci

J̃∗αi = 0,

and

ρφ(∂Σ) =
1

π

q∑
i=1

∫
ci

J̃∗αi + η(AJ) = η(AJ).
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Hence
sign(E ,Ω) = ρφ(∂Σ) = η(AJ),

which is is agrement with [4, Theorem 2.2, Theorem 2.4].

8.2. Improved Milnor-Wood inequalities for Sp(2,R). We show that for
the target group Sp(2,R), an upper bound on Toledo invariant can be given that
sometimes improves upon previously known bounds. We consider representa-
tions φ : π1(Σ) → Sp(2,R). Burger-Iozzi-Wienhard’s Milnor-Wood inequality
reads

|T(Σ, φ)| ≤ |χ(Σ)|.
We shall introduce a boundary contribution which makes the right hand side
smaller. Here, {x} = x− bxc denotes the fractional part of a real number x.

Proposition 8.4. For representations φ : π1(Σ)→ Sp(2,R),

(8.12) T(Σ, φ) ≤ |χ(Σ)|+ 1−
∑

c ;φ(c) elliptic

{
ρ(φ(c))

2

}
Proof. We need to understand rho invariants of elements of Sp(2,R). By defi-
nition, one embeds Sp(2,R) into U(1, 1) and computes the rho invariant there.

An elliptic element R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
is mapped to a C-linear map L of

C2 with eigenvalues eiθ and e−iθ = ei(2π−θ) and eigenvectors e+ and e− such
that Ω(e+, e+) = 1 and Ω(e−, e−) = −1, hence its rho invariant is

ρ(L) = (1− θ

π
)− (1− 2π − θ

π
) = 2(1− θ

π
).

A unipotent element exp(N) =

(
1 µ

0 1

)
is mapped to a unipotent C-linear map

L′ of C2 with the same matrix. The Sp(2,R)-invariant symplectic structure on
R2 is the determinant. The corresponding Hermitian form on C2 is Ω(u, v) =

det(iu, v̄). The Hermitian form τ is

τ(u, v) = Ω((iN)u, v) = −µu2v2,

the sign of the Hermitian form τ̄ induced on C2/ Im(N) is the sign of −µ, hence
its rho invariant is

ρ(L′) = − sgn(µ).

(for a double-check of these calculations, see the Appendix, Subsection 10.1).
We start with the signature formula and Milnor-Wood type inequality (The-

orem 0.4)

T(Σ, φ) =
1

2
sign(E)− 1

2

∑
c

ρ(φ(c))

≤ |χ(Σ)| −
∑
c

ρ(φ(c))

2
.
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A boundary contribution ρ(φ(c)) is negative when
• either φ(c) is elliptic with angle θ(c) > π,
• or φ(c) is unipotent with negative sign.

Changing φ(c) with −φ(c) replaces

• in the elliptic case, ρ(φ(c))
2 = 1 − θ(c)

π with ρ(−φ(c))
2 = 1 − θ(c)−π

π =

{ρ(φ(c))
2 },

• in the unipotent case, ρ(φ(c))
2 = −1

2 with 0, since −φ(c) is an elliptic-
unipotent with angle θ = π and ρ(−φ(c))

2 = 0.
The idea is to modify φ by replacing an even number of boundary holonomies
φ(c) with −φ(c). This is compatible with the standard presentation (6.3) of
π1(Σ). This does not change the Toledo invariant, since both representations
define the same action on the symmetric space. This allows to get rid of all
negative boundary contributions but possibly one. Whence the extra term of 1

in the right hand side. �

Remark 8.5. By replacing φ by φ−1, and note that T(Σ, φ) = −T(Σ, φ−1),
Proposition (8.4) gives

−|χ(Σ)| − 1 +
∑

φ(ck) is elliptic

θk
π
≤ T(Σ, φ) ≤ |χ(Σ)|+ 1−

∑
φ(ck) is elliptic

(
1− θk

π

)
,

where θk ∈ (0, π) such that [R(θk)] is conjugate to [φ(ck)] ∈ PSL(2,R) =

SL(2,R)/{±I}, and [•] denotes the class in PSL(2,R).

Remark 8.6. Note that the equalities in (8.12) can be attained. For example,
we consider a cylinder Σ = S1 × [0, 1], and the elliptic representation φ is given
by φ(S1 × {0}) = R(θ) and φ(S1 × {1}) = R(2π − θ) for some θ ∈ (0, π). In
this case, T(Σ, φ) = χ(Σ) = 0, θ1 = θ and θ2 = π − θ ∈ (0, π), and so

−|χ(Σ)| − 1 +

2∑
k=1

θk
π

= T(Σ, φ) = |χ(Σ)|+ 1−
2∑

k=1

(
1− θk

π

)
.

Remark 8.7. Each element L = R(θ) ∈ Sp(2,R), θ ∈ (0, π) gives an au-
tomorphism LD = ei(2π−2θ) acting on the unit disc D. In fact, note that
DIII

1 = D = {w ∈ C||w| < 1} is the unit disc in the complex plane, and

L = U

(
e−iθ 0

0 eiθ

)
U−1,

where U and U−1 are given by (10.1), and by Remark 8.1, so

LD(w) = e−iθwe−iθ = e−2iθw = ei(2π−2θ)w.

If we denote φk = 2π − 2θk ∈ (0, 2π), then φ(ck)D = eiφk . By Proposition 8.4,
one has

(8.13) − |χ(Σ)| − 1 +

q∑
k=1

(
1− φk

2π

)
≤ T(Σ, φ) ≤ |χ(Σ)|+ 1−

q∑
k=1

φk
2π
.



74 INKANG KIM, PIERRE PANSU AND XUEYUAN WAN

If the representation φ is the holonomy of a cone hyperbolic surface S with
cone angles φk ∈ (0, 2π), one can refer to [46, 51] for the definition of the
surfaces with conical singularities, then S can be identified with D/φ(π1(Σ)).
To get the cone point of cone angle 0 < φ ≤ 2π, we need to identify the sector
of angle φ by the rotation of anlge −(2π − φ), hence we need R(θ) such that
−(2π − φ) = −2θ. The induced representation on the boundary is conjugate
to the rotation R(θk) ∈ SL(2,R) with θk ∈ (0, π), where 1 ≤ k ≤ q. Then the
Toledo invariant is exactly the area of S and can be given by

T(Σ, φ) =
1

2π
Area(S) = −

(
χ(Σ) +

1

2π

q∑
k=1

(φk − 2π)

)
= −χ(Σ)−

q∑
k=1

φk
2π
,

where Σ is a closed surface obtained by capping off the boundary of Σ. Similarly,
by conjugating φ with an orientation-reversing isometry τ of D, then we obtain
a representation φτ with cone angles 2π − φk, and T(Σ, φτ ) ≤ 0. Hence,

T(Σ, φτ ) = χ(Σ)− 1

2π

q∑
k=1

φk = χ(Σ) +

q∑
k=1

(
1− φk

2π

)
.

Recall that L is called parabolic if all eigenvalues of L are ±1. The reason is
as follows.

Proposition 8.8. If L is parabolic, then it fixes a point at the Shilov boundary
of DIII

n .

Proof. From [27, Theorem 1], there exists a symplectic basis such that L is
symplectic direct sum of matrices of the form

L|R2rj =

(
J (λ, rj)

−1 C (rj , sj , λ)

0 J (λ, rj)
>

)
∈ Sp(2rj ,R)

where C (rj , sj , λ) := J (λ, rj)
−1 diag (0, . . . , 0, sj) with sj ∈ {0, 1,−1}, J(λ, r)

is the elementary r × r Jordan matrix associated to λ. By Remark 8.2, −Irj is
a fixed point of L|R2rj . Hence −In is a fixed point of L. With respect to the
other basis, the matrix of L is PLP−1 for some matrix P ∈ Sp(2n,R). Hence
P (−In) is a fixed point of L, which is also at the Shilov boundary of DIII

n since
the Shilov boundary is an orbit of the action of Sp(2n,R) on DIII

n . �

Proposition 8.9. If there exists a boundary component c such that the repre-
sentation φ(c) has an eigenvalue 1, then | sign(E ,Ω)| < dimE · |χ(Σ)|.

Proof. From (6.5), one has

± sign(E ,Ω) ≤ −dimEχ(Σ)− dim H0(∂Σ, E).

If there exists a boundary component c such that the representation φ(c) has an
eigenvalue 1, then φ(c) fixes a nonzero vector in E, and so dim H0(∂Σ, E) ≥ 1.
Hence

(8.14) ± sign(E ,Ω) ≤ −dimEχ(Σ)− 1 < dimE · |χ(Σ)|,



SIGNATURE AND TOLEDO INVARIANTS FOR FLAT UNITARY BUNDLES 75

which completes the proof. �

Example 8.10. While for a surface with one boundary component c satisfies
φ(c) has an eigenvalue −1, then the signature sign(E ,Ω) may attain the maximal
dimE ·|χ(Σ)|. For example, we consider a surface Σ3 with boundary components
p1, p2, p3, which is homeomorphic to a surface a 2-sphere with 3 discs deleted,
and consider a representation φ : π1(Σ3)→ SO(2) ⊂ Sp(2,R) such that

φ(p1) = −I2, φ(p2) = R(θ), φ(p3) = R(π − θ)

for some θ ∈ (0, π). From Remark 8.3 and (10.7), one has

T(Σ3, φ) = 0, ρφ(∂Σ3) = 2(1− θ

π
) + 2(1− π − θ

π
) = 2,

which follows that

sign(E ,Ω) = 2 T(Σ3, φ) + ρφ(∂Σ3) = 2 = dimE · |χ(Σ3)|

since dimE = 2 and χ(Σ3) = −(2 · 0− 2 + 3) = −1.

9. Surface group representations in SO0(n, 2)

In this section, we will consider the surface group representations in SO0(n, 2),
one can refer to [44, Page 75-78, Section 2.5] for the group SO0(n, 2) and the
bounded symmetric domain DIV

n of type IV.
Let (x1, · · · , xn+2) be the Euclidean coordinates on Rn+2 with respect to the

standard basis {ei}1≤i≤n+2. Let Ω be an indefinite quadratic form of signature
(n, 2) defined by

Ω(x, x) = (x1)2 + · · · (xn)2 − (xn+1)2 − (xn+2)2.

By complexification, denote E = Rn+2 ⊗ C = Cn+2 and the quadratic form Ω

can be C-linearly extended to E. Consider on Cn+2 the space of complex lines L
such that Ω|L ≡ 0, this space can be identified with the hyperquadric Qn ⊂ Pn+1

defined by the homogeneous equation (w1)2+· · ·+(wn)2−(wn+1)2−(wn+2)2 = 0,
where wj = xj + iyj , 1 ≤ j ≤ n + 2 denote the complex coordinates of Cn+2.
Denote H(·, ·) = Ω(·, ·), then H is a Hermitian form on Cn+2. Define

D0 := {L ∈ Qn : H|L < 0} .

The condition L ∈ D0 means{ ∑
1≤i≤n(wi)2 − (wn+1)2 − (wn+2)2 = 0,∑
1≤i≤n |wi|2 < |wn+1|2 + |wn+2|2.

(9.1)
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By the transformation of coordinates w = Uz, i.e.

w1

w2

...
wn

wn+1

wn+2


= U



z1

z2

...
zn

zn+1

zn+2


, where U =

In 0 0

0 1√
2

1√
2

0 − i√
2

i√
2

 ,(9.2)

then the condition (9.1) is reduced to{ ∑
1≤i≤n(zi)2 − 2zn+1zn+2 = 0,∑
1≤i≤n |zi|2 < |zn+1|2 + |zn+2|2.

(9.3)

On the subset Qn defined by zn+1 6= 0, we can identify (z1, · · · , zn) ∈ Cn
with the point [z1, · · · , zn, 1, 1

2

∑
1≤i≤n(zi)2]. The condition (9.3) implies that

|zn+2| 6= 1, see [44, Page 76]. Then the bounded symmetric domain DIV
n of type

IV is defined as the connected component containing the point [0, · · · , 0, 1, 0] ∈
Qn. Hence

DIV
n =

z = (z1, · · · , zn)> ∈ Cn : ‖z‖2 < 2 and ‖z‖2 < 1 +

∣∣∣∣∣12
n∑
i=1

(zi)2

∣∣∣∣∣
2
 .

Let SO(n, 2) be the real group acting on Rn+2 and preserving the quadratic
form Ω, which induces an action on Qn. Denote by Go = SO0(n, 2) the identity
component of SO(n, 2). Then the group Go acts transitively on DIV

n with the
isotropy group K is isomorphic to SO(n)× SO(2). Hence

DIV
n
∼= SO0(n, 2)/(SO(n)× SO(2)).

For any L ∈ SO0(n, 2), and for any z ∈ DIV
n , then

zL = U−1LU

 z

1
1
2

∑n
i=1(zi)2


is a column vector in Cn+2 with zn+1

L 6= 0. Then the action of the group
Go = SO0(n, 2) on DIV

n is given by

L(z) =

(
z1
L

zn+1
L

, · · · ,
znL
zn+1
L

)>
∈ DIV

n .(9.4)

Let Σ be a surface with boundary, and for any representation φ : π1(Σ) →
SO0(n, 2), denote E = Σ̃×φ E = Σ̃×φ C2n. Then the following form

QC(·, ·) = i

∫
Σ
H(· ∪ ·) = i

∫
Σ

Ω(· ∪ ·),
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is a non-degenerate Hermitian form on the space Ĥ1(Σ, E). We define the sig-
nature sign(E ,Ω) of flat vector bundle (E ,Ω) associated with the representation
φ : π1(Σ)→ SO0(n, 2) as the signature of the form QC(·, ·).

Note that the form
∫

Σ Ω(· ∪ ·) is real (i.e.
∫

Σ Ω([a] ∪ [b]) =
∫

Σ Ω([a] ∪ [b])),
non-degenerate and skew-symmetric (i.e.

∫
Σ Ω([a] ∪ [b]) = −

∫
Σ Ω([b] ∪ [a])), so

its eigenvalues have the form

±λ1,±λ2, · · · ,±λN ,

where N = 1
2 dim Ĥ1(Σ, E) and each λi is purely imaginary and nonzero, which

follows that the numbers of positive and negative eigenvalues of the Hermitian
form QC are equal. Hence

(9.5) sign(E ,Ω) = 0.

On the other hand, by using Atiyah-Patodi-Singer index theorem, we can
also give a precise formula for the signature sign(E ,Ω). Denote by J (ER,Ω)

the subspace of SO0(n, 2) such that J2 = Id and Ω(·, J ·) > 0. Set J (ER,Ω) =

C∞(Σ, Σ̃×φ J (ER,Ω)), ER := Σ̃×φER where ER = Rn+2. There is a canonical
action of SO0(n, 2) on J (ER,Ω) by Z(J) = ZJZ−1 for any Z ∈ SO0(n, 2),
the action is transitive, and the isotropy group at the point In,2 ∈ J (ER,Ω) is
exactly SO(n)× SO(2). Hence

DIV
n
∼= SO0(n, 2)/(SO(n)× SO(2)) ∼= J (ER,Ω).

For any J ∈ J (ER,Ω), let E = E+ ⊕ E− be the decomposition of E correspond-
ing to the ±i-eigenspace of iJ. With respect to iJ, we call ∇ is a peripheral
connection on E if ∇ is a real connection (i.e. ∇ = ∇) and satisfies the following
conditions on a collar neighborhood of ∂Σ:

(i) ∇ = d+ C(x)dx for some C = C(x) ∈ A0(∂Σ,End(E));
(ii) [∇,J] = 0;
(iii) ∇ preserves the quadratic form Ω.

Similar to Section 2 and Theorem 2.13, we obtain

sign(E ,Ω) = 2

∫
Σ

(
c1(E+,∇E+

)− c1(E−,∇E−)
)

+ η(AiJ),(9.6)

where ∇E+
= ∇|E+ , ∇E− = ∇|E− and ∇ is a peripheral connection on E .

For any z ∈ DIV
n , since the group SO0(n, 2) acts transitively on DIV

n , so there
exists L ∈ SO0(n, 2) such that L(0) = z, where L(0) is defined by (9.4) and 0

denotes the origin in Cn. We define

JIV(z) := LIn,2L
−1 ∈ J (ER,Ω).

In fact, the definition for JIV(z) is well-defined, for another L′ ∈ SO0(n, 2)

with L′(0) = z, then L−1L′ ∈ SO(n) × SO(2), which follows that L′In,2L′−1 =

L(L−1L′In,2L
′−1L)L−1 = LIn,2L

−1, so JIV(z) is independent of the choice of
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L ∈ SO0(n, 2) with L(0) = z. One can check that JIV = JIV(z) : DIV
n →

J (ER,Ω) is an isomorphism. For any z ∈ DIV
n , we can take

L = U · 1

a
V · U−1, where V =

A z z

z> 1 1
2z
>z

z> 1
2z
>z 1


where U is given by (9.2), A = aIn + bzz> + bzz> + czz> + czz> and

a =

√
1 + |1

2
z>z|2 − ‖z‖2, b =

a+ 1

2(1 + a− 1
2‖z‖2)

, c = − z>z

4(1 + a− 1
2‖z‖2)

.

One can check that L is real and L>In,2L = In,2, so L ∈ SO0(n, 2). Moreover,
L(0) = z. Hence

JIV(z) = UV In,2V
−1U−1.

Now we define a connection on the trivial bundle F = DIV
n × Cn+2 by

∇ = UV ((d+ θ) · In+2)V −1U−1

= d+ UV (dV −1)U−1 + θIn+2

= d+ (UV U−1)d(UV U−1)−1 + θIn+2,

where θ = 1
2d log a2. Then ∇ is real and [∇,JIV] = 0. Denote ∇ = d+C where

C = UV (dV −1)U−1 + θIn+2.

Then

C>In,2 + In,2C = C
>
In,2 + In,2C

= UdV −1V U−1In,2 + In,2(UV (dV −1)U−1) + 2θIn,2

= −UV −1(dV In,2V + V In,2dV )V −1U−1 + 2θIn,2

= −UV −1d(V In,2V )V −1U−1 + 2θIn,2.

By a direct calculation, one has V In,2V = a2In,2. Hence

C>In,2 + In,2C = −UV −1da2In,2V
−1U−1 + 2θIn,2

= −d log a2UIn,2U
−1 + 2θIn,2

= −d log a2In,2 + 2θIn,2 = 0.

Thus, ∇ preserves the quadratic form Ω. Similar to Section 3.4, one can define
the vector bundles F , Fφ, F±, F±φ . Denote ∇F± := ∇|F± . Then the curvature
of ∇F± vanishes, and c1(F+

φ ,∇
Fφ |F+

φ
) = 0. Let

Jo(ER,Ω) = {J ∈ J (ER,Ω)|J = p∗J on a small collar neighborhood

of ∂Σ, where J ∈ J (ER|∂Σ,Ω)},
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For any J ∈ Jo(ER,Ω), then τ J̃∗∇Fφτ−1 is a peripheral connection and

c1

(
E+, τ J̃∗∇Fφτ−1|E+

)
= c1

(
J̃∗F+

φ , J̃
∗∇Fφ

∣∣∣
J̃∗F+

φ

)
= J̃∗c1

(
F+
φ , ∇

Fφ
∣∣
F+
φ

)
= J̃∗c1

(
F+,∇|F+

)
.

(9.7)

Here τ : J̃∗Fφ → E is an isomorphism, which is given by (3.12). Set

(f1, · · · , fn+2) = (e1, · · · , en+2)UV,

where {e1, · · · , en+2} denotes the standard basis of Cn+2. With respect to the
basis {f1, · · · , fn+2}, the matrix of J is In,2, so that {f1, · · · , fn} forms a basis
of F+, while {fn+1, fn+2} is a basis of F−. From the definition of ∇, then

∇(e1, · · · , en+2) = (e1, · · · , en+2)(UV (dV −1)U−1 + θIn+2).

Hence
∇(f1, · · · , fn+2) = ∇((e1, · · · , en+2)UV )

= (e1, · · · , en+2)(UV (dV −1)U−1 + θIn+2)UV + (e1, · · · , en+2)UdV

= (e1, · · · , en+2)UV · θ = (f1, · · · , fn+2)θ,

which means ∇ = d + θ · IdF with respect to the basis {f1, · · · , fn+2}. Thus,
with respect to the frame {f1, · · · , fn}, the connection ∇|F+ is given by

∇|F+ = d+ θ · IdF+ ,

whose curvature is
(dθ + θ ∧ θ)IdF+ = 0,

which follows that c1 (F+,∇|F+) = 0, and one has by (9.7)

c1(E+, τ J̃∗∇Fφτ−1|E+) = 0.

Similarly, c1(E−, τ J̃∗∇Fφτ−1|E−) = 0. By (9.5) and (9.6), one has

η(AiJ) = sign(E ,Ω) = 0(9.8)

for any J ∈ Jo(ER,Ω).

Example 9.1. For the two groups SL(2,R) and SO0(1, 2) = {(aij) ∈ SO(1, 2) :

a11 > 0}, we have the following canonical map

Ψ : SL(2,R)→ SO0(1, 2)

Ψ

(
a b

c d

)
=

1
2(a2 + b2 + c2 + d2) 1

2(a2 − b2 + c2 − d2) −ab− cd
1
2(a2 + b2 − c2 − d2) 1

2(a2 − b2 − c2 + d2) cd− ab
−ac− bd bd− ac ad+ bc

 ,

where
(
a b

c d

)
∈ SL(2,R), ad − bc = 1. The mapping Ψ is a double covering

with kernel ±I2. It is well-known that there is a classification for the group
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SL(2,R), i.e. hyperbolic, elliptic and parabolic elements, see e.g. Section 10.1.
By using the mapping Ψ, one can give a classification of SO0(1, 2) as follows:

(1) L is hyperbolic, i.e. Tr(L) > 3. In this case, λ 6∈ S1and λ ∈ R, L has
the normal form:

Ψ

(
λ 0

0 1
λ

)
=

 cosh θ sinh θ 0

sinh θ cosh θ 0

0 0 1

 , θ = log λ2.

(2) L is elliptic, i.e. Tr(L) ∈ (−1, 3). In this case, L has the normal form

Ψ

(
cos θ1 − sin θ1

sin θ1 cos θ1

)
=

1 0 0

0 cos(2θ1) sin(2θ1)

0 − sin(2θ1) cos(2θ1)

 ,

where θ1 ∈ (0, π) ∪ (π, 2π).
(3) L is parabolic, i.e. Tr(L) = 3. L has the normal form:

Ψ

(
λ µ

0 λ

)
=

µ2

2 + 1 −µ2

2 −λµ
µ2

2 1− µ2

2 −λµ
−λµ λµ 1

 ,

where µ ∈ R, λ = ±1.

For any representation φ : π1(S1) → SO0(1, 2), we assume L = φ(S1) ∈
SO0(1, 2). If L = exp(2πB), then we can take

J = exp(−xB)I1,2 exp(xB).

Similar to Section 10.1, the eigenvalues (with multiplicities) of AiJ are given by
the following equation:

exp(2π(−σiI1,2 +B))e = e.

(1) L is hyperbolic, one can take B as

B =

 0 θ
2π 0

θ
2π 0 0

0 0 0

 .

Then the set of all eigenvalues (with multiplicities) of AiJ is{
k,±

√
k2 + (

θ

2π
)2, k ∈ Z

}
,

which is symmetric. Hence η(AiJ) = 0.
(2) L is elliptic, one can take B as

B =

0 0 0

0 0 θ1
π

0 − θ1
π 0

 .
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Then the set of eigenvalues (with multiplicities) of AiJ is{
k, k ± θ1

π
, k ∈ Z

}
,

which is symmetric. Hence η(AiJ) = 0.
(3) L is parabolic, one can take B as

B =

 0 0 −λµ
2π

0 0 −λµ
2π

−λµ
2π

λµ
2π 0

 .

Then the set of eigenvalues (with multiplicities) of AiJ is given by solving the
equation

det(−σiI1,2 +B + kiI3) = 0, k ∈ Z,

see Remark 10.1, which is also equivalent to solve

σ3 + kσ2 − (k2 + 2(
µ

2π
)2)σ − k3 = 0, k ∈ Z.(9.9)

If σ0 is a solution of the above equation (9.9) with respect to k = k0 ∈ Z, i.e.

σ3
0 + k0σ

2
0 − (k2

0 + 2(
µ

2π
)2)σ0 − k3

0 = 0,

which is also equivalent to

(−σ0)3 + (−k0)(−σ0)2 − ((−k0)2 + 2(
µ

2π
)2)(−σ0)− (−k0)3 = 0,

which means that −σ0 is a solution of (9.9) with respect to k = −k0 ∈ Z.
Hence the set Eigen (AiJ) of eigenvalues with multiplicities of the operator AiJ
is symmetric, which follows tha η(AiJ) = 0.

Denote by ωDIV
n

the Kähler metric with the minimal holomorphic sectional
curvature is −1, then

ωDIV
n

= −2i∂∂̄ log

1 +

∣∣∣∣∣12
n∑
i=1

(zi)2

∣∣∣∣∣
2

−
n∑
i=1

∣∣zi∣∣2
 ,

see e.g. [44, Page 87]. Similar to Section 3 and (3.11), the Toledo invariant
T(Σ, φ) can be given by

T(Σ, φ) =
1

2π

∫
Σ

(
J̃∗ωDIV

n
−

q∑
i=1

d(χiJ̃
∗αi)

)
for any J ∈ Jo(ER,Ω), where q denotes the number of connect components of
∂Σ, J̃ : Σ̃→ DIV

n (∼= J (ER,Ω)) is the φ-equivariant map given by J, αi = dcψi,
ψi is a φ(ci)-invariant (up to a constant) Kähler potnetial with dαi = ωDIV

n
.

In fact, for any z0 ∈ DIV
n , the isotropy group of z0 is Kz0 := {L ∈ SO0(n, 2) :
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L(z0) = z0}, then the Kz0-invariant (up to a constant) Kähler potential ψz0
with ddcψz0 = ωDIV

n
can be given by

ψz0(z) = − log

(∣∣∣∣−z∗0z + 1 +
1

4
z>0 z0 · z>z

∣∣∣∣2 (1 + |1
2
z>z|2 − ‖z‖2)

)
.

10. Appendix

In this section, we will calculate the eta invariant and rho invariant for the
group U(1, 1), and explain the classification of nilpotent conjugacy classes in
U(p, q). In the last subsection, we will give a geometric proof of the Milnor-
Wood inequality for the bounded cohomology Toledo invariant.

10.1. The eta invariant and the rho invariant for the group U(1, 1).
Every L ∈ U(1, 1) has the form

L = eiθL1

where θ ∈ [0, 2π), and

L1 :=

(
a b

b̄ ā

)
∈ SU(1, 1),

i.e. |a|2 − |b|2 = 1. It is known that the group SU(1, 1) is isomorphic to the
special linear group SL(2,R). More precisely, the isomorphism is given by

Φ : SU(1, 1)→ SL(2,R),

Φ

((
a b

b̄ ā

))
= U

(
a b

b̄ ā

)
U−1 = Re

(
a− b −ia− ib
ia− ib a+ b

)
,

where

U =
1√
2

(
−i i

1 1

)
, U−1 =

1√
2

(
i 1

−i 1

)
.(10.1)

Hence, one can give the definitions of hyperbolic, parabolic and elliptic ele-
ments in SU(1, 1) through the isomorphism Φ and the classification of SL(2,R).

More precisely, for any L1 =

(
a b

b̄ ā

)
∈ SU(1, 1), it is called

(i) hyperbolic if |Re(a)| > 1;
(ii) elliptic if |Re(a)| < 1;
(iii) parabolic if Re(a) = ±1.

In this section, we always assume

J =

(
i 0

0 −i

)
.

Note that

Φ(J) = UJU−1 =

(
0 1

−1 0

)
= −

(
0 −1

1 0

)
=: −J0.
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For any L = eiθL1 ∈ U(1, 1), where L1 =

(
a b

b̄ ā

)
∈ SU(1, 1), then

L = ±eiθ exp(2πU−1BU) = ±eiθU−1 exp(2πB)U,

for some B ∈ sl(2,R). The canonical almost complex structure is given by

J : = exp(−xU−1BU)J exp(xU−1BU) = U−1 exp(−xB)(UJU−1) exp(xB)U

= −U−1 exp(−xB)J0 exp(xB)U = −U−1J0U,

where J0 := exp(−xB)J0 exp(xB). Suppose s ∈ A0(R, E)L = A0(S1, Eφ) is an
eigenvector of AJ belongs to the eigenvalue σ ∈ R, then

d

dx
s = −σJs = U−1σJ0Us = U−1σ exp(−xB)J0 exp(xB)Us.

By solving the above ordinary differential equation, we obtain

s(x) = U−1 exp(−xB) exp(x(σJ0 +B))Us(0).

The L-equivariant condition s(x+ 2π) = L−1s(x) is equivalent to

exp(2π(σJ0 +B))Us(0) =

{
e−iθUs(0), if L = eiθ exp(2πU−1BU);

−e−iθUs(0), if L = −eiθ exp(2πU−1BU).

If s1(x) = s2(x) is an eigenvector of AJ, then

(σs1(x), s1(0)) = (σs2(x), s2(0)) ∈ R× (C2\{0})

is a solution of the following equation

exp(2π(σJ0 +B))Ue =

{
exp(−iθ)Ue, if L = exp(iθ) exp(2πU−1BU);

− exp(−iθ)Ue, if L = − exp(iθ) exp(2πU−1BU).

(10.2)

For a subset S in the set of all solutions R × (C2\{0}) of (10.2), we call S is
maximally C-independent if for any eigenvalue σ,Sσ = ∪(σ,e)∈S{e} is maximally
C-linearly independent in the set of all vectors associated with σ. If S is a
maximally C-linearly independent subset in the set of all solutions of (10.2),
then the set of eigenvalues (with multiplicities) of AJ are given by the following
disjoint union

Eigen(AJ) =
⊔

(σ,e)∈S

{σ}.

Remark 10.1. If σ is a solution of exp(2π(σJ0 +B))Ue = exp(−iθ)Ue, which
means that 2πki is an eigenvalue of 2π(σJ0+B)+iθI2, k ∈ Z, which is equivalent
to

det(2π(σJ0 +B) + iθI2 − 2πikI2) = 0.(10.3)

Hence, if L = exp(iθ) exp(2πU−1BU), the set of eigenvalues (with multiplici-
ties) of AJ is given by solving the equation (10.3). Similar for the case L =

− exp(iθ) exp(2πU−1BU), we just need to solve det(2π(σJ0 +B) + i(θ+π)I2−
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2πikI2) = 0. Note that B ∈ sl(2,R), so Tr(B) = 0. If moreover, 2π(σJ0 +B) is
diagonalizable, then

2π(σJ0 +B) + i(θ + 2kπ)I2 = P−1

(
λ1 0

0 0

)
P.

Hence λ1 = Tr(2π(σJ0 +B) + i(θ + 2kπ)I2) = 2i(θ + 2kπ), and so

exp(2π(σJ0 +B) + iθI2) = P−1

(
e2θi 0

0 0

)
P.

Thus, the σ has the multiplicity 2 if θ = 0, π, and σ has the multiplicity 1 if
θ 6= 0, π.

The following lemma is useful in the calculation of eta invariant.

Lemma 10.2. If there exists a constant c0 > 0 such that (ak2 + bk + c)1/2 ≥
l + c0k for any k ≥ 1, where l > 0, a > 0, s ∈ (0, 1/2) and b, c ∈ R, then

lim
s→0

∞∑
k=1

(
1

((ak2 + bk + c)1/2 − l)s
− 1

((ak2 + bk + c)1/2 + l)s

)
=

2l√
a
.

Proof. Denote

F (k) : =
1

((ak2 + bk + c)1/2 − l)s
− 1

((ak2 + bk + c)1/2 + l)s

= ls

∫ 1

−1

dθ

((ak2 + bk + c)1/2 − θl)s+1
.

Then

∞∑
k=1

F (k) =
∞∑
k=1

ls

∫ 1

−1

dθ

((ak2 + bk + c)1/2 − θl)s+1

=

∞∑
k=1

ls

ks+1

∫ 1

−1

(
ks+1

((ak2 + bk + c)1/2 − θl)s+1
− (

1√
a

)s+1

)
dθ +

∞∑
k=1

2ls

ks+1
(

1√
a

)s+1.

(10.4)

Define a continuous function f(x) = ((a+ bx+ cx2)1/2 − θlx)−(s+1), x ∈ [0, 1].
By assumption, one has 0 < f(x) ≤ c−(s+1)

0 . Thus

|f ′(x)| = (s+ 1)f(x)
s+2
s+1 |1

2
(a+ bx+ cx2)−1/2(b+ 2cx)− θl| ≤ C(s+ 1),

which follows that |f( 1
k )− f(0)| ≤ C(s+ 1) 1

k , and so∣∣∣∣ ks+1

((ak2 + bk + c)1/2 − θl)s+1
− (

1√
a

)s+1

∣∣∣∣ ≤ C(s+ 1)
1

k
,

which implies that the first term in RHS of (10.4) vanishes since lims→0 s(s +

1)ζ(s+ 2) = 0, where ζ(s) =
∑∞

k=1 k
−s is the zeta function. Hence

lim
s→0

∞∑
k=1

F (k) = lim
s→0

∞∑
k=1

2ls

ks+1
(

1√
a

)s+1 = 2l lim
s→0

sζ(s+ 1)(
1√
a

)s+1 =
2l√
a
,
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where the last equality follows from the fact lims→0 sζ(s+ 1) = 1. �

For the group SU(1, 1), L1 ∈ SU(1, 1) has the following normal form:

(1) L1 is hyperbolic. In this case, λ 6∈ S1and λ ∈ R, L1 has the form:

U−1

(
λ 0

0 1
λ

)
U ;

(2) L1 is elliptic. In this case, the eigenvalue λ ∈ S1\{±1}, L1 is given by

U−1R(θ1)U = U−1

(
cos θ1 − sin θ1

sin θ1 cos θ1

)
U,

where θ1 ∈ (0, π) ∪ (π, 2π).
(3) L1 is parabolic. L1 has the following form:

U−1

(
λ µ

0 λ

)
U,

where µ ∈ R, λ = ±1.

Now we will calculate the eta invariant η(AJ) and rho invariant ρφ(S1). For
the bounded symmetric domain of type I, we have the following isomorphism

JIII,0 : DIII
1 = DI

1,1 → J (R2,−J0), JIII,0(W ) = −UJI(W )U−1.

From (8.9), one has

J̃∗α = J̃0
∗
α,

which follows that

ρφ(S1) = − 1

π

∫
S1

J̃∗α+ η(AJ) = − 1

π

∫
S1

J̃0
∗
α+ η(AJ).(10.5)

(1) λ 6∈ S1. For the case λ > 0, we take

B =
1

2π
log |λ|

(
1 0

0 −1

)
,

such that L1 = exp(2πB), and L = exp(iθ)U−1L1U . Then the set of all eigen-
values (with multiplicities) of AJ is

Eigen(AJ) =



{
±
√

( θ
2π + k)2 + ( 1

2π log |λ|)2, k ∈ Z
}

θ 6= 0, π⊔2
l=1

{
±
√
k2 + ( 1

2π log |λ|)2, k ∈ Z>0

}
∪ {± 1

2π log |λ|} θ = 0⊔2
l=1

{
±
√

(1
2 + k)2 + ( 1

2π log |λ|)2, k ∈ Z≥0

}
θ = π.

Since the set Eigen(AJ) is symmetric, so η(AJ) = 0.
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If λ < 0, then exp(2πB) = −L1, and the set of all eigenvalues (with multi-
plicities) of AJ is

Eigen(AJ) =



{
±
√

( θ−π2π + k)2 + ( 1
2π log |λ|)2, k ∈ Z

}
θ 6= 0, π⊔2

l=1

{
±
√

(−1
2 + k)2 + ( 1

2π log |λ|)2, k ∈ Z>0

}
θ = 0⊔2

l=1

{
±
√
k2 + ( 1

2π log |λ|)2, k ∈ Z>0

}
∪ {± 1

2π log |λ|} θ = π.

Since the set Eigen(AJ) is also symmetric, so η(AJ) = 0.
From Remark 8.2, then

(10.6) α = −dc log det ImZ = −dc log ImZ =
1

2 ImZ
(dZ + dZ).

The almost complex structure J0(x) is given by

J0(x) = exp(−xB)J exp(xB) =

(
0 −|λ|−

x
π

|λ|
x
π 0

)
.

Then
W ◦ J0(x) = (2 + |λ|

x
π + |λ|−

x
π )−1(|λ|

x
π − |λ|−

x
π ).

Thus
Z ◦ J0(x) = i(1−W ◦ J0(x))(1 +W ◦ J0(x))−1

is purely imaginary, which follows that

J̃0
∗
α =

1

2 ImZ
(d(Z ◦ J(x)) + d(Z ◦ J(x))) = 0.

Hence
ρφ(S1) = − 1

π

∫
S1

J̃0
∗
α+ η(AJ) = η(AJ) = 0.

Remark 10.3. For any L ∈ Sp(2n,R) with the following matrix form

L = ±
(

exp(2πB) 0

0 exp(−2πB>)

)
,

where B ∈ sp(2n,R). One can check that Z ◦ J0(x) is also purely imaginary,
and so

∫
S1 J̃

∗
0α = 0, where J0(x) = exp(−xB)J exp(xB) and J is the standard

complex structure. Moreover, the set of all eigenvalues (with multiplicities) of
AJ0 is symmetric, so η(AJ0) = 0. Hence ρφ(S1) = 0.

(2) λ ∈ S1\{±1}. In this case, L1 = R(θ1) andB = θ1
2πJ0, exp(2π(σJ0+B)) =

R(2πσ + θ1). Hence the solutions of exp(2π(σJ0 + B))Ue = exp(−iθ)Ue are
given by

σ = − θ1

2π
+ k ± θ

2π
, k ∈ Z.

the set of all eigenvalues (with multiplicities) of AJ is

Eigen(AJ) =


{
− θ1

2π + θ
2π + k,− θ1

2π −
θ

2π + k, k ∈ Z
}

θ 6= 0, π⊔2
l=1

{
− θ1

2π + θ
2π + k, k ∈ Z

}
θ = 0, π.



SIGNATURE AND TOLEDO INVARIANTS FOR FLAT UNITARY BUNDLES 87

Using Lemma 4.8, the eta invariant can be given by

η(AJ) = lim
s→0

sgn(θ − θ1)

∣∣∣∣θ − θ1

2π

∣∣∣∣−s +

∞∑
k=1

 1∣∣∣k + θ−θ1
2π

∣∣∣s − 1∣∣∣k − θ−θ1
2π

∣∣∣s


+ lim
s→0

sgn(2π − θ − θ1)

∣∣∣∣2π − θ − θ1

2π

∣∣∣∣−s +

∞∑
k=1

 1∣∣∣k + 2π−θ−θ1
2π

∣∣∣s − 1∣∣∣k − 2π−θ−θ1
2π

∣∣∣s


= sgn(θ − θ1)− θ − θ1

π
− sgn(θ + θ1 − 2π)− 2 +

θ + θ1

π

= sgn(θ − θ1)− sgn(θ + θ1 − 2π)− 2 +
2θ1

π
.

where sgn(θ) denotes the signum function (sgn(0) = 0, sgn(x) = x/|x| other-
wise). Since [J,B] = 0, so

J0(x) = exp(−xB)J exp(xB) = J,

and J̃0
∗
α = 0. Hence ρφ(S1) = − 1

π

∫
S1 J̃0

∗
α+ η(AJ) = η(AJ).

(3) λ = ±1. In this case, L1 is given by(
λ µ

0 λ

)
,

where µ ∈ R, and L1 = λ exp(2πB), B is given by

B =

(
0 1

2π
µ
λ

0 0

)
.

Thus

2π(σJ0 +B) =

(
0 −2πσ + µ

λ

2πσ 0

)
.

For λ = 1, the solution of exp(2π(σJ0 +B))Ue = exp(−iθ)Ue is given by

σ =
µ

4π
±

√
µ2

16π2
+

(
θ

2π
+ k

)2

, k ∈ Z

For µ 6= 0, the set of all eigenvalues (with multiplicities) of AJ is

Eigen(AJ) =



{
µ
4π ±

√
µ2

16π2 +
(
θ

2π + k
)2
, k ∈ Z

}
θ 6= 0, π⊔2

l=1

{
µ
4π ±

√
µ2

16π2 + k2, k ∈ Z>0

}
∪ {0, µ2π} θ = 0⊔2

l=1

{
µ
4π ±

√
µ2

16π2 +
(

1
2 + k

)2
, k ∈ Z≥0

}
θ = π.
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Thus, if λ = 1, µ > 0 and θ 6= 0, π, then

ηAJ
(s) =

∣∣∣∣∣ µ4π +
1

2π

√
µ2

4
+ θ2

∣∣∣∣∣
−s

−

∣∣∣∣∣ µ4π − 1

2π

√
µ2

4
+ θ2

∣∣∣∣∣
−s

+
∞∑
k=1

( µ

4π
+

1

2π

(
µ2

4
+ (2kπ + θ)2

) 1
2

)−s
−

(
− µ

4π
+

1

2π

(
µ2

4
+ (2kπ + θ)2

) 1
2

)−s
+
∞∑
k=1

( µ

4π
+

1

2π

(
µ2

4
+ (2kπ − θ)2

) 1
2

)−s
−

(
− µ

4π
+

1

2π

(
µ2

4
+ (2kπ − θ)2

) 1
2

)−s .
By Lemma 10.2, the eta invariant is η(AJ) = −µ

π . For θ = 0, one has η(AJ) =

1− µ
π . For θ = π, one has η(AJ) = −µ

π . In one word, if λ = 1 and µ > 0, then

η(AJ) = 1− sgn(θ)− µ

π
.

Similarly, If λ = 1 and µ < 0, then

η(AJ) = −1 + sgn(θ)− µ

π
.

Hence, for λ = 1, then

η(AJ) = sgn(µ)

(
1− sgn(θ)− |µ|

π

)
.

For λ = −1 and µ 6= 0, then the set of eigenvalues (with multiplicities) of AJ is

Eigen(AJ) =



{
−µ
4π ±

√
µ2

16π2 +
(
θ−π
2π + k

)2
, k ∈ Z

}
θ 6= 0, π⊔2

l=1

{
−µ
4π ±

√
µ2

16π2 +
(
−1

2 + k
)2
, k ∈ Z≥0

}
θ = 0⊔2

l=1

{
−µ
4π ±

√
µ2

16π2 + k2, k ∈ Z>0

}
∪ {0,− µ

2π} θ = π.

Then the eta invariant is given by

η(AJ) = sgn(−µ)

(
1− | sgn(θ − π)| − |µ|

π

)
.

For µ = 0, the set of all eigenvalues (with multiplicities) of AJ is symmetric, so
η(AJ) = 0.

In this case, the almost complex structure is

J0(x) = exp(−xB)J exp(xB) =

(
b −b2 − 1

1 −b

)
,

where b = − x
2π

µ
λ . Then

W ◦ J0(x) =
2ib− b2

4 + b2

Z ◦ J0(x) = i(2 + bi)−1(2 + b2 − ib) = i+
b3 + 4b

b2 + 4
= i+ b.
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By (10.6), one has

J̃0
∗
α = db = − 1

2π

µ

λ
dx.

Hence
1

π

∫
S1

J̃0
∗
α = − 1

π

µ

λ
,

and the rho invariant is

ρφ(S1) = − 1

π

∫
S1

J̃0
∗
α+ η(AJ) =

1

π

µ

λ
+ η(AJ).

Therefore, with the convention θ ∈ [0, 2π), θ1 ∈ (0, π) ∪ (π, 2π),

λ, µ η(AJ) ρφ(S1)

λ 6∈ S1 0 0

λ ∈ S1\{±1} sgn(θ−θ1)−2+
2θ1
π

− sgn(θ+θ1−2π)

sgn(θ−θ1)−2+
2θ1
π

− sgn(θ+θ1−2π)

µ = 0 0 0

λ = 1, µ > 0 1− sgn(θ)− µ
π 1− sgn(θ)

λ = 1, µ < 0 −1 + sgn(θ)− µ
π −1 + sgn(θ)

λ = −1, µ > 0 −1 + | sgn(θ − π)|+ µ
π −1 + | sgn(θ − π)|

λ = −1, µ < 0 1− | sgn(θ − π)|+ µ
π 1− | sgn(θ − π)|

(10.7)

Comparing with (6.7), if k1 and k2 are unique integers such that

α1 = θ − θ1 + 2k1π ∈ [0, 2π), α2 = θ + θ1 + 2k2π ∈ [0, 2π)

for an elliptic element eiθ
(
e−iθ1 0

0 eiθ1

)
, then one can check that

η(AJ) = sgn(θ−θ1)−sgn(θ+θ1−2π)−2+
2θ1

π
= sgn(α1)(1−α1

π
)−sgn(α2)(1−α2

π
),

which is consistent with (6.7).

Remark 10.4. If we consider the representation φ0 : π1(S1) → Sp(2,R) =

SL(2,R), then the associated eta invariant and rho invariant correspond to the
case of θ = 0 in (10.7). By (8.10) and (8.11), one has

η(AJ0) = −η(AJ), ρφ0(S1) = −ρφ(S1).

Hence the eta invariant and rho invariant for the representation φ0 : π1(S1)→
Sp(2,R) are given by
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λ, µ η(AJ0) ρφ0(S1)

λ 6∈ S1 0 0

λ ∈ S1\{±1} 2(1− θ1
π ) 2(1− θ1

π )

µ = 0 0 0

λ = 1, µ > 0 −1 + µ
π −1

λ = 1, µ < 0 1 + µ
π 1

λ = −1 −µ
π 0

(10.8)

10.2. Connection with the multiplicative Horn problem. When the Her-
mitian form is positive definite, i.e. q = 0, the signature makes sense, the Toledo
invariant vanishes. Our Milnor-Wood type inequality (Theorem 0.4) reads

|ρφ(∂Σ)| ≤ p|χ(Σ)|.(10.9)

By additivity of the signature, it suffices to establish it in case Σ is a triply
punctured sphere. In this case, the representation φ is determined by two uni-
tary matrices A and B. The third boundary holonomy, C, satisfies ABC = Ip.
We check that inequality (10.9), which in this case reads

|ρ(A) + ρ(B) + ρ(C)| ≤ p,(10.10)

follows from the solution of the multiplicative Horn problem, [1].

Let A ∈ U(p). Let (eiθj )j=1,...,p denote the eigenvalues of A, normalized so
that θj ∈ [0, 2π). Then

ρ(A) =
∑

j ; θj 6=0

1− θj
π

=

p∑
j=0

sgn(θj)(1−
θj
π

).

10.2.1. Matrices in SU(p). Let us translate the problem into more traditional
notation.

The eigenvalues of a matrixA ∈ SU(p) can be uniquely written e2iπλ1 , . . . , e2iπλp ,
where

• λ1 − λp ≤ 1,
• λ1 ≥ · · · ≥ λp,
•
∑p

j=1 λj = 0.

Note that λj(A−1) = −λp−j(A).
In our notation eiθ1 , . . . , eiθp ,

• all θj ∈ [0, 2π),
• θ1 ≥ · · · ≥ θp,
• m(A) = 1

2π

∑p
j=1 θj is an integer between 0 and p− 1.
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The correspondance is as follows:

λ1 =
θm+1

2π
, . . . , λp−m =

θp
2π
,

λp−m+1 =
θ1

2π
− 1, . . . , λp =

θm
2π
− 1.

We note that m(A) is the number of negative reals among the λj ’s and m(A−1)

is the number of positive reals among the λj ’s. In particular,

m(A−1) = p−m(A)− ν(A),

where ν(A) is the number of λj ’s which are equal to 0. Note that the numbers
of {λi = 0} and {θi = 0} are equal.

Denote

m̂(A) := m(A) +
1

2
ν(A).

Note that

m(A−1) = p−m(A)− ν(A) = p− (p−m(A−1)− ν(A−1))− ν(A)

from which it follows that

ν(A) = ν(A−1).

Hence

m̂(A) + m̂(A−1) = m(A) +m(A−1) + ν(A) = p.(10.11)

In our notation,
p∑
j=1

sgn(θj(A))(1− θj(A)

π
) = p− ν(A)− 2m(A) = p− 2m̂(A).

Inequality (10.10) states that if A,B,C ∈ SU(p) satisfy ABC = I, then

|p− 2m̂(A) + p− 2m̂(B) + p− 2m̂(C)| ≤ p,

or equivalently,
p ≤ m̂(A) + m̂(B) + m̂(C) ≤ 2p.

Since C = (AB)−1 and (10.11), so it is equivalent to

0 ≤ m̂(A) + m̂(B)− m̂(AB) ≤ p(10.12)

Since
λp−m(A)+1(A) + λp−m(B)+1(B) < 0,

Ifm(A)+m(B) ≥ p+1, the left hand side of Agnihotri-Woodward’s [1, inequality
(8)], implies that

λp−m(A)+1+p−m(B)+1−1(AB) < 0.

This implies that

p ≥ p−m(A) + 1 + p−m(B) + 1− 1 ≥ p−m(AB) + 1,
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i.e.

m(A) +m(B)−m(AB) ≤ p.(10.13)

If instead m(A) +m(B) ≤ p, (10.13) also holds.
Hence

(m(A) +m(B)−m(AB)) + (ν(A) + ν(B)− ν(AB))

= p−m(A−1) + p−m(B−1)− (p−m((AB)−1))

= p−
(
m(A−1) +m(B−1)−m((B−1A−1)

)
≥ 0

(10.14)

since m(A−1) +m(B−1)−m(B−1A−1) ≤ p by (10.13).
On the other hand, if m(A−1)+m(B−1) ≤ p−1, we can take i = p−m(A)−

(ν(A)− 1), j = p−m(B)− (ν(B)− 1), then

λi+j−1(AB) ≤ λi(A) + λj(B) ≤ 0.(10.15)

This implies that

p ≥ p−m(A)− (ν(A)− 1) + p−m(B)− (ν(B)− 1)− 1 ≥ p−m(AB)− ν(AB) + 1,

which is equivalent to

m(A−1) +m(B−1)−m((AB)−1) ≥ 0.

If m(A−1) +m(B−1) ≥ p, then the above inequality holds obviously. Hence

m(A) +m(B)−m(AB) ≥ 0.(10.16)

Adding (10.14) and (10.16), one gets

2 (m̂(A) + m̂(B)− m̂(AB))

= [(m(A) +m(B)−m(AB)) + (ν(A) + ν(B)− ν(AB))]

+ (m(A) +m(B)−m(AB))

≥ 0.

(10.17)

From (10.17), we have

0 ≤ m̂(A−1) + m̂(B−1)− m̂((AB)−1)

= p− m̂(A) + p− m̂(B)− (p− m̂(AB))

= p− (m̂(A) + m̂(B)− m̂(AB)),

which implies that

m̂(A) + m̂(B)− m̂(AB) ≤ p.(10.18)

We have established both sides, (10.18) and (10.17), of inequality (10.12).
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10.2.2. The general case: matrices in U(p). We have just proven that

|ρ(A) + ρ(B) + ρ(C)| ≤ p(10.19)

for any A,B,C ∈ SU(p) with ABC = Ip. Now we are aiming to prove (10.19)
for any A,B,C ∈ U(p). It suffices to prove that

ρ(A) + ρ(B) + ρ(C) ≤ p.(10.20)

Indeed, note that ρ(A−1) = −ρ(A), so

ρ(A−1) + ρ(B−1) + ρ(C−1) = −(ρ(A) + ρ(B) + ρ(C)) ≥ −p,

which implies that
ρ(A) + ρ(B) + ρ(C) ≥ −p.

Denote by θ(A) ∈ [0, 2π) the number satisfying

detA = e−iθ(A).

Similarly, we can define θ(B), θ(C) ∈ [0, 2π) for B,C. Since ABC = Ip,

θ(A) + θ(B) + θ(C) ∈ {0, 2π, 4π}.

• If θ(A) + θ(B) + θ(C) = 0, then A,B,C ∈ SU(p), and (10.20) follows
from (10.19).
• If θ(A) + θ(B) + θ(C) = 2π and θ(A)θ(B)θ(C) 6= 0, we denote

Ã :=

(
A 0

0 eiθ(A)

)
, B̃ :=

(
B 0

0 eiθ(B)

)
, C̃ :=

(
C 0

0 eiθ(C)

)
.

Then Ã, B̃, C̃ ∈ SU(p+ 1) and ÃB̃C̃ = Ip+1, so

ρ(Ã) + ρ(B̃) + ρ(C̃) ≤ p+ 1.

By the definitions of Ã, B̃, C̃, one has

ρ(Ã) + ρ(B̃) + ρ(C̃) = ρ(A) + ρ(B) + ρ(C) + sgn(θ(A))

+ sgn(θ(B)) + sgn(θ(C))− θ(A) + θ(B) + θ(C)

π
= ρ(A) + ρ(B) + ρ(C) + 1,

which implies (10.20).
• If θ(A) + θ(B) + θ(C) = 2π and θ(A)θ(B)θ(C) = 0, without loss of
generality, we assume that θ(A) = 0, then θ(B) > 0, θ(C) > 0. In this
case, we denote

Ã :=

 A 0 0

0 eiπ 0

0 0 eiπ

 , B̃ =

 B 0 0

0 ei
θ(B)

2 0

0 0 ei
θ(B)

2

 , C̃ =

 C 0 0

0 ei
θ(C)

2 0

0 0 ei
θ(C)

2

 .

Then Ã, B̃, C̃ ∈ SU(p+ 2) and ÃB̃C̃ = Ip+2, so

ρ(Ã) + ρ(B̃) + ρ(C̃) ≤ p+ 2.
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The rho invariants satisfy

ρ(Ã) + ρ(B̃) + ρ(C̃) = ρ(A) + ρ(B) + ρ(C) + 2(sgn(π) + sgn(θ(B)/2)

+ sgn(θ(C)/2)− π + θ(B)/2 + θ(C)/2

π
)

= ρ(A) + ρ(B) + ρ(C) + 2,

which implies (10.20).
• If θ(A) + θ(B) + θ(C) = 4π, then θ(A)θ(B)θ(C) 6= 0, we denote

Ã =

 A 0 0

0 ei
θ(A)

2 0

0 0 ei
θ(A)

2

 , B̃ =

 B 0 0

0 ei
θ(B)

2 0

0 0 ei
θ(B)

2

 ,

C̃ =

 C 0 0

0 ei
θ(C)

2 0

0 0 ei
θ(C)

2

 .

Then

ρ(A) + ρ(B) + ρ(C) + 2 = ρ(Ã) + ρ(B̃) + ρ(C̃) ≤ p+ 2

which implies (10.20).

Therefore, we have completed the proof of (10.20).

10.3. Nilpotent conjugacy classes in su(p, q). We provide details of the clas-
sification of nilpotent conjugacy classes in su(p, q). This is a special case of the
clssification of conjugacy classes in classical groups, due to N. Burgoyne and R.
Cushman [15].

Definition 10.5. Say a nilpotent element of su(E,Ω) has height m, ifNm+1 = 0

and Nm 6= 0. Say N is uniform if all its Jordan blocks have the same height.

Lemma 10.6 (see [15, Proof of Prop. 4]). Let N ∈ su(E,Ω) be nilpotent of
height m. Then E admits a decomposition E = Y ⊕Z in N -invariant orthogonal
subspaces such that N|Y is uniform of height m and Z ⊂ Ker(Nm).

Proof. Let (ej)1≤j≤n be a Jordan basis for N , i.e. for each j, Nej = ej−1 or 0.
Let F = span({ej ; Nmej 6= 0}). Then F is a complement to Ker(Nm). Set

Y =
m⊕
j=0

N jF.

Then Y is N -invariant and uniform of height m. Let us show that Ω is non-
degenerate on Y . Assume by contradiction that there exists a nonzero x ∈ Y ∩
Y ⊥. Then Ω(x, (iN)jy) = 0 for all y ∈ Y and j ≥ 0. Write x =

∑m
j=0(iN)jfj =

(iN)j0f + x1 where j0 = min{j ; fj 6= 0}, f = fj0 ∈ F and x1 ∈ N j0+1Y . Then
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Nm−j0x1 = 0, so, for all y ∈ Y , Ω(x1, (iN)m−j0y) = ±Ω((iN)m−j0x1, y) = 0.
In particular,

∀y ∈ F, Ω((iN)mf, y) = ±Ω((iN)j0f, (iN)m−j0y)

= Ω(x− x1, (iN)m−j0y) = 0.

Since F is a complement to Ker(Nm), Ω(f, (iN)me) = Ω((iN)mf, e) = 0 for all
e ∈ E, so Nmf = 0, contradiction. We conclude that Z = Y ⊥ is a N -invariant
complement to Y in E. Note that Im(Nm) = Nm(F + Ker(Nm)) ⊂ NmF ⊂ Y .
It follows that Z = Y ⊥ ⊂ Im(Nm)⊥ ⊂ Ker(Nm). �

Lemma 10.7 (see [15, Prop. 2]). Let N ∈ su(E,Ω) be uniform of height m.
For j ∈ N, let τj denote the Hermitian form on E defined by

τj(u, v) = Ω((iN)ju, v).

Then there exists a complement F of NE in E, such that

E =
m⊕
j=0

N jF,

and all Hermitian forms τj |F vanish except τm which is non-degenerate.

Proof. Since N has height m, τj = 0 if j > m. Furthermore, for all u, v ∈ E,

τj((iN)u, v) = τj(u, (iN)v) = τj+1(u, v).

Let us start with the complement F to Ker(Nm) introduced in Lemma 10.6.
Since N is uniform, E = Y =

⊕m
j=0N

jF . Since Ω is non-degenerate, the kernel
of τm equals Ker(Nm), so τm is non-degenerate on F . We shall inductively
improve F until all τj but τm vanish on F .

Let k be the smallest j < m such that τj 6= 0 on F . Let us compute, for
u, v ∈ F ,

τk(u+ (iN)m−ku, v + (iN)m−kv) = τk(u, v) + 2τk((iN)m−ku, v)

+ τk((iN)m−ku, (iN)m−kv)

= τk(u, v) + 2τk+m−k(u, v) + τk+2(m−k)(u, v)

= τk(u, v) + 2τm(u, v),

since k + 2(m − k) = m + m − k > m. This does not suffice to kill τk. A
correction, provided by a τm-symmetric linear map φ : F → F , exists. Indeed,
we want to solve

τk(u+ (iN)m−kφ(u), v + (iN)m−kφ(v)) = τk(u, v) + τm(φ(u), v) + τm(u, φ(v))

= τk(u, v) + 2τm(φ(u), v) = 0.

Since τm is non-degenerate on F , this equation uniquely determines a τm-
symmetric linear map φ : F → F . Then τk vanishes on (Id+ (iN)m−k ◦ φ)(F ).
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If k < j < m, for all u, v ∈ F ,

τj(u+ (iN)m−kφ(u), v + (iN)m−kφ(v))

= τj(u, v) + τj+m−k(φ(u), v) + τj+m−k(u, φ(v)) + τj+2(m−k)(φ(u), φ(v))

= τj(u, v),

since j + m − k > m and j + 2(m − k) > m. So the vanishing of τj , j > k, is
preserved. Therefore one more of the Hermitian forms τj vanishes on the image
F ′ = (Id+(iN)m−k ◦φ)(F ). The Hermitian form τm is non-degenerate on every
complement to its kernel, so on F ′. Let us show that the sum

∑m
j=0(iN)jF ′ is

direct. If f ′0, . . . , f ′m ∈ F ′ and
∑m

j=0(iN)jf ′j = 0, write f ′j = fj + (iN)m−kφ(fj)

for some fj ∈ F . Then
m−k−1∑
j=0

(iN)jfj +

m∑
j=m−k

(iN)j(fj + φ(fj−m+k)) = 0.

This implies that f0 vanishes, and recursively that all fj vanish as well. Thus
E =

⊕m
j=0N

jF ′. Therefore we can replace F with F ′, winning the vanishing
of τk.

After finitely many steps, we get F such that τj = 0 on F for all 0 ≤ j ≤ m−1

and τm is non-degenerate on F . �

Corollary 10.8. Let N ∈ su(E,Ω) be a single Jordan block. There exists a
Jordan basis for N in which the matrix of Ω is antidiagonal.

Proof. In this case, dim(E/NE) = 1 and N is n − 1-uniform. Lemma 10.7
provides us with a 1-dimensional complement F of NE. Pick a nonzero vector
en ∈ F . Set ej = (iN)n−jen, j = 1, . . . , n. This is a Jordan basis for N , in
which the entries of Ω are given by

ωj,k = Ω((iN)n−jen, (iN)n−ken) = Ω((iN)2n−j−ken, en) = τ2n−j−k(en, en),

which vanish unless 2n− j − k = n− 1, i.e. j + k = n+ 1. �

Lemma 10.9 ([15, Proof of Prop. 3]). Let N ∈ su(E,Ω) be uniform of height m.
Then E admits a decomposition E =

⊕
j Yj in N -invariant pairwise orthogonal

subspaces such that each (Yj , N|Yj ) is a single Jordan block of height m.

Proof. According to Lemma 10.7, there exists a complement F of NE in E such
that E = F ⊕ · · · ⊕NmF and all τj but τm vanish on F .

Let u, v ∈ F be linearly independent vectors such that τm(u, v) = 0. Then
for all j ∈ N , Ω((iN)ju, v) = τj(u, v) = 0. So the cyclic subspaces C(u) =

span(u,Nu, ·, Nmu) and C(v) generated by u and v are Ω-orthogonal.
Let (u1, . . . , ur) be a τm-orthogonal basis of F . Since N is uniform of height

m, Ker(N) = NmE, N is a bijection N jF → N j+1F for all j < m. Therefore
N ju1, . . . , N

jur is a basis of N jF , and the whole collection

{N juk ; j = 0, . . . ,m, k = 1, . . . , r}
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is a basis of E. This shows that E = C(u1) ⊕ · · · ⊕ C(ur), this is the needed
N -invariant and Ω-orthogonal decomposition in Jordan blocks. �

The above lemmata complete the proof of Proposition 4.15.

10.4. The Milnor-Wood inequality for the Toledo invariant. In this sub-
section, we will give a geometric proof for the Milnor-Wood inequality of Toledo
invariant for general Hermitian symmetric spaces.

First we mention the classification of isometries for a symmetric space X of
noncompact type with G = Iso0(X). Let `(φ) = infx∈X dX(x, φ(x)) for φ ∈ G.
We say φ is ([23, 1.9.1] )

(1) axial if `(φ) > 0 and realized in X.
(2) elliptic if `(φ) = 0 and realized in X, i.e., it has a fixed point in X.
(3) parabolic if `(φ) is not realized in X.

If L is parabolic, it has a fixed point at X(∞) ([23, Prop. 4.1.1] ). Hence
it stabilizes a horosphere H based at a fixed point of L. If L ∈ G is parabolic,
then it is an element of a horospherical subgroup Nx for some point x ∈ X(∞),
see [23, Prop. 2.19.18 (5)] . But Nx has a property that for g ∈ Nx

lim
t→∞

e−tXgetX = id,

where X ∈ p is a unit vector whose infinite end point is x in the Cartan decom-
position g = t⊕ p at p ∈ X. This implies that for g ∈ Nx

lim
t→∞

d(etXp, getXp) = 0,(10.21)

which means that any two geodesic rays starting from p and gp pointing forwards
x, get closer exponentially fast.

Let Σ be a surface with q-boundary components and of genus g of negative
Euler number. Considering a boundary component as a puncture, one can find
an ideal triangulation 4 of Σ, which is just a maximal collection of disjoint
essential arcs that are pairwise non-homotopic, whose vertices are at punctures.
If there are F ideal triangles in 4, there there are 3F

2 edges since each edge is
shared by the adjacent triangles. Here by taking a triangulation carefully, we
can assume that two adjacent triangles are distinct. Hence by the definition of
the Euler number

F − 3F

2
= 2− 2g − q

where q is the number of punctures. Hence there are −4+4g+2q ideal triangles
in 4. Now considering the punctures as boundaries, these ideal triangles wrap
around each boundary component infinitely many times, and still denote this
triangulation by 4.
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Figure 1. Ideal triangulation of a pair of pants consisting of
two ideal triangles

Given a representation φ : π1(Σ) → G, the Toledo invariant for the associated
Hermitian symmetric space X with a Kähler form ω is given by the equation
(3.11), i.e.,

T(Σ, φ) =
1

2π

∫
Σ

(
f∗ω −

q∑
i=1

d(χif
∗αi)

)
=

1

2π

∫
Σ
f∗ω − 1

2π

q∑
i=1

∫
ci

f∗αi,

for any φ-equivariant map f .
Since we have an identification between the symmetric space X and the com-

patible almost complex structures J (E,Ω), for an elliptic boundary we can
choose a φ-equivariant map J̃ : Σ̃ → X ∼= J (E,Ω) induced by an equivariant
complex structure whose restriction to the elliptic boundary is a constant com-
plex structure J fixed by φ(ci) along the boundary, such that J∗ = 0 around
the boundary. Hence

∫
ci
J∗αi = 0 for an elliptic boundary ci.

Now we want to prove that the same holds for axial boundary. Any axial
isometry has an invariant real axis l in X, and αi invariant under this ax-
ial isometry has a property that

∫
l αi = 0 by Remark 3.2. This shows that∫

ci
f∗αi =

∫
l αi = 0

Find a φ-equivariant map J̃ : Σ̃ → X induced by an equivariant complex
structure. Now we can straighten J̃ such that each ideal triangle σ in 4 is
mapped to an ideal geodesic triangle in D. Now a new surface Σ′ = Σ ∪ ∪Ci
is obtained from Σ by attaching a cone Ci to each parabolic boundary ci. One
can extend Str(J̃) in an obvious way on each cone to the corresponding horoball
neighborhood. In more details,

J̃ : S1 × [0,∞)→ H,

where H is a horoball and J̃ maps each geodesic x × [0,∞) to an arc-length
parametrized geodesic from J̃(x, 0) to the base point of the horoball. Note
here that the almost complex structure along the boundary ci is an orbit of
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J under the one-parameter family generated by parabolic element φ(ci), hence
the image under J̃ is also the orbit of the one-parameter family generated by
parabolic element φ(ci). This forces that J̃(x × [0,∞)) and J̃(y × [0,∞)) get
closer exponentially fast as t→∞ for any two points x and y on ci.

In more details, |J̃∗( ∂
∂x |(x,t))| = e−t|J̃∗( ∂

∂x |(x,0))|, and |J̃∗( ∂∂t |(x,t))| = |
∂
∂t | = 1,

which makes∣∣∣∣J̃∗ω(
∂

∂x
|(x,t),

∂

∂t
)

∣∣∣∣ = e−t
∣∣∣∣ω(J̃∗(

∂

∂x
|(x,0)),

∂

∂t
)

∣∣∣∣ ≤ e−tC
for some universal constant C. Hence∫

Ci

|J̃∗ω| ≤
∫ 2π

0

∫ ∞
0

Ce−t <∞,(10.22)

which makes J̃∗(dαi) a L1 form on Ci.
If we decompose Ci into two parts C1

i = S1 × [0, t] ∪ C2
i = S1 × [t,∞),

then J̃∗(dαi) being a L1 form on Ci implies that
∫
C2
i
J̃∗(dαi) → 0 as t → ∞.

Furthermore by noting that |J̃∗( ∂
∂x |(x,t))| = e−t|J̃∗( ∂

∂x |(x,0))|,
∫
S1×{t} J̃

∗αi =∫
S1×{0} e

−tJ̃∗αi, the ordinary Stokes’ lemma holds to get for each parabolic
boundary ci∫

Σ
d(χiStr(J̃)

∗
αi) =

∫
ci

Str(J̃)
∗
αi = −

∫
Ci

d(χiStr(J̃)
∗
αi).

This implies that

T(Σ, φ) =
1

2π

∫
Σ′

Str(J̃)
∗
ω.

Also note that we can deform 4 so that the triangles wrapping around the
parabolic boundary ci can be straightened to the cone point of Ci to include Ci in
∪σ∈4σ. We still denote the deformed triangulation by 4. Since Σ′ =

∑
σi∈4 σi,

using |
∫
σi

Str(f)∗ω| = |
∫

Str(f)(σi)
ω| ≤ 2π( rank(X)

2 ), which follows from the fact

that the Gromov norm of κbG ∈ H2
c,b(G,R) is rank(X)

2 [17], we get the Milnor-
Wood inequality

|T(Σ, φ)| =
∣∣∣∣ 1

2π

∫
Σ′

Str(f)∗ω

∣∣∣∣
≤ 1

2π
(−4 + 4g + 2q)2π

(
rank(X)

2

)
= rank(X)|χ(Σ)|.

Remark 10.10. First note that by [18, Corollary 9.4] , for any a ∈ Sp(2n,R),
a2 = expX for some X ∈ g.

Let π1(Σ) = 〈c1, c2, · · · , cq−1, ai, bi〉 where ci are boundary components, and
cq = ΠciΠ[ai, bi]. Take an index 2 subgroup Γ < π1(Σ) containing c2

i , i =

1, · · · , q−1. Let Σ1 = Σ̃/Γ and p : Σ1 → Σ be a covering map of degree 2. Then
for each boundary ci i = 1, · · · , q− 1, there exists a corresponding boundary Bi
of Σ1 such that p(Bi) = c2

i . Now it is possible that p−1(cq) might be disjoint
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union of two circles Bq, Bq+1 which map to cq homeomorphically. In this case,
take a double cover Σ2 of Σ1, which corresponds to an index two subgroup of
π1(Σ1) containing B2

q , B
2
q+1. Then there exist two boundary components of Σ2,

Cq, Cq+1 which project to B2
q , B

2
q+1. Then the covering map f from Σ2 to Σ

has the property that each boundary component of Σ2 projects to c2k
i for some

i = 1, · · · , q.
Now for this 4-fold covering map f : Σ2 → Σ, consider the induced represen-

tation φ2 = φ ◦ f∗ : π1(Σ2) → Sp(2n,R). Then for any boundary component
b of Σ2, φ2(b) = φ(c2k

i ) for some ci, hence φ2(b) = exp(2πB) for some B in
the Lie algebra of Sp(2n,R). This allows us to define an almost complex struc-
ture J(x) = exp(−xB)J exp(xB) along any boundary of Σ2. Now if prove the
Milnor-Wood inequality for φ2, then we prove the Milnor-Wood inequality for
φ since both Toledo invariant and the Euler number for Σ2 is 4 times those
of Σ. Hence we may assume that φ(ci) = exp(2πBi) for some Bi. The same
construction works for other Hermitian Lie groups.
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