Aspects of geometric group theory: growth, isoperimetry, $\ell^{p}\text{-}\mathsf{cohomology}$

Pierre Pansu, Université Paris-Sud

April 2nd, 2019

Free abelian group $\langle a,b|aba^{-1}b^{-1}\rangle$ Fundamental group of 2-torus

Free group $\langle a,b|\rangle$ Fund. group of punctured 2-torus

 $\begin{array}{c} {\rm Growth} \\ {\rm Isoperimetry} \\ \ell^p \ {\rm cohomology} \end{array}$

Motto: a finitely presented group $\langle S|R \rangle$ is a metric space.

ъ

э

Motto: a finitely presented group $\langle S|R \rangle$ is a metric space. Caveat: up to quasiisometry (passing to an equivalent distance).

Motto: a finitely presented group $\langle S|R \rangle$ is a metric space. Caveat: up to quasiisometry (passing to an equivalent distance). Need to focus on rough, large scale features.

Examples Question

Growth: Count number v(n) of vertices in *n*-ball. Invariant up to $n \rightarrow Cn$.

イロト イポト イヨト イヨト

э

Growth Isoperimetry ℓ^P cohomology

Examples Question

Growth: Count number v(n) of vertices in *n*-ball. Invariant up to $n \rightarrow Cn$.

> Free abelian group $\langle a, b | aba^{-1}b^{-1} \rangle$ $v(n) = 2n^2 + 2n + 1.$

Free group $\langle a, b | \rangle$ $v(n) = 4.3^{n-1}$

3 1 4 3 1

Examples Question

Growth: Count number v(n) of vertices in *n*-ball. Invariant up to $n \rightarrow Cn$.

Free abelian groupFree group $\langle a, b | aba^{-1}b^{-1} \rangle$ $\langle a, b | \rangle$ $v(n) = 2n^2 + 2n + 1.$ $v(n) = 4.3^{n-1}$

Theorem (Gromov 1982)

Finitely generated group G has polynomial growth \iff G is virtually nilpotent.

Corollary. The class of finitely generated virtually nilpotent groups is *rigid*: a group quasiisometric to a group in the class belongs to the class.

Examples Question

Growth: Count number v(n) of vertices in *n*-ball. Invariant up to $n \rightarrow Cn$.

Free abelian groupFree group $\langle a, b | aba^{-1}b^{-1} \rangle$ $\langle a, b | \rangle$ $v(n) = 2n^2 + 2n + 1.$ $v(n) = 4.3^{n-1}$

Theorem (Gromov 1982)

Finitely generated group G has polynomial growth \iff G is virtually nilpotent.

Corollary. The class of finitely generated virtually nilpotent groups is *rigid*: a group quasiisometric to a group in the class belongs to the class.

Theorem (Grigorchuk 1984)

There are finitely generated groups with growth between $e^{n^{\alpha}}$ and $e^{n^{\beta}}$, $0 < \alpha < \beta < 1$.

Examples Question

Growth: Count number v(n) of vertices in *n*-ball. Invariant up to $n \rightarrow Cn$.

Free abelian groupFree group $\langle a, b | aba^{-1}b^{-1} \rangle$ $\langle a, b | \rangle$ $v(n) = 2n^2 + 2n + 1.$ $v(n) = 4.3^{n-1}$

Theorem (Gromov 1982)

Finitely generated group G has polynomial growth \iff G is virtually nilpotent.

Corollary. The class of finitely generated virtually nilpotent groups is *rigid*: a group quasiisometric to a group in the class belongs to the class.

Theorem (Grigorchuk 1984)

There are finitely generated groups with growth between $e^{n^{\alpha}}$ and $e^{n^{\beta}}$, $0 < \alpha < \beta < 1$.

Theorem (Erschler-Zheng 2018)

The growth of Grigorchuk's example satisfies $\frac{\log \log v(n)}{\log n} \rightarrow \alpha_0$, $\alpha_0 = 0.7674...$

Random walks are used as a tool.

Question

Question: What are the possible growths for finitely generated groups?

Conjecture (Grigorchuk)

If not polynomial, growth cannot be $< e^{\sqrt{n}}$.

-

Question: What are the possible growths for finitely generated groups?

Using Lie algebras, Bartholdi and Grigorchuk (2000) solved the case of residually p groups.

Shalom and Tao's effective version of Gromov's theorem (2009) implies:

 $v(n) \leq n^{c(\log \log n)^c} \implies G$ is virtually nilpotent.

B K 4 B K

Følner function Results

 $|V| = 5, |\partial V| = 10.$

 $|V| = 3, |\partial V| = 8.$

医下 不良下

< 🗗 🕨

э

Growth Isoperimetry ℓ^p cohomology Følner function Results

 $|V| = 5, |\partial V| = 10.$ $|V| = 3, |\partial V| = 8.$

Følner function. Every finite set of vertices V such that $\frac{|\partial V|}{|V|} \leq \frac{1}{n}$ has at least F ø I(n) points.

Growth Isoperimetry ℓ^P cohomology

Følner function Results

 $|V| = 5, |\partial V| = 10.$ $|V| = 3, |\partial V| = 8.$

Følner function. Every finite set of vertices V such that $\frac{|\partial V|}{|V|} \leq \frac{1}{n}$ has at least F ø I(n) points.

A finitely generated group is amenable \iff its Følner function is finite.

< (¶ →

3 1 4 3 1

э

A finitely generated group is amenable \iff its Følner function is finite.

Theorem (Varopoulos 1984)

A finitely generated virtually nilpotent group of growth n^Q has Følner function n^Q .

< 🗇 🕨

3 N

∃ >

A finitely generated group is amenable \iff its Følner function is finite.

Theorem (Varopoulos 1984)

A finitely generated virtually nilpotent group of growth n^Q has Følner function n^Q .

Theorem (Coulhon-Saloff Coste 1993)

A finitely generated group has exponential growth \iff its Følner function is at least exponential.

A finitely generated group is amenable \iff its Følner function is finite.

Theorem (Varopoulos 1984)

A finitely generated virtually nilpotent group of growth n^Q has Følner function n^Q .

Theorem (Coulhon-Saloff Coste 1993)

A finitely generated group has exponential growth \iff its Følner function is at least exponential.

Theorem (Erschler 2006)

There exist finitely generated amenable groups whose Følner functions grow arbitrarily fast.

Sobolev inequality Negative curvature case Polynomial growth case

Notation. For *u* finitely supported function on the vertices of a graph, du(edge xy) = u(y) - u(x).Example. If $u = 1_V$, $||du||_1 = |\partial V|$.

< 🗇 🕨

4 E b

Sobolev inequality Negative curvature case Polynomial growth case

Notation. For *u* finitely supported function on the vertices of a graph, du(edge xy) = u(y) - u(x).**Example**. If $u = 1_V$, $||du||_1 = |\partial V|$.

Sobolev inequality. Say Sobolev inequality $Sob_{q,p}$ holds on a graph if there exists C such that for all finitely supported functions u,

$$\|u\|_q \leq C \, \|du\|_p$$

Proposition (Faber, Krahn, circa 1923) $F
alpha l(n) = n^Q \iff Sob_{Q/(Q-1),1} \implies Sob_{Qp/(Q-p),p} \forall p \in [1, Q).$ $F al(n) = +\infty \iff Sob_{1,1} \implies Sob_{p,p} \forall p \in [1, \infty).$

Sobolev inequality Negative curvature case Polynomial growth case

Notation. For *u* finitely supported function on the vertices of a graph, du(edge xy) = u(y) - u(x).Example. If $u = 1_V$, $||du||_1 = |\partial V|$.

Sobolev inequality. Say Sobolev inequality $Sob_{q,p}$ holds on a graph if there exists C such that for all finitely supported functions u,

$$\|u\|_q \leq C \, \|du\|_p.$$

Note: Sobolev inequality states that $d: \ell^q \to \ell^p$ has a closed range.

Definition ($\ell^{q,p}$ cohomology of simplicial complex)

$$\ell^{q,p}H^k = \{k - \text{cocycles in } \ell^p\}/d(\{k - 1 - \text{cochains in } \ell^q\}).$$

This is a quasiisometry invariant.

Growth	Sobolev inequality
Isoperimetry	Negative curvature case
ℓ^P cohomology	Polynomial growth case

Negative curvature case

Negatively curved group = hyperbolic group. Such groups have $F \emptyset I(n) = +\infty$ hence $Sob_{p,p} \forall p \in [1,\infty)$ hence $\ell^{p,p} H^1(G)$ is Hausdorff if $p < \infty$.

∃ ⊳

Growth	Sobolev inequality
Isoperimetry	Negative curvature case
ℓ^p cohomology	Polynomial growth case

Negative curvature case

Negatively curved group = hyperbolic group. Such groups have $F \emptyset I(n) = +\infty$ hence $Sob_{p,p} \forall p \in [1,\infty)$ hence $\ell^{p,p}H^1(G)$ is Hausdorff if $p < \infty$.

Note that $\ell^{\infty,\infty}H^1(G) \neq 0$ if G is infinite.

Theorem (Bourdon-Pajot 2002)

For every hyperbolic group G, $\exists p_0 \ge 1$ such that $\ell^{p,p}H^1(G) \ne 0$ for $p > p_0$.

The infimal such p_0 is a kind of Hausdorff dimension of the ideal boundary of G. $\ell^{p,p}H^1(G)$ identifies with a function space on it (e.g. Besov space for Fuchsian G).

Growth	Sobolev inequality
Isoperimetry	Negative curvature case
ℓ ^P cohomology	Polynomial growth case

Negative curvature case

Negatively curved group = hyperbolic group. Such groups have $F \emptyset I(n) = +\infty$ hence $Sob_{p,p} \forall p \in [1,\infty)$ hence $\ell^{p,p}H^1(G)$ is Hausdorff if $p < \infty$.

Note that $\ell^{\infty,\infty}H^1(G) \neq 0$ if G is infinite.

Theorem (Bourdon-Pajot 2002)

For every hyperbolic group G, $\exists p_0 \ge 1$ such that $\ell^{p,p}H^1(G) \ne 0$ for $p > p_0$.

The infimal such p_0 is a kind of Hausdorff dimension of the ideal boundary of G. $\ell^{p,p}H^1(G)$ identifies with a function space on it (e.g. Besov space for Fuchsian G).

Theorem (Drutu-Mackay 2016)

Random groups in the density model, in the range of densities $\frac{1}{3} < d < \frac{1}{2},$ and at depth m, satisfy

$$\sqrt{\log m} \le p_0 \le \log m.$$

The lower bound is a special case of a property of linear representations of G.

Sobolev inequality Negative curvature case Polynomial growth case

Higher degrees?

Theorem (Gromov 1993)

A finitely generated group G is hyperbolic $\iff \ell^{\infty,\infty}H^2(G) = 0.$

< 🗇 🕨

▲ ∃ →

3 N

э

Growth	Sobolev inequ
Isoperimetry	Negative cur
ℓ ^p cohomology	Polynomial g

Sobolev inequality **Vegative curvature case** Polynomial growth case

Higher degrees?

Theorem (Gromov 1993)

A finitely generated group G is hyperbolic $\iff \ell^{\infty,\infty}H^2(G) = 0.$

Question

For hyperbolic G, $\ell^{p,p}H^k(G) = 0$ for all $k \ge 2$ and p large enough?

B K 4 B K

3

Growth	Sobolev inequality
Isoperimetry	Negative curvature case
ℓ ^P cohomology	Polynomial growth case

Polynomial growth case

Theorem (Folklore,	Bourgain-Brezis 2007 for $p = 1$)	
--------------------	------------------------------------	--

 $\ell^{q,p}H^k(\mathbb{Z}^d) = 0 \iff \tfrac{1}{p} - \tfrac{1}{d} \ge \tfrac{1}{d} \text{ except if } (p,k) = (1,d) \text{ or } (d,1).$

Proof: Calderon-Zygmund if p > 1, geometric if p = 1.

Growth	Sobolev inequality
Isoperimetry	Negative curvature case
ℓ^p cohomology	Polynomial growth case

Polynomial growth case

Theorem (Folklore, Bourgain-Brezis 2007 for p = 1)

 $\ell^{q,p}H^k(\mathbb{Z}^d) = 0 \iff \frac{1}{p} - \frac{1}{d} \ge \frac{1}{d} \text{ except if } (p,k) = (1,d) \text{ or } (d,1).$

Proof: Calderon-Zygmund if p > 1, geometric if p = 1.

Heisenberg group \mathbb{H}^m has $F \emptyset I(n) = n^Q$ with Q = 2m + 2.

Theorem (Baldi-Franchi-Pansu-Tripaldi 2019)

 $\ell^{q,p}H^k(\mathbb{H}^m) = 0 \iff \frac{1}{p} - \frac{1}{q} \ge \frac{1}{Q}$ (replace Q with Q/2 if k = m + 1), except if (p,k) = (1, 2m + 1) or (Q, 1).