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A few milestones in Bruno Franchi and Raul Serapioni’s joint achievements

2001: Franchi, Serapioni and Serra Cassano inaugurate Geometric Measure
Theory on Carnot groups. Their first rectifiability result is crucial in Cheeger,
Kleiner and Naor’s work on the Goemans-Linial conjecture.

2005: Franchi, Serapioni and Serra Cassano introduce intrinsic Lipschitz graphs,
as candidates for models of rectifiable sets. These play a key role in Naor and
Young’s final answer to Goemans-Linial’s conjecture.

2005-2016: Franchi and Serapioni (often with Serra-Cassano) study the
differentiability of intrinsic Lipschitz functions, guided by the idea of currents.
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Results
Definitions
Examples

We are interested in Rumin currents on Heisenberg groups, defined by duality from
Rumin differential forms.

We are yet unable to chose the appropriate definition of integral Rumin currents and
attack the question of their rectifiability (Franchi and Serapioni’s dream).

Meanwhile, we collect soft results on normal Rumin currents.

Theorem (Compactness)

The space of normal Rumin currents with bounded norm and support in a fixed
compact subset of the Heisenberg group is compact in flat topology.

Theorem (Representation of charges)

A (certain) dual of the space of normal Rumin currents with compact support is the
space C0 + dRC

0.

This is an avatar of a result by T. De Pauw, L. Moonens and W. Pfeffer (2009) in
Euclidean space.
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Rumin forms on Heisenberg group can be viewed as a subset of differential forms,
defined by the vanishing of certain components. M. Rumin has defined a differential
dR on Rumin forms that satisfies dR ◦ dR = 0 and whose cohomology vanishes locally.
dR has order two in the middle dimension.

A Rumin current is a continuous functional on the space of smooth compactly
supported Rumin forms. The boundary operator ∂R is defined by duality,

〈∂RT , ω〉 = 〈T , dRω〉.

The support of T is such that T vanishes on forms with support in the complement.

The mass M(T ) of a Rumin current is

M(T ) = sup{〈T , ω〉 ; ‖ω‖∞ ≤ 1}.

A Rumin current is normal if N(T ) := max{M(T ),M(∂RT )} < +∞.

The flat norm of a Rumin current T is

F (T ) := min{M(R) + M(S) ; T = R + ∂RS}.
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Diffuse currents. A C1 Rumin form φ defines a current P(φ) of complementary
dimension by

〈P(φ), ω〉 =

∫
φ ∧ ω.

Then M(P(φ)) = ‖φ‖1, ∂RP(φ) = ±P(dRφ), N(P(φ)) = max{‖φ‖1, ‖dRφ‖1}.
Currents P(φ) are dense in flat norm in the space of normal Rumin currents.

Currents of integration. In H1, a smooth 2-submanifold V with boundary defines a
Rumin current TV of mass equal to its Hausdorff 3-dimensional measure. ∂R differs
from ∂: if ω is a smooth compactly supported 1-form,

〈∂RTV , ω〉 = 〈∂TV , ω −
dω

dθ
θ〉.

Therefore M(∂RTV ) <∞ only if ∂V is horizontal.
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Duality
Primitives of L∞ Rumin forms

Theorem (Compactness)

The space of normal Rumin currents with bounded norm and support in a fixed
compact subset of the Heisenberg group is compact in flat topology.

By duality (the adjoint of a compact operator is compact), this follows from a
corresponding statement for Rumin forms. Consider the Heisenberg nilmanifold
Z = Hn/Hn

Z.

Proposition

Let X be the space of Rumin forms on Z with vanishing averages, equipped with the
norm

‖ω‖X := |ω|∞ + |dRω|∞,

and let Y be the space of Rumin forms on Z equipped with the norm

‖ω‖Y := inf{|φ|∞ + |ψ|∞, ω = ψ + dcφ}.

Then the injection X ↪→ Y is compact.
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Duality
Primitives of L∞ Rumin forms

Pick p > 2n + 2. Then every closed Rumin form ω ∈ Lq has a primitive φ ∈W 1,q .
For instance, φ = d∗R∆−1

R ω.

When passing to Z , a parametrix P for the Rumin
Laplacian ∆R yields an operator Q = d∗RP mapping Lp to W 1,p such that

S = 1− dQ + Qd

is a smoothing operator (Baldi-Franchi-Pansu).

If (ωj ) is bounded in X ,

ωj = Sωj + d(Qωj ) + Q(dωj )

where all summands are bounded in W 1,p .

Sobolev’s embedding W 1,p ↪→ Cα, α = 1− (2n + 2)/p, implies that each summand is
bounded in Cα, hence compact in L∞.

Thus (ωj ) is compact in Y .
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Definition
Semireflexivity
Proof of the representation of charges

For K be a compact subset of Heisenberg group and ν > 0, let S(K , ν) denote the
space of Rumin currents T with support in K such that N(T ) ≤ ν, equipped with the
flat norm. This is a compact convex set.

Definition

A Rumin charge is a linear functional on the space of compactly supported normal
Rumin currents, which is continuous on each S(K , ν).

Theorem (Representation of Rumin charges)

The space of Rumin charges is C0 + dC0, i.e. if φ is a continuous Rumin form on
Heisenberg group, both φ and dRφ define Rumin charges. Conversely, every Rumin
charge is of the form φ+ dRψ, where φ and ψ are continuous Rumin forms on
Heisenberg group.

The Euclidean case is part of Laurent Moonens’ PhD Thesis, UC Louvain, 2008.
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Definition
Semireflexivity
Proof of the representation of charges

Fix a compact set K , letMK (resp. NK ) be the space of currents of finite mass
(resp. finite N norm) with support in K . ThenMK = C0(K)′,

NK =MK ∩ d−1
R (MK ) = (C0(K) + dRC

0(K))′.

So we are claiming reflexivity of C0 + dRC
0, which fails!

The point is the change of
topology on NK , passing from the N norm to the flat norm. The keyword is
semireflexivity.

Definition (Bourbaki)

A linear form on a topological vectorspace is strongly continuous if it is bounded on
bounded subsets.
A locally convex topological vectorspace X is semireflexive if every strongly
continuous linear form on its topological dual X ′ arises from an element of X .

Pierre Pansu, joint with A. Julia Flat compactness of normal Rumin currents on the Heisenberg group
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Let X be a locally convex space, let S be a dilation stable family of convex subsets of
X . There is a topology TS on X , inducing the initial topology on each S ∈ S, such
that a linear map X → Y is continuous if and only if all its restrictions to elements of
S are continuous.
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Let X be a locally convex space, let S be an exhausting family of compact convex
subsets of X . Then (X , TS ) is semireflexive.

If N is the space of compactly supported normal Rumin currents, endowed with the
flat topology, and S = {SK ,ν}, then Rumin charges are precisely continuous linear
functionals on (N , TS ),

CH ' (N , TS )′.

The theorem applies. By semireflexivity, every strongly continuous linear functionals
on the space of charges CH arises from a normal current of compact support,

(N , TS ) ' CH∗.
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The second ingredient is the identification of bounded subsets of C0.

Proposition

If a subset of N is uniformly bounded as linear functionals on C0, then all have
support in the same compact set of Heisenberg group.

We want to show that Θ : C0 ⊕ C0 → CH, (φ, ψ) 7→ φ+ dRψ is onto. We proceed by
showing that its adjoint Θ∗ : N = CH∗ → (C0 ⊕ C0)∗, given by

〈Θ∗(T ), (φ, ψ)〉 = 〈T , φ+ dRψ〉 = 〈T , φ〉+ 〈∂RT , ψ〉,

is proper. If S ⊂ N and Θ∗(S) is bounded on all bounded subsets of C0 ⊕ C0, then,
for T ∈ S , N(T ) is bounded and supp(T ) is in a common compact set. So S is
flat-compact.
Hence closedness of the range of Θ∗. This shows that Θ is onto. Every charge can be
written φ+ dRψ, for φ, ψ ∈ C0.
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